| /* Copyright (c) 2014, Google Inc. |
| * |
| * Permission to use, copy, modify, and/or distribute this software for any |
| * purpose with or without fee is hereby granted, provided that the above |
| * copyright notice and this permission notice appear in all copies. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY |
| * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION |
| * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN |
| * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ |
| |
| #include <stdio.h> |
| #include <string.h> |
| |
| #include <vector> |
| |
| #include <openssl/bytestring.h> |
| #include <openssl/crypto.h> |
| #include <openssl/ec_key.h> |
| #include <openssl/err.h> |
| #include <openssl/mem.h> |
| |
| #include "../test/scoped_types.h" |
| |
| |
| // kECKeyWithoutPublic is an ECPrivateKey with the optional publicKey field |
| // omitted. |
| static const uint8_t kECKeyWithoutPublic[] = { |
| 0x30, 0x31, 0x02, 0x01, 0x01, 0x04, 0x20, 0xc6, 0xc1, 0xaa, 0xda, 0x15, 0xb0, |
| 0x76, 0x61, 0xf8, 0x14, 0x2c, 0x6c, 0xaf, 0x0f, 0xdb, 0x24, 0x1a, 0xff, 0x2e, |
| 0xfe, 0x46, 0xc0, 0x93, 0x8b, 0x74, 0xf2, 0xbc, 0xc5, 0x30, 0x52, 0xb0, 0x77, |
| 0xa0, 0x0a, 0x06, 0x08, 0x2a, 0x86, 0x48, 0xce, 0x3d, 0x03, 0x01, 0x07, |
| }; |
| |
| // kECKeySpecifiedCurve is the above key with P-256's parameters explicitly |
| // spelled out rather than using a named curve. |
| static const uint8_t kECKeySpecifiedCurve[] = { |
| 0x30, 0x82, 0x01, 0x22, 0x02, 0x01, 0x01, 0x04, 0x20, 0xc6, 0xc1, 0xaa, |
| 0xda, 0x15, 0xb0, 0x76, 0x61, 0xf8, 0x14, 0x2c, 0x6c, 0xaf, 0x0f, 0xdb, |
| 0x24, 0x1a, 0xff, 0x2e, 0xfe, 0x46, 0xc0, 0x93, 0x8b, 0x74, 0xf2, 0xbc, |
| 0xc5, 0x30, 0x52, 0xb0, 0x77, 0xa0, 0x81, 0xfa, 0x30, 0x81, 0xf7, 0x02, |
| 0x01, 0x01, 0x30, 0x2c, 0x06, 0x07, 0x2a, 0x86, 0x48, 0xce, 0x3d, 0x01, |
| 0x01, 0x02, 0x21, 0x00, 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
| 0x30, 0x5b, 0x04, 0x20, 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfc, |
| 0x04, 0x20, 0x5a, 0xc6, 0x35, 0xd8, 0xaa, 0x3a, 0x93, 0xe7, 0xb3, 0xeb, |
| 0xbd, 0x55, 0x76, 0x98, 0x86, 0xbc, 0x65, 0x1d, 0x06, 0xb0, 0xcc, 0x53, |
| 0xb0, 0xf6, 0x3b, 0xce, 0x3c, 0x3e, 0x27, 0xd2, 0x60, 0x4b, 0x03, 0x15, |
| 0x00, 0xc4, 0x9d, 0x36, 0x08, 0x86, 0xe7, 0x04, 0x93, 0x6a, 0x66, 0x78, |
| 0xe1, 0x13, 0x9d, 0x26, 0xb7, 0x81, 0x9f, 0x7e, 0x90, 0x04, 0x41, 0x04, |
| 0x6b, 0x17, 0xd1, 0xf2, 0xe1, 0x2c, 0x42, 0x47, 0xf8, 0xbc, 0xe6, 0xe5, |
| 0x63, 0xa4, 0x40, 0xf2, 0x77, 0x03, 0x7d, 0x81, 0x2d, 0xeb, 0x33, 0xa0, |
| 0xf4, 0xa1, 0x39, 0x45, 0xd8, 0x98, 0xc2, 0x96, 0x4f, 0xe3, 0x42, 0xe2, |
| 0xfe, 0x1a, 0x7f, 0x9b, 0x8e, 0xe7, 0xeb, 0x4a, 0x7c, 0x0f, 0x9e, 0x16, |
| 0x2b, 0xce, 0x33, 0x57, 0x6b, 0x31, 0x5e, 0xce, 0xcb, 0xb6, 0x40, 0x68, |
