|  | BEGIN_HEADER | 
|  | #include <polarssl/rsa.h> | 
|  | #include <polarssl/md2.h> | 
|  | #include <polarssl/md4.h> | 
|  | #include <polarssl/md5.h> | 
|  | #include <polarssl/sha1.h> | 
|  | #include <polarssl/sha2.h> | 
|  | #include <polarssl/sha4.h> | 
|  | #include <polarssl/entropy.h> | 
|  | #include <polarssl/ctr_drbg.h> | 
|  | END_HEADER | 
|  |  | 
|  | BEGIN_DEPENDENCIES | 
|  | depends_on:POLARSSL_RSA_C:POLARSSL_BIGNUM_C:POLARSSL_GENPRIME | 
|  | END_DEPENDENCIES | 
|  |  | 
|  | BEGIN_CASE | 
|  | rsa_pkcs1_sign:message_hex_string:padding_mode:digest:mod:radix_P:input_P:radix_Q:input_Q:radix_N:input_N:radix_E:input_E:result_hex_str:result | 
|  | { | 
|  | unsigned char message_str[1000]; | 
|  | unsigned char hash_result[1000]; | 
|  | unsigned char output[1000]; | 
|  | unsigned char output_str[1000]; | 
|  | rsa_context ctx; | 
|  | mpi P1, Q1, H, G; | 
|  | int msg_len; | 
|  |  | 
|  | mpi_init( &P1 ); mpi_init( &Q1 ); mpi_init( &H ); mpi_init( &G ); | 
|  | rsa_init( &ctx, {padding_mode}, 0 ); | 
|  |  | 
|  | memset( message_str, 0x00, 1000 ); | 
|  | memset( hash_result, 0x00, 1000 ); | 
|  | memset( output, 0x00, 1000 ); | 
|  | memset( output_str, 0x00, 1000 ); | 
|  |  | 
|  | ctx.len = {mod} / 8; | 
|  | TEST_ASSERT( mpi_read_string( &ctx.P, {radix_P}, {input_P} ) == 0 ); | 
|  | TEST_ASSERT( mpi_read_string( &ctx.Q, {radix_Q}, {input_Q} ) == 0 ); | 
|  | TEST_ASSERT( mpi_read_string( &ctx.N, {radix_N}, {input_N} ) == 0 ); | 
|  | TEST_ASSERT( mpi_read_string( &ctx.E, {radix_E}, {input_E} ) == 0 ); | 
|  |  | 
|  | TEST_ASSERT( mpi_sub_int( &P1, &ctx.P, 1 ) == 0 ); | 
|  | TEST_ASSERT( mpi_sub_int( &Q1, &ctx.Q, 1 ) == 0 ); | 
|  | TEST_ASSERT( mpi_mul_mpi( &H, &P1, &Q1 ) == 0 ); | 
|  | TEST_ASSERT( mpi_gcd( &G, &ctx.E, &H  ) == 0 ); | 
|  | TEST_ASSERT( mpi_inv_mod( &ctx.D , &ctx.E, &H  ) == 0 ); | 
|  | TEST_ASSERT( mpi_mod_mpi( &ctx.DP, &ctx.D, &P1 ) == 0 ); | 
|  | TEST_ASSERT( mpi_mod_mpi( &ctx.DQ, &ctx.D, &Q1 ) == 0 ); | 
|  | TEST_ASSERT( mpi_inv_mod( &ctx.QP, &ctx.Q, &ctx.P ) == 0 ); | 
|  |  | 
|  | TEST_ASSERT( rsa_check_privkey( &ctx ) == 0 ); | 
|  |  | 
|  | msg_len = unhexify( message_str, {message_hex_string} ); | 
|  |  | 
|  | switch( {digest} ) | 
|  | { | 
|  | #ifdef POLARSSL_MD2_C | 
|  | case SIG_RSA_MD2: | 
|  | md2( message_str, msg_len, hash_result ); | 
|  | break; | 
|  | #endif | 
|  | #ifdef POLARSSL_MD4_C | 
