|  | /* | 
|  | *  Elliptic curves over GF(p): generic functions | 
|  | * | 
|  | *  Copyright (C) 2006-2014, Brainspark B.V. | 
|  | * | 
|  | *  This file is part of PolarSSL (http://www.polarssl.org) | 
|  | *  Lead Maintainer: Paul Bakker <polarssl_maintainer at polarssl.org> | 
|  | * | 
|  | *  All rights reserved. | 
|  | * | 
|  | *  This program is free software; you can redistribute it and/or modify | 
|  | *  it under the terms of the GNU General Public License as published by | 
|  | *  the Free Software Foundation; either version 2 of the License, or | 
|  | *  (at your option) any later version. | 
|  | * | 
|  | *  This program is distributed in the hope that it will be useful, | 
|  | *  but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | *  GNU General Public License for more details. | 
|  | * | 
|  | *  You should have received a copy of the GNU General Public License along | 
|  | *  with this program; if not, write to the Free Software Foundation, Inc., | 
|  | *  51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * References: | 
|  | * | 
|  | * SEC1 http://www.secg.org/index.php?action=secg,docs_secg | 
|  | * GECC = Guide to Elliptic Curve Cryptography - Hankerson, Menezes, Vanstone | 
|  | * FIPS 186-3 http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf | 
|  | * RFC 4492 for the related TLS structures and constants | 
|  | * | 
|  | * [M255] http://cr.yp.to/ecdh/curve25519-20060209.pdf | 
|  | * | 
|  | * [2] CORON, Jean-Sébastien. Resistance against differential power analysis | 
|  | *     for elliptic curve cryptosystems. In : Cryptographic Hardware and | 
|  | *     Embedded Systems. Springer Berlin Heidelberg, 1999. p. 292-302. | 
|  | *     <http://link.springer.com/chapter/10.1007/3-540-48059-5_25> | 
|  | * | 
|  | * [3] HEDABOU, Mustapha, PINEL, Pierre, et BÉNÉTEAU, Lucien. A comb method to | 
|  | *     render ECC resistant against Side Channel Attacks. IACR Cryptology | 
|  | *     ePrint Archive, 2004, vol. 2004, p. 342. | 
|  | *     <http://eprint.iacr.org/2004/342.pdf> | 
|  | */ | 
|  |  | 
|  | #if !defined(POLARSSL_CONFIG_FILE) | 
|  | #include "polarssl/config.h" | 
|  | #else | 
|  | #include POLARSSL_CONFIG_FILE | 
|  | #endif | 
|  |  | 
|  | #if defined(POLARSSL_ECP_C) | 
|  |  | 
|  | #include "polarssl/ecp.h" | 
|  |  | 
|  | #if defined(POLARSSL_PLATFORM_C) | 
|  | #include "polarssl/platform.h" | 
|  | #else | 
|  | #define polarssl_printf     printf | 
|  | #define polarssl_malloc     malloc | 
|  | #define polarssl_free       free | 
|  | #endif | 
|  |  | 
|  | #include <stdlib.h> | 
|  |  | 
|  | #if defined(_MSC_VER) && !defined strcasecmp && !defined(EFIX64) && \ | 
|  | !defined(EFI32) | 
|  | #define strcasecmp _stricmp | 
|  | #endif | 
|  |  | 
|  | #if defined(_MSC_VER) && !defined(inline) | 
|  | #define inline _inline | 
|  | #else | 
|  | #if defined(__ARMCC_VERSION) && !defined(inline) | 
|  | #define inline __inline | 
|  | #endif /* __ARMCC_VERSION */ | 
|  | #endif /*_MSC_VER */ | 
|  |  | 
|  | /* Implementation that should never be optimized out by the compiler */ | 
|  | static void polarssl_zeroize( void *v, size_t n ) { | 
|  | volatile unsigned char *p = v; while( n-- ) *p++ = 0; | 
|  | } | 
|  |  | 
|  | #if defined(POLARSSL_SELF_TEST) | 
|  | /* | 
|  | * Counts of point addition and doubling, and field multiplications. | 
|  | * Used to test resistance of point multiplication to simple timing attacks. | 
|  | */ | 
|  | static unsigned long add_count, dbl_count, mul_count; | 
|  | #endif | 
|  |  | 
|  | #if defined(POLARSSL_ECP_DP_SECP192R1_ENABLED) ||   \ | 
|  | defined(POLARSSL_ECP_DP_SECP224R1_ENABLED) ||   \ | 
|  | defined(POLARSSL_ECP_DP_SECP256R1_ENABLED) ||   \ | 
|  | defined(POLARSSL_ECP_DP_SECP384R1_ENABLED) ||   \ | 
|  | defined(POLARSSL_ECP_DP_SECP521R1_ENABLED) ||   \ | 
|  | defined(POLARSSL_ECP_DP_BP256R1_ENABLED)   ||   \ | 
|  | defined(POLARSSL_ECP_DP_BP384R1_ENABLED)   ||   \ | 
|  | defined(POLARSSL_ECP_DP_BP512R1_ENABLED)   ||   \ | 
|  | defined(POLARSSL_ECP_DP_SECP192K1_ENABLED) ||   \ | 
|  | defined(POLARSSL_ECP_DP_SECP224K1_ENABLED) ||   \ | 
|  | defined(POLARSSL_ECP_DP_SECP256K1_ENABLED) | 
|  | #define POLARSSL_ECP_SHORT_WEIERSTRASS | 
|  | #endif | 
|  |  | 
|  | #if defined(POLARSSL_ECP_DP_M221_ENABLED) ||   \ | 
|  | defined(POLARSSL_ECP_DP_M255_ENABLED) ||   \ | 
|  | defined(POLARSSL_ECP_DP_M383_ENABLED) ||   \ | 
|  | defined(POLARSSL_ECP_DP_M511_ENABLED) | 
|  | #define POLARSSL_ECP_MONTGOMERY | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Curve types: internal for now, might be exposed later | 
|  | */ | 
|  | typedef enum | 
|  | { | 
|  | POLARSSL_ECP_TYPE_NONE = 0, | 
|  | POLARSSL_ECP_TYPE_SHORT_WEIERSTRASS,    /* y^2 = x^3 + a x + b      */ | 
|  | POLARSSL_ECP_TYPE_MONTGOMERY,           /* y^2 = x^3 + a x^2 + x    */ | 
|  | } ecp_curve_type; | 
|  |  | 
|  | /* | 
|  | * List of supported curves: | 
|  | *  - internal ID | 
|  | *  - TLS NamedCurve ID (RFC 4492 sec. 5.1.1, RFC 7071 sec. 2) | 
|  | *  - size in bits | 
|  | *  - readable name | 
|  | * | 
|  | * Curves are listed in order: largest curves first, and for a given size, | 
|  | * fastest curves first. This provides the default order for the SSL module. | 
|  | */ | 
|  | static const ecp_curve_info ecp_supported_curves[] = | 
|  | { | 
|  | #if defined(POLARSSL_ECP_DP_SECP521R1_ENABLED) | 
|  | { POLARSSL_ECP_DP_SECP521R1,    25,     521,    "secp521r1"         }, | 
|  | #endif | 
|  | #if defined(POLARSSL_ECP_DP_BP512R1_ENABLED) | 
|  | { POLARSSL_ECP_DP_BP512R1,      28,     512,    "brainpoolP512r1"   }, | 
|  | #endif | 
|  | #if defined(POLARSSL_ECP_DP_SECP384R1_ENABLED) | 
|  | { POLARSSL_ECP_DP_SECP384R1,    24,     384,    "secp384r1"         }, | 
|  | #endif | 
|  | #if defined(POLARSSL_ECP_DP_BP384R1_ENABLED) | 
|  | { POLARSSL_ECP_DP_BP384R1,      27,     384,    "brainpoolP384r1"   }, | 
|  | #endif | 
|  | #if defined(POLARSSL_ECP_DP_SECP256R1_ENABLED) | 
|  | { POLARSSL_ECP_DP_SECP256R1,    23,     256,    "secp256r1"         }, | 
|  | #endif | 
|  | #if defined(POLARSSL_ECP_DP_SECP256K1_ENABLED) | 
|  | { POLARSSL_ECP_DP_SECP256K1,    22,     256,    "secp256k1"         }, | 
|  | #endif | 
|  | #if defined(POLARSSL_ECP_DP_BP256R1_ENABLED) | 
|  | { POLARSSL_ECP_DP_BP256R1,      26,     256,    "brainpoolP256r1"   }, | 
|  | #endif | 
|  | #if defined(POLARSSL_ECP_DP_SECP224R1_ENABLED) | 
|  | { POLARSSL_ECP_DP_SECP224R1,    21,     224,    "secp224r1"         }, | 
|  | #endif | 
|  | #if defined(POLARSSL_ECP_DP_SECP224K1_ENABLED) | 
|  | { POLARSSL_ECP_DP_SECP224K1,    20,     224,    "secp224k1"         }, | 
|  | #endif | 
|  | #if defined(POLARSSL_ECP_DP_SECP192R1_ENABLED) | 
|  | { POLARSSL_ECP_DP_SECP192R1,    19,     192,    "secp192r1"         }, | 
|  | #endif | 
|  | #if defined(POLARSSL_ECP_DP_SECP192K1_ENABLED) | 
|  | { POLARSSL_ECP_DP_SECP192K1,    18,     192,    "secp192k1"         }, | 
|  | #endif | 
|  | { POLARSSL_ECP_DP_NONE,          0,     0,      NULL                }, | 
|  | }; | 
|  |  | 
|  | #define ECP_NB_CURVES   sizeof( ecp_supported_curves ) /    \ | 
|  | sizeof( ecp_supported_curves[0] ) | 
|  |  | 
|  | static ecp_group_id ecp_supported_grp_id[ECP_NB_CURVES]; | 
|  |  | 
|  | /* | 
|  | * List of supported curves and associated info | 
|  | */ | 
|  | const ecp_curve_info *ecp_curve_list( void ) | 
|  | { | 
|  | return( ecp_supported_curves ); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * List of supported curves, group ID only | 
|  | */ | 
|  | const ecp_group_id *ecp_grp_id_list( void ) | 
|  | { | 
|  | static int init_done = 0; | 
|  |  | 
|  | if( ! init_done ) | 
|  | { | 
|  | size_t i = 0; | 
|  | const ecp_curve_info *curve_info; | 
|  |  | 
|  | for( curve_info = ecp_curve_list(); | 
|  | curve_info->grp_id != POLARSSL_ECP_DP_NONE; | 
|  | curve_info++ ) | 
|  | { | 
|  | ecp_supported_grp_id[i++] = curve_info->grp_id; | 
|  | } | 
|  | ecp_supported_grp_id[i] = POLARSSL_ECP_DP_NONE; | 
|  |  | 
|  | init_done = 1; | 
|  | } | 
|  |  | 
|  | return( ecp_supported_grp_id ); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get the curve info for the internal identifier | 
|  | */ | 
|  | const ecp_curve_info *ecp_curve_info_from_grp_id( ecp_group_id grp_id ) | 
|  | { | 
|  | const ecp_curve_info *curve_info; | 
|  |  | 
|  | for( curve_info = ecp_curve_list(); | 
|  | curve_info->grp_id != POLARSSL_ECP_DP_NONE; | 
|  | curve_info++ ) | 
|  | { | 
|  | if( curve_info->grp_id == grp_id ) | 
|  | return( curve_info ); | 
|  | } | 
|  |  | 
