| /* Copyright (c) 2020, Google Inc. |
| * |
| * Permission to use, copy, modify, and/or distribute this software for any |
| * purpose with or without fee is hereby granted, provided that the above |
| * copyright notice and this permission notice appear in all copies. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY |
| * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION |
| * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN |
| * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ |
| |
| #include <openssl/bn.h> |
| #include <openssl/bytestring.h> |
| #include <openssl/ec.h> |
| #include <openssl/err.h> |
| #include <openssl/mem.h> |
| #include <openssl/nid.h> |
| #include <openssl/trust_token.h> |
| |
| #include "../fipsmodule/bn/internal.h" |
| #include "../fipsmodule/ec/internal.h" |
| |
| |
| // Privacy Pass uses a custom elliptic curve construction described in |
| // https://eprint.iacr.org/2020/072.pdf (section 7, construction 4). Ths |
| // construction provides anonymous tokens with private metadata and validity |
| // verification. |
| |
| // get_h returns a randomly selected point for the Privacy Pass protocol. |
| // |
| // x: 66591746412783875033873351891229753622964683369847172829242944646280287810 |
| // 81195403447871073952234683395256591180452378091073292247502091640572714366 |
| // 588045092 |
| // y: 12347430519393087872533727997980072129796839266949808299436682045034861065 |
| // 18810630511924722292325611253427311923464047364545304196431830383014967865 |
| // 162306253 |
| // |
| // This point was generated with the following Python code. |
| |
| /* |
| import hashlib |
| |
| SEED_H = 'PrivacyPass H' |
| |
| A = -3 |
| B = 0x051953eb9618e1c9a1f929a21a0b68540eea2da725b99b315f3b8b489918ef109e156193951ec7e937b1652c0bd3bb1bf073573df883d2c34f1ef451fd46b503f00 |
| P = 2**521 - 1 |
| |
| def get_y(x): |
| y2 = (x**3 + A*x + B) % P |
| y = pow(y2, (P+1)/4, P) |
| if (y*y) % P != y2: |
| raise ValueError("point not on curve") |
| return y |
| |
| def bit(h,i): |
| return (ord(h[i/8]) >> (i%8)) & 1 |
| |
| b = 521 |
| def decode_point(so): |
| s = hashlib.sha256(so + '0').digest() + hashlib.sha256(so + '1').digest() + \ |
| hashlib.sha256(so + '2').digest() |
| |
| x = 0 |
| for i in range(0,b): |
| x = x + (long(bit(s,i))<<i) |
| if x >= P: |
| raise ValueError("x out of range") |
| y = get_y(x) |
| if y & 1 != bit(s,b-1): y = P-y |
| return (x, y) |
| |
| |
| def gen_point(seed): |
| v = hashlib.sha256(seed).digest() |
| it = 1 |
| while True: |
| try: |
| x,y = decode_point(v) |
| except Exception, e: |
| print e |
| it += 1 |
| v = hashlib.sha256(v).digest() |
| continue |
| print "Found in %d iterations:" % it |
| print " x = %d" % x |
| print " y = %d" % y |
| print " Encoded (hex): (%x, %x)" % (x, y) |
| return (x, y) |
| |
| if __name__ == "__main__": |
| gen_point(SEED_H) |
| */ |
| |
| static EC_POINT *get_h(void) { |
| EC_GROUP *group = EC_GROUP_new_by_curve_name(NID_secp521r1); |
| if (group == NULL) { |
| return NULL; |
| } |
| |
| static const BN_ULONG kHGenX[] = { |
| TOBN(0x3d01749f, 0xc51e4724), |
| TOBN(0x31c28621, 0xf95c98b9), |
| TOBN(0x6dc5392a, 0xd4ce846e), |
| TOBN(0xda645354, 0x4ef9760d), |
| TOBN(0x5945d13e, 0x25337e4c), |
| TOBN(0xeb0f6bc0, 0x5c0ecefe), |
| TOBN(0xab291003, 0x6f4ef5bd), |
| TOBN(0xa9f79ebc, 0x126cefd1), |
| 0x000001f0, |
| }; |
| static const BIGNUM kX = STATIC_BIGNUM(kHGenX); |
| |
| static const BN_ULONG kHGenY[] = { |
| TOBN(0xffa6a0ea, 0x966792cd), |
| TOBN(0x6e783d17, 0x08e3df3c), |
| TOBN(0xb5617012, 0x72ac6ab0), |
| TOBN(0xe0bcf350, 0x5c7e6641), |
| TOBN(0x53bc55ea, 0xad8f261d), |
| TOBN(0xbba93b9d, 0x70491eb4), |
| TOBN(0x5214756f, 0x36d9c7fa), |
| TOBN(0x1762517d, 0x325e29ac), |