|  | case SIG_RSA_MD4: | 
|  | md4( message_str, msg_len, hash_result ); | 
|  | break; | 
|  | #endif | 
|  | #ifdef POLARSSL_MD5_C | 
|  | case SIG_RSA_MD5: | 
|  | md5( message_str, msg_len, hash_result ); | 
|  | break; | 
|  | #endif | 
|  | #ifdef POLARSSL_SHA1_C | 
|  | case SIG_RSA_SHA1: | 
|  | sha1( message_str, msg_len, hash_result ); | 
|  | break; | 
|  | #endif | 
|  | #ifdef POLARSSL_SHA2_C | 
|  | case SIG_RSA_SHA224: | 
|  | sha2( message_str, msg_len, hash_result, 1 ); | 
|  | break; | 
|  | case SIG_RSA_SHA256: | 
|  | sha2( message_str, msg_len, hash_result, 0 ); | 
|  | break; | 
|  | #endif | 
|  | #ifdef POLARSSL_SHA4_C | 
|  | case SIG_RSA_SHA384: | 
|  | sha4( message_str, msg_len, hash_result, 1 ); | 
|  | break; | 
|  | case SIG_RSA_SHA512: | 
|  | sha4( message_str, msg_len, hash_result, 0 ); | 
|  | break; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | TEST_ASSERT( rsa_pkcs1_sign( &ctx, NULL, NULL, RSA_PRIVATE, {digest}, 0, hash_result, output ) == {result} ); | 
|  | if( {result} == 0 ) | 
|  | { | 
|  | hexify( output_str, output, ctx.len ); | 
|  |  | 
|  | TEST_ASSERT( strcasecmp( (char *) output_str, {result_hex_str} ) == 0 ); | 
|  | } | 
|  |  | 
|  | mpi_free( &P1 ); mpi_free( &Q1 ); mpi_free( &H ); mpi_free( &G ); | 
|  | } | 
|  | END_CASE | 
|  |  | 
|  | BEGIN_CASE | 
|  | rsa_pkcs1_verify:message_hex_string:padding_mode:digest:mod:radix_N:input_N:radix_E:input_E:result_hex_str:result | 
|  | { | 
|  | unsigned char message_str[1000]; | 
|  | unsigned char hash_result[1000]; | 
|  | unsigned char result_str[1000]; | 
|  | rsa_context ctx; | 
|  | int msg_len; | 
|  |  | 
|  | rsa_init( &ctx, {padding_mode}, 0 ); | 
|  | memset( message_str, 0x00, 1000 ); | 
|  | memset( hash_result, 0x00, 1000 ); | 
|  | memset( result_str, 0x00, 1000 ); | 
|  |  | 
|  | ctx.len = {mod} / 8; | 
|  | TEST_ASSERT( mpi_read_string( &ctx.N, {radix_N}, {input_N} ) == 0 ); | 
|  | TEST_ASSERT( mpi_read_string( &ctx.E, {radix_E}, {input_E} ) == 0 ); | 
|  |  | 
|  | TEST_ASSERT( rsa_check_pubkey( &ctx ) == 0 ); | 
|  |  | 
|  | msg_len = unhexify( message_str, {message_hex_string} ); | 
|  | unhexify( result_str, {result_hex_str} ); | 
|  |  | 
|  | switch( {digest} ) | 
|  | { | 
|  | #ifdef POLARSSL_MD2_C | 
|  | case SIG_RSA_MD2: | 
|  | md2( message_str, msg_len, hash_result ); | 
|  | break; | 
|  | #endif | 
|  | #ifdef POLARSSL_MD4_C | 
|  | case SIG_RSA_MD4: | 
