blob: 17d7a9bcd5f9332f639fa75db92b45dc0555f330 [file] [log] [blame]
/**
* \file psa/crypto_values.h
*
* \brief PSA cryptography module: macros to build and analyze integer values.
*
* \note This file may not be included directly. Applications must
* include psa/crypto.h. Drivers must include the appropriate driver
* header file.
*
* This file contains portable definitions of macros to build and analyze
* values of integral types that encode properties of cryptographic keys,
* designations of cryptographic algorithms, and error codes returned by
* the library.
*
* This header file only defines preprocessor macros.
*/
/*
* Copyright The Mbed TLS Contributors
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef PSA_CRYPTO_VALUES_H
#define PSA_CRYPTO_VALUES_H
#include "mbedtls/private_access.h"
/** \defgroup error Error codes
* @{
*/
/* PSA error codes */
/** The action was completed successfully. */
#define PSA_SUCCESS ((psa_status_t)0)
/** An error occurred that does not correspond to any defined
* failure cause.
*
* Implementations may use this error code if none of the other standard
* error codes are applicable. */
#define PSA_ERROR_GENERIC_ERROR ((psa_status_t)-132)
/** The requested operation or a parameter is not supported
* by this implementation.
*
* Implementations should return this error code when an enumeration
* parameter such as a key type, algorithm, etc. is not recognized.
* If a combination of parameters is recognized and identified as
* not valid, return #PSA_ERROR_INVALID_ARGUMENT instead. */
#define PSA_ERROR_NOT_SUPPORTED ((psa_status_t)-134)
/** The requested action is denied by a policy.
*
* Implementations should return this error code when the parameters
* are recognized as valid and supported, and a policy explicitly
* denies the requested operation.
*
* If a subset of the parameters of a function call identify a
* forbidden operation, and another subset of the parameters are
* not valid or not supported, it is unspecified whether the function
* returns #PSA_ERROR_NOT_PERMITTED, #PSA_ERROR_NOT_SUPPORTED or
* #PSA_ERROR_INVALID_ARGUMENT. */
#define PSA_ERROR_NOT_PERMITTED ((psa_status_t)-133)
/** An output buffer is too small.
*
* Applications can call the \c PSA_xxx_SIZE macro listed in the function
* description to determine a sufficient buffer size.
*
* Implementations should preferably return this error code only
* in cases when performing the operation with a larger output
* buffer would succeed. However implementations may return this
* error if a function has invalid or unsupported parameters in addition
* to the parameters that determine the necessary output buffer size. */
#define PSA_ERROR_BUFFER_TOO_SMALL ((psa_status_t)-138)
/** Asking for an item that already exists
*
* Implementations should return this error, when attempting
* to write an item (like a key) that already exists. */
#define PSA_ERROR_ALREADY_EXISTS ((psa_status_t)-139)
/** Asking for an item that doesn't exist
*
* Implementations should return this error, if a requested item (like
* a key) does not exist. */
#define PSA_ERROR_DOES_NOT_EXIST ((psa_status_t)-140)
/** The requested action cannot be performed in the current state.
*
* Multipart operations return this error when one of the
* functions is called out of sequence. Refer to the function
* descriptions for permitted sequencing of functions.
*
* Implementations shall not return this error code to indicate
* that a key either exists or not,
* but shall instead return #PSA_ERROR_ALREADY_EXISTS or #PSA_ERROR_DOES_NOT_EXIST
* as applicable.
*
* Implementations shall not return this error code to indicate that a
* key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
* instead. */
#define PSA_ERROR_BAD_STATE ((psa_status_t)-137)
/** The parameters passed to the function are invalid.
*
* Implementations may return this error any time a parameter or
* combination of parameters are recognized as invalid.
*
* Implementations shall not return this error code to indicate that a
* key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
* instead.
*/
#define PSA_ERROR_INVALID_ARGUMENT ((psa_status_t)-135)
/** There is not enough runtime memory.
*
* If the action is carried out across multiple security realms, this
* error can refer to available memory in any of the security realms. */
#define PSA_ERROR_INSUFFICIENT_MEMORY ((psa_status_t)-141)
/** There is not enough persistent storage.
*
* Functions that modify the key storage return this error code if
* there is insufficient storage space on the host media. In addition,
* many functions that do not otherwise access storage may return this
* error code if the implementation requires a mandatory log entry for
* the requested action and the log storage space is full. */
#define PSA_ERROR_INSUFFICIENT_STORAGE ((psa_status_t)-142)
/** There was a communication failure inside the implementation.
*
* This can indicate a communication failure between the application
* and an external cryptoprocessor or between the cryptoprocessor and
* an external volatile or persistent memory. A communication failure
* may be transient or permanent depending on the cause.
*
* \warning If a function returns this error, it is undetermined
* whether the requested action has completed or not. Implementations
* should return #PSA_SUCCESS on successful completion whenever
* possible, however functions may return #PSA_ERROR_COMMUNICATION_FAILURE
* if the requested action was completed successfully in an external
* cryptoprocessor but there was a breakdown of communication before
* the cryptoprocessor could report the status to the application.