| 0x37, 0xbf, 0x51, 0xf5, 0x02, 0x21, 0x00, 0xff, 0xff, 0xff, 0xff, 0x00, |
| 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xbc, |
| 0xe6, 0xfa, 0xad, 0xa7, 0x17, 0x9e, 0x84, 0xf3, 0xb9, 0xca, 0xc2, 0xfc, |
| 0x63, 0x25, 0x51, 0x02, 0x01, 0x01, |
| }; |
| |
| // kECKeyMissingZeros is an ECPrivateKey containing a degenerate P-256 key where |
| // the private key is one. The private key is incorrectly encoded without zero |
| // padding. |
| static const uint8_t kECKeyMissingZeros[] = { |
| 0x30, 0x58, 0x02, 0x01, 0x01, 0x04, 0x01, 0x01, 0xa0, 0x0a, 0x06, 0x08, 0x2a, |
| 0x86, 0x48, 0xce, 0x3d, 0x03, 0x01, 0x07, 0xa1, 0x44, 0x03, 0x42, 0x00, 0x04, |
| 0x6b, 0x17, 0xd1, 0xf2, 0xe1, 0x2c, 0x42, 0x47, 0xf8, 0xbc, 0xe6, 0xe5, 0x63, |
| 0xa4, 0x40, 0xf2, 0x77, 0x03, 0x7d, 0x81, 0x2d, 0xeb, 0x33, 0xa0, 0xf4, 0xa1, |
| 0x39, 0x45, 0xd8, 0x98, 0xc2, 0x96, 0x4f, 0xe3, 0x42, 0xe2, 0xfe, 0x1a, 0x7f, |
| 0x9b, 0x8e, 0xe7, 0xeb, 0x4a, 0x7c, 0x0f, 0x9e, 0x16, 0x2b, 0xce, 0x33, 0x57, |
| 0x6b, 0x31, 0x5e, 0xce, 0xcb, 0xb6, 0x40, 0x68, 0x37, 0xbf, 0x51, 0xf5, |
| }; |
| |
| // kECKeyMissingZeros is an ECPrivateKey containing a degenerate P-256 key where |
| // the private key is one. The private key is encoded with the required zero |
| // padding. |
| static const uint8_t kECKeyWithZeros[] = { |
| 0x30, 0x77, 0x02, 0x01, 0x01, 0x04, 0x20, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, |
| 0xa0, 0x0a, 0x06, 0x08, 0x2a, 0x86, 0x48, 0xce, 0x3d, 0x03, 0x01, 0x07, 0xa1, |
| 0x44, 0x03, 0x42, 0x00, 0x04, 0x6b, 0x17, 0xd1, 0xf2, 0xe1, 0x2c, 0x42, 0x47, |
| 0xf8, 0xbc, 0xe6, 0xe5, 0x63, 0xa4, 0x40, 0xf2, 0x77, 0x03, 0x7d, 0x81, 0x2d, |
| 0xeb, 0x33, 0xa0, 0xf4, 0xa1, 0x39, 0x45, 0xd8, 0x98, 0xc2, 0x96, 0x4f, 0xe3, |
| 0x42, 0xe2, 0xfe, 0x1a, 0x7f, 0x9b, 0x8e, 0xe7, 0xeb, 0x4a, 0x7c, 0x0f, 0x9e, |
| 0x16, 0x2b, 0xce, 0x33, 0x57, 0x6b, 0x31, 0x5e, 0xce, 0xcb, 0xb6, 0x40, 0x68, |
| 0x37, 0xbf, 0x51, 0xf5, |
| }; |
| |
| // DecodeECPrivateKey decodes |in| as an ECPrivateKey structure and returns the |
| // result or nullptr on error. |
| static ScopedEC_KEY DecodeECPrivateKey(const uint8_t *in, size_t in_len) { |
| CBS cbs; |
| CBS_init(&cbs, in, in_len); |
| ScopedEC_KEY ret(EC_KEY_parse_private_key(&cbs, NULL)); |
| if (!ret || CBS_len(&cbs) != 0) { |
| return nullptr; |
| } |
| return ret; |
| } |
| |
| // EncodeECPrivateKey encodes |key| as an ECPrivateKey structure into |*out|. It |
| // returns true on success or false on error. |
| static bool EncodeECPrivateKey(std::vector<uint8_t> *out, const EC_KEY *key) { |
| ScopedCBB cbb; |
| uint8_t *der; |
| size_t der_len; |
| if (!CBB_init(cbb.get(), 0) || |
| !EC_KEY_marshal_private_key(cbb.get(), key, EC_KEY_get_enc_flags(key)) || |
| !CBB_finish(cbb.get(), &der, &der_len)) { |
| return false; |
| } |
| out->assign(der, der + der_len); |