|  | md4( message_str, msg_len, hash_result ); | 
|  | break; | 
|  | #endif | 
|  | #ifdef POLARSSL_MD5_C | 
|  | case SIG_RSA_MD5: | 
|  | md5( message_str, msg_len, hash_result ); | 
|  | break; | 
|  | #endif | 
|  | #ifdef POLARSSL_SHA1_C | 
|  | case SIG_RSA_SHA1: | 
|  | sha1( message_str, msg_len, hash_result ); | 
|  | break; | 
|  | #endif | 
|  | #ifdef POLARSSL_SHA2_C | 
|  | case SIG_RSA_SHA224: | 
|  | sha2( message_str, msg_len, hash_result, 1 ); | 
|  | break; | 
|  | case SIG_RSA_SHA256: | 
|  | sha2( message_str, msg_len, hash_result, 0 ); | 
|  | break; | 
|  | #endif | 
|  | #ifdef POLARSSL_SHA4_C | 
|  | case SIG_RSA_SHA384: | 
|  | sha4( message_str, msg_len, hash_result, 1 ); | 
|  | break; | 
|  | case SIG_RSA_SHA512: | 
|  | sha4( message_str, msg_len, hash_result, 0 ); | 
|  | break; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | TEST_ASSERT( rsa_pkcs1_verify( &ctx, RSA_PUBLIC, {digest}, 0, hash_result, result_str ) == {result} ); | 
|  | } | 
|  | END_CASE | 
|  |  | 
|  |  | 
|  | BEGIN_CASE | 
|  | rsa_pkcs1_sign_raw:message_hex_string:hash_result_string:padding_mode:mod:radix_P:input_P:radix_Q:input_Q:radix_N:input_N:radix_E:input_E:result_hex_str | 
|  | { | 
|  | unsigned char message_str[1000]; | 
|  | unsigned char hash_result[1000]; | 
|  | unsigned char output[1000]; | 
|  | unsigned char output_str[1000]; | 
|  | rsa_context ctx; | 
|  | mpi P1, Q1, H, G; | 
|  | int hash_len; | 
|  |  | 
|  | mpi_init( &P1 ); mpi_init( &Q1 ); mpi_init( &H ); mpi_init( &G ); | 
|  | rsa_init( &ctx, {padding_mode}, 0 ); | 
|  |  | 
|  | memset( message_str, 0x00, 1000 ); | 
|  | memset( hash_result, 0x00, 1000 ); | 
|  | memset( output, 0x00, 1000 ); | 
|  | memset( output_str, 0x00, 1000 ); | 
|  |  | 
|  | ctx.len = {mod} / 8; | 
|  | TEST_ASSERT( mpi_read_string( &ctx.P, {radix_P}, {input_P} ) == 0 ); | 
|  | TEST_ASSERT( mpi_read_string( &ctx.Q, {radix_Q}, {input_Q} ) == 0 ); | 
|  | TEST_ASSERT( mpi_read_string( &ctx.N, {radix_N}, {input_N} ) == 0 ); | 
|  | TEST_ASSERT( mpi_read_string( &ctx.E, {radix_E}, {input_E} ) == 0 ); | 
|  |  | 
|  | TEST_ASSERT( mpi_sub_int( &P1, &ctx.P, 1 ) == 0 ); | 
|  | TEST_ASSERT( mpi_sub_int( &Q1, &ctx.Q, 1 ) == 0 ); | 
|  | TEST_ASSERT( mpi_mul_mpi( &H, &P1, &Q1 ) == 0 ); | 
|  | TEST_ASSERT( mpi_gcd( &G, &ctx.E, &H  ) == 0 ); | 
|  | TEST_ASSERT( mpi_inv_mod( &ctx.D , &ctx.E, &H  ) == 0 ); | 