*/
#define PSA_ERROR_COMMUNICATION_FAILURE ((psa_status_t)-145)
/** There was a storage failure that may have led to data loss.
*
* This error indicates that some persistent storage is corrupted.
* It should not be used for a corruption of volatile memory
* (use #PSA_ERROR_CORRUPTION_DETECTED), for a communication error
* between the cryptoprocessor and its external storage (use
* #PSA_ERROR_COMMUNICATION_FAILURE), or when the storage is
* in a valid state but is full (use #PSA_ERROR_INSUFFICIENT_STORAGE).
*
* Note that a storage failure does not indicate that any data that was
* previously read is invalid. However this previously read data may no
* longer be readable from storage.
*
* When a storage failure occurs, it is no longer possible to ensure
* the global integrity of the keystore. Depending on the global
* integrity guarantees offered by the implementation, access to other
* data may or may not fail even if the data is still readable but
* its integrity cannot be guaranteed.
*
* Implementations should only use this error code to report a
* permanent storage corruption. However application writers should
* keep in mind that transient errors while reading the storage may be
* reported using this error code. */
#define PSA_ERROR_STORAGE_FAILURE ((psa_status_t)-146)
/** A hardware failure was detected.
*
* A hardware failure may be transient or permanent depending on the
* cause. */
#define PSA_ERROR_HARDWARE_FAILURE ((psa_status_t)-147)
/** A tampering attempt was detected.
*
* If an application receives this error code, there is no guarantee
* that previously accessed or computed data was correct and remains
* confidential. Applications should not perform any security function
* and should enter a safe failure state.
*
* Implementations may return this error code if they detect an invalid
* state that cannot happen during normal operation and that indicates
* that the implementation's security guarantees no longer hold. Depending
* on the implementation architecture and on its security and safety goals,
* the implementation may forcibly terminate the application.
*
* This error code is intended as a last resort when a security breach
* is detected and it is unsure whether the keystore data is still
* protected. Implementations shall only return this error code
* to report an alarm from a tampering detector, to indicate that
* the confidentiality of stored data can no longer be guaranteed,
* or to indicate that the integrity of previously returned data is now
* considered compromised. Implementations shall not use this error code
* to indicate a hardware failure that merely makes it impossible to
* perform the requested operation (use #PSA_ERROR_COMMUNICATION_FAILURE,
* #PSA_ERROR_STORAGE_FAILURE, #PSA_ERROR_HARDWARE_FAILURE,
* #PSA_ERROR_INSUFFICIENT_ENTROPY or other applicable error code
* instead).
*
* This error indicates an attack against the application. Implementations
* shall not return this error code as a consequence of the behavior of
* the application itself. */
#define PSA_ERROR_CORRUPTION_DETECTED ((psa_status_t)-151)
/** There is not enough entropy to generate random data needed
* for the requested action.
*
* This error indicates a failure of a hardware random generator.
* Application writers should note that this error can be returned not
* only by functions whose purpose is to generate random data, such
* as key, IV or nonce generation, but also by functions that execute
* an algorithm with a randomized result, as well as functions that
* use randomization of intermediate computations as a countermeasure
* to certain attacks.
*
* Implementations should avoid returning this error after psa_crypto_init()
* has succeeded. Implementations should generate sufficient
* entropy during initialization and subsequently use a cryptographically
* secure pseudorandom generator (PRNG). However implementations may return
* this error at any time if a policy requires the PRNG to be reseeded
* during normal operation. */
#define PSA_ERROR_INSUFFICIENT_ENTROPY ((psa_status_t)-148)
/** The signature, MAC or hash is incorrect.
*
* Verification functions return this error if the verification
* calculations completed successfully, and the value to be verified
* was determined to be incorrect.
*
* If the value to verify has an invalid size, implementations may return
* either #PSA_ERROR_INVALID_ARGUMENT or #PSA_ERROR_INVALID_SIGNATURE. */
#define PSA_ERROR_INVALID_SIGNATURE ((psa_status_t)-149)
/** The decrypted padding is incorrect.
*
* \warning In some protocols, when decrypting data, it is essential that
* the behavior of the application does not depend on whether the padding
* is correct, down to precise timing. Applications should prefer
* protocols that use authenticated encryption rather than plain
* encryption. If the application must perform a decryption of
* unauthenticated data, the application writer should take care not
* to reveal whether the padding is invalid.
*
* Implementations should strive to make valid and invalid padding
* as close as possible to indistinguishable to an external observer.
* In particular, the timing of a decryption operation should not
* depend on the validity of the padding. */
#define PSA_ERROR_INVALID_PADDING ((psa_status_t)-150)
/** Return this error when there's insufficient data when attempting
* to read from a resource. */
#define PSA_ERROR_INSUFFICIENT_DATA ((psa_status_t)-143)
/** The key identifier is not valid. See also :ref:\`key-handles\`.
