blob: 044b5024233b1d431429aee70ee5630f1c978adf [file] [log] [blame]
# script for stm32h7x family
#
# stm32h7 devices support both JTAG and SWD transports.
#
source [find target/swj-dp.tcl]
source [find mem_helper.tcl]
if { [info exists CHIPNAME] } {
set _CHIPNAME $CHIPNAME
} else {
set _CHIPNAME stm32h7x
}
if { [info exists DUAL_BANK] } {
set $_CHIPNAME.DUAL_BANK $DUAL_BANK
unset DUAL_BANK
} else {
set $_CHIPNAME.DUAL_BANK 0
}
if { [info exists DUAL_CORE] } {
set $_CHIPNAME.DUAL_CORE $DUAL_CORE
unset DUAL_CORE
} else {
set $_CHIPNAME.DUAL_CORE 0
}
# Issue a warning when hla is used, and fallback to single core configuration
if { [set $_CHIPNAME.DUAL_CORE] && [using_hla] } {
echo "Warning : hla does not support multicore debugging"
set $_CHIPNAME.DUAL_CORE 0
}
if { [info exists USE_CTI] } {
set $_CHIPNAME.USE_CTI $USE_CTI
unset USE_CTI
} else {
set $_CHIPNAME.USE_CTI 0
}
# Issue a warning when DUAL_CORE=0 and USE_CTI=1, and fallback to USE_CTI=0
if { ![set $_CHIPNAME.DUAL_CORE] && [set $_CHIPNAME.USE_CTI] } {
echo "Warning : could not use CTI with a single core device, CTI is disabled"
set $_CHIPNAME.USE_CTI 0
}
set _ENDIAN little
# Work-area is a space in RAM used for flash programming
# By default use 64kB
if { [info exists WORKAREASIZE] } {
set _WORKAREASIZE $WORKAREASIZE
} else {
set _WORKAREASIZE 0x10000
}
#jtag scan chain
if { [info exists CPUTAPID] } {
set _CPUTAPID $CPUTAPID
} else {
if { [using_jtag] } {
set _CPUTAPID 0x6ba00477
} {
set _CPUTAPID 0x6ba02477
}
}
swj_newdap $_CHIPNAME cpu -irlen 4 -ircapture 0x1 -irmask 0xf -expected-id $_CPUTAPID
dap create $_CHIPNAME.dap -chain-position $_CHIPNAME.cpu
if {[using_jtag]} {
swj_newdap $_CHIPNAME bs -irlen 5
}
if {![using_hla]} {
# STM32H7 provides an APB-AP at access port 2, which allows the access to
# the debug and trace features on the system APB System Debug Bus (APB-D).
target create $_CHIPNAME.ap2 mem_ap -dap $_CHIPNAME.dap -ap-num 2
}
target create $_CHIPNAME.cpu0 cortex_m -endian $_ENDIAN -dap $_CHIPNAME.dap -ap-num 0
$_CHIPNAME.cpu0 configure -work-area-phys 0x20000000 -work-area-size $_WORKAREASIZE -work-area-backup 0
flash bank $_CHIPNAME.bank1.cpu0 stm32h7x 0x08000000 0 0 0 $_CHIPNAME.cpu0
set _QSPINAME $_CHIPNAME.qspi
flash bank $_QSPINAME stmqspi 0x90000000 0 0 0 $_CHIPNAME.cpu0 0x52005000
if {[set $_CHIPNAME.DUAL_BANK]} {
flash bank $_CHIPNAME.bank2.cpu0 stm32h7x 0x08100000 0 0 0 $_CHIPNAME.cpu0
}
if {[set $_CHIPNAME.DUAL_CORE]} {
target create $_CHIPNAME.cpu1 cortex_m -endian $_ENDIAN -dap $_CHIPNAME.dap -ap-num 3
$_CHIPNAME.cpu1 configure -work-area-phys 0x38000000 -work-area-size $_WORKAREASIZE -work-area-backup 0
flash bank $_CHIPNAME.bank1.cpu1 stm32h7x 0x08000000 0 0 0 $_CHIPNAME.cpu1
if {[set $_CHIPNAME.DUAL_BANK]} {
flash bank $_CHIPNAME.bank2.cpu1 stm32h7x 0x08100000 0 0 0 $_CHIPNAME.cpu1
}
}
# 32 blit QUADSPI initialization
proc 32blit_qspi_init { qpi } {
echo "***** 32blit_qspi_init"
mmw 0x580244E0 0x000007FF 0 ;# RCC_AHB4ENR |= GPIOA-GPIOK (enable clocks)
mmw 0x580244D4 0x00004000 0 ;# RCC_AHB3ENR |= QSPIEN (enable clock)
sleep 1 ;# Wait for clock startup