|  | TEST_ASSERT( mpi_mod_mpi( &ctx.DP, &ctx.D, &P1 ) == 0 ); | 
|  | TEST_ASSERT( mpi_mod_mpi( &ctx.DQ, &ctx.D, &Q1 ) == 0 ); | 
|  | TEST_ASSERT( mpi_inv_mod( &ctx.QP, &ctx.Q, &ctx.P ) == 0 ); | 
|  |  | 
|  | TEST_ASSERT( rsa_check_privkey( &ctx ) == 0 ); | 
|  |  | 
|  | unhexify( message_str, {message_hex_string} ); | 
|  | hash_len = unhexify( hash_result, {hash_result_string} ); | 
|  |  | 
|  | TEST_ASSERT( rsa_pkcs1_sign( &ctx, NULL, NULL, RSA_PRIVATE, SIG_RSA_RAW, hash_len, hash_result, output ) == 0 ); | 
|  |  | 
|  | hexify( output_str, output, ctx.len ); | 
|  |  | 
|  | TEST_ASSERT( strcasecmp( (char *) output_str, {result_hex_str} ) == 0 ); | 
|  |  | 
|  | mpi_free( &P1 ); mpi_free( &Q1 ); mpi_free( &H ); mpi_free( &G ); | 
|  | } | 
|  | END_CASE | 
|  |  | 
|  | BEGIN_CASE | 
|  | rsa_pkcs1_verify_raw:message_hex_string:hash_result_string:padding_mode:mod:radix_N:input_N:radix_E:input_E:result_hex_str:correct | 
|  | { | 
|  | unsigned char message_str[1000]; | 
|  | unsigned char hash_result[1000]; | 
|  | unsigned char result_str[1000]; | 
|  | rsa_context ctx; | 
|  | size_t hash_len; | 
|  |  | 
|  | rsa_init( &ctx, {padding_mode}, 0 ); | 
|  | memset( message_str, 0x00, 1000 ); | 
|  | memset( hash_result, 0x00, 1000 ); | 
|  | memset( result_str, 0x00, 1000 ); | 
|  |  | 
|  | ctx.len = {mod} / 8; | 
|  | TEST_ASSERT( mpi_read_string( &ctx.N, {radix_N}, {input_N} ) == 0 ); | 
|  | TEST_ASSERT( mpi_read_string( &ctx.E, {radix_E}, {input_E} ) == 0 ); | 
|  |  | 
|  | TEST_ASSERT( rsa_check_pubkey( &ctx ) == 0 ); | 
|  |  | 
|  | unhexify( message_str, {message_hex_string} ); | 
|  | hash_len = unhexify( hash_result, {hash_result_string} ); | 
|  | unhexify( result_str, {result_hex_str} ); | 
|  |  | 
|  | TEST_ASSERT( rsa_pkcs1_verify( &ctx, RSA_PUBLIC, SIG_RSA_RAW, hash_len, hash_result, result_str ) == {correct} ); | 
|  | } | 
|  | END_CASE | 
|  |  | 
|  | BEGIN_CASE | 
|  | rsa_pkcs1_encrypt:message_hex_string:padding_mode:mod:radix_N:input_N:radix_E:input_E:result_hex_str:result | 
|  | { | 
|  | unsigned char message_str[1000]; | 
|  | unsigned char output[1000]; | 
|  | unsigned char output_str[1000]; | 
|  | rsa_context ctx; | 
|  | size_t msg_len; | 
|  | rnd_pseudo_info rnd_info; | 
|  |  | 
|  | memset( &rnd_info, 0, sizeof( rnd_pseudo_info ) ); | 
|  |  | 
|  | rsa_init( &ctx, {padding_mode}, 0 ); | 
|  | memset( message_str, 0x00, 1000 ); | 
|  | memset( output, 0x00, 1000 ); | 