*/
#define PSA_ERROR_INVALID_HANDLE ((psa_status_t)-136)
/** Stored data has been corrupted.
*
* This error indicates that some persistent storage has suffered corruption.
* It does not indicate the following situations, which have specific error
* codes:
*
* - A corruption of volatile memory - use #PSA_ERROR_CORRUPTION_DETECTED.
* - A communication error between the cryptoprocessor and its external
* storage - use #PSA_ERROR_COMMUNICATION_FAILURE.
* - When the storage is in a valid state but is full - use
* #PSA_ERROR_INSUFFICIENT_STORAGE.
* - When the storage fails for other reasons - use
* #PSA_ERROR_STORAGE_FAILURE.
* - When the stored data is not valid - use #PSA_ERROR_DATA_INVALID.
*
* \note A storage corruption does not indicate that any data that was
* previously read is invalid. However this previously read data might no
* longer be readable from storage.
*
* When a storage failure occurs, it is no longer possible to ensure the
* global integrity of the keystore.
*/
#define PSA_ERROR_DATA_CORRUPT ((psa_status_t)-152)
/** Data read from storage is not valid for the implementation.
*
* This error indicates that some data read from storage does not have a valid
* format. It does not indicate the following situations, which have specific
* error codes:
*
* - When the storage or stored data is corrupted - use #PSA_ERROR_DATA_CORRUPT
* - When the storage fails for other reasons - use #PSA_ERROR_STORAGE_FAILURE
* - An invalid argument to the API - use #PSA_ERROR_INVALID_ARGUMENT
*
* This error is typically a result of either storage corruption on a
* cleartext storage backend, or an attempt to read data that was
* written by an incompatible version of the library.
*/
#define PSA_ERROR_DATA_INVALID ((psa_status_t)-153)
/**@}*/
/** \defgroup crypto_types Key and algorithm types
* @{
*/
/** An invalid key type value.
*
* Zero is not the encoding of any key type.
*/
#define PSA_KEY_TYPE_NONE ((psa_key_type_t)0x0000)
/** Vendor-defined key type flag.
*
* Key types defined by this standard will never have the
* #PSA_KEY_TYPE_VENDOR_FLAG bit set. Vendors who define additional key types
* must use an encoding with the #PSA_KEY_TYPE_VENDOR_FLAG bit set and should
* respect the bitwise structure used by standard encodings whenever practical.
*/
#define PSA_KEY_TYPE_VENDOR_FLAG ((psa_key_type_t)0x8000)
#define PSA_KEY_TYPE_CATEGORY_MASK ((psa_key_type_t)0x7000)
#define PSA_KEY_TYPE_CATEGORY_RAW ((psa_key_type_t)0x1000)
#define PSA_KEY_TYPE_CATEGORY_SYMMETRIC ((psa_key_type_t)0x2000)
#define PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY ((psa_key_type_t)0x4000)
#define PSA_KEY_TYPE_CATEGORY_KEY_PAIR ((psa_key_type_t)0x7000)
#define PSA_KEY_TYPE_CATEGORY_FLAG_PAIR ((psa_key_type_t)0x3000)
/** Whether a key type is vendor-defined.
*
* See also #PSA_KEY_TYPE_VENDOR_FLAG.
*/
#define PSA_KEY_TYPE_IS_VENDOR_DEFINED(type) \
(((type) & PSA_KEY_TYPE_VENDOR_FLAG) != 0)
/** Whether a key type is an unstructured array of bytes.
*
* This encompasses both symmetric keys and non-key data.
*/
#define PSA_KEY_TYPE_IS_UNSTRUCTURED(type) \
(((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_RAW || \
((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC)
/** Whether a key type is asymmetric: either a key pair or a public key. */
#define PSA_KEY_TYPE_IS_ASYMMETRIC(type) \
(((type) & PSA_KEY_TYPE_CATEGORY_MASK \
& ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR) == \
PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
/** Whether a key type is the public part of a key pair. */
#define PSA_KEY_TYPE_IS_PUBLIC_KEY(type) \
(((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
/** Whether a key type is a key pair containing a private part and a public
* part. */
#define PSA_KEY_TYPE_IS_KEY_PAIR(type) \
(((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_KEY_PAIR)
/** The key pair type corresponding to a public key type.
*
* You may also pass a key pair type as \p type, it will be left unchanged.
*
* \param type A public key type or key pair type.
*
* \return The corresponding key pair type.
* If \p type is not a public key or a key pair,
* the return value is undefined.
*/
#define PSA_KEY_TYPE_KEY_PAIR_OF_PUBLIC_KEY(type) \
((type) | PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
/** The public key type corresponding to a key pair type.
*
* You may also pass a key pair type as \p type, it will be left unchanged.
*
* \param type A public key type or key pair type.
*
* \return The corresponding public key type.
* If \p type is not a public key or a key pair,
* the return value is undefined.