# PB02:AF09:V, PC11:AF09:V, PE10:AF10:V, PE09:AF10:V, PE08:AF10:V, PE07:AF10:V
# Port B: PB02:AF09:V
mmw 0x58020400 0x00000020 0x00000010 ;# MODER
mmw 0x58020408 0x00000030 0x00000000 ;# OSPEEDR
mmw 0x5802040C 0x00000000 0x00000030 ;# PUPDR
mmw 0x58020420 0x00000900 0x00000600 ;# AFRL
# Port C: PC11:AF09:V
mmw 0x58020800 0x00800000 0x00400000 ;# MODER
mmw 0x58020808 0x00C00000 0x00000000 ;# OSPEEDR
mmw 0x5802080C 0x00000000 0x00C00000 ;# PUPDR
mmw 0x58020824 0x00009000 0x00006000 ;# AFRH
# Port E: PE10:AF10:V, PE09:AF10:V, PE08:AF10:V, PE07:AF10:V
mmw 0x58021000 0x002A8000 0x00154000 ;# MODER
mmw 0x58021008 0x003FC000 0x00000000 ;# OSPEEDR
mmw 0x5802100C 0x00000000 0x003FC000 ;# PUPDR
mmw 0x58021020 0xA0000000 0x50000000 ;# AFRL
mmw 0x58021024 0x00000AAA 0x00000555 ;# AFRH
# 32blit
# PC11: BK2_NCS, PB02: CLK, PE10: BK2_IO3, PE9: BK2_IO2, PE8: BK2_IO1, PE7: BK2_IO0
# Port B: PB02:AF09
# mmw 0x58020400 0x00000020 0x00000030 ;# MODER
# mmw 0x58020408 0x00000000 0x00000030 ;# OSPEEDR
# mmw 0x58020420 0x00000900 0x00000F00 ;# AFRL
# Port C: PC11:AF09
# mmw 0x58020800 0x00800000 0x00C00000 ;# MODER
# mmw 0x58020808 0x00000000 0x00C00000 ;# OSPEEDR
# mmw 0x58020824 0x00009000 0x0000F000 ;# AFRH
# Port E: PE7:AF10, PE8:AF10, PE9:AF10, PE10:AF10
# mmw 0x58020C00 0x002A8000 0x003FC000 ;# MODER
# mmw 0x58020C08 0x00000000 0x003FC000 ;# OSPEEDR
# mmw 0x58020C20 0xA0000000 0xF0000000 ;# AFRL
# mmw 0x58020C24 0x00000AAA 0x00000FFF ;# AFRH
# correct FSIZE would be 0x19 or 0x1A, however, this causes trouble when
# reading the last word at end of bank in memory mapped mode
# increase fsize as a workaround
# QSPI MT25TL
# mww 0x52005000 0x05400080 ;# QUADSPI_CR:
# mww 0x52005004 0x00160001 ;# QUADSPI_DCR:
# mww 0x52005004 0x00190001 ;# QUADSPI_DCR:
mww 0x52005000 0x05400080 ;# QUADSPI_CR:
mww 0x52005004 0x00190100 ;# QUADSPI_DCR: FSIZE=0x19, CSHT=0x01, CKMODE=0
mww 0x52005014 0x0D002503 ;# QUADSPI_CCR: FMODE=0x3, DMODE=0x1, DCYC=0x0, ADSIZE=0x3, ADMODE=0x1, IMODE=0x1
mmw 0x52005000 0x00000001 0 ;# QUADSPI_CR: EN=1
# mww 0x52005000 0x05400018 ;# QUADSPI_CR: PRESCALER=5, APMS=1, FTHRES=0, FSEL=0, DFM=0, SSHIFT=1, TCEN=1
# mww 0x52005004 0x00190100 ;# QUADSPI_DCR: FSIZE=0x19, CSHT=0x01, CKMODE=0
# mww 0x52005014 0x0D002503 ;# QUADSPI_CCR: FMODE=0x3, DMODE=0x1, DCYC=0x0, ADSIZE=0x3, ADMODE=0x1, IMODE=0x1
# mmw 0x52005000 0x00000001 0 ;# QUADSPI_CR: EN=1
# Exit QPI mode
mww 0x52005014 0x000003FF ;# QUADSPI_CCR: FMODE=0x0, DMODE=0x0, DCYC=0x0, ADSIZE=0x0, ADMODE=0x0, IMODE=0x3, INSTR=Exit QPI
sleep 1
# Enter 4-byte mode
mww 0x52005014 0x000001B7 ;# QUADSPI_CCR: FMODE=0x0, DMODE=0x0, DCYC=0x0, ADSIZE=0x0, ADMODE=0x0, IMODE=0x1, INSTR=Enter 4-byte
sleep 1
if { $qpi == 1 } {
# Enter QPI mode
mww 0x52005014 0x00000138 ;# QUADSPI_CCR: FMODE=0x0, DMODE=0x0, DCYC=0x0, ADSIZE=0x0, ADMODE=0x0, IMODE=0x1, INSTR=Enter QPI
sleep 1
# memory-mapped fast read mode with 4-byte addresses and 2 dummy cycles (for read only)
mww 0x52005014 0x0F083F0B ;# QUADSPI_CCR: FMODE=0x3, DMODE=0x3, DCYC=0x2, ADSIZE=0x3, ADMODE=0x3, IMODE=0x3, INSTR=Fast READ