|  | return( NULL ); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get the curve info from the TLS identifier | 
|  | */ | 
|  | const ecp_curve_info *ecp_curve_info_from_tls_id( uint16_t tls_id ) | 
|  | { | 
|  | const ecp_curve_info *curve_info; | 
|  |  | 
|  | for( curve_info = ecp_curve_list(); | 
|  | curve_info->grp_id != POLARSSL_ECP_DP_NONE; | 
|  | curve_info++ ) | 
|  | { | 
|  | if( curve_info->tls_id == tls_id ) | 
|  | return( curve_info ); | 
|  | } | 
|  |  | 
|  | return( NULL ); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get the curve info from the name | 
|  | */ | 
|  | const ecp_curve_info *ecp_curve_info_from_name( const char *name ) | 
|  | { | 
|  | const ecp_curve_info *curve_info; | 
|  |  | 
|  | for( curve_info = ecp_curve_list(); | 
|  | curve_info->grp_id != POLARSSL_ECP_DP_NONE; | 
|  | curve_info++ ) | 
|  | { | 
|  | if( strcasecmp( curve_info->name, name ) == 0 ) | 
|  | return( curve_info ); | 
|  | } | 
|  |  | 
|  | return( NULL ); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get the type of a curve | 
|  | */ | 
|  | static inline ecp_curve_type ecp_get_type( const ecp_group *grp ) | 
|  | { | 
|  | if( grp->G.X.p == NULL ) | 
|  | return( POLARSSL_ECP_TYPE_NONE ); | 
|  |  | 
|  | if( grp->G.Y.p == NULL ) | 
|  | return( POLARSSL_ECP_TYPE_MONTGOMERY ); | 
|  | else | 
|  | return( POLARSSL_ECP_TYPE_SHORT_WEIERSTRASS ); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialize (the components of) a point | 
|  | */ | 
|  | void ecp_point_init( ecp_point *pt ) | 
|  | { | 
|  | if( pt == NULL ) | 
|  | return; | 
|  |  | 
|  | mpi_init( &pt->X ); | 
|  | mpi_init( &pt->Y ); | 
|  | mpi_init( &pt->Z ); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialize (the components of) a group | 
|  | */ | 
|  | void ecp_group_init( ecp_group *grp ) | 
|  | { | 
|  | if( grp == NULL ) | 
|  | return; | 
|  |  | 
|  | memset( grp, 0, sizeof( ecp_group ) ); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialize (the components of) a key pair | 
|  | */ | 
|  | void ecp_keypair_init( ecp_keypair *key ) | 
|  | { | 
|  | if( key == NULL ) | 
|  | return; | 
|  |  | 
|  | ecp_group_init( &key->grp ); | 
|  | mpi_init( &key->d ); | 
|  | ecp_point_init( &key->Q ); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Unallocate (the components of) a point | 
|  | */ | 
|  | void ecp_point_free( ecp_point *pt ) | 
|  | { | 
|  | if( pt == NULL ) | 
|  | return; | 
|  |  | 
|  | mpi_free( &( pt->X ) ); | 
|  | mpi_free( &( pt->Y ) ); | 
|  | mpi_free( &( pt->Z ) ); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Unallocate (the components of) a group | 
|  | */ | 
|  | void ecp_group_free( ecp_group *grp ) | 
|  | { | 
|  | size_t i; | 
|  |  | 
|  | if( grp == NULL ) | 
|  | return; | 
|  |  | 
|  | if( grp->h != 1 ) | 
|  | { | 
|  | mpi_free( &grp->P ); | 
|  | mpi_free( &grp->A ); | 
|  | mpi_free( &grp->B ); | 
|  | ecp_point_free( &grp->G ); | 
|  | mpi_free( &grp->N ); | 
|  | } | 
|  |  | 
|  | if( grp->T != NULL ) | 
|  | { | 
|  | for( i = 0; i < grp->T_size; i++ ) | 
|  | ecp_point_free( &grp->T[i] ); | 
|  | polarssl_free( grp->T ); | 
|  | } | 
|  |  | 
|  | polarssl_zeroize( grp, sizeof( ecp_group ) ); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Unallocate (the components of) a key pair | 
|  | */ | 
|  | void ecp_keypair_free( ecp_keypair *key ) | 
|  | { | 
|  | if( key == NULL ) | 
|  | return; | 
|  |  | 
|  | ecp_group_free( &key->grp ); | 
|  | mpi_free( &key->d ); | 
|  | ecp_point_free( &key->Q ); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Copy the contents of a point | 
|  | */ | 
|  | int ecp_copy( ecp_point *P, const ecp_point *Q ) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | MPI_CHK( mpi_copy( &P->X, &Q->X ) ); | 
|  | MPI_CHK( mpi_copy( &P->Y, &Q->Y ) ); | 
|  | MPI_CHK( mpi_copy( &P->Z, &Q->Z ) ); | 
|  |  | 
|  | cleanup: | 
|  | return( ret ); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Copy the contents of a group object | 
|  | */ | 
|  | int ecp_group_copy( ecp_group *dst, const ecp_group *src ) | 
|  | { | 
|  | return ecp_use_known_dp( dst, src->id ); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set point to zero | 
|  | */ | 
|  | int ecp_set_zero( ecp_point *pt ) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | MPI_CHK( mpi_lset( &pt->X , 1 ) ); | 
|  | MPI_CHK( mpi_lset( &pt->Y , 1 ) ); | 
|  | MPI_CHK( mpi_lset( &pt->Z , 0 ) ); | 
|  |  | 
|  | cleanup: | 
|  | return( ret ); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Tell if a point is zero | 
|  | */ | 
|  | int ecp_is_zero( ecp_point *pt ) | 
|  | { | 
|  | return( mpi_cmp_int( &pt->Z, 0 ) == 0 ); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Import a non-zero point from ASCII strings | 
|  | */ | 
|  | int ecp_point_read_string( ecp_point *P, int radix, | 
|  | const char *x, const char *y ) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | MPI_CHK( mpi_read_string( &P->X, radix, x ) ); | 
|  | MPI_CHK( mpi_read_string( &P->Y, radix, y ) ); | 
|  | MPI_CHK( mpi_lset( &P->Z, 1 ) ); | 
|  |  | 
|  | cleanup: | 
|  | return( ret ); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Export a point into unsigned binary data (SEC1 2.3.3) | 
|  | */ | 
|  | int ecp_point_write_binary( const ecp_group *grp, const ecp_point *P, | 
|  | int format, size_t *olen, | 
|  | unsigned char *buf, size_t buflen ) | 
|  | { | 
|  | int ret = 0; | 
|  | size_t plen; | 
|  |  | 
|  | if( format != POLARSSL_ECP_PF_UNCOMPRESSED && | 
|  | format != POLARSSL_ECP_PF_COMPRESSED ) | 
|  | return( POLARSSL_ERR_ECP_BAD_INPUT_DATA ); | 
|  |  | 
|  | /* | 
|  | * Common case: P == 0 | 
|  | */ | 
|  | if( mpi_cmp_int( &P->Z, 0 ) == 0 ) | 
|  | { | 
|  | if( buflen < 1 ) | 
|  | return( POLARSSL_ERR_ECP_BUFFER_TOO_SMALL ); | 
|  |  | 
|  | buf[0] = 0x00; | 
|  | *olen = 1; | 
|  |  | 
|  | return( 0 ); | 
|  | } | 
|  |  | 
|  | plen = mpi_size( &grp->P ); | 
|  |  | 
|  | if( format == POLARSSL_ECP_PF_UNCOMPRESSED ) | 
|  | { | 
|  | *olen = 2 * plen + 1; | 
|  |  | 
|  | if( buflen < *olen ) | 
|  | return( POLARSSL_ERR_ECP_BUFFER_TOO_SMALL ); | 
|  |  | 
|  | buf[0] = 0x04; | 
|  | MPI_CHK( mpi_write_binary( &P->X, buf + 1, plen ) ); | 
|  | MPI_CHK( mpi_write_binary( &P->Y, buf + 1 + plen, plen ) ); | 
|  | } | 
|  | else if( format == POLARSSL_ECP_PF_COMPRESSED ) | 
|  | { | 
|  | *olen = plen + 1; | 
|  |  | 
|  | if( buflen < *olen ) | 
|  | return( POLARSSL_ERR_ECP_BUFFER_TOO_SMALL ); | 
|  |  | 
|  | buf[0] = 0x02 + mpi_get_bit( &P->Y, 0 ); | 
|  | MPI_CHK( mpi_write_binary( &P->X, buf + 1, plen ) ); | 
|  | } | 
|  |  | 
|  | cleanup: | 
|  | return( ret ); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Import a point from unsigned binary data (SEC1 2.3.4) | 
|  | */ | 
|  | int ecp_point_read_binary( const ecp_group *grp, ecp_point *pt, | 
|  | const unsigned char *buf, size_t ilen ) | 
|  | { | 
|  | int ret; | 
|  | size_t plen; | 
|  |  | 
|  | if( ilen < 1 ) | 
|  | return( POLARSSL_ERR_ECP_BAD_INPUT_DATA ); | 
|  |  | 
|  | if( buf[0] == 0x00 ) | 
|  | { | 
|  | if( ilen == 1 ) | 
|  | return( ecp_set_zero( pt ) ); | 
|  | else | 
|  | return( POLARSSL_ERR_ECP_BAD_INPUT_DATA ); | 
|  | } | 
|  |  | 
|  | plen = mpi_size( &grp->P ); | 
|  |  | 
|  | if( buf[0] != 0x04 ) | 
|  | return( POLARSSL_ERR_ECP_FEATURE_UNAVAILABLE ); | 
|  |  | 
|  | if( ilen != 2 * plen + 1 ) | 
|  | return( POLARSSL_ERR_ECP_BAD_INPUT_DATA ); | 
|  |  | 
|  | MPI_CHK( mpi_read_binary( &pt->X, buf + 1, plen ) ); | 
|  | MPI_CHK( mpi_read_binary( &pt->Y, buf + 1 + plen, plen ) ); | 
|  | MPI_CHK( mpi_lset( &pt->Z, 1 ) ); | 
|  |  | 
|  | cleanup: | 
|  | return( ret ); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Import a point from a TLS ECPoint record (RFC 4492) | 
|  | *      struct { | 
|  | *          opaque point <1..2^8-1>; | 
|  | *      } ECPoint; | 
|  | */ | 
|  | int ecp_tls_read_point( const ecp_group *grp, ecp_point *pt, | 
|  | const unsigned char **buf, size_t buf_len ) | 
|  | { | 
|  | unsigned char data_len; | 
|  | const unsigned char *buf_start; | 
|  |  | 
|  | /* | 
|  | * We must have at least two bytes (1 for length, at least one for data) | 
|  | */ | 
|  | if( buf_len < 2 ) | 
|  | return( POLARSSL_ERR_ECP_BAD_INPUT_DATA ); | 
|  |  | 
|  | data_len = *(*buf)++; | 
|  | if( data_len < 1 || data_len > buf_len - 1 ) | 
|  | return( POLARSSL_ERR_ECP_BAD_INPUT_DATA ); | 
|  |  | 
|  | /* | 
|  | * Save buffer start for read_binary and update buf | 
|  | */ | 
|  | buf_start = *buf; | 
|  | *buf += data_len; | 
|  |  | 