| OPENSSL_free(der); |
| return true; |
| } |
| |
| static bool Testd2i_ECPrivateKey() { |
| ScopedEC_KEY key = DecodeECPrivateKey(kECKeyWithoutPublic, |
| sizeof(kECKeyWithoutPublic)); |
| if (!key) { |
| fprintf(stderr, "Failed to parse private key.\n"); |
| ERR_print_errors_fp(stderr); |
| return false; |
| } |
| |
| std::vector<uint8_t> out; |
| if (!EncodeECPrivateKey(&out, key.get())) { |
| fprintf(stderr, "Failed to serialize private key.\n"); |
| ERR_print_errors_fp(stderr); |
| return false; |
| } |
| |
| if (std::vector<uint8_t>(kECKeyWithoutPublic, |
| kECKeyWithoutPublic + sizeof(kECKeyWithoutPublic)) != |
| out) { |
| fprintf(stderr, "Serialisation of key doesn't match original.\n"); |
| return false; |
| } |
| |
| const EC_POINT *pub_key = EC_KEY_get0_public_key(key.get()); |
| if (pub_key == NULL) { |
| fprintf(stderr, "Public key missing.\n"); |
| return false; |
| } |
| |
| ScopedBIGNUM x(BN_new()); |
| ScopedBIGNUM y(BN_new()); |
| if (!x || !y) { |
| return false; |
| } |
| if (!EC_POINT_get_affine_coordinates_GFp(EC_KEY_get0_group(key.get()), |
| pub_key, x.get(), y.get(), NULL)) { |
| fprintf(stderr, "Failed to get public key in affine coordinates.\n"); |
| return false; |
| } |
| ScopedOpenSSLString x_hex(BN_bn2hex(x.get())); |
| ScopedOpenSSLString y_hex(BN_bn2hex(y.get())); |
| if (!x_hex || !y_hex) { |
| return false; |
| } |
| if (0 != strcmp( |
| x_hex.get(), |
| "c81561ecf2e54edefe6617db1c7a34a70744ddb261f269b83dacfcd2ade5a681") || |
| 0 != strcmp( |
| y_hex.get(), |
| "e0e2afa3f9b6abe4c698ef6495f1be49a3196c5056acb3763fe4507eec596e88")) { |
| fprintf(stderr, "Incorrect public key: %s %s\n", x_hex.get(), y_hex.get()); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool TestZeroPadding() { |
| // Check that the correct encoding round-trips. |
| ScopedEC_KEY key = DecodeECPrivateKey(kECKeyWithZeros, |
| sizeof(kECKeyWithZeros)); |
| std::vector<uint8_t> out; |
| if (!key || !EncodeECPrivateKey(&out, key.get())) { |
| ERR_print_errors_fp(stderr); |
| return false; |
| } |
| |
| if (std::vector<uint8_t>(kECKeyWithZeros, |
| kECKeyWithZeros + sizeof(kECKeyWithZeros)) != out) { |
| fprintf(stderr, "Serialisation of key was incorrect.\n"); |
| return false; |
| } |
| |
| // Keys without leading zeros also parse, but they encode correctly. |
| key = DecodeECPrivateKey(kECKeyMissingZeros, sizeof(kECKeyMissingZeros)); |
| if (!key || !EncodeECPrivateKey(&out, key.get())) { |
| ERR_print_errors_fp(stderr); |
| return false; |
| } |
| |
| if (std::vector<uint8_t>(kECKeyWithZeros, |
| kECKeyWithZeros + sizeof(kECKeyWithZeros)) != out) { |
| fprintf(stderr, "Serialisation of key was incorrect.\n"); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool TestSpecifiedCurve() { |
| // Test keys with specified curves may be decoded. |