# as QSPI is set to instruction/address/data on 4 lines in memory mapped mode, driver will *always*
# use this setting (i. e. for probe, erase, write)
# the 'Enter QPI mode' command is chip specific, additionally both w25q256fv must be configured in advance by
# programming the non-volatile QE bit (bit 1 in status register 2), e. g. by the following commands
#
# stmqspi spicmd 2 0 0x06
# stmqspi spicmd 2 0 0x31 0x02 0x02
# stmqspi spicmd 2 2 0x35
#
# the last one should return '-> 02 02' to indicate successful setting of QE bit
# furthemore, the flash chip changes id from 0x1940ef to 0x1960ef upon entering QPI mode
} else {
# memory-mapped read mode with 4-byte addresses
mww 0x52005014 0x0D003503 ;# QUADSPI_CCR: FMODE=0x3, DMODE=0x1, DCYC=0x0, ADSIZE=0x3, ADMODE=0x1, IMODE=0x1, INSTR=READ
}
}
# Make sure that cpu0 is selected
targets $_CHIPNAME.cpu0
$_CHIPNAME.cpu0 configure -event reset-end {
32blit_qspi_init 0
}
# Clock after reset is HSI at 64 MHz, no need of PLL
adapter_khz 1800
adapter_nsrst_delay 100
if {[using_jtag]} {
jtag_ntrst_delay 100
}
# use hardware reset
#
# The STM32H7 does not support connect_assert_srst mode because the AXI is
# unavailable while SRST is asserted, and that is used to access the DBGMCU
# component at 0x5C001000 in the examine-end event handler.
#
# It is possible to access the DBGMCU component at 0xE00E1000 via AP2 instead
# of the default AP0, and that works with SRST asserted; however, nonzero AP
# usage does not work with HLA, so is not done by default. That change could be
# made in a local configuration file if connect_assert_srst mode is needed for
# a specific application and a non-HLA adapter is in use.
reset_config srst_only srst_nogate
if {![using_hla]} {
# if srst is not fitted use SYSRESETREQ to
# perform a soft reset
$_CHIPNAME.cpu0 cortex_m reset_config sysresetreq
if {[set $_CHIPNAME.DUAL_CORE]} {
$_CHIPNAME.cpu1 cortex_m reset_config sysresetreq
}
# Set CSW[27], which according to ARM ADI v5 appendix E1.4 maps to AHB signal
# HPROT[3], which according to AMBA AHB/ASB/APB specification chapter 3.7.3
# makes the data access cacheable. This allows reading and writing data in the
# CPU cache from the debugger, which is far more useful than going straight to
# RAM when operating on typical variables, and is generally no worse when
# operating on special memory locations.
$_CHIPNAME.dap apcsw 0x08000000 0x08000000
}
$_CHIPNAME.cpu0 configure -event examine-end {
# Enable D3 and D1 DBG clocks
# DBGMCU_CR |= D3DBGCKEN | D1DBGCKEN
stm32h7x_dbgmcu_mmw 0x004 0x00600000 0
# Enable debug during low power modes (uses more power)
# DBGMCU_CR |= DBG_STANDBY | DBG_STOP | DBG_SLEEP in D3, D2 & D1 Domains
stm32h7x_dbgmcu_mmw 0x004 0x000001BF 0
# Stop watchdog counters during halt
# DBGMCU_APB3FZ1 |= WWDG1
stm32h7x_dbgmcu_mmw 0x034 0x00000040 0
# DBGMCU_APB1LFZ1 |= WWDG2
stm32h7x_dbgmcu_mmw 0x03C 0x00000800 0
# DBGMCU_APB4FZ1 |= WDGLSD1 | WDGLSD2
stm32h7x_dbgmcu_mmw 0x054 0x000C0000 0
}
$_CHIPNAME.cpu0 configure -event trace-config {
# Set TRACECLKEN; TRACE_MODE is set to async; when using sync
# change this value accordingly to configure trace pins
# assignment
stm32h7x_dbgmcu_mmw 0x004 0x00100000 0