|  | return ecp_point_read_binary( grp, pt, buf_start, data_len ); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Export a point as a TLS ECPoint record (RFC 4492) | 
|  | *      struct { | 
|  | *          opaque point <1..2^8-1>; | 
|  | *      } ECPoint; | 
|  | */ | 
|  | int ecp_tls_write_point( const ecp_group *grp, const ecp_point *pt, | 
|  | int format, size_t *olen, | 
|  | unsigned char *buf, size_t blen ) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * buffer length must be at least one, for our length byte | 
|  | */ | 
|  | if( blen < 1 ) | 
|  | return( POLARSSL_ERR_ECP_BAD_INPUT_DATA ); | 
|  |  | 
|  | if( ( ret = ecp_point_write_binary( grp, pt, format, | 
|  | olen, buf + 1, blen - 1) ) != 0 ) | 
|  | return( ret ); | 
|  |  | 
|  | /* | 
|  | * write length to the first byte and update total length | 
|  | */ | 
|  | buf[0] = (unsigned char) *olen; | 
|  | ++*olen; | 
|  |  | 
|  | return( 0 ); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Import an ECP group from ASCII strings, case A == -3 | 
|  | */ | 
|  | int ecp_group_read_string( ecp_group *grp, int radix, | 
|  | const char *p, const char *b, | 
|  | const char *gx, const char *gy, const char *n) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | MPI_CHK( mpi_read_string( &grp->P, radix, p ) ); | 
|  | MPI_CHK( mpi_read_string( &grp->B, radix, b ) ); | 
|  | MPI_CHK( ecp_point_read_string( &grp->G, radix, gx, gy ) ); | 
|  | MPI_CHK( mpi_read_string( &grp->N, radix, n ) ); | 
|  |  | 
|  | grp->pbits = mpi_msb( &grp->P ); | 
|  | grp->nbits = mpi_msb( &grp->N ); | 
|  |  | 
|  | cleanup: | 
|  | if( ret != 0 ) | 
|  | ecp_group_free( grp ); | 
|  |  | 
|  | return( ret ); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set a group from an ECParameters record (RFC 4492) | 
|  | */ | 
|  | int ecp_tls_read_group( ecp_group *grp, const unsigned char **buf, size_t len ) | 
|  | { | 
|  | uint16_t tls_id; | 
|  | const ecp_curve_info *curve_info; | 
|  |  | 
|  | /* | 
|  | * We expect at least three bytes (see below) | 
|  | */ | 
|  | if( len < 3 ) | 
|  | return( POLARSSL_ERR_ECP_BAD_INPUT_DATA ); | 
|  |  | 
|  | /* | 
|  | * First byte is curve_type; only named_curve is handled | 
|  | */ | 
|  | if( *(*buf)++ != POLARSSL_ECP_TLS_NAMED_CURVE ) | 
|  | return( POLARSSL_ERR_ECP_BAD_INPUT_DATA ); | 
|  |  | 
|  | /* | 
|  | * Next two bytes are the namedcurve value | 
|  | */ | 
|  | tls_id = *(*buf)++; | 
|  | tls_id <<= 8; | 
|  | tls_id |= *(*buf)++; | 
|  |  | 
|  | if( ( curve_info = ecp_curve_info_from_tls_id( tls_id ) ) == NULL ) | 
|  | return( POLARSSL_ERR_ECP_FEATURE_UNAVAILABLE ); | 
|  |  | 
|  | return ecp_use_known_dp( grp, curve_info->grp_id ); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Write the ECParameters record corresponding to a group (RFC 4492) | 
|  | */ | 
|  | int ecp_tls_write_group( const ecp_group *grp, size_t *olen, | 
|  | unsigned char *buf, size_t blen ) | 
|  | { | 
|  | const ecp_curve_info *curve_info; | 
|  |  | 
|  | if( ( curve_info = ecp_curve_info_from_grp_id( grp->id ) ) == NULL ) | 
|  | return( POLARSSL_ERR_ECP_BAD_INPUT_DATA ); | 
|  |  | 
|  | /* | 
|  | * We are going to write 3 bytes (see below) | 
|  | */ | 
|  | *olen = 3; | 
|  | if( blen < *olen ) | 
|  | return( POLARSSL_ERR_ECP_BUFFER_TOO_SMALL ); | 
|  |  | 
|  | /* | 
|  | * First byte is curve_type, always named_curve | 
|  | */ | 
|  | *buf++ = POLARSSL_ECP_TLS_NAMED_CURVE; | 
|  |  | 
|  | /* | 
|  | * Next two bytes are the namedcurve value | 
|  | */ | 
|  | buf[0] = curve_info->tls_id >> 8; | 
|  | buf[1] = curve_info->tls_id & 0xFF; | 
|  |  | 
|  | return( 0 ); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Wrapper around fast quasi-modp functions, with fall-back to mpi_mod_mpi. | 
|  | * See the documentation of struct ecp_group. | 
|  | * | 
|  | * This function is in the critial loop for ecp_mul, so pay attention to perf. | 
|  | */ | 
|  | static int ecp_modp( mpi *N, const ecp_group *grp ) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if( grp->modp == NULL ) | 
|  | return( mpi_mod_mpi( N, N, &grp->P ) ); | 
|  |  | 
|  | /* N->s < 0 is a much faster test, which fails only if N is 0 */ | 
|  | if( ( N->s < 0 && mpi_cmp_int( N, 0 ) != 0 ) || | 
|  | mpi_msb( N ) > 2 * grp->pbits ) | 
|  | { | 
|  | return( POLARSSL_ERR_ECP_BAD_INPUT_DATA ); | 
|  | } | 
|  |  | 
|  | MPI_CHK( grp->modp( N ) ); | 
|  |  | 
|  | /* N->s < 0 is a much faster test, which fails only if N is 0 */ | 
|  | while( N->s < 0 && mpi_cmp_int( N, 0 ) != 0 ) | 
|  | MPI_CHK( mpi_add_mpi( N, N, &grp->P ) ); | 
|  |  | 
|  | while( mpi_cmp_mpi( N, &grp->P ) >= 0 ) | 
|  | /* we known P, N and the result are positive */ | 
|  | MPI_CHK( mpi_sub_abs( N, N, &grp->P ) ); | 
|  |  | 
|  | cleanup: | 
|  | return( ret ); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Fast mod-p functions expect their argument to be in the 0..p^2 range. | 
|  | * | 
|  | * In order to guarantee that, we need to ensure that operands of | 
|  | * mpi_mul_mpi are in the 0..p range. So, after each operation we will | 
|  | * bring the result back to this range. | 
|  | * | 
|  | * The following macros are shortcuts for doing that. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Reduce a mpi mod p in-place, general case, to use after mpi_mul_mpi | 
|  | */ | 
|  | #if defined(POLARSSL_SELF_TEST) | 
|  | #define INC_MUL_COUNT   mul_count++; | 
|  | #else | 
|  | #define INC_MUL_COUNT | 
|  | #endif | 
|  |  | 
|  | #define MOD_MUL( N )    do { MPI_CHK( ecp_modp( &N, grp ) ); INC_MUL_COUNT } \ | 
|  | while( 0 ) | 
|  |  | 
|  | /* | 
|  | * Reduce a mpi mod p in-place, to use after mpi_sub_mpi | 
|  | * N->s < 0 is a very fast test, which fails only if N is 0 | 
|  | */ | 
|  | #define MOD_SUB( N )                                \ | 
|  | while( N.s < 0 && mpi_cmp_int( &N, 0 ) != 0 )   \ | 
|  | MPI_CHK( mpi_add_mpi( &N, &N, &grp->P ) ) | 
|  |  | 
|  | /* | 
|  | * Reduce a mpi mod p in-place, to use after mpi_add_mpi and mpi_mul_int. | 
|  | * We known P, N and the result are positive, so sub_abs is correct, and | 
|  | * a bit faster. | 
|  | */ | 
|  | #define MOD_ADD( N )                                \ | 
|  | while( mpi_cmp_mpi( &N, &grp->P ) >= 0 )        \ | 
|  | MPI_CHK( mpi_sub_abs( &N, &N, &grp->P ) ) | 
|  |  | 
|  | #if defined(POLARSSL_ECP_SHORT_WEIERSTRASS) | 
|  | /* | 
|  | * For curves in short Weierstrass form, we do all the internal operations in | 
|  | * Jacobian coordinates. | 
|  | * | 
|  | * For multiplication, we'll use a comb method with coutermeasueres against | 
|  | * SPA, hence timing attacks. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Normalize jacobian coordinates so that Z == 0 || Z == 1  (GECC 3.2.1) | 
|  | * Cost: 1N := 1I + 3M + 1S | 
|  | */ | 
|  | static int ecp_normalize_jac( const ecp_group *grp, ecp_point *pt ) | 
|  | { | 
|  | int ret; | 
|  | mpi Zi, ZZi; | 
|  |  | 
|  | if( mpi_cmp_int( &pt->Z, 0 ) == 0 ) | 
|  | return( 0 ); | 
|  |  | 
|  | mpi_init( &Zi ); mpi_init( &ZZi ); | 
|  |  | 
|  | /* | 
|  | * X = X / Z^2  mod p | 
|  | */ | 
|  | MPI_CHK( mpi_inv_mod( &Zi,      &pt->Z,     &grp->P ) ); | 
|  | MPI_CHK( mpi_mul_mpi( &ZZi,     &Zi,        &Zi     ) ); MOD_MUL( ZZi ); | 
|  | MPI_CHK( mpi_mul_mpi( &pt->X,   &pt->X,     &ZZi    ) ); MOD_MUL( pt->X ); | 
|  |  | 
|  | /* | 
|  | * Y = Y / Z^3  mod p | 
|  | */ | 
|  | MPI_CHK( mpi_mul_mpi( &pt->Y,   &pt->Y,     &ZZi    ) ); MOD_MUL( pt->Y ); | 
|  | MPI_CHK( mpi_mul_mpi( &pt->Y,   &pt->Y,     &Zi     ) ); MOD_MUL( pt->Y ); | 
|  |  | 
|  | /* | 
|  | * Z = 1 | 
|  | */ | 
|  | MPI_CHK( mpi_lset( &pt->Z, 1 ) ); | 
|  |  | 
|  | cleanup: | 
|  |  | 
|  | mpi_free( &Zi ); mpi_free( &ZZi ); | 
|  |  | 
|  | return( ret ); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Normalize jacobian coordinates of an array of (pointers to) points, | 
|  | * using Montgomery's trick to perform only one inversion mod P. | 
|  | * (See for example Cohen's "A Course in Computational Algebraic Number | 
|  | * Theory", Algorithm 10.3.4.) | 
|  | * | 
|  | * Warning: fails (returning an error) if one of the points is zero! | 
|  | * This should never happen, see choice of w in ecp_mul_comb(). | 
|  | * | 
|  | * Cost: 1N(t) := 1I + (6t - 3)M + 1S | 
|  | */ | 
|  | static int ecp_normalize_jac_many( const ecp_group *grp, | 
|  | ecp_point *T[], size_t t_len ) | 
|  | { | 
|  | int ret; | 
|  | size_t i; | 
|  | mpi *c, u, Zi, ZZi; | 
|  |  | 
|  | if( t_len < 2 ) | 
|  | return( ecp_normalize_jac( grp, *T ) ); | 
|  |  | 