| 0x0000005c, |
| }; |
| static const BIGNUM kY = STATIC_BIGNUM(kHGenY); |
| |
| EC_POINT *h = EC_POINT_new(group); |
| if (h == NULL || |
| !EC_POINT_set_affine_coordinates_GFp(group, h, &kX, &kY, NULL)) { |
| EC_POINT_free(h); |
| return NULL; |
| } |
| return h; |
| } |
| |
| // generate_keypair generates a keypair for the Private Metadata construction. |
| // |out_x| and |out_y| are set to the secret half of the keypair, while |
| // |*out_pub| is set to the public half of the keypair. It returns one on |
| // success and zero on failure. |
| static int generate_keypair(EC_SCALAR *out_x, EC_SCALAR *out_y, |
| EC_RAW_POINT *out_pub, const EC_GROUP *group) { |
| EC_POINT *h = get_h(); |
| if (h == NULL) { |
| return 0; |
| } |
| |
| static const uint8_t kDefaultAdditionalData[32] = {0}; |
| EC_RAW_POINT tmp1, tmp2; |
| if (!ec_random_nonzero_scalar(group, out_x, kDefaultAdditionalData) || |
| !ec_random_nonzero_scalar(group, out_y, kDefaultAdditionalData) || |
| !ec_point_mul_scalar_base(group, &tmp1, out_x) || |
| !ec_point_mul_scalar(group, &tmp2, &h->raw, out_y)) { |
| EC_POINT_free(h); |
| OPENSSL_PUT_ERROR(TRUST_TOKEN, ERR_R_MALLOC_FAILURE); |
| return 0; |
| } |
| group->meth->add(group, out_pub, &tmp1, &tmp2); |
| |
| EC_POINT_free(h); |
| return 1; |
| } |
| |
| static int point_to_cbb(CBB *out, const EC_GROUP *group, |
| const EC_RAW_POINT *point) { |
| size_t len = |
| ec_point_to_bytes(group, point, POINT_CONVERSION_UNCOMPRESSED, NULL, 0); |
| if (len == 0) { |
| return 0; |
| } |
| uint8_t *p; |
| return CBB_add_space(out, &p, len) && |
| ec_point_to_bytes(group, point, POINT_CONVERSION_UNCOMPRESSED, p, |
| len) == len; |
| } |
| |
| int TRUST_TOKEN_generate_key(uint8_t *out_priv_key, size_t *out_priv_key_len, |
| size_t max_priv_key_len, uint8_t *out_pub_key, |
| size_t *out_pub_key_len, size_t max_pub_key_len, |
| uint32_t id) { |
| int ok = 0; |
| CBB cbb; |
| CBB_zero(&cbb); |
| EC_GROUP *group = EC_GROUP_new_by_curve_name(NID_secp521r1); |
| if (group == NULL) { |
| return 0; |
| } |
| |
| EC_RAW_POINT pub0, pub1, pubs; |
| EC_SCALAR x0, y0, x1, y1, xs, ys; |
| if (!generate_keypair(&x0, &y0, &pub0, group) || |
| !generate_keypair(&x1, &y1, &pub1, group) || |
| !generate_keypair(&xs, &ys, &pubs, group)) { |
| OPENSSL_PUT_ERROR(TRUST_TOKEN, TRUST_TOKEN_R_KEYGEN_FAILURE); |
| goto err; |
| } |
| |
| size_t scalar_len = BN_num_bytes(&group->order); |
| if (!CBB_init_fixed(&cbb, out_priv_key, max_priv_key_len) || |
| !CBB_add_u32(&cbb, id)) { |
| OPENSSL_PUT_ERROR(TRUST_TOKEN, TRUST_TOKEN_R_BUFFER_TOO_SMALL); |
| goto err; |
| } |
| |
| const EC_SCALAR *scalars[] = {&x0, &y0, &x1, &y1, &xs, &ys}; |
| for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(scalars); i++) { |
| uint8_t *buf; |
| if (!CBB_add_space(&cbb, &buf, scalar_len)) { |
| OPENSSL_PUT_ERROR(TRUST_TOKEN, TRUST_TOKEN_R_BUFFER_TOO_SMALL); |
| goto err; |
| } |
| ec_scalar_to_bytes(group, buf, &scalar_len, scalars[i]); |
| } |
| |
| if (!CBB_finish(&cbb, NULL, out_priv_key_len)) { |
| OPENSSL_PUT_ERROR(TRUST_TOKEN, TRUST_TOKEN_R_BUFFER_TOO_SMALL); |
| goto err; |
| } |
| |
| CBB pub_cbb; |
| if (!CBB_init_fixed(&cbb, out_pub_key, max_pub_key_len) || |
| !CBB_add_u32(&cbb, id) || |
| !CBB_add_u16_length_prefixed(&cbb, &pub_cbb) || |
| !point_to_cbb(&pub_cbb, group, &pub0) || |
| !CBB_add_u16_length_prefixed(&cbb, &pub_cbb) || |
| !point_to_cbb(&pub_cbb, group, &pub1) || |
| !CBB_add_u16_length_prefixed(&cbb, &pub_cbb) || |
| !point_to_cbb(&pub_cbb, group, &pubs) || |
| !CBB_finish(&cbb, NULL, out_pub_key_len)) { |
| OPENSSL_PUT_ERROR(TRUST_TOKEN, TRUST_TOKEN_R_BUFFER_TOO_SMALL); |
| goto err; |
| } |
| |
| ok = 1; |
| |
| err: |
| CBB_cleanup(&cbb); |
| return ok; |
| } |