blob: a50f50f9fa98825f89c0951b5cfa5c4d70f2b5ee [file] [log] [blame] [edit]
/* Copyright (c) 2016, Google Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
#include <gtest/gtest.h>
#include <openssl/pool.h>
#include "internal.h"
#include "../test/test_util.h"
#if defined(OPENSSL_THREADS)
#include <chrono>
#include <thread>
#endif
TEST(PoolTest, Unpooled) {
static const uint8_t kData[4] = {1, 2, 3, 4};
bssl::UniquePtr<CRYPTO_BUFFER> buf(
CRYPTO_BUFFER_new(kData, sizeof(kData), nullptr));
ASSERT_TRUE(buf);
EXPECT_EQ(Bytes(kData),
Bytes(CRYPTO_BUFFER_data(buf.get()), CRYPTO_BUFFER_len(buf.get())));
// Test that reference-counting works properly.
bssl::UniquePtr<CRYPTO_BUFFER> buf2 = bssl::UpRef(buf);
bssl::UniquePtr<CRYPTO_BUFFER> buf_static(
CRYPTO_BUFFER_new_from_static_data_unsafe(kData, sizeof(kData), nullptr));
ASSERT_TRUE(buf_static);
EXPECT_EQ(kData, CRYPTO_BUFFER_data(buf_static.get()));
EXPECT_EQ(sizeof(kData), CRYPTO_BUFFER_len(buf_static.get()));
// Test that reference-counting works properly.
bssl::UniquePtr<CRYPTO_BUFFER> buf_static2 = bssl::UpRef(buf_static);
}
TEST(PoolTest, Empty) {
bssl::UniquePtr<CRYPTO_BUFFER> buf(CRYPTO_BUFFER_new(nullptr, 0, nullptr));
ASSERT_TRUE(buf);
EXPECT_EQ(Bytes(""),
Bytes(CRYPTO_BUFFER_data(buf.get()), CRYPTO_BUFFER_len(buf.get())));
bssl::UniquePtr<CRYPTO_BUFFER> buf_static(
CRYPTO_BUFFER_new_from_static_data_unsafe(nullptr, 0, nullptr));
ASSERT_TRUE(buf_static);
EXPECT_EQ(nullptr, CRYPTO_BUFFER_data(buf_static.get()));
EXPECT_EQ(0u, CRYPTO_BUFFER_len(buf_static.get()));
}
TEST(PoolTest, Pooled) {
bssl::UniquePtr<CRYPTO_BUFFER_POOL> pool(CRYPTO_BUFFER_POOL_new());
ASSERT_TRUE(pool);
static const uint8_t kData1[4] = {1, 2, 3, 4};
bssl::UniquePtr<CRYPTO_BUFFER> buf(
CRYPTO_BUFFER_new(kData1, sizeof(kData1), pool.get()));
ASSERT_TRUE(buf);
EXPECT_EQ(Bytes(kData1),
Bytes(CRYPTO_BUFFER_data(buf.get()), CRYPTO_BUFFER_len(buf.get())));
bssl::UniquePtr<CRYPTO_BUFFER> buf2(
CRYPTO_BUFFER_new(kData1, sizeof(kData1), pool.get()));
ASSERT_TRUE(buf2);
EXPECT_EQ(Bytes(kData1), Bytes(CRYPTO_BUFFER_data(buf2.get()),
CRYPTO_BUFFER_len(buf2.get())));
EXPECT_EQ(buf.get(), buf2.get()) << "CRYPTO_BUFFER_POOL did not dedup data.";
// Different inputs do not get deduped.
static const uint8_t kData2[4] = {5, 6, 7, 8};
bssl::UniquePtr<CRYPTO_BUFFER> buf3(
CRYPTO_BUFFER_new(kData2, sizeof(kData2), pool.get()));
ASSERT_TRUE(buf3);
EXPECT_EQ(Bytes(kData2), Bytes(CRYPTO_BUFFER_data(buf3.get()),
CRYPTO_BUFFER_len(buf3.get())));
EXPECT_NE(buf.get(), buf3.get());
// When the last refcount on |buf3| is dropped, it is removed from the pool.
buf3 = nullptr;
EXPECT_EQ(1u, lh_CRYPTO_BUFFER_num_items(pool->bufs));
// Static buffers participate in pooling.
buf3.reset(CRYPTO_BUFFER_new_from_static_data_unsafe(kData2, sizeof(kData2),
pool.get()));
ASSERT_TRUE(buf3);
EXPECT_EQ(kData2, CRYPTO_BUFFER_data(buf3.get()));
EXPECT_EQ(sizeof(kData2), CRYPTO_BUFFER_len(buf3.get()));
EXPECT_NE(buf.get(), buf3.get());
bssl::UniquePtr<CRYPTO_BUFFER> buf4(
CRYPTO_BUFFER_new(kData2, sizeof(kData2), pool.get()));
EXPECT_EQ(buf4.get(), buf3.get());
bssl::UniquePtr<CRYPTO_BUFFER> buf5(CRYPTO_BUFFER_new_from_static_data_unsafe(
kData2, sizeof(kData2), pool.get()));
EXPECT_EQ(buf5.get(), buf3.get());
// When creating a static buffer, if there is already a non-static buffer, it
// replaces the old buffer.