|  | if( ( c = (mpi *) polarssl_malloc( t_len * sizeof( mpi ) ) ) == NULL ) | 
|  | return( POLARSSL_ERR_ECP_MALLOC_FAILED ); | 
|  |  | 
|  | mpi_init( &u ); mpi_init( &Zi ); mpi_init( &ZZi ); | 
|  | for( i = 0; i < t_len; i++ ) | 
|  | mpi_init( &c[i] ); | 
|  |  | 
|  | /* | 
|  | * c[i] = Z_0 * ... * Z_i | 
|  | */ | 
|  | MPI_CHK( mpi_copy( &c[0], &T[0]->Z ) ); | 
|  | for( i = 1; i < t_len; i++ ) | 
|  | { | 
|  | MPI_CHK( mpi_mul_mpi( &c[i], &c[i-1], &T[i]->Z ) ); | 
|  | MOD_MUL( c[i] ); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * u = 1 / (Z_0 * ... * Z_n) mod P | 
|  | */ | 
|  | MPI_CHK( mpi_inv_mod( &u, &c[t_len-1], &grp->P ) ); | 
|  |  | 
|  | for( i = t_len - 1; ; i-- ) | 
|  | { | 
|  | /* | 
|  | * Zi = 1 / Z_i mod p | 
|  | * u = 1 / (Z_0 * ... * Z_i) mod P | 
|  | */ | 
|  | if( i == 0 ) { | 
|  | MPI_CHK( mpi_copy( &Zi, &u ) ); | 
|  | } | 
|  | else | 
|  | { | 
|  | MPI_CHK( mpi_mul_mpi( &Zi, &u, &c[i-1]  ) ); MOD_MUL( Zi ); | 
|  | MPI_CHK( mpi_mul_mpi( &u,  &u, &T[i]->Z ) ); MOD_MUL( u ); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * proceed as in normalize() | 
|  | */ | 
|  | MPI_CHK( mpi_mul_mpi( &ZZi,     &Zi,      &Zi  ) ); MOD_MUL( ZZi ); | 
|  | MPI_CHK( mpi_mul_mpi( &T[i]->X, &T[i]->X, &ZZi ) ); MOD_MUL( T[i]->X ); | 
|  | MPI_CHK( mpi_mul_mpi( &T[i]->Y, &T[i]->Y, &ZZi ) ); MOD_MUL( T[i]->Y ); | 
|  | MPI_CHK( mpi_mul_mpi( &T[i]->Y, &T[i]->Y, &Zi  ) ); MOD_MUL( T[i]->Y ); | 
|  |  | 
|  | /* | 
|  | * Post-precessing: reclaim some memory by shrinking coordinates | 
|  | * - not storing Z (always 1) | 
|  | * - shrinking other coordinates, but still keeping the same number of | 
|  | *   limbs as P, as otherwise it will too likely be regrown too fast. | 
|  | */ | 
|  | MPI_CHK( mpi_shrink( &T[i]->X, grp->P.n ) ); | 
|  | MPI_CHK( mpi_shrink( &T[i]->Y, grp->P.n ) ); | 
|  | mpi_free( &T[i]->Z ); | 
|  |  | 
|  | if( i == 0 ) | 
|  | break; | 
|  | } | 
|  |  | 
|  | cleanup: | 
|  |  | 
|  | mpi_free( &u ); mpi_free( &Zi ); mpi_free( &ZZi ); | 
|  | for( i = 0; i < t_len; i++ ) | 
|  | mpi_free( &c[i] ); | 
|  | polarssl_free( c ); | 
|  |  | 
|  | return( ret ); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Conditional point inversion: Q -> -Q = (Q.X, -Q.Y, Q.Z) without leak. | 
|  | * "inv" must be 0 (don't invert) or 1 (invert) or the result will be invalid | 
|  | */ | 
|  | static int ecp_safe_invert_jac( const ecp_group *grp, | 
|  | ecp_point *Q, | 
|  | unsigned char inv ) | 
|  | { | 
|  | int ret; | 
|  | unsigned char nonzero; | 
|  | mpi mQY; | 
|  |  | 
|  | mpi_init( &mQY ); | 
|  |  | 
|  | /* Use the fact that -Q.Y mod P = P - Q.Y unless Q.Y == 0 */ | 
|  | MPI_CHK( mpi_sub_mpi( &mQY, &grp->P, &Q->Y ) ); | 
|  | nonzero = mpi_cmp_int( &Q->Y, 0 ) != 0; | 
|  | MPI_CHK( mpi_safe_cond_assign( &Q->Y, &mQY, inv & nonzero ) ); | 
|  |  | 
|  | cleanup: | 
|  | mpi_free( &mQY ); | 
|  |  | 
|  | return( ret ); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Point doubling R = 2 P, Jacobian coordinates | 
|  | * | 
|  | * http://www.hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian/doubling/dbl-2007-bl.op3 | 
|  | * with heavy variable renaming, some reordering and one minor modification | 
|  | * (a = 2 * b, c = d - 2a replaced with c = d, c = c - b, c = c - b) | 
|  | * in order to use a lot less intermediate variables (6 vs 25). | 
|  | * | 
|  | * Cost: 1D := 2M + 8S | 
|  | */ | 
|  | static int ecp_double_jac( const ecp_group *grp, ecp_point *R, | 
|  | const ecp_point *P ) | 
|  | { | 
|  | int ret; | 
|  | mpi T1, T2, T3, X3, Y3, Z3; | 
|  |  | 
|  | #if defined(POLARSSL_SELF_TEST) | 
|  | dbl_count++; | 
|  | #endif | 
|  |  | 
|  | mpi_init( &T1 ); mpi_init( &T2 ); mpi_init( &T3 ); | 
|  | mpi_init( &X3 ); mpi_init( &Y3 ); mpi_init( &Z3 ); | 
|  |  | 
|  | MPI_CHK( mpi_mul_mpi( &T3,  &P->X,  &P->X   ) ); MOD_MUL( T3 ); | 
|  | MPI_CHK( mpi_mul_mpi( &T2,  &P->Y,  &P->Y   ) ); MOD_MUL( T2 ); | 
|  | MPI_CHK( mpi_mul_mpi( &Y3,  &T2,    &T2     ) ); MOD_MUL( Y3 ); | 
|  | MPI_CHK( mpi_add_mpi( &X3,  &P->X,  &T2     ) ); MOD_ADD( X3 ); | 
|  | MPI_CHK( mpi_mul_mpi( &X3,  &X3,    &X3     ) ); MOD_MUL( X3 ); | 
|  | MPI_CHK( mpi_sub_mpi( &X3,  &X3,    &Y3     ) ); MOD_SUB( X3 ); | 
|  | MPI_CHK( mpi_sub_mpi( &X3,  &X3,    &T3     ) ); MOD_SUB( X3 ); | 
|  | MPI_CHK( mpi_mul_int( &T1,  &X3,    2       ) ); MOD_ADD( T1 ); | 
|  | MPI_CHK( mpi_mul_mpi( &Z3,  &P->Z,  &P->Z   ) ); MOD_MUL( Z3 ); | 
|  | MPI_CHK( mpi_mul_mpi( &X3,  &Z3,    &Z3     ) ); MOD_MUL( X3 ); | 
|  | MPI_CHK( mpi_mul_int( &T3,  &T3,    3       ) ); MOD_ADD( T3 ); | 
|  |  | 
|  | /* Special case for A = -3 */ | 
|  | if( grp->A.p == NULL ) | 
|  | { | 
|  | MPI_CHK( mpi_mul_int( &X3, &X3, 3 ) ); | 
|  | X3.s = -1; /* mpi_mul_int doesn't handle negative numbers */ | 
|  | MOD_SUB( X3 ); | 
|  | } | 
|  | else | 
|  | { | 
|  | MPI_CHK( mpi_mul_mpi( &X3,  &X3,    &grp->A ) ); MOD_MUL( X3 ); | 
|  | } | 
|  |  | 
|  | MPI_CHK( mpi_add_mpi( &T3,  &T3,    &X3     ) ); MOD_ADD( T3 ); | 
|  | MPI_CHK( mpi_mul_mpi( &X3,  &T3,    &T3     ) ); MOD_MUL( X3 ); | 
|  | MPI_CHK( mpi_sub_mpi( &X3,  &X3,    &T1     ) ); MOD_SUB( X3 ); | 
|  | MPI_CHK( mpi_sub_mpi( &X3,  &X3,    &T1     ) ); MOD_SUB( X3 ); | 
|  | MPI_CHK( mpi_sub_mpi( &T1,  &T1,    &X3     ) ); MOD_SUB( T1 ); | 
|  | MPI_CHK( mpi_mul_mpi( &T1,  &T3,    &T1     ) ); MOD_MUL( T1 ); | 
|  | MPI_CHK( mpi_mul_int( &T3,  &Y3,    8       ) ); MOD_ADD( T3 ); | 
|  | MPI_CHK( mpi_sub_mpi( &Y3,  &T1,    &T3     ) ); MOD_SUB( Y3 ); | 
|  | MPI_CHK( mpi_add_mpi( &T1,  &P->Y,  &P->Z   ) ); MOD_ADD( T1 ); | 
|  | MPI_CHK( mpi_mul_mpi( &T1,  &T1,    &T1     ) ); MOD_MUL( T1 ); | 
|  | MPI_CHK( mpi_sub_mpi( &T1,  &T1,    &T2     ) ); MOD_SUB( T1 ); | 
|  | MPI_CHK( mpi_sub_mpi( &Z3,  &T1,    &Z3     ) ); MOD_SUB( Z3 ); | 
|  |  | 
|  | MPI_CHK( mpi_copy( &R->X, &X3 ) ); | 
|  | MPI_CHK( mpi_copy( &R->Y, &Y3 ) ); | 
|  | MPI_CHK( mpi_copy( &R->Z, &Z3 ) ); | 
|  |  | 
|  | cleanup: | 
|  | mpi_free( &T1 ); mpi_free( &T2 ); mpi_free( &T3 ); | 
|  | mpi_free( &X3 ); mpi_free( &Y3 ); mpi_free( &Z3 ); | 
|  |  | 
|  | return( ret ); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Addition: R = P + Q, mixed affine-Jacobian coordinates (GECC 3.22) | 
|  | * | 
|  | * The coordinates of Q must be normalized (= affine), | 
|  | * but those of P don't need to. R is not normalized. | 
|  | * | 
|  | * Special cases: (1) P or Q is zero, (2) R is zero, (3) P == Q. | 
|  | * None of these cases can happen as intermediate step in ecp_mul_comb(): | 
|  | * - at each step, P, Q and R are multiples of the base point, the factor | 
|  | *   being less than its order, so none of them is zero; | 
|  | * - Q is an odd multiple of the base point, P an even multiple, | 
|  | *   due to the choice of precomputed points in the modified comb method. | 
|  | * So branches for these cases do not leak secret information. | 
|  | * | 
|  | * We accept Q->Z being unset (saving memory in tables) as meaning 1. | 
|  | * | 
|  | * Cost: 1A := 8M + 3S | 
|  | */ | 
|  | static int ecp_add_mixed( const ecp_group *grp, ecp_point *R, | 
|  | const ecp_point *P, const ecp_point *Q ) | 
|  | { | 
|  | int ret; | 
|  | mpi T1, T2, T3, T4, X, Y, Z; | 
|  |  | 
|  | #if defined(POLARSSL_SELF_TEST) | 
|  | add_count++; | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Trivial cases: P == 0 or Q == 0 (case 1) | 
|  | */ | 
|  | if( mpi_cmp_int( &P->Z, 0 ) == 0 ) | 
|  | return( ecp_copy( R, Q ) ); | 
|  |  | 
|  | if( Q->Z.p != NULL && mpi_cmp_int( &Q->Z, 0 ) == 0 ) | 
|  | return( ecp_copy( R, P ) ); | 
|  |  | 
|  | /* | 
|  | * Make sure Q coordinates are normalized | 
|  | */ | 
|  | if( Q->Z.p != NULL && mpi_cmp_int( &Q->Z, 1 ) != 0 ) | 
|  | return( POLARSSL_ERR_ECP_BAD_INPUT_DATA ); | 
|  |  | 
|  | mpi_init( &T1 ); mpi_init( &T2 ); mpi_init( &T3 ); mpi_init( &T4 ); | 
|  | mpi_init( &X ); mpi_init( &Y ); mpi_init( &Z ); | 
|  |  | 
|  | MPI_CHK( mpi_mul_mpi( &T1,  &P->Z,  &P->Z ) );  MOD_MUL( T1 ); | 
|  | MPI_CHK( mpi_mul_mpi( &T2,  &T1,    &P->Z ) );  MOD_MUL( T2 ); | 
|  | MPI_CHK( mpi_mul_mpi( &T1,  &T1,    &Q->X ) );  MOD_MUL( T1 ); | 
|  | MPI_CHK( mpi_mul_mpi( &T2,  &T2,    &Q->Y ) );  MOD_MUL( T2 ); | 
|  | MPI_CHK( mpi_sub_mpi( &T1,  &T1,    &P->X ) );  MOD_SUB( T1 ); | 
|  | MPI_CHK( mpi_sub_mpi( &T2,  &T2,    &P->Y ) );  MOD_SUB( T2 ); | 
|  |  | 
|  | /* Special cases (2) and (3) */ | 
|  | if( mpi_cmp_int( &T1, 0 ) == 0 ) | 
|  | { | 
|  | if( mpi_cmp_int( &T2, 0 ) == 0 ) | 
|  | { | 
|  | ret = ecp_double_jac( grp, R, P ); | 
|  | goto cleanup; | 
|  | } | 
|  | else | 
|  | { | 