|  | memset( output_str, 0x00, 1000 ); | 
|  |  | 
|  | ctx.len = {mod} / 8; | 
|  | TEST_ASSERT( mpi_read_string( &ctx.N, {radix_N}, {input_N} ) == 0 ); | 
|  | TEST_ASSERT( mpi_read_string( &ctx.E, {radix_E}, {input_E} ) == 0 ); | 
|  |  | 
|  | TEST_ASSERT( rsa_check_pubkey( &ctx ) == 0 ); | 
|  |  | 
|  | msg_len = unhexify( message_str, {message_hex_string} ); | 
|  |  | 
|  | TEST_ASSERT( rsa_pkcs1_encrypt( &ctx, &rnd_pseudo_rand, &rnd_info, RSA_PUBLIC, msg_len, message_str, output ) == {result} ); | 
|  | if( {result} == 0 ) | 
|  | { | 
|  | hexify( output_str, output, ctx.len ); | 
|  |  | 
|  | TEST_ASSERT( strcasecmp( (char *) output_str, {result_hex_str} ) == 0 ); | 
|  | } | 
|  | } | 
|  | END_CASE | 
|  |  | 
|  | BEGIN_CASE | 
|  | rsa_pkcs1_encrypt_bad_rng:message_hex_string:padding_mode:mod:radix_N:input_N:radix_E:input_E:result_hex_str:result | 
|  | { | 
|  | unsigned char message_str[1000]; | 
|  | unsigned char output[1000]; | 
|  | unsigned char output_str[1000]; | 
|  | rsa_context ctx; | 
|  | size_t msg_len; | 
|  |  | 
|  | rsa_init( &ctx, {padding_mode}, 0 ); | 
|  | memset( message_str, 0x00, 1000 ); | 
|  | memset( output, 0x00, 1000 ); | 
|  | memset( output_str, 0x00, 1000 ); | 
|  |  | 
|  | ctx.len = {mod} / 8; | 
|  | TEST_ASSERT( mpi_read_string( &ctx.N, {radix_N}, {input_N} ) == 0 ); | 
|  | TEST_ASSERT( mpi_read_string( &ctx.E, {radix_E}, {input_E} ) == 0 ); | 
|  |  | 
|  | TEST_ASSERT( rsa_check_pubkey( &ctx ) == 0 ); | 
|  |  | 
|  | msg_len = unhexify( message_str, {message_hex_string} ); | 
|  |  | 
|  | TEST_ASSERT( rsa_pkcs1_encrypt( &ctx, &rnd_zero_rand, NULL, RSA_PUBLIC, msg_len, message_str, output ) == {result} ); | 
|  | if( {result} == 0 ) | 
|  | { | 
|  | hexify( output_str, output, ctx.len ); | 
|  |  | 
|  | TEST_ASSERT( strcasecmp( (char *) output_str, {result_hex_str} ) == 0 ); | 
|  | } | 
|  | } | 
|  | END_CASE | 
|  |  | 
|  | BEGIN_CASE | 
|  | rsa_pkcs1_decrypt:message_hex_string:padding_mode:mod:radix_P:input_P:radix_Q:input_Q:radix_N:input_N:radix_E:input_E:max_output:result_hex_str:result | 
|  | { | 
|  | unsigned char message_str[1000]; | 
|  | unsigned char output[1000]; | 
|  | unsigned char output_str[1000]; | 
|  | rsa_context ctx; | 
|  | mpi P1, Q1, H, G; | 
|  | size_t output_len; | 
|  |  | 
|  | mpi_init( &P1 ); mpi_init( &Q1 ); mpi_init( &H ); mpi_init( &G ); | 
|  | rsa_init( &ctx, {padding_mode}, 0 ); | 