| ScopedEC_KEY key = |
| DecodeECPrivateKey(kECKeySpecifiedCurve, sizeof(kECKeySpecifiedCurve)); |
| if (!key) { |
| ERR_print_errors_fp(stderr); |
| return false; |
| } |
| |
| // The group should have been interpreted as P-256. |
| if (EC_GROUP_get_curve_name(EC_KEY_get0_group(key.get())) != |
| NID_X9_62_prime256v1) { |
| fprintf(stderr, "Curve name incorrect.\n"); |
| return false; |
| } |
| |
| // Encoding the key should still use named form. |
| std::vector<uint8_t> out; |
| if (!EncodeECPrivateKey(&out, key.get())) { |
| ERR_print_errors_fp(stderr); |
| return false; |
| } |
| if (std::vector<uint8_t>(kECKeyWithoutPublic, |
| kECKeyWithoutPublic + sizeof(kECKeyWithoutPublic)) != |
| out) { |
| fprintf(stderr, "Serialisation of key was incorrect.\n"); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool TestSetAffine(const int nid) { |
| ScopedEC_KEY key(EC_KEY_new_by_curve_name(nid)); |
| if (!key) { |
| return false; |
| } |
| |
| const EC_GROUP *const group = EC_KEY_get0_group(key.get()); |
| |
| if (!EC_KEY_generate_key(key.get())) { |
| fprintf(stderr, "EC_KEY_generate_key failed with nid %d\n", nid); |
| ERR_print_errors_fp(stderr); |
| return false; |
| } |
| |
| if (!EC_POINT_is_on_curve(group, EC_KEY_get0_public_key(key.get()), |
| nullptr)) { |
| fprintf(stderr, "generated point is not on curve with nid %d", nid); |
| ERR_print_errors_fp(stderr); |
| return false; |
| } |
| |
| ScopedBIGNUM x(BN_new()); |
| ScopedBIGNUM y(BN_new()); |
| if (!EC_POINT_get_affine_coordinates_GFp(group, |
| EC_KEY_get0_public_key(key.get()), |
| x.get(), y.get(), nullptr)) { |
| fprintf(stderr, "EC_POINT_get_affine_coordinates_GFp failed with nid %d\n", |
| nid); |
| ERR_print_errors_fp(stderr); |
| return false; |
| } |
| |
| ScopedEC_POINT point(EC_POINT_new(group)); |
| if (!point) { |
| return false; |
| } |
| |
| if (!EC_POINT_set_affine_coordinates_GFp(group, point.get(), x.get(), y.get(), |
| nullptr)) { |
| fprintf(stderr, "EC_POINT_set_affine_coordinates_GFp failed with nid %d\n", |
| nid); |
| ERR_print_errors_fp(stderr); |
| return false; |
| } |
| |
| // Subtract one from |y| to make the point no longer on the curve. |
| if (!BN_sub(y.get(), y.get(), BN_value_one())) { |
| return false; |
| } |
| |
| ScopedEC_POINT invalid_point(EC_POINT_new(group)); |
| if (!invalid_point) { |
| return false; |
| } |
| |
| if (EC_POINT_set_affine_coordinates_GFp(group, invalid_point.get(), x.get(), |
| y.get(), nullptr)) { |
| fprintf(stderr, |
| "EC_POINT_set_affine_coordinates_GFp succeeded with invalid " |
| "coordinates with nid %d\n", |
| nid); |
| ERR_print_errors_fp(stderr); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool TestArbitraryCurve() { |
| // Make a P-256 key and extract the affine coordinates. |