|  | ret = ecp_set_zero( R ); | 
|  | goto cleanup; | 
|  | } | 
|  | } | 
|  |  | 
|  | MPI_CHK( mpi_mul_mpi( &Z,   &P->Z,  &T1   ) );  MOD_MUL( Z  ); | 
|  | MPI_CHK( mpi_mul_mpi( &T3,  &T1,    &T1   ) );  MOD_MUL( T3 ); | 
|  | MPI_CHK( mpi_mul_mpi( &T4,  &T3,    &T1   ) );  MOD_MUL( T4 ); | 
|  | MPI_CHK( mpi_mul_mpi( &T3,  &T3,    &P->X ) );  MOD_MUL( T3 ); | 
|  | MPI_CHK( mpi_mul_int( &T1,  &T3,    2     ) );  MOD_ADD( T1 ); | 
|  | MPI_CHK( mpi_mul_mpi( &X,   &T2,    &T2   ) );  MOD_MUL( X  ); | 
|  | MPI_CHK( mpi_sub_mpi( &X,   &X,     &T1   ) );  MOD_SUB( X  ); | 
|  | MPI_CHK( mpi_sub_mpi( &X,   &X,     &T4   ) );  MOD_SUB( X  ); | 
|  | MPI_CHK( mpi_sub_mpi( &T3,  &T3,    &X    ) );  MOD_SUB( T3 ); | 
|  | MPI_CHK( mpi_mul_mpi( &T3,  &T3,    &T2   ) );  MOD_MUL( T3 ); | 
|  | MPI_CHK( mpi_mul_mpi( &T4,  &T4,    &P->Y ) );  MOD_MUL( T4 ); | 
|  | MPI_CHK( mpi_sub_mpi( &Y,   &T3,    &T4   ) );  MOD_SUB( Y  ); | 
|  |  | 
|  | MPI_CHK( mpi_copy( &R->X, &X ) ); | 
|  | MPI_CHK( mpi_copy( &R->Y, &Y ) ); | 
|  | MPI_CHK( mpi_copy( &R->Z, &Z ) ); | 
|  |  | 
|  | cleanup: | 
|  |  | 
|  | mpi_free( &T1 ); mpi_free( &T2 ); mpi_free( &T3 ); mpi_free( &T4 ); | 
|  | mpi_free( &X ); mpi_free( &Y ); mpi_free( &Z ); | 
|  |  | 
|  | return( ret ); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Addition: R = P + Q, result's coordinates normalized | 
|  | */ | 
|  | int ecp_add( const ecp_group *grp, ecp_point *R, | 
|  | const ecp_point *P, const ecp_point *Q ) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if( ecp_get_type( grp ) != POLARSSL_ECP_TYPE_SHORT_WEIERSTRASS ) | 
|  | return( POLARSSL_ERR_ECP_FEATURE_UNAVAILABLE ); | 
|  |  | 
|  | MPI_CHK( ecp_add_mixed( grp, R, P, Q ) ); | 
|  | MPI_CHK( ecp_normalize_jac( grp, R ) ); | 
|  |  | 
|  | cleanup: | 
|  | return( ret ); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Subtraction: R = P - Q, result's coordinates normalized | 
|  | */ | 
|  | int ecp_sub( const ecp_group *grp, ecp_point *R, | 
|  | const ecp_point *P, const ecp_point *Q ) | 
|  | { | 
|  | int ret; | 
|  | ecp_point mQ; | 
|  |  | 
|  | ecp_point_init( &mQ ); | 
|  |  | 
|  | if( ecp_get_type( grp ) != POLARSSL_ECP_TYPE_SHORT_WEIERSTRASS ) | 
|  | return( POLARSSL_ERR_ECP_FEATURE_UNAVAILABLE ); | 
|  |  | 
|  | /* mQ = - Q */ | 
|  | MPI_CHK( ecp_copy( &mQ, Q ) ); | 
|  | if( mpi_cmp_int( &mQ.Y, 0 ) != 0 ) | 
|  | MPI_CHK( mpi_sub_mpi( &mQ.Y, &grp->P, &mQ.Y ) ); | 
|  |  | 
|  | MPI_CHK( ecp_add_mixed( grp, R, P, &mQ ) ); | 
|  | MPI_CHK( ecp_normalize_jac( grp, R ) ); | 
|  |  | 
|  | cleanup: | 
|  | ecp_point_free( &mQ ); | 
|  |  | 
|  | return( ret ); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Randomize jacobian coordinates: | 
|  | * (X, Y, Z) -> (l^2 X, l^3 Y, l Z) for random l | 
|  | * This is sort of the reverse operation of ecp_normalize_jac(). | 
|  | * | 
|  | * This countermeasure was first suggested in [2]. | 
|  | */ | 
|  | static int ecp_randomize_jac( const ecp_group *grp, ecp_point *pt, | 
|  | int (*f_rng)(void *, unsigned char *, size_t), void *p_rng ) | 
|  | { | 
|  | int ret; | 
|  | mpi l, ll; | 
|  | size_t p_size = ( grp->pbits + 7 ) / 8; | 
|  | int count = 0; | 
|  |  | 
|  | mpi_init( &l ); mpi_init( &ll ); | 
|  |  | 
|  | /* Generate l such that 1 < l < p */ | 
|  | do | 
|  | { | 
|  | mpi_fill_random( &l, p_size, f_rng, p_rng ); | 
|  |  | 
|  | while( mpi_cmp_mpi( &l, &grp->P ) >= 0 ) | 
|  | MPI_CHK( mpi_shift_r( &l, 1 ) ); | 
|  |  | 
|  | if( count++ > 10 ) | 
|  | return( POLARSSL_ERR_ECP_RANDOM_FAILED ); | 
|  | } | 
|  | while( mpi_cmp_int( &l, 1 ) <= 0 ); | 
|  |  | 
|  | /* Z = l * Z */ | 
|  | MPI_CHK( mpi_mul_mpi( &pt->Z,   &pt->Z,     &l  ) ); MOD_MUL( pt->Z ); | 
|  |  | 
|  | /* X = l^2 * X */ | 
|  | MPI_CHK( mpi_mul_mpi( &ll,      &l,         &l  ) ); MOD_MUL( ll ); | 
|  | MPI_CHK( mpi_mul_mpi( &pt->X,   &pt->X,     &ll ) ); MOD_MUL( pt->X ); | 
|  |  | 
|  | /* Y = l^3 * Y */ | 
|  | MPI_CHK( mpi_mul_mpi( &ll,      &ll,        &l  ) ); MOD_MUL( ll ); | 
|  | MPI_CHK( mpi_mul_mpi( &pt->Y,   &pt->Y,     &ll ) ); MOD_MUL( pt->Y ); | 
|  |  | 
|  | cleanup: | 
|  | mpi_free( &l ); mpi_free( &ll ); | 
|  |  | 
|  | return( ret ); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check and define parameters used by the comb method (see below for details) | 
|  | */ | 
|  | #if POLARSSL_ECP_WINDOW_SIZE < 2 || POLARSSL_ECP_WINDOW_SIZE > 7 | 
|  | #error "POLARSSL_ECP_WINDOW_SIZE out of bounds" | 
|  | #endif | 
|  |  | 
|  | /* d = ceil( n / w ) */ | 
|  | #define COMB_MAX_D      ( POLARSSL_ECP_MAX_BITS + 1 ) / 2 | 
|  |  | 
|  | /* number of precomputed points */ | 
|  | #define COMB_MAX_PRE    ( 1 << ( POLARSSL_ECP_WINDOW_SIZE - 1 ) ) | 
|  |  | 
|  | /* | 
|  | * Compute the representation of m that will be used with our comb method. | 
|  | * | 
|  | * The basic comb method is described in GECC 3.44 for example. We use a | 
|  | * modified version that provides resistance to SPA by avoiding zero | 
|  | * digits in the representation as in [3]. We modify the method further by | 
|  | * requiring that all K_i be odd, which has the small cost that our | 
|  | * representation uses one more K_i, due to carries. | 
|  | * | 
|  | * Also, for the sake of compactness, only the seven low-order bits of x[i] | 
|  | * are used to represent K_i, and the msb of x[i] encodes the the sign (s_i in | 
|  | * the paper): it is set if and only if if s_i == -1; | 
|  | * | 
|  | * Calling conventions: | 
|  | * - x is an array of size d + 1 | 
|  | * - w is the size, ie number of teeth, of the comb, and must be between | 
|  | *   2 and 7 (in practice, between 2 and POLARSSL_ECP_WINDOW_SIZE) | 
|  | * - m is the MPI, expected to be odd and such that bitlength(m) <= w * d | 
|  | *   (the result will be incorrect if these assumptions are not satisfied) | 
|  | */ | 
|  | static void ecp_comb_fixed( unsigned char x[], size_t d, | 
|  | unsigned char w, const mpi *m ) | 
|  | { | 
|  | size_t i, j; | 
|  | unsigned char c, cc, adjust; | 
|  |  | 
|  | memset( x, 0, d+1 ); | 
|  |  | 
|  | /* First get the classical comb values (except for x_d = 0) */ | 
|  | for( i = 0; i < d; i++ ) | 
|  | for( j = 0; j < w; j++ ) | 
|  | x[i] |= mpi_get_bit( m, i + d * j ) << j; | 
|  |  | 
|  | /* Now make sure x_1 .. x_d are odd */ | 
|  | c = 0; | 
|  | for( i = 1; i <= d; i++ ) | 
|  | { | 
|  | /* Add carry and update it */ | 
|  | cc   = x[i] & c; | 
|  | x[i] = x[i] ^ c; | 
|  | c = cc; | 
|  |  | 
|  | /* Adjust if needed, avoiding branches */ | 
|  | adjust = 1 - ( x[i] & 0x01 ); | 
|  | c   |= x[i] & ( x[i-1] * adjust ); | 
|  | x[i] = x[i] ^ ( x[i-1] * adjust ); | 
|  | x[i-1] |= adjust << 7; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Precompute points for the comb method | 
|  | * | 
|  | * If i = i_{w-1} ... i_1 is the binary representation of i, then | 
|  | * T[i] = i_{w-1} 2^{(w-1)d} P + ... + i_1 2^d P + P | 
|  | * | 
|  | * T must be able to hold 2^{w - 1} elements | 
|  | * | 
|  | * Cost: d(w-1) D + (2^{w-1} - 1) A + 1 N(w-1) + 1 N(2^{w-1} - 1) | 
|  | */ | 
|  | static int ecp_precompute_comb( const ecp_group *grp, | 
|  | ecp_point T[], const ecp_point *P, | 
|  | unsigned char w, size_t d ) | 
|  | { | 
|  | int ret; | 
|  | unsigned char i, k; | 
|  | size_t j; | 
|  | ecp_point *cur, *TT[COMB_MAX_PRE - 1]; | 
|  |  | 
|  | /* | 
|  | * Set T[0] = P and | 
|  | * T[2^{l-1}] = 2^{dl} P for l = 1 .. w-1 (this is not the final value) | 
|  | */ | 
|  | MPI_CHK( ecp_copy( &T[0], P ) ); | 
|  |  | 
|  | k = 0; | 
|  | for( i = 1; i < ( 1U << ( w - 1 ) ); i <<= 1 ) | 
|  | { | 
|  | cur = T + i; | 
|  | MPI_CHK( ecp_copy( cur, T + ( i >> 1 ) ) ); | 
|  | for( j = 0; j < d; j++ ) | 
|  | MPI_CHK( ecp_double_jac( grp, cur, cur ) ); | 
|  |  | 
|  | TT[k++] = cur; | 
|  | } | 
|  |  | 
|  | MPI_CHK( ecp_normalize_jac_many( grp, TT, k ) ); | 
|  |  | 
|  | /* | 
|  | * Compute the remaining ones using the minimal number of additions | 
|  | * Be careful to update T[2^l] only after using it! | 
|  | */ | 
|  | k = 0; | 
|  | for( i = 1; i < ( 1U << ( w - 1 ) ); i <<= 1 ) | 
|  | { | 
|  | j = i; | 
|  | while( j-- ) | 
|  | { | 
|  | MPI_CHK( ecp_add_mixed( grp, &T[i + j], &T[j], &T[i] ) ); | 
|  | TT[k++] = &T[i + j]; | 
|  | } | 
|  | } | 
|  |  | 
|  | MPI_CHK( ecp_normalize_jac_many( grp, TT, k ) ); | 
|  |  | 
|  | cleanup: | 
|  | return( ret ); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Select precomputed point: R = sign(i) * T[ abs(i) / 2 ] | 
|  | */ | 
|  | static int ecp_select_comb( const ecp_group *grp, ecp_point *R, | 