bssl::UniquePtr<CRYPTO_BUFFER> buf6(CRYPTO_BUFFER_new_from_static_data_unsafe(
kData1, sizeof(kData1), pool.get()));
ASSERT_TRUE(buf6);
EXPECT_EQ(kData1, CRYPTO_BUFFER_data(buf6.get()));
EXPECT_EQ(sizeof(kData1), CRYPTO_BUFFER_len(buf6.get()));
EXPECT_NE(buf.get(), buf6.get());
// Subsequent lookups of |kData1| should return |buf6|.
bssl::UniquePtr<CRYPTO_BUFFER> buf7(
CRYPTO_BUFFER_new(kData1, sizeof(kData1), pool.get()));
EXPECT_EQ(buf7.get(), buf6.get());
}
#if defined(OPENSSL_THREADS)
TEST(PoolTest, Threads) {
bssl::UniquePtr<CRYPTO_BUFFER_POOL> pool(CRYPTO_BUFFER_POOL_new());
ASSERT_TRUE(pool);
// Race threads making pooled |CRYPTO_BUFFER|s.
static const uint8_t kData[4] = {1, 2, 3, 4};
static const uint8_t kData2[3] = {4, 5, 6};
bssl::UniquePtr<CRYPTO_BUFFER> buf, buf2, buf3;
{
std::thread thread([&] {
buf.reset(CRYPTO_BUFFER_new(kData, sizeof(kData), pool.get()));
});
std::thread thread2([&] {
buf2.reset(CRYPTO_BUFFER_new(kData, sizeof(kData), pool.get()));
});
buf3.reset(CRYPTO_BUFFER_new(kData2, sizeof(kData2), pool.get()));
thread.join();
thread2.join();
}
ASSERT_TRUE(buf);
ASSERT_TRUE(buf2);
ASSERT_TRUE(buf3);
EXPECT_EQ(buf.get(), buf2.get()) << "CRYPTO_BUFFER_POOL did not dedup data.";
EXPECT_NE(buf.get(), buf3.get())
<< "CRYPTO_BUFFER_POOL incorrectly deduped data.";
EXPECT_EQ(Bytes(kData),
Bytes(CRYPTO_BUFFER_data(buf.get()), CRYPTO_BUFFER_len(buf.get())));
EXPECT_EQ(Bytes(kData2), Bytes(CRYPTO_BUFFER_data(buf3.get()),
CRYPTO_BUFFER_len(buf3.get())));
// Reference-counting of |CRYPTO_BUFFER| interacts with pooling. Race an
// increment and free.
{
bssl::UniquePtr<CRYPTO_BUFFER> buf_ref;
std::thread thread([&] { buf_ref = bssl::UpRef(buf); });
buf2.reset();
thread.join();
}
// |buf|'s data is still valid.
EXPECT_EQ(Bytes(kData), Bytes(CRYPTO_BUFFER_data(buf.get()),
CRYPTO_BUFFER_len(buf.get())));
// Race a thread re-creating the |CRYPTO_BUFFER| with another thread freeing
// it. Do this twice with sleeps so ThreadSanitizer can observe two different
// interleavings. Ideally we would run this test under a tool that could
// search all interleavings.
{
std::thread thread([&] {
std::this_thread::sleep_for(std::chrono::milliseconds(1));
buf.reset();
});
buf2.reset(CRYPTO_BUFFER_new(kData, sizeof(kData), pool.get()));
thread.join();
ASSERT_TRUE(buf2);
EXPECT_EQ(Bytes(kData), Bytes(CRYPTO_BUFFER_data(buf2.get()),
CRYPTO_BUFFER_len(buf2.get())));
buf = std::move(buf2);
}
{
std::thread thread([&] { buf.reset(); });
std::this_thread::sleep_for(std::chrono::milliseconds(1));
buf2.reset(CRYPTO_BUFFER_new(kData, sizeof(kData), pool.get()));
thread.join();
ASSERT_TRUE(buf2);
EXPECT_EQ(Bytes(kData), Bytes(CRYPTO_BUFFER_data(buf2.get()),
CRYPTO_BUFFER_len(buf2.get())));
buf = std::move(buf2);
}
// Finally, race the frees.
{
buf2 = bssl::UpRef(buf);
std::thread thread([&] { buf.reset(); });
std::thread thread2([&] { buf3.reset(); });
buf2.reset();
thread.join();
thread2.join();
}
}
#endif