| ScopedEC_KEY key(EC_KEY_new_by_curve_name(NID_X9_62_prime256v1)); |
| if (!key || !EC_KEY_generate_key(key.get())) { |
| return false; |
| } |
| |
| // Make an arbitrary curve which is identical to P-256. |
| static const uint8_t kP[] = { |
| 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
| }; |
| static const uint8_t kA[] = { |
| 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfc, |
| }; |
| static const uint8_t kB[] = { |
| 0x5a, 0xc6, 0x35, 0xd8, 0xaa, 0x3a, 0x93, 0xe7, 0xb3, 0xeb, 0xbd, |
| 0x55, 0x76, 0x98, 0x86, 0xbc, 0x65, 0x1d, 0x06, 0xb0, 0xcc, 0x53, |
| 0xb0, 0xf6, 0x3b, 0xce, 0x3c, 0x3e, 0x27, 0xd2, 0x60, 0x4b, |
| }; |
| static const uint8_t kX[] = { |
| 0x6b, 0x17, 0xd1, 0xf2, 0xe1, 0x2c, 0x42, 0x47, 0xf8, 0xbc, 0xe6, |
| 0xe5, 0x63, 0xa4, 0x40, 0xf2, 0x77, 0x03, 0x7d, 0x81, 0x2d, 0xeb, |
| 0x33, 0xa0, 0xf4, 0xa1, 0x39, 0x45, 0xd8, 0x98, 0xc2, 0x96, |
| }; |
| static const uint8_t kY[] = { |
| 0x4f, 0xe3, 0x42, 0xe2, 0xfe, 0x1a, 0x7f, 0x9b, 0x8e, 0xe7, 0xeb, |
| 0x4a, 0x7c, 0x0f, 0x9e, 0x16, 0x2b, 0xce, 0x33, 0x57, 0x6b, 0x31, |
| 0x5e, 0xce, 0xcb, 0xb6, 0x40, 0x68, 0x37, 0xbf, 0x51, 0xf5, |
| }; |
| static const uint8_t kOrder[] = { |
| 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xbc, 0xe6, 0xfa, 0xad, 0xa7, 0x17, |
| 0x9e, 0x84, 0xf3, 0xb9, 0xca, 0xc2, 0xfc, 0x63, 0x25, 0x51, |
| }; |
| ScopedBN_CTX ctx(BN_CTX_new()); |
| ScopedBIGNUM p(BN_bin2bn(kP, sizeof(kP), nullptr)); |
| ScopedBIGNUM a(BN_bin2bn(kA, sizeof(kA), nullptr)); |
| ScopedBIGNUM b(BN_bin2bn(kB, sizeof(kB), nullptr)); |
| ScopedBIGNUM gx(BN_bin2bn(kX, sizeof(kX), nullptr)); |
| ScopedBIGNUM gy(BN_bin2bn(kY, sizeof(kY), nullptr)); |
| ScopedBIGNUM order(BN_bin2bn(kOrder, sizeof(kOrder), nullptr)); |
| ScopedBIGNUM cofactor(BN_new()); |
| if (!ctx || !p || !a || !b || !gx || !gy || !order || !cofactor || |
| !BN_set_word(cofactor.get(), 1)) { |
| return false; |
| } |
| |
| ScopedEC_GROUP group( |
| EC_GROUP_new_curve_GFp(p.get(), a.get(), b.get(), ctx.get())); |
| if (!group) { |
| return false; |
| } |
| ScopedEC_POINT generator(EC_POINT_new(group.get())); |
| if (!generator || |
| !EC_POINT_set_affine_coordinates_GFp(group.get(), generator.get(), |
| gx.get(), gy.get(), ctx.get()) || |
| !EC_GROUP_set_generator(group.get(), generator.get(), order.get(), |
| cofactor.get())) { |
| return false; |
| } |
| |
| // |group| should not have a curve name. |
| if (EC_GROUP_get_curve_name(group.get()) != NID_undef) { |
| return false; |
| } |
| |
| // Copy |key| to |key2| using |group|. |
| ScopedEC_KEY key2(EC_KEY_new()); |
| ScopedEC_POINT point(EC_POINT_new(group.get())); |
| ScopedBIGNUM x(BN_new()), y(BN_new()); |
| if (!key2 || !point || !x || !y || |
| !EC_KEY_set_group(key2.get(), group.get()) || |
| !EC_KEY_set_private_key(key2.get(), EC_KEY_get0_private_key(key.get())) || |