|  | const ecp_point T[], unsigned char t_len, | 
|  | unsigned char i ) | 
|  | { | 
|  | int ret; | 
|  | unsigned char ii, j; | 
|  |  | 
|  | /* Ignore the "sign" bit and scale down */ | 
|  | ii =  ( i & 0x7Fu ) >> 1; | 
|  |  | 
|  | /* Read the whole table to thwart cache-based timing attacks */ | 
|  | for( j = 0; j < t_len; j++ ) | 
|  | { | 
|  | MPI_CHK( mpi_safe_cond_assign( &R->X, &T[j].X, j == ii ) ); | 
|  | MPI_CHK( mpi_safe_cond_assign( &R->Y, &T[j].Y, j == ii ) ); | 
|  | } | 
|  |  | 
|  | /* Safely invert result if i is "negative" */ | 
|  | MPI_CHK( ecp_safe_invert_jac( grp, R, i >> 7 ) ); | 
|  |  | 
|  | cleanup: | 
|  | return( ret ); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Core multiplication algorithm for the (modified) comb method. | 
|  | * This part is actually common with the basic comb method (GECC 3.44) | 
|  | * | 
|  | * Cost: d A + d D + 1 R | 
|  | */ | 
|  | static int ecp_mul_comb_core( const ecp_group *grp, ecp_point *R, | 
|  | const ecp_point T[], unsigned char t_len, | 
|  | const unsigned char x[], size_t d, | 
|  | int (*f_rng)(void *, unsigned char *, size_t), | 
|  | void *p_rng ) | 
|  | { | 
|  | int ret; | 
|  | ecp_point Txi; | 
|  | size_t i; | 
|  |  | 
|  | ecp_point_init( &Txi ); | 
|  |  | 
|  | /* Start with a non-zero point and randomize its coordinates */ | 
|  | i = d; | 
|  | MPI_CHK( ecp_select_comb( grp, R, T, t_len, x[i] ) ); | 
|  | MPI_CHK( mpi_lset( &R->Z, 1 ) ); | 
|  | if( f_rng != 0 ) | 
|  | MPI_CHK( ecp_randomize_jac( grp, R, f_rng, p_rng ) ); | 
|  |  | 
|  | while( i-- != 0 ) | 
|  | { | 
|  | MPI_CHK( ecp_double_jac( grp, R, R ) ); | 
|  | MPI_CHK( ecp_select_comb( grp, &Txi, T, t_len, x[i] ) ); | 
|  | MPI_CHK( ecp_add_mixed( grp, R, R, &Txi ) ); | 
|  | } | 
|  |  | 
|  | cleanup: | 
|  | ecp_point_free( &Txi ); | 
|  |  | 
|  | return( ret ); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Multiplication using the comb method, | 
|  | * for curves in short Weierstrass form | 
|  | */ | 
|  | static int ecp_mul_comb( ecp_group *grp, ecp_point *R, | 
|  | const mpi *m, const ecp_point *P, | 
|  | int (*f_rng)(void *, unsigned char *, size_t), | 
|  | void *p_rng ) | 
|  | { | 
|  | int ret; | 
|  | unsigned char w, m_is_odd, p_eq_g, pre_len, i; | 
|  | size_t d; | 
|  | unsigned char k[COMB_MAX_D + 1]; | 
|  | ecp_point *T; | 
|  | mpi M, mm; | 
|  |  | 
|  | mpi_init( &M ); | 
|  | mpi_init( &mm ); | 
|  |  | 
|  | /* we need N to be odd to trnaform m in an odd number, check now */ | 
|  | if( mpi_get_bit( &grp->N, 0 ) != 1 ) | 
|  | return( POLARSSL_ERR_ECP_BAD_INPUT_DATA ); | 
|  |  | 
|  | /* | 
|  | * Minimize the number of multiplications, that is minimize | 
|  | * 10 * d * w + 18 * 2^(w-1) + 11 * d + 7 * w, with d = ceil( nbits / w ) | 
|  | * (see costs of the various parts, with 1S = 1M) | 
|  | */ | 
|  | w = grp->nbits >= 384 ? 5 : 4; | 
|  |  | 
|  | /* | 
|  | * If P == G, pre-compute a bit more, since this may be re-used later. | 
|  | * Just adding one avoids upping the cost of the first mul too much, | 
|  | * and the memory cost too. | 
|  | */ | 
|  | #if POLARSSL_ECP_FIXED_POINT_OPTIM == 1 | 
|  | p_eq_g = ( mpi_cmp_mpi( &P->Y, &grp->G.Y ) == 0 && | 
|  | mpi_cmp_mpi( &P->X, &grp->G.X ) == 0 ); | 
|  | if( p_eq_g ) | 
|  | w++; | 
|  | #else | 
|  | p_eq_g = 0; | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Make sure w is within bounds. | 
|  | * (The last test is useful only for very small curves in the test suite.) | 
|  | */ | 
|  | if( w > POLARSSL_ECP_WINDOW_SIZE ) | 
|  | w = POLARSSL_ECP_WINDOW_SIZE; | 
|  | if( w >= grp->nbits ) | 
|  | w = 2; | 
|  |  | 
|  | /* Other sizes that depend on w */ | 
|  | pre_len = 1U << ( w - 1 ); | 
|  | d = ( grp->nbits + w - 1 ) / w; | 
|  |  | 
|  | /* | 
|  | * Prepare precomputed points: if P == G we want to | 
|  | * use grp->T if already initialized, or initialize it. | 
|  | */ | 
|  | T = p_eq_g ? grp->T : NULL; | 
|  |  | 
|  | if( T == NULL ) | 
|  | { | 
|  | T = (ecp_point *) polarssl_malloc( pre_len * sizeof( ecp_point ) ); | 
|  | if( T == NULL ) | 
|  | { | 
|  | ret = POLARSSL_ERR_ECP_MALLOC_FAILED; | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | for( i = 0; i < pre_len; i++ ) | 
|  | ecp_point_init( &T[i] ); | 
|  |  | 
|  | MPI_CHK( ecp_precompute_comb( grp, T, P, w, d ) ); | 
|  |  | 
|  | if( p_eq_g ) | 
|  | { | 
|  | grp->T = T; | 
|  | grp->T_size = pre_len; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Make sure M is odd (M = m or M = N - m, since N is odd) | 
|  | * using the fact that m * P = - (N - m) * P | 
|  | */ | 
|  | m_is_odd = ( mpi_get_bit( m, 0 ) == 1 ); | 
|  | MPI_CHK( mpi_copy( &M, m ) ); | 
|  | MPI_CHK( mpi_sub_mpi( &mm, &grp->N, m ) ); | 
|  | MPI_CHK( mpi_safe_cond_assign( &M, &mm, ! m_is_odd ) ); | 
|  |  | 
|  | /* | 
|  | * Go for comb multiplication, R = M * P | 
|  | */ | 
|  | ecp_comb_fixed( k, d, w, &M ); | 
|  | MPI_CHK( ecp_mul_comb_core( grp, R, T, pre_len, k, d, f_rng, p_rng ) ); | 
|  |  | 
|  | /* | 
|  | * Now get m * P from M * P and normalize it | 
|  | */ | 
|  | MPI_CHK( ecp_safe_invert_jac( grp, R, ! m_is_odd ) ); | 
|  | MPI_CHK( ecp_normalize_jac( grp, R ) ); | 
|  |  | 
|  | cleanup: | 
|  |  | 
|  | if( T != NULL && ! p_eq_g ) | 
|  | { | 
|  | for( i = 0; i < pre_len; i++ ) | 
|  | ecp_point_free( &T[i] ); | 
|  | polarssl_free( T ); | 
|  | } | 
|  |  | 
|  | mpi_free( &M ); | 
|  | mpi_free( &mm ); | 
|  |  | 
|  | if( ret != 0 ) | 
|  | ecp_point_free( R ); | 
|  |  | 
|  | return( ret ); | 
|  | } | 
|  |  | 
|  | #endif /* POLARSSL_ECP_SHORT_WEIERSTRASS */ | 
|  |  | 
|  | #if defined(POLARSSL_ECP_MONTGOMERY) | 
|  | /* | 
|  | * For Montgomery curves, we do all the internal arithmetic in projective | 
|  | * coordinates. Import/export of points uses only the x coordinates, which is | 
|  | * internaly represented as X / Z. | 
|  | * | 
|  | * For scalar multiplication, we'll use a Montgomery ladder. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Normalize Montgomery x/z coordinates: X = X/Z, Z = 1 | 
|  | * Cost: 1M + 1I | 
|  | */ | 
|  | static int ecp_normalize_mxz( const ecp_group *grp, ecp_point *P ) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | MPI_CHK( mpi_inv_mod( &P->Z, &P->Z, &grp->P ) ); | 
|  | MPI_CHK( mpi_mul_mpi( &P->X, &P->X, &P->Z ) ); MOD_MUL( P->X ); | 
|  | MPI_CHK( mpi_lset( &P->Z, 1 ) ); | 
|  |  | 
|  | cleanup: | 
|  | return( ret ); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Randomize projective x/z coordinates: | 
|  | * (X, Z) -> (l X, l Z) for random l | 
|  | * This is sort of the reverse operation of ecp_normalize_mxz(). | 
|  | * | 
|  | * This countermeasure was first suggested in [2]. | 
|  | * Cost: 2M | 
|  | */ | 
|  | static int ecp_randomize_mxz( const ecp_group *grp, ecp_point *P, | 
|  | int (*f_rng)(void *, unsigned char *, size_t), void *p_rng ) | 
|  | { | 
|  | int ret; | 
|  | mpi l; | 
|  | size_t p_size = ( grp->pbits + 7 ) / 8; | 
|  | int count = 0; | 
|  |  | 
|  | mpi_init( &l ); | 
|  |  | 
|  | /* Generate l such that 1 < l < p */ | 
|  | do | 
|  | { | 
|  | mpi_fill_random( &l, p_size, f_rng, p_rng ); | 
|  |  | 
|  | while( mpi_cmp_mpi( &l, &grp->P ) >= 0 ) | 
|  | MPI_CHK( mpi_shift_r( &l, 1 ) ); | 
|  |  | 
|  | if( count++ > 10 ) | 
|  | return( POLARSSL_ERR_ECP_RANDOM_FAILED ); | 
|  | } | 
|  | while( mpi_cmp_int( &l, 1 ) <= 0 ); | 
|  |  | 
|  | MPI_CHK( mpi_mul_mpi( &P->X, &P->X, &l ) ); MOD_MUL( P->X ); | 
|  | MPI_CHK( mpi_mul_mpi( &P->Z, &P->Z, &l ) ); MOD_MUL( P->Z ); | 
|  |  | 
|  | cleanup: | 
|  | mpi_free( &l ); | 
|  |  | 
|  | return( ret ); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Double-and-add: R = 2P, S = P + Q, with d = X(P - Q), | 
|  | * for Montgomery curves in x/z coordinates. | 
|  | * | 
|  | * http://www.hyperelliptic.org/EFD/g1p/auto-code/montgom/xz/ladder/mladd-1987-m.op3 | 
|  | * with | 
|  | * d =  X1 | 
|  | * P = (X2, Z2) | 
|  | * Q = (X3, Z3) | 
|  | * R = (X4, Z4) | 
|  | * S = (X5, Z5) | 
|  | * and eliminating temporary variables tO, ..., t4. | 
|  | * | 
|  | * Cost: 5M + 4S | 
|  | */ | 
|  | static int ecp_double_add_mxz( const ecp_group *grp, | 
|  | ecp_point *R, ecp_point *S, | 
|  | const ecp_point *P, const ecp_point *Q, | 
|  | const mpi *d ) | 
|  | { | 
|  | int ret; | 
|  | mpi A, AA, B, BB, E, C, D, DA, CB; | 
|  |  | 
|  | mpi_init( &A ); mpi_init( &AA ); mpi_init( &B ); | 
|  | mpi_init( &BB ); mpi_init( &E ); mpi_init( &C ); | 
|  | mpi_init( &D ); mpi_init( &DA ); mpi_init( &CB ); | 
|  |  | 
|  | MPI_CHK( mpi_add_mpi( &A,    &P->X,   &P->Z ) ); MOD_ADD( A    ); | 