*/
#define PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) \
((type) & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
/** Raw data.
*
* A "key" of this type cannot be used for any cryptographic operation.
* Applications may use this type to store arbitrary data in the keystore. */
#define PSA_KEY_TYPE_RAW_DATA ((psa_key_type_t)0x1001)
/** HMAC key.
*
* The key policy determines which underlying hash algorithm the key can be
* used for.
*
* HMAC keys should generally have the same size as the underlying hash.
* This size can be calculated with #PSA_HASH_LENGTH(\c alg) where
* \c alg is the HMAC algorithm or the underlying hash algorithm. */
#define PSA_KEY_TYPE_HMAC ((psa_key_type_t)0x1100)
/** A secret for key derivation.
*
* This key type is for high-entropy secrets only. For low-entropy secrets,
* #PSA_KEY_TYPE_PASSWORD should be used instead.
*
* These keys can be used as the #PSA_KEY_DERIVATION_INPUT_SECRET or
* #PSA_KEY_DERIVATION_INPUT_PASSWORD input of key derivation algorithms.
*
* The key policy determines which key derivation algorithm the key
* can be used for.
*/
#define PSA_KEY_TYPE_DERIVE ((psa_key_type_t)0x1200)
/** A low-entropy secret for password hashing or key derivation.
*
* This key type is suitable for passwords and passphrases which are typically
* intended to be memorizable by humans, and have a low entropy relative to
* their size. It can be used for randomly generated or derived keys with
* maximum or near-maximum entropy, but #PSA_KEY_TYPE_DERIVE is more suitable
* for such keys. It is not suitable for passwords with extremely low entropy,
* such as numerical PINs.
*
* These keys can be used as the #PSA_KEY_DERIVATION_INPUT_PASSWORD input of
* key derivation algorithms. Algorithms that accept such an input were
* designed to accept low-entropy secret and are known as password hashing or
* key stretching algorithms.
*
* These keys cannot be used as the #PSA_KEY_DERIVATION_INPUT_SECRET input of
* key derivation algorithms, as the algorithms that take such an input expect
* it to be high-entropy.
*
* The key policy determines which key derivation algorithm the key can be
* used for, among the permissible subset defined above.
*/
#define PSA_KEY_TYPE_PASSWORD ((psa_key_type_t)0x1203)
/** A secret value that can be used to verify a password hash.
*
* The key policy determines which key derivation algorithm the key
* can be used for, among the same permissible subset as for
* #PSA_KEY_TYPE_PASSWORD.
*/
#define PSA_KEY_TYPE_PASSWORD_HASH ((psa_key_type_t)0x1205)
/** A secret value that can be used in when computing a password hash.
*
* The key policy determines which key derivation algorithm the key
* can be used for, among the subset of algorithms that can use pepper.
*/
#define PSA_KEY_TYPE_PEPPER ((psa_key_type_t)0x1206)
/** Key for a cipher, AEAD or MAC algorithm based on the AES block cipher.
*
* The size of the key can be 16 bytes (AES-128), 24 bytes (AES-192) or
* 32 bytes (AES-256).
*/
#define PSA_KEY_TYPE_AES ((psa_key_type_t)0x2400)
/** Key for a cipher, AEAD or MAC algorithm based on the
* ARIA block cipher. */
#define PSA_KEY_TYPE_ARIA ((psa_key_type_t)0x2406)
/** Key for a cipher or MAC algorithm based on DES or 3DES (Triple-DES).
*
* The size of the key can be 64 bits (single DES), 128 bits (2-key 3DES) or
* 192 bits (3-key 3DES).
*
* Note that single DES and 2-key 3DES are weak and strongly
* deprecated and should only be used to decrypt legacy data. 3-key 3DES
* is weak and deprecated and should only be used in legacy protocols.
*/
#define PSA_KEY_TYPE_DES ((psa_key_type_t)0x2301)
/** Key for a cipher, AEAD or MAC algorithm based on the
* Camellia block cipher. */
#define PSA_KEY_TYPE_CAMELLIA ((psa_key_type_t)0x2403)
/** Key for the ChaCha20 stream cipher or the Chacha20-Poly1305 AEAD algorithm.
*
* ChaCha20 and the ChaCha20_Poly1305 construction are defined in RFC 7539.
*
* \note For ChaCha20 and ChaCha20_Poly1305, Mbed TLS only supports
* 12-byte nonces.
*
* \note For ChaCha20, the initial counter value is 0. To encrypt or decrypt
* with the initial counter value 1, you can process and discard a
* 64-byte block before the real data.
*/
#define PSA_KEY_TYPE_CHACHA20 ((psa_key_type_t)0x2004)
/** RSA public key.
*
* The size of an RSA key is the bit size of the modulus.
*/
#define PSA_KEY_TYPE_RSA_PUBLIC_KEY ((psa_key_type_t)0x4001)
/** RSA key pair (private and public key).
*
* The size of an RSA key is the bit size of the modulus.