|  |  | 
|  | memset( message_str, 0x00, 1000 ); | 
|  | memset( output, 0x00, 1000 ); | 
|  | memset( output_str, 0x00, 1000 ); | 
|  |  | 
|  | ctx.len = {mod} / 8; | 
|  | TEST_ASSERT( mpi_read_string( &ctx.P, {radix_P}, {input_P} ) == 0 ); | 
|  | TEST_ASSERT( mpi_read_string( &ctx.Q, {radix_Q}, {input_Q} ) == 0 ); | 
|  | TEST_ASSERT( mpi_read_string( &ctx.N, {radix_N}, {input_N} ) == 0 ); | 
|  | TEST_ASSERT( mpi_read_string( &ctx.E, {radix_E}, {input_E} ) == 0 ); | 
|  |  | 
|  | TEST_ASSERT( mpi_sub_int( &P1, &ctx.P, 1 ) == 0 ); | 
|  | TEST_ASSERT( mpi_sub_int( &Q1, &ctx.Q, 1 ) == 0 ); | 
|  | TEST_ASSERT( mpi_mul_mpi( &H, &P1, &Q1 ) == 0 ); | 
|  | TEST_ASSERT( mpi_gcd( &G, &ctx.E, &H  ) == 0 ); | 
|  | TEST_ASSERT( mpi_inv_mod( &ctx.D , &ctx.E, &H  ) == 0 ); | 
|  | TEST_ASSERT( mpi_mod_mpi( &ctx.DP, &ctx.D, &P1 ) == 0 ); | 
|  | TEST_ASSERT( mpi_mod_mpi( &ctx.DQ, &ctx.D, &Q1 ) == 0 ); | 
|  | TEST_ASSERT( mpi_inv_mod( &ctx.QP, &ctx.Q, &ctx.P ) == 0 ); | 
|  |  | 
|  | TEST_ASSERT( rsa_check_privkey( &ctx ) == 0 ); | 
|  |  | 
|  | unhexify( message_str, {message_hex_string} ); | 
|  | output_len = 0; | 
|  |  | 
|  | TEST_ASSERT( rsa_pkcs1_decrypt( &ctx, RSA_PRIVATE, &output_len, message_str, output, {max_output} ) == {result} ); | 
|  | if( {result} == 0 ) | 
|  | { | 
|  | hexify( output_str, output, ctx.len ); | 
|  |  | 
|  | TEST_ASSERT( strncasecmp( (char *) output_str, {result_hex_str}, strlen( {result_hex_str} ) ) == 0 ); | 
|  | } | 
|  |  | 
|  | mpi_free( &P1 ); mpi_free( &Q1 ); mpi_free( &H ); mpi_free( &G ); | 
|  | } | 
|  | END_CASE | 
|  |  | 
|  | BEGIN_CASE | 
|  | rsa_public:message_hex_string:mod:radix_N:input_N:radix_E:input_E:result_hex_str:result | 
|  | { | 
|  | unsigned char message_str[1000]; | 
|  | unsigned char output[1000]; | 
|  | unsigned char output_str[1000]; | 
|  | rsa_context ctx; | 
|  |  | 
|  | rsa_init( &ctx, RSA_PKCS_V15, 0 ); | 
|  | memset( message_str, 0x00, 1000 ); | 
|  | memset( output, 0x00, 1000 ); | 
|  | memset( output_str, 0x00, 1000 ); | 
|  |  | 
|  | ctx.len = {mod} / 8; | 
|  | TEST_ASSERT( mpi_read_string( &ctx.N, {radix_N}, {input_N} ) == 0 ); | 
|  | TEST_ASSERT( mpi_read_string( &ctx.E, {radix_E}, {input_E} ) == 0 ); | 
|  |  | 
|  | TEST_ASSERT( rsa_check_pubkey( &ctx ) == 0 ); | 
|  |  | 
|  | unhexify( message_str, {message_hex_string} ); | 
|  |  | 