|  | MPI_CHK( mpi_mul_mpi( &AA,   &A,      &A    ) ); MOD_MUL( AA   ); | 
|  | MPI_CHK( mpi_sub_mpi( &B,    &P->X,   &P->Z ) ); MOD_SUB( B    ); | 
|  | MPI_CHK( mpi_mul_mpi( &BB,   &B,      &B    ) ); MOD_MUL( BB   ); | 
|  | MPI_CHK( mpi_sub_mpi( &E,    &AA,     &BB   ) ); MOD_SUB( E    ); | 
|  | MPI_CHK( mpi_add_mpi( &C,    &Q->X,   &Q->Z ) ); MOD_ADD( C    ); | 
|  | MPI_CHK( mpi_sub_mpi( &D,    &Q->X,   &Q->Z ) ); MOD_SUB( D    ); | 
|  | MPI_CHK( mpi_mul_mpi( &DA,   &D,      &A    ) ); MOD_MUL( DA   ); | 
|  | MPI_CHK( mpi_mul_mpi( &CB,   &C,      &B    ) ); MOD_MUL( CB   ); | 
|  | MPI_CHK( mpi_add_mpi( &S->X, &DA,     &CB   ) ); MOD_MUL( S->X ); | 
|  | MPI_CHK( mpi_mul_mpi( &S->X, &S->X,   &S->X ) ); MOD_MUL( S->X ); | 
|  | MPI_CHK( mpi_sub_mpi( &S->Z, &DA,     &CB   ) ); MOD_SUB( S->Z ); | 
|  | MPI_CHK( mpi_mul_mpi( &S->Z, &S->Z,   &S->Z ) ); MOD_MUL( S->Z ); | 
|  | MPI_CHK( mpi_mul_mpi( &S->Z, d,       &S->Z ) ); MOD_MUL( S->Z ); | 
|  | MPI_CHK( mpi_mul_mpi( &R->X, &AA,     &BB   ) ); MOD_MUL( R->X ); | 
|  | MPI_CHK( mpi_mul_mpi( &R->Z, &grp->A, &E    ) ); MOD_MUL( R->Z ); | 
|  | MPI_CHK( mpi_add_mpi( &R->Z, &BB,     &R->Z ) ); MOD_ADD( R->Z ); | 
|  | MPI_CHK( mpi_mul_mpi( &R->Z, &E,      &R->Z ) ); MOD_MUL( R->Z ); | 
|  |  | 
|  | cleanup: | 
|  | mpi_free( &A ); mpi_free( &AA ); mpi_free( &B ); | 
|  | mpi_free( &BB ); mpi_free( &E ); mpi_free( &C ); | 
|  | mpi_free( &D ); mpi_free( &DA ); mpi_free( &CB ); | 
|  |  | 
|  | return( ret ); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Multiplication with Montgomery ladder in x/z coordinates, | 
|  | * for curves in Montgomery form | 
|  | */ | 
|  | static int ecp_mul_mxz( ecp_group *grp, ecp_point *R, | 
|  | const mpi *m, const ecp_point *P, | 
|  | int (*f_rng)(void *, unsigned char *, size_t), | 
|  | void *p_rng ) | 
|  | { | 
|  | int ret; | 
|  | size_t i; | 
|  | unsigned char b; | 
|  | ecp_point RP; | 
|  | mpi PX; | 
|  |  | 
|  | ecp_point_init( &RP ); mpi_init( &PX ); | 
|  |  | 
|  | /* Save PX and read from P before writing to R, in case P == R */ | 
|  | MPI_CHK( mpi_copy( &PX, &P->X ) ); | 
|  | MPI_CHK( ecp_copy( &RP, P ) ); | 
|  |  | 
|  | /* Set R to zero in modified x/z coordinates */ | 
|  | MPI_CHK( mpi_lset( &R->X, 1 ) ); | 
|  | MPI_CHK( mpi_lset( &R->Z, 0 ) ); | 
|  | mpi_free( &R->Y ); | 
|  |  | 
|  | /* RP.X might be sligtly larger than P, so reduce it */ | 
|  | MOD_ADD( RP.X ); | 
|  |  | 
|  | /* Randomize coordinates of the starting point */ | 
|  | if( f_rng != NULL ) | 
|  | MPI_CHK( ecp_randomize_mxz( grp, &RP, f_rng, p_rng ) ); | 
|  |  | 
|  | /* Loop invariant: R = result so far, RP = R + P */ | 
|  | i = mpi_msb( m ); /* one past the (zero-based) most significant bit */ | 
|  | while( i-- > 0 ) | 
|  | { | 
|  | b = mpi_get_bit( m, i ); | 
|  | /* | 
|  | *  if (b) R = 2R + P else R = 2R, | 
|  | * which is: | 
|  | *  if (b) double_add( RP, R, RP, R ) | 
|  | *  else   double_add( R, RP, R, RP ) | 
|  | * but using safe conditional swaps to avoid leaks | 
|  | */ | 
|  | MPI_CHK( mpi_safe_cond_swap( &R->X, &RP.X, b ) ); | 
|  | MPI_CHK( mpi_safe_cond_swap( &R->Z, &RP.Z, b ) ); | 
|  | MPI_CHK( ecp_double_add_mxz( grp, R, &RP, R, &RP, &PX ) ); | 
|  | MPI_CHK( mpi_safe_cond_swap( &R->X, &RP.X, b ) ); | 
|  | MPI_CHK( mpi_safe_cond_swap( &R->Z, &RP.Z, b ) ); | 
|  | } | 
|  |  | 
|  | MPI_CHK( ecp_normalize_mxz( grp, R ) ); | 
|  |  | 
|  | cleanup: | 
|  | ecp_point_free( &RP ); mpi_free( &PX ); | 
|  |  | 
|  | return( ret ); | 
|  | } | 
|  |  | 
|  | #endif /* POLARSSL_ECP_MONTGOMERY */ | 
|  |  | 
|  | /* | 
|  | * Multiplication R = m * P | 
|  | */ | 
|  | int ecp_mul( ecp_group *grp, ecp_point *R, | 
|  | const mpi *m, const ecp_point *P, | 
|  | int (*f_rng)(void *, unsigned char *, size_t), void *p_rng ) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | /* Common sanity checks */ | 
|  | if( mpi_cmp_int( &P->Z, 1 ) != 0 ) | 
|  | return( POLARSSL_ERR_ECP_BAD_INPUT_DATA ); | 
|  |  | 
|  | if( ( ret = ecp_check_privkey( grp, m ) ) != 0 || | 
|  | ( ret = ecp_check_pubkey( grp, P ) ) != 0 ) | 
|  | return( ret ); | 
|  |  | 
|  | #if defined(POLARSSL_ECP_MONTGOMERY) | 
|  | if( ecp_get_type( grp ) == POLARSSL_ECP_TYPE_MONTGOMERY ) | 
|  | return( ecp_mul_mxz( grp, R, m, P, f_rng, p_rng ) ); | 
|  | #endif | 
|  | #if defined(POLARSSL_ECP_SHORT_WEIERSTRASS) | 
|  | if( ecp_get_type( grp ) == POLARSSL_ECP_TYPE_SHORT_WEIERSTRASS ) | 
|  | return( ecp_mul_comb( grp, R, m, P, f_rng, p_rng ) ); | 
|  | #endif | 
|  | return( POLARSSL_ERR_ECP_BAD_INPUT_DATA ); | 
|  | } | 
|  |  | 
|  | #if defined(POLARSSL_ECP_SHORT_WEIERSTRASS) | 
|  | /* | 
|  | * Check that an affine point is valid as a public key, | 
|  | * short weierstrass curves (SEC1 3.2.3.1) | 
|  | */ | 
|  | static int ecp_check_pubkey_sw( const ecp_group *grp, const ecp_point *pt ) | 
|  | { | 
|  | int ret; | 
|  | mpi YY, RHS; | 
|  |  | 
|  | /* pt coordinates must be normalized for our checks */ | 
|  | if( mpi_cmp_int( &pt->X, 0 ) < 0 || | 
|  | mpi_cmp_int( &pt->Y, 0 ) < 0 || | 
|  | mpi_cmp_mpi( &pt->X, &grp->P ) >= 0 || | 
|  | mpi_cmp_mpi( &pt->Y, &grp->P ) >= 0 ) | 
|  | return( POLARSSL_ERR_ECP_INVALID_KEY ); | 
|  |  | 
|  | mpi_init( &YY ); mpi_init( &RHS ); | 
|  |  | 
|  | /* | 
|  | * YY = Y^2 | 
|  | * RHS = X (X^2 + A) + B = X^3 + A X + B | 
|  | */ | 
|  | MPI_CHK( mpi_mul_mpi( &YY,  &pt->Y,   &pt->Y  ) );  MOD_MUL( YY  ); | 
|  | MPI_CHK( mpi_mul_mpi( &RHS, &pt->X,   &pt->X  ) );  MOD_MUL( RHS ); | 
|  |  | 
|  | /* Special case for A = -3 */ | 
|  | if( grp->A.p == NULL ) | 
|  | { | 
|  | MPI_CHK( mpi_sub_int( &RHS, &RHS, 3       ) );  MOD_SUB( RHS ); | 
|  | } | 
|  | else | 
|  | { | 
|  | MPI_CHK( mpi_add_mpi( &RHS, &RHS, &grp->A ) );  MOD_ADD( RHS ); | 
|  | } | 
|  |  | 
|  | MPI_CHK( mpi_mul_mpi( &RHS, &RHS,     &pt->X  ) );  MOD_MUL( RHS ); | 
|  | MPI_CHK( mpi_add_mpi( &RHS, &RHS,     &grp->B ) );  MOD_ADD( RHS ); | 
|  |  | 
|  | if( mpi_cmp_mpi( &YY, &RHS ) != 0 ) | 
|  | ret = POLARSSL_ERR_ECP_INVALID_KEY; | 
|  |  | 
|  | cleanup: | 
|  |  | 
|  | mpi_free( &YY ); mpi_free( &RHS ); | 
|  |  | 
|  | return( ret ); | 
|  | } | 
|  | #endif /* POLARSSL_ECP_SHORT_WEIERSTRASS */ | 
|  |  | 
|  |  | 
|  | #if defined(POLARSSL_ECP_MONTGOMERY) | 
|  | /* | 
|  | * Check validity of a public key for Montgomery curves with x-only schemes | 
|  | */ | 
|  | static int ecp_check_pubkey_mx( const ecp_group *grp, const ecp_point *pt ) | 
|  | { | 
|  | /* [M255 p. 5] Just check X is the correct number of bytes */ | 
|  | if( mpi_size( &pt->X ) > ( grp->nbits + 7 ) / 8 ) | 
|  | return( POLARSSL_ERR_ECP_INVALID_KEY ); | 
|  |  | 
|  | return( 0 ); | 
|  | } | 
|  | #endif /* POLARSSL_ECP_MONTGOMERY */ | 
|  |  | 
|  | /* | 
|  | * Check that a point is valid as a public key | 
|  | */ | 
|  | int ecp_check_pubkey( const ecp_group *grp, const ecp_point *pt ) | 
|  | { | 
|  | /* Must use affine coordinates */ | 
|  | if( mpi_cmp_int( &pt->Z, 1 ) != 0 ) | 
|  | return( POLARSSL_ERR_ECP_INVALID_KEY ); | 
|  |  | 
|  | #if defined(POLARSSL_ECP_MONTGOMERY) | 
|  | if( ecp_get_type( grp ) == POLARSSL_ECP_TYPE_MONTGOMERY ) | 
|  | return( ecp_check_pubkey_mx( grp, pt ) ); | 
|  | #endif | 
|  | #if defined(POLARSSL_ECP_SHORT_WEIERSTRASS) | 
|  | if( ecp_get_type( grp ) == POLARSSL_ECP_TYPE_SHORT_WEIERSTRASS ) | 
|  | return( ecp_check_pubkey_sw( grp, pt ) ); | 
|  | #endif | 
|  | return( POLARSSL_ERR_ECP_BAD_INPUT_DATA ); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check that an mpi is valid as a private key | 
|  | */ | 
|  | int ecp_check_privkey( const ecp_group *grp, const mpi *d ) | 
|  | { | 
|  | #if defined(POLARSSL_ECP_MONTGOMERY) | 
|  | if( ecp_get_type( grp ) == POLARSSL_ECP_TYPE_MONTGOMERY ) | 
|  | { | 
|  | /* see [M255] page 5 */ | 
|  | if( mpi_get_bit( d, 0 ) != 0 || | 
|  | mpi_get_bit( d, 1 ) != 0 || | 
|  | mpi_get_bit( d, 2 ) != 0 || | 
|  | mpi_msb( d ) - 1 != grp->nbits ) /* mpi_msb is one-based! */ | 
|  | return( POLARSSL_ERR_ECP_INVALID_KEY ); | 
|  | else | 
|  | return( 0 ); | 
|  | } | 
|  | #endif /* POLARSSL_ECP_MONTGOMERY */ | 
|  | #if defined(POLARSSL_ECP_SHORT_WEIERSTRASS) | 
|  | if( ecp_get_type( grp ) == POLARSSL_ECP_TYPE_SHORT_WEIERSTRASS ) | 
|  | { | 
|  | /* see SEC1 3.2 */ | 
|  | if( mpi_cmp_int( d, 1 ) < 0 || | 
|  | mpi_cmp_mpi( d, &grp->N ) >= 0 ) | 
|  | return( POLARSSL_ERR_ECP_INVALID_KEY ); | 
|  | else | 
|  | return( 0 ); | 
|  | } | 
|  | #endif /* POLARSSL_ECP_SHORT_WEIERSTRASS */ | 
|  |  | 
|  | return( POLARSSL_ERR_ECP_BAD_INPUT_DATA ); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Generate a keypair | 