*/
#define PSA_KEY_TYPE_RSA_KEY_PAIR ((psa_key_type_t)0x7001)
/** Whether a key type is an RSA key (pair or public-only). */
#define PSA_KEY_TYPE_IS_RSA(type) \
(PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) == PSA_KEY_TYPE_RSA_PUBLIC_KEY)
#define PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE ((psa_key_type_t)0x4100)
#define PSA_KEY_TYPE_ECC_KEY_PAIR_BASE ((psa_key_type_t)0x7100)
#define PSA_KEY_TYPE_ECC_CURVE_MASK ((psa_key_type_t)0x00ff)
/** Elliptic curve key pair.
*
* The size of an elliptic curve key is the bit size associated with the curve,
* i.e. the bit size of *q* for a curve over a field *F<sub>q</sub>*.
* See the documentation of `PSA_ECC_FAMILY_xxx` curve families for details.
*
* \param curve A value of type ::psa_ecc_family_t that
* identifies the ECC curve to be used.
*/
#define PSA_KEY_TYPE_ECC_KEY_PAIR(curve) \
(PSA_KEY_TYPE_ECC_KEY_PAIR_BASE | (curve))
/** Elliptic curve public key.
*
* The size of an elliptic curve public key is the same as the corresponding
* private key (see #PSA_KEY_TYPE_ECC_KEY_PAIR and the documentation of
* `PSA_ECC_FAMILY_xxx` curve families).
*
* \param curve A value of type ::psa_ecc_family_t that
* identifies the ECC curve to be used.
*/
#define PSA_KEY_TYPE_ECC_PUBLIC_KEY(curve) \
(PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE | (curve))
/** Whether a key type is an elliptic curve key (pair or public-only). */
#define PSA_KEY_TYPE_IS_ECC(type) \
((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
~PSA_KEY_TYPE_ECC_CURVE_MASK) == PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
/** Whether a key type is an elliptic curve key pair. */
#define PSA_KEY_TYPE_IS_ECC_KEY_PAIR(type) \
(((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
PSA_KEY_TYPE_ECC_KEY_PAIR_BASE)
/** Whether a key type is an elliptic curve public key. */
#define PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY(type) \
(((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
/** Extract the curve from an elliptic curve key type. */
#define PSA_KEY_TYPE_ECC_GET_FAMILY(type) \
((psa_ecc_family_t) (PSA_KEY_TYPE_IS_ECC(type) ? \
((type) & PSA_KEY_TYPE_ECC_CURVE_MASK) : \
0))
/** Check if the curve of given family is Weierstrass elliptic curve. */
#define PSA_ECC_FAMILY_IS_WEIERSTRASS(family) ((family & 0xc0) == 0)
/** SEC Koblitz curves over prime fields.
*
* This family comprises the following curves:
* secp192k1, secp224k1, secp256k1.
* They are defined in _Standards for Efficient Cryptography_,
* _SEC 2: Recommended Elliptic Curve Domain Parameters_.
* https://www.secg.org/sec2-v2.pdf
*/
#define PSA_ECC_FAMILY_SECP_K1 ((psa_ecc_family_t) 0x17)
/** SEC random curves over prime fields.
*
* This family comprises the following curves:
* secp192k1, secp224r1, secp256r1, secp384r1, secp521r1.
* They are defined in _Standards for Efficient Cryptography_,
* _SEC 2: Recommended Elliptic Curve Domain Parameters_.
* https://www.secg.org/sec2-v2.pdf
*/
#define PSA_ECC_FAMILY_SECP_R1 ((psa_ecc_family_t) 0x12)
/* SECP160R2 (SEC2 v1, obsolete) */
#define PSA_ECC_FAMILY_SECP_R2 ((psa_ecc_family_t) 0x1b)
/** SEC Koblitz curves over binary fields.
*
* This family comprises the following curves:
* sect163k1, sect233k1, sect239k1, sect283k1, sect409k1, sect571k1.
* They are defined in _Standards for Efficient Cryptography_,
* _SEC 2: Recommended Elliptic Curve Domain Parameters_.
* https://www.secg.org/sec2-v2.pdf
*/
#define PSA_ECC_FAMILY_SECT_K1 ((psa_ecc_family_t) 0x27)
/** SEC random curves over binary fields.
*
* This family comprises the following curves:
* sect163r1, sect233r1, sect283r1, sect409r1, sect571r1.
* They are defined in _Standards for Efficient Cryptography_,
* _SEC 2: Recommended Elliptic Curve Domain Parameters_.
* https://www.secg.org/sec2-v2.pdf
*/
#define PSA_ECC_FAMILY_SECT_R1 ((psa_ecc_family_t) 0x22)
/** SEC additional random curves over binary fields.
*
* This family comprises the following curve:
* sect163r2.
* It is defined in _Standards for Efficient Cryptography_,
* _SEC 2: Recommended Elliptic Curve Domain Parameters_.