}
$_CHIPNAME.cpu0 configure -event reset-init {
# Clock after reset is HSI at 64 MHz, no need of PLL
adapter_khz 4000
}
if {[set $_CHIPNAME.DUAL_CORE]} {
$_CHIPNAME.cpu1 configure -event examine-end {
# get _CHIPNAME from the current target
set _CHIPNAME [regsub ".cpu\\d$" [target current] ""]
global $_CHIPNAME.USE_CTI
# Stop watchdog counters during halt
# DBGMCU_APB3FZ2 |= WWDG1
stm32h7x_dbgmcu_mmw 0x038 0x00000040 0
# DBGMCU_APB1LFZ2 |= WWDG2
stm32h7x_dbgmcu_mmw 0x040 0x00000800 0
# DBGMCU_APB4FZ2 |= WDGLSD1 | WDGLSD2
stm32h7x_dbgmcu_mmw 0x058 0x000C0000 0
if {[set $_CHIPNAME.USE_CTI]} {
stm32h7x_cti_start
}
}
}
# like mrw, but with target selection
proc stm32h7x_mrw {used_target reg} {
set value ""
$used_target mem2array value 32 $reg 1
return $value(0)
}
# like mmw, but with target selection
proc stm32h7x_mmw {used_target reg setbits clearbits} {
set old [stm32h7x_mrw $used_target $reg]
set new [expr ($old & ~$clearbits) | $setbits]
$used_target mww $reg $new
}
# mmw for dbgmcu component registers, it accepts the register offset from dbgmcu base
# this procedure will use the mem_ap on AP2 whenever possible
proc stm32h7x_dbgmcu_mmw {reg_offset setbits clearbits} {
# use $_CHIPNAME.ap2 if possible, and use the proper dbgmcu base address
if {![using_hla]} {
# get _CHIPNAME from the current target
set _CHIPNAME [regsub ".(cpu|ap)\\d*$" [target current] ""]
set used_target $_CHIPNAME.ap2
set reg_addr [expr 0xE00E1000 + $reg_offset]
} {
set used_target [target current]
set reg_addr [expr 0x5C001000 + $reg_offset]
}
stm32h7x_mmw $used_target $reg_addr $setbits $clearbits
}
if {[set $_CHIPNAME.USE_CTI]} {
# create CTI instances for both cores
cti create $_CHIPNAME.cti0 -dap $_CHIPNAME.dap -ap-num 0 -ctibase 0xE0043000
cti create $_CHIPNAME.cti1 -dap $_CHIPNAME.dap -ap-num 3 -ctibase 0xE0043000
$_CHIPNAME.cpu0 configure -event halted { stm32h7x_cti_prepare_restart_all }
$_CHIPNAME.cpu1 configure -event halted { stm32h7x_cti_prepare_restart_all }
$_CHIPNAME.cpu0 configure -event debug-halted { stm32h7x_cti_prepare_restart_all }
$_CHIPNAME.cpu1 configure -event debug-halted { stm32h7x_cti_prepare_restart_all }
proc stm32h7x_cti_start {} {
# get _CHIPNAME from the current target
set _CHIPNAME [regsub ".cpu\\d$" [target current] ""]
# Configure Cores' CTIs to halt each other
# TRIGIN0 (DBGTRIGGER) and TRIGOUT0 (EDBGRQ) at CTM_CHANNEL_0
$_CHIPNAME.cti0 write INEN0 0x1
$_CHIPNAME.cti0 write OUTEN0 0x1
$_CHIPNAME.cti1 write INEN0 0x1
$_CHIPNAME.cti1 write OUTEN0 0x1
# enable CTIs
$_CHIPNAME.cti0 enable on
$_CHIPNAME.cti1 enable on
}
proc stm32h7x_cti_stop {} {
# get _CHIPNAME from the current target
set _CHIPNAME [regsub ".cpu\\d$" [target current] ""]
$_CHIPNAME.cti0 enable off
$_CHIPNAME.cti1 enable off
}
proc stm32h7x_cti_prepare_restart_all {} {
stm32h7x_cti_prepare_restart cti0
stm32h7x_cti_prepare_restart cti1
}
proc stm32h7x_cti_prepare_restart {cti} {
# get _CHIPNAME from the current target
set _CHIPNAME [regsub ".cpu\\d$" [target current] ""]
# Acknowlodge EDBGRQ at TRIGOUT0
$_CHIPNAME.$cti write INACK 0x01
$_CHIPNAME.$cti write INACK 0x00
}
}