|  | */ | 
|  | int ecp_gen_keypair( ecp_group *grp, mpi *d, ecp_point *Q, | 
|  | int (*f_rng)(void *, unsigned char *, size_t), | 
|  | void *p_rng ) | 
|  | { | 
|  | int ret; | 
|  | size_t n_size = ( grp->nbits + 7 ) / 8; | 
|  |  | 
|  | #if defined(POLARSSL_ECP_MONTGOMERY) | 
|  | if( ecp_get_type( grp ) == POLARSSL_ECP_TYPE_MONTGOMERY ) | 
|  | { | 
|  | /* [M225] page 5 */ | 
|  | size_t b; | 
|  |  | 
|  | MPI_CHK( mpi_fill_random( d, n_size, f_rng, p_rng ) ); | 
|  |  | 
|  | /* Make sure the most significant bit is nbits */ | 
|  | b = mpi_msb( d ) - 1; /* mpi_msb is one-based */ | 
|  | if( b > grp->nbits ) | 
|  | MPI_CHK( mpi_shift_r( d, b - grp->nbits ) ); | 
|  | else | 
|  | MPI_CHK( mpi_set_bit( d, grp->nbits, 1 ) ); | 
|  |  | 
|  | /* Make sure the last three bits are unset */ | 
|  | MPI_CHK( mpi_set_bit( d, 0, 0 ) ); | 
|  | MPI_CHK( mpi_set_bit( d, 1, 0 ) ); | 
|  | MPI_CHK( mpi_set_bit( d, 2, 0 ) ); | 
|  | } | 
|  | else | 
|  | #endif /* POLARSSL_ECP_MONTGOMERY */ | 
|  | #if defined(POLARSSL_ECP_SHORT_WEIERSTRASS) | 
|  | if( ecp_get_type( grp ) == POLARSSL_ECP_TYPE_SHORT_WEIERSTRASS ) | 
|  | { | 
|  | /* SEC1 3.2.1: Generate d such that 1 <= n < N */ | 
|  | int count = 0; | 
|  | unsigned char rnd[POLARSSL_ECP_MAX_BYTES]; | 
|  |  | 
|  | /* | 
|  | * Match the procedure given in RFC 6979 (deterministic ECDSA): | 
|  | * - use the same byte ordering; | 
|  | * - keep the leftmost nbits bits of the generated octet string; | 
|  | * - try until result is in the desired range. | 
|  | * This also avoids any biais, which is especially important for ECDSA. | 
|  | */ | 
|  | do | 
|  | { | 
|  | MPI_CHK( f_rng( p_rng, rnd, n_size ) ); | 
|  | MPI_CHK( mpi_read_binary( d, rnd, n_size ) ); | 
|  | MPI_CHK( mpi_shift_r( d, 8 * n_size - grp->nbits ) ); | 
|  |  | 
|  | /* | 
|  | * Each try has at worst a probability 1/2 of failing (the msb has | 
|  | * a probability 1/2 of being 0, and then the result will be < N), | 
|  | * so after 30 tries failure probability is a most 2**(-30). | 
|  | * | 
|  | * For most curves, 1 try is enough with overwhelming probability, | 
|  | * since N starts with a lot of 1s in binary, but some curves | 
|  | * such as secp224k1 are actually very close to the worst case. | 
|  | */ | 
|  | if( ++count > 30 ) | 
|  | return( POLARSSL_ERR_ECP_RANDOM_FAILED ); | 
|  | } | 
|  | while( mpi_cmp_int( d, 1 ) < 0 || | 
|  | mpi_cmp_mpi( d, &grp->N ) >= 0 ); | 
|  | } | 
|  | else | 
|  | #endif /* POLARSSL_ECP_SHORT_WEIERSTRASS */ | 
|  | return( POLARSSL_ERR_ECP_BAD_INPUT_DATA ); | 
|  |  | 
|  | cleanup: | 
|  | if( ret != 0 ) | 
|  | return( ret ); | 
|  |  | 
|  | return( ecp_mul( grp, Q, d, &grp->G, f_rng, p_rng ) ); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Generate a keypair, prettier wrapper | 
|  | */ | 
|  | int ecp_gen_key( ecp_group_id grp_id, ecp_keypair *key, | 
|  | int (*f_rng)(void *, unsigned char *, size_t), void *p_rng ) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if( ( ret = ecp_use_known_dp( &key->grp, grp_id ) ) != 0 ) | 
|  | return( ret ); | 
|  |  | 
|  | return( ecp_gen_keypair( &key->grp, &key->d, &key->Q, f_rng, p_rng ) ); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check a public-private key pair | 
|  | */ | 
|  | int ecp_check_pub_priv( const ecp_keypair *pub, const ecp_keypair *prv ) | 
|  | { | 
|  | int ret; | 
|  | ecp_point Q; | 
|  | ecp_group grp; | 
|  |  | 
|  | if( pub->grp.id == POLARSSL_ECP_DP_NONE || | 
|  | pub->grp.id != prv->grp.id || | 
|  | mpi_cmp_mpi( &pub->Q.X, &prv->Q.X ) || | 
|  | mpi_cmp_mpi( &pub->Q.Y, &prv->Q.Y ) || | 
|  | mpi_cmp_mpi( &pub->Q.Z, &prv->Q.Z ) ) | 
|  | { | 
|  | return( POLARSSL_ERR_ECP_BAD_INPUT_DATA ); | 
|  | } | 
|  |  | 
|  | ecp_point_init( &Q ); | 
|  | ecp_group_init( &grp ); | 
|  |  | 
|  | /* ecp_mul() needs a non-const group... */ | 
|  | ecp_group_copy( &grp, &prv->grp ); | 
|  |  | 
|  | /* Also checks d is valid */ | 
|  | MPI_CHK( ecp_mul( &grp, &Q, &prv->d, &prv->grp.G, NULL, NULL ) ); | 
|  |  | 
|  | if( mpi_cmp_mpi( &Q.X, &prv->Q.X ) || | 
|  | mpi_cmp_mpi( &Q.Y, &prv->Q.Y ) || | 
|  | mpi_cmp_mpi( &Q.Z, &prv->Q.Z ) ) | 
|  | { | 
|  | ret = POLARSSL_ERR_ECP_BAD_INPUT_DATA; | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | cleanup: | 
|  | ecp_point_free( &Q ); | 
|  | ecp_group_free( &grp ); | 
|  |  | 
|  | return( ret ); | 
|  | } | 
|  |  | 
|  | #if defined(POLARSSL_SELF_TEST) | 
|  |  | 
|  | /* | 
|  | * Checkup routine | 
|  | */ | 
|  | int ecp_self_test( int verbose ) | 
|  | { | 
|  | int ret; | 
|  | size_t i; | 
|  | ecp_group grp; | 
|  | ecp_point R, P; | 
|  | mpi m; | 
|  | unsigned long add_c_prev, dbl_c_prev, mul_c_prev; | 
|  | /* exponents especially adapted for secp192r1 */ | 
|  | const char *exponents[] = | 
|  | { | 
|  | "000000000000000000000000000000000000000000000001", /* one */ | 
|  | "FFFFFFFFFFFFFFFFFFFFFFFF99DEF836146BC9B1B4D22830", /* N - 1 */ | 
|  | "5EA6F389A38B8BC81E767753B15AA5569E1782E30ABE7D25", /* random */ | 
|  | "400000000000000000000000000000000000000000000000", /* one and zeros */ | 
|  | "7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", /* all ones */ | 
|  | "555555555555555555555555555555555555555555555555", /* 101010... */ | 
|  | }; | 
|  |  | 
|  | ecp_group_init( &grp ); | 
|  | ecp_point_init( &R ); | 
|  | ecp_point_init( &P ); | 
|  | mpi_init( &m ); | 
|  |  | 
|  | /* Use secp192r1 if available, or any available curve */ | 
|  | #if defined(POLARSSL_ECP_DP_SECP192R1_ENABLED) | 
|  | MPI_CHK( ecp_use_known_dp( &grp, POLARSSL_ECP_DP_SECP192R1 ) ); | 
|  | #else | 
|  | MPI_CHK( ecp_use_known_dp( &grp, ecp_curve_list()->grp_id ) ); | 
|  | #endif | 
|  |  | 
|  | if( verbose != 0 ) | 
|  | polarssl_printf( "  ECP test #1 (constant op_count, base point G): " ); | 
|  |  | 
|  | /* Do a dummy multiplication first to trigger precomputation */ | 
|  | MPI_CHK( mpi_lset( &m, 2 ) ); | 
|  | MPI_CHK( ecp_mul( &grp, &P, &m, &grp.G, NULL, NULL ) ); | 
|  |  | 
|  | add_count = 0; | 
|  | dbl_count = 0; | 
|  | mul_count = 0; | 
|  | MPI_CHK( mpi_read_string( &m, 16, exponents[0] ) ); | 
|  | MPI_CHK( ecp_mul( &grp, &R, &m, &grp.G, NULL, NULL ) ); | 
|  |  | 
|  | for( i = 1; i < sizeof( exponents ) / sizeof( exponents[0] ); i++ ) | 
|  | { | 
|  | add_c_prev = add_count; | 
|  | dbl_c_prev = dbl_count; | 
|  | mul_c_prev = mul_count; | 
|  | add_count = 0; | 
|  | dbl_count = 0; | 
|  | mul_count = 0; | 
|  |  | 
|  | MPI_CHK( mpi_read_string( &m, 16, exponents[i] ) ); | 
|  | MPI_CHK( ecp_mul( &grp, &R, &m, &grp.G, NULL, NULL ) ); | 
|  |  | 
|  | if( add_count != add_c_prev || | 
|  | dbl_count != dbl_c_prev || | 
|  | mul_count != mul_c_prev ) | 
|  | { | 
|  | if( verbose != 0 ) | 
|  | polarssl_printf( "failed (%u)\n", (unsigned int) i ); | 
|  |  | 
|  | ret = 1; | 
|  | goto cleanup; | 
|  | } | 
|  | } | 
|  |  | 
|  | if( verbose != 0 ) | 
|  | polarssl_printf( "passed\n" ); | 
|  |  | 
|  | if( verbose != 0 ) | 
|  | polarssl_printf( "  ECP test #2 (constant op_count, other point): " ); | 
|  | /* We computed P = 2G last time, use it */ | 
|  |  | 
|  | add_count = 0; | 
|  | dbl_count = 0; | 
|  | mul_count = 0; | 
|  | MPI_CHK( mpi_read_string( &m, 16, exponents[0] ) ); | 
|  | MPI_CHK( ecp_mul( &grp, &R, &m, &P, NULL, NULL ) ); | 
|  |  | 
|  | for( i = 1; i < sizeof( exponents ) / sizeof( exponents[0] ); i++ ) | 
|  | { | 
|  | add_c_prev = add_count; | 
|  | dbl_c_prev = dbl_count; | 
|  | mul_c_prev = mul_count; | 
|  | add_count = 0; | 
|  | dbl_count = 0; | 
|  | mul_count = 0; | 
|  |  | 
|  | MPI_CHK( mpi_read_string( &m, 16, exponents[i] ) ); | 
|  | MPI_CHK( ecp_mul( &grp, &R, &m, &P, NULL, NULL ) ); | 
|  |  | 
|  | if( add_count != add_c_prev || | 
|  | dbl_count != dbl_c_prev || | 
|  | mul_count != mul_c_prev ) | 
|  | { | 
|  | if( verbose != 0 ) | 
|  | polarssl_printf( "failed (%u)\n", (unsigned int) i ); | 
|  |  | 
|  | ret = 1; | 
|  | goto cleanup; | 
|  | } | 
|  | } | 
|  |  | 
|  | if( verbose != 0 ) | 
|  | polarssl_printf( "passed\n" ); | 
|  |  | 
|  | cleanup: | 
|  |  | 
|  | if( ret < 0 && verbose != 0 ) | 
|  | polarssl_printf( "Unexpected error, return code = %08X\n", ret ); | 
|  |  | 
|  | ecp_group_free( &grp ); | 
|  | ecp_point_free( &R ); | 
|  | ecp_point_free( &P ); | 
|  | mpi_free( &m ); | 
|  |  | 
|  | if( verbose != 0 ) | 
|  | polarssl_printf( "\n" ); | 
|  |  | 
|  | return( ret ); | 
|  | } | 
|  |  | 
|  | #endif /* POLARSSL_SELF_TEST */ | 
|  |  | 
|  | #endif /* POLARSSL_ECP_C */ |