* https://www.secg.org/sec2-v2.pdf
*/
#define PSA_ECC_FAMILY_SECT_R2 ((psa_ecc_family_t) 0x2b)
/** Brainpool P random curves.
*
* This family comprises the following curves:
* brainpoolP160r1, brainpoolP192r1, brainpoolP224r1, brainpoolP256r1,
* brainpoolP320r1, brainpoolP384r1, brainpoolP512r1.
* It is defined in RFC 5639.
*/
#define PSA_ECC_FAMILY_BRAINPOOL_P_R1 ((psa_ecc_family_t) 0x30)
/** Curve25519 and Curve448.
*
* This family comprises the following Montgomery curves:
* - 255-bit: Bernstein et al.,
* _Curve25519: new Diffie-Hellman speed records_, LNCS 3958, 2006.
* The algorithm #PSA_ALG_ECDH performs X25519 when used with this curve.
* - 448-bit: Hamburg,
* _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
* The algorithm #PSA_ALG_ECDH performs X448 when used with this curve.
*/
#define PSA_ECC_FAMILY_MONTGOMERY ((psa_ecc_family_t) 0x41)
/** The twisted Edwards curves Ed25519 and Ed448.
*
* These curves are suitable for EdDSA (#PSA_ALG_PURE_EDDSA for both curves,
* #PSA_ALG_ED25519PH for the 255-bit curve,
* #PSA_ALG_ED448PH for the 448-bit curve).
*
* This family comprises the following twisted Edwards curves:
* - 255-bit: Edwards25519, the twisted Edwards curve birationally equivalent
* to Curve25519.
* Bernstein et al., _Twisted Edwards curves_, Africacrypt 2008.
* - 448-bit: Edwards448, the twisted Edwards curve birationally equivalent
* to Curve448.
* Hamburg, _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
*/
#define PSA_ECC_FAMILY_TWISTED_EDWARDS ((psa_ecc_family_t) 0x42)
#define PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE ((psa_key_type_t)0x4200)
#define PSA_KEY_TYPE_DH_KEY_PAIR_BASE ((psa_key_type_t)0x7200)
#define PSA_KEY_TYPE_DH_GROUP_MASK ((psa_key_type_t)0x00ff)
/** Diffie-Hellman key pair.
*
* \param group A value of type ::psa_dh_family_t that identifies the
* Diffie-Hellman group to be used.
*/
#define PSA_KEY_TYPE_DH_KEY_PAIR(group) \
(PSA_KEY_TYPE_DH_KEY_PAIR_BASE | (group))
/** Diffie-Hellman public key.
*
* \param group A value of type ::psa_dh_family_t that identifies the
* Diffie-Hellman group to be used.
*/
#define PSA_KEY_TYPE_DH_PUBLIC_KEY(group) \
(PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE | (group))
/** Whether a key type is a Diffie-Hellman key (pair or public-only). */
#define PSA_KEY_TYPE_IS_DH(type) \
((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
~PSA_KEY_TYPE_DH_GROUP_MASK) == PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
/** Whether a key type is a Diffie-Hellman key pair. */
#define PSA_KEY_TYPE_IS_DH_KEY_PAIR(type) \
(((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
PSA_KEY_TYPE_DH_KEY_PAIR_BASE)
/** Whether a key type is a Diffie-Hellman public key. */
#define PSA_KEY_TYPE_IS_DH_PUBLIC_KEY(type) \
(((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
/** Extract the group from a Diffie-Hellman key type. */
#define PSA_KEY_TYPE_DH_GET_FAMILY(type) \
((psa_dh_family_t) (PSA_KEY_TYPE_IS_DH(type) ? \
((type) & PSA_KEY_TYPE_DH_GROUP_MASK) : \
0))
/** Diffie-Hellman groups defined in RFC 7919 Appendix A.
*
* This family includes groups with the following key sizes (in bits):
* 2048, 3072, 4096, 6144, 8192. A given implementation may support
* all of these sizes or only a subset.
*/
#define PSA_DH_FAMILY_RFC7919 ((psa_dh_family_t) 0x03)
#define PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) \
(((type) >> 8) & 7)
/** The block size of a block cipher.
*
* \param type A cipher key type (value of type #psa_key_type_t).
*
* \return The block size for a block cipher, or 1 for a stream cipher.
* The return value is undefined if \p type is not a supported
* cipher key type.
*
* \note It is possible to build stream cipher algorithms on top of a block
* cipher, for example CTR mode (#PSA_ALG_CTR).
* This macro only takes the key type into account, so it cannot be
* used to determine the size of the data that #psa_cipher_update()
* might buffer for future processing in general.
*
* \note This macro returns a compile-time constant if its argument is one.
*
* \warning This macro may evaluate its argument multiple times.
*/
#define PSA_BLOCK_CIPHER_BLOCK_LENGTH(type) \
(((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC ? \
1u << PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) : \
0u)
/** Vendor-defined algorithm flag.