| !EC_POINT_get_affine_coordinates_GFp(EC_KEY_get0_group(key.get()), |
| EC_KEY_get0_public_key(key.get()), |
| x.get(), y.get(), nullptr) || |
| !EC_POINT_set_affine_coordinates_GFp(group.get(), point.get(), x.get(), |
| y.get(), nullptr) || |
| !EC_KEY_set_public_key(key2.get(), point.get())) { |
| fprintf(stderr, "Could not copy key.\n"); |
| return false; |
| } |
| |
| // The key must be valid according to the new group too. |
| if (!EC_KEY_check_key(key2.get())) { |
| fprintf(stderr, "Copied key is not valid.\n"); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool TestAddingEqualPoints(int nid) { |
| ScopedEC_KEY key(EC_KEY_new_by_curve_name(nid)); |
| if (!key) { |
| return false; |
| } |
| |
| const EC_GROUP *const group = EC_KEY_get0_group(key.get()); |
| |
| if (!EC_KEY_generate_key(key.get())) { |
| fprintf(stderr, "EC_KEY_generate_key failed with nid %d\n", nid); |
| ERR_print_errors_fp(stderr); |
| return false; |
| } |
| |
| ScopedEC_POINT p1(EC_POINT_new(group)); |
| ScopedEC_POINT p2(EC_POINT_new(group)); |
| ScopedEC_POINT double_p1(EC_POINT_new(group)); |
| ScopedEC_POINT p1_plus_p2(EC_POINT_new(group)); |
| if (!p1 || !p2 || !double_p1 || !p1_plus_p2) { |
| return false; |
| } |
| |
| if (!EC_POINT_copy(p1.get(), EC_KEY_get0_public_key(key.get())) || |
| !EC_POINT_copy(p2.get(), EC_KEY_get0_public_key(key.get()))) { |
| fprintf(stderr, "EC_POINT_COPY failed with nid %d\n", nid); |
| ERR_print_errors_fp(stderr); |
| return false; |
| } |
| |
| ScopedBN_CTX ctx(BN_CTX_new()); |
| if (!ctx) { |
| return false; |
| } |
| |
| if (!EC_POINT_dbl(group, double_p1.get(), p1.get(), ctx.get()) || |
| !EC_POINT_add(group, p1_plus_p2.get(), p1.get(), p2.get(), ctx.get())) { |
| fprintf(stderr, "Point operation failed with nid %d\n", nid); |
| ERR_print_errors_fp(stderr); |
| return false; |
| } |
| |
| if (EC_POINT_cmp(group, double_p1.get(), p1_plus_p2.get(), ctx.get()) != 0) { |
| fprintf(stderr, "A+A != 2A for nid %d", nid); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool ForEachCurve(bool (*test_func)(int nid)) { |
| const size_t num_curves = EC_get_builtin_curves(nullptr, 0); |
| std::vector<EC_builtin_curve> curves(num_curves); |
| EC_get_builtin_curves(curves.data(), num_curves); |
| |
| for (const auto& curve : curves) { |
| if (!test_func(curve.nid)) { |
| fprintf(stderr, "Test failed for %s\n", curve.comment); |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| int main(void) { |
| CRYPTO_library_init(); |
| |
| if (!Testd2i_ECPrivateKey() || |
| !TestZeroPadding() || |
| !TestSpecifiedCurve() || |
| !ForEachCurve(TestSetAffine) || |
| !ForEachCurve(TestAddingEqualPoints) || |
| !TestArbitraryCurve()) { |
| fprintf(stderr, "failed\n"); |
| return 1; |
| } |
| |
| printf("PASS\n"); |
| return 0; |
| } |