|  | TEST_ASSERT( rsa_public( &ctx, message_str, output ) == {result} ); | 
|  | if( {result} == 0 ) | 
|  | { | 
|  | hexify( output_str, output, ctx.len ); | 
|  |  | 
|  | TEST_ASSERT( strcasecmp( (char *) output_str, {result_hex_str} ) == 0 ); | 
|  | } | 
|  | } | 
|  | END_CASE | 
|  |  | 
|  | BEGIN_CASE | 
|  | rsa_private:message_hex_string:mod:radix_P:input_P:radix_Q:input_Q:radix_N:input_N:radix_E:input_E:result_hex_str:result | 
|  | { | 
|  | unsigned char message_str[1000]; | 
|  | unsigned char output[1000]; | 
|  | unsigned char output_str[1000]; | 
|  | rsa_context ctx; | 
|  | mpi P1, Q1, H, G; | 
|  |  | 
|  | mpi_init( &P1 ); mpi_init( &Q1 ); mpi_init( &H ); mpi_init( &G ); | 
|  | rsa_init( &ctx, RSA_PKCS_V15, 0 ); | 
|  |  | 
|  | memset( message_str, 0x00, 1000 ); | 
|  | memset( output, 0x00, 1000 ); | 
|  | memset( output_str, 0x00, 1000 ); | 
|  |  | 
|  | ctx.len = {mod} / 8; | 
|  | TEST_ASSERT( mpi_read_string( &ctx.P, {radix_P}, {input_P} ) == 0 ); | 
|  | TEST_ASSERT( mpi_read_string( &ctx.Q, {radix_Q}, {input_Q} ) == 0 ); | 
|  | TEST_ASSERT( mpi_read_string( &ctx.N, {radix_N}, {input_N} ) == 0 ); | 
|  | TEST_ASSERT( mpi_read_string( &ctx.E, {radix_E}, {input_E} ) == 0 ); | 
|  |  | 
|  | TEST_ASSERT( mpi_sub_int( &P1, &ctx.P, 1 ) == 0 ); | 
|  | TEST_ASSERT( mpi_sub_int( &Q1, &ctx.Q, 1 ) == 0 ); | 
|  | TEST_ASSERT( mpi_mul_mpi( &H, &P1, &Q1 ) == 0 ); | 
|  | TEST_ASSERT( mpi_gcd( &G, &ctx.E, &H  ) == 0 ); | 
|  | TEST_ASSERT( mpi_inv_mod( &ctx.D , &ctx.E, &H  ) == 0 ); | 
|  | TEST_ASSERT( mpi_mod_mpi( &ctx.DP, &ctx.D, &P1 ) == 0 ); | 
|  | TEST_ASSERT( mpi_mod_mpi( &ctx.DQ, &ctx.D, &Q1 ) == 0 ); | 
|  | TEST_ASSERT( mpi_inv_mod( &ctx.QP, &ctx.Q, &ctx.P ) == 0 ); | 
|  |  | 
|  | TEST_ASSERT( rsa_check_privkey( &ctx ) == 0 ); | 
|  |  | 
|  | unhexify( message_str, {message_hex_string} ); | 
|  |  | 
|  | TEST_ASSERT( rsa_private( &ctx, message_str, output ) == {result} ); | 
|  | if( {result} == 0 ) | 
|  | { | 
|  | hexify( output_str, output, ctx.len ); | 
|  |  | 
|  | TEST_ASSERT( strcasecmp( (char *) output_str, {result_hex_str} ) == 0 ); | 
|  | } | 
|  |  | 
|  | mpi_free( &P1 ); mpi_free( &Q1 ); mpi_free( &H ); mpi_free( &G ); | 
|  | } | 
|  | END_CASE | 
|  |  | 
|  | BEGIN_CASE | 
|  | rsa_check_privkey_null: | 
|  | { | 
|  | rsa_context ctx; | 
|  | memset( &ctx, 0x00, sizeof( rsa_context ) ); | 
|  |  | 
|  | TEST_ASSERT( rsa_check_privkey( &ctx ) == POLARSSL_ERR_RSA_KEY_CHECK_FAILED ); | 