*
* Algorithms defined by this standard will never have the #PSA_ALG_VENDOR_FLAG
* bit set. Vendors who define additional algorithms must use an encoding with
* the #PSA_ALG_VENDOR_FLAG bit set and should respect the bitwise structure
* used by standard encodings whenever practical.
*/
#define PSA_ALG_VENDOR_FLAG ((psa_algorithm_t)0x80000000)
#define PSA_ALG_CATEGORY_MASK ((psa_algorithm_t)0x7f000000)
#define PSA_ALG_CATEGORY_HASH ((psa_algorithm_t)0x02000000)
#define PSA_ALG_CATEGORY_MAC ((psa_algorithm_t)0x03000000)
#define PSA_ALG_CATEGORY_CIPHER ((psa_algorithm_t)0x04000000)
#define PSA_ALG_CATEGORY_AEAD ((psa_algorithm_t)0x05000000)
#define PSA_ALG_CATEGORY_SIGN ((psa_algorithm_t)0x06000000)
#define PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION ((psa_algorithm_t)0x07000000)
#define PSA_ALG_CATEGORY_KEY_DERIVATION ((psa_algorithm_t)0x08000000)
#define PSA_ALG_CATEGORY_KEY_AGREEMENT ((psa_algorithm_t)0x09000000)
/** Whether an algorithm is vendor-defined.
*
* See also #PSA_ALG_VENDOR_FLAG.
*/
#define PSA_ALG_IS_VENDOR_DEFINED(alg) \
(((alg) & PSA_ALG_VENDOR_FLAG) != 0)
/** Whether the specified algorithm is a hash algorithm.
*
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
*
* \return 1 if \p alg is a hash algorithm, 0 otherwise.
* This macro may return either 0 or 1 if \p alg is not a supported
* algorithm identifier.
*/
#define PSA_ALG_IS_HASH(alg) \
(((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_HASH)
/** Whether the specified algorithm is a MAC algorithm.
*
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
*
* \return 1 if \p alg is a MAC algorithm, 0 otherwise.
* This macro may return either 0 or 1 if \p alg is not a supported
* algorithm identifier.
*/
#define PSA_ALG_IS_MAC(alg) \
(((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_MAC)
/** Whether the specified algorithm is a symmetric cipher algorithm.
*
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
*
* \return 1 if \p alg is a symmetric cipher algorithm, 0 otherwise.
* This macro may return either 0 or 1 if \p alg is not a supported
* algorithm identifier.
*/
#define PSA_ALG_IS_CIPHER(alg) \
(((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_CIPHER)
/** Whether the specified algorithm is an authenticated encryption
* with associated data (AEAD) algorithm.
*
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
*
* \return 1 if \p alg is an AEAD algorithm, 0 otherwise.
* This macro may return either 0 or 1 if \p alg is not a supported
* algorithm identifier.
*/
#define PSA_ALG_IS_AEAD(alg) \
(((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_AEAD)
/** Whether the specified algorithm is an asymmetric signature algorithm,
* also known as public-key signature algorithm.
*
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
*
* \return 1 if \p alg is an asymmetric signature algorithm, 0 otherwise.
* This macro may return either 0 or 1 if \p alg is not a supported
* algorithm identifier.
*/
#define PSA_ALG_IS_SIGN(alg) \
(((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_SIGN)
/** Whether the specified algorithm is an asymmetric encryption algorithm,
* also known as public-key encryption algorithm.
*
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
*
* \return 1 if \p alg is an asymmetric encryption algorithm, 0 otherwise.
* This macro may return either 0 or 1 if \p alg is not a supported
* algorithm identifier.
*/
#define PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg) \
(((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION)
/** Whether the specified algorithm is a key agreement algorithm.
*
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
*
* \return 1 if \p alg is a key agreement algorithm, 0 otherwise.
* This macro may return either 0 or 1 if \p alg is not a supported
* algorithm identifier.
*/
#define PSA_ALG_IS_KEY_AGREEMENT(alg) \
(((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_AGREEMENT)
/** Whether the specified algorithm is a key derivation algorithm.
*
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
*
* \return 1 if \p alg is a key derivation algorithm, 0 otherwise.
* This macro may return either 0 or 1 if \p alg is not a supported
* algorithm identifier.
*/
#define PSA_ALG_IS_KEY_DERIVATION(alg) \
(((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_DERIVATION)
/** Whether the specified algorithm is a key stretching / password hashing
* algorithm.
*
* A key stretching / password hashing algorithm is a key derivation algorithm
* that is suitable for use with a low-entropy secret such as a password.
* Equivalently, it's a key derivation algorithm that uses a
* #PSA_KEY_DERIVATION_INPUT_PASSWORD input step.
*
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
*
* \return 1 if \p alg is a key stretching / password hashing algorithm, 0
* otherwise. This macro may return either 0 or 1 if \p alg is not a
* supported algorithm identifier.