|  | } | 
|  | END_CASE | 
|  |  | 
|  | BEGIN_CASE | 
|  | rsa_check_pubkey:radix_N:input_N:radix_E:input_E:result | 
|  | { | 
|  | rsa_context ctx; | 
|  |  | 
|  | rsa_init( &ctx, RSA_PKCS_V15, 0 ); | 
|  |  | 
|  | if( strlen( {input_N} ) ) | 
|  | { | 
|  | TEST_ASSERT( mpi_read_string( &ctx.N, {radix_N}, {input_N} ) == 0 ); | 
|  | } | 
|  | if( strlen( {input_E} ) ) | 
|  | { | 
|  | TEST_ASSERT( mpi_read_string( &ctx.E, {radix_E}, {input_E} ) == 0 ); | 
|  | } | 
|  |  | 
|  | TEST_ASSERT( rsa_check_pubkey( &ctx ) == {result} ); | 
|  | } | 
|  | END_CASE | 
|  |  | 
|  | BEGIN_CASE | 
|  | rsa_check_privkey:mod:radix_P:input_P:radix_Q:input_Q:radix_N:input_N:radix_E:input_E:radix_D:input_D:result | 
|  | { | 
|  | rsa_context ctx; | 
|  |  | 
|  | rsa_init( &ctx, RSA_PKCS_V15, 0 ); | 
|  |  | 
|  | ctx.len = {mod} / 8; | 
|  | if( strlen( {input_P} ) ) | 
|  | { | 
|  | TEST_ASSERT( mpi_read_string( &ctx.P, {radix_P}, {input_P} ) == 0 ); | 
|  | } | 
|  | if( strlen( {input_Q} ) ) | 
|  | { | 
|  | TEST_ASSERT( mpi_read_string( &ctx.Q, {radix_Q}, {input_Q} ) == 0 ); | 
|  | } | 
|  | if( strlen( {input_N} ) ) | 
|  | { | 
|  | TEST_ASSERT( mpi_read_string( &ctx.N, {radix_N}, {input_N} ) == 0 ); | 
|  | } | 
|  | if( strlen( {input_E} ) ) | 
|  | { | 
|  | TEST_ASSERT( mpi_read_string( &ctx.E, {radix_E}, {input_E} ) == 0 ); | 
|  | } | 
|  | if( strlen( {input_D} ) ) | 
|  | { | 
|  | TEST_ASSERT( mpi_read_string( &ctx.D, {radix_D}, {input_D} ) == 0 ); | 
|  | } | 
|  |  | 
|  | TEST_ASSERT( rsa_check_privkey( &ctx ) == {result} ); | 
|  | } | 
|  | END_CASE | 
|  |  | 
|  | BEGIN_CASE | 
|  | rsa_gen_key:nrbits:exponent:result | 
|  | { | 
|  | rsa_context ctx; | 
|  | entropy_context entropy; | 
|  | ctr_drbg_context ctr_drbg; | 
|  | char *pers = "test_suite_rsa"; | 
|  |  | 
|  | entropy_init( &entropy ); | 
|  | TEST_ASSERT( ctr_drbg_init( &ctr_drbg, entropy_func, &entropy, | 
|  | (unsigned char *) pers, strlen( pers ) ) == 0 ); | 
|  |  | 
|  | rsa_init( &ctx, 0, 0 ); | 
|  |  | 
|  | TEST_ASSERT( rsa_gen_key( &ctx, ctr_drbg_random, &ctr_drbg, {nrbits}, {exponent} ) == {result} ); | 
|  | if( {result} == 0 ) | 
|  | { | 
|  | TEST_ASSERT( rsa_check_privkey( &ctx ) == 0 ); | 
|  | } | 
|  | } | 
|  | END_CASE | 
|  |  | 
|  | BEGIN_CASE | 
|  | rsa_selftest: | 
|  | { | 
|  | TEST_ASSERT( rsa_self_test( 0 ) == 0 ); | 
|  | } | 
|  | END_CASE |