*/
#define PSA_ALG_IS_KEY_DERIVATION_STRETCHING(alg) \
(PSA_ALG_IS_KEY_DERIVATION(alg) && \
(alg) & PSA_ALG_KEY_DERIVATION_STRETCHING_FLAG)
/** An invalid algorithm identifier value. */
#define PSA_ALG_NONE ((psa_algorithm_t)0)
#define PSA_ALG_HASH_MASK ((psa_algorithm_t)0x000000ff)
/** MD5 */
#define PSA_ALG_MD5 ((psa_algorithm_t)0x02000003)
/** PSA_ALG_RIPEMD160 */
#define PSA_ALG_RIPEMD160 ((psa_algorithm_t)0x02000004)
/** SHA1 */
#define PSA_ALG_SHA_1 ((psa_algorithm_t)0x02000005)
/** SHA2-224 */
#define PSA_ALG_SHA_224 ((psa_algorithm_t)0x02000008)
/** SHA2-256 */
#define PSA_ALG_SHA_256 ((psa_algorithm_t)0x02000009)
/** SHA2-384 */
#define PSA_ALG_SHA_384 ((psa_algorithm_t)0x0200000a)
/** SHA2-512 */
#define PSA_ALG_SHA_512 ((psa_algorithm_t)0x0200000b)
/** SHA2-512/224 */
#define PSA_ALG_SHA_512_224 ((psa_algorithm_t)0x0200000c)
/** SHA2-512/256 */
#define PSA_ALG_SHA_512_256 ((psa_algorithm_t)0x0200000d)
/** SHA3-224 */
#define PSA_ALG_SHA3_224 ((psa_algorithm_t)0x02000010)
/** SHA3-256 */
#define PSA_ALG_SHA3_256 ((psa_algorithm_t)0x02000011)
/** SHA3-384 */
#define PSA_ALG_SHA3_384 ((psa_algorithm_t)0x02000012)
/** SHA3-512 */
#define PSA_ALG_SHA3_512 ((psa_algorithm_t)0x02000013)
/** The first 512 bits (64 bytes) of the SHAKE256 output.
*
* This is the prehashing for Ed448ph (see #PSA_ALG_ED448PH). For other
* scenarios where a hash function based on SHA3/SHAKE is desired, SHA3-512
* has the same output size and a (theoretically) higher security strength.
*/
#define PSA_ALG_SHAKE256_512 ((psa_algorithm_t)0x02000015)
/** In a hash-and-sign algorithm policy, allow any hash algorithm.
*
* This value may be used to form the algorithm usage field of a policy
* for a signature algorithm that is parametrized by a hash. The key
* may then be used to perform operations using the same signature
* algorithm parametrized with any supported hash.
*
* That is, suppose that `PSA_xxx_SIGNATURE` is one of the following macros:
* - #PSA_ALG_RSA_PKCS1V15_SIGN, #PSA_ALG_RSA_PSS, #PSA_ALG_RSA_PSS_ANY_SALT,
* - #PSA_ALG_ECDSA, #PSA_ALG_DETERMINISTIC_ECDSA.
* Then you may create and use a key as follows:
* - Set the key usage field using #PSA_ALG_ANY_HASH, for example:
* ```
* psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_HASH); // or VERIFY
* psa_set_key_algorithm(&attributes, PSA_xxx_SIGNATURE(PSA_ALG_ANY_HASH));
* ```
* - Import or generate key material.
* - Call psa_sign_hash() or psa_verify_hash(), passing
* an algorithm built from `PSA_xxx_SIGNATURE` and a specific hash. Each
* call to sign or verify a message may use a different hash.
* ```
* psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_256), ...);
* psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_512), ...);
* psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA3_256), ...);
* ```
*
* This value may not be used to build other algorithms that are
* parametrized over a hash. For any valid use of this macro to build
* an algorithm \c alg, #PSA_ALG_IS_HASH_AND_SIGN(\c alg) is true.
*
* This value may not be used to build an algorithm specification to
* perform an operation. It is only valid to build policies.
*/
#define PSA_ALG_ANY_HASH ((psa_algorithm_t)0x020000ff)
#define PSA_ALG_MAC_SUBCATEGORY_MASK ((psa_algorithm_t)0x00c00000)
#define PSA_ALG_HMAC_BASE ((psa_algorithm_t)0x03800000)
/** Macro to build an HMAC algorithm.
*
* For example, #PSA_ALG_HMAC(#PSA_ALG_SHA_256) is HMAC-SHA-256.
*
* \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
* #PSA_ALG_IS_HASH(\p hash_alg) is true).
*
* \return The corresponding HMAC algorithm.
* \return Unspecified if \p hash_alg is not a supported
* hash algorithm.
*/
#define PSA_ALG_HMAC(hash_alg) \
(PSA_ALG_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
#define PSA_ALG_HMAC_GET_HASH(hmac_alg) \
(PSA_ALG_CATEGORY_HASH | ((hmac_alg) & PSA_ALG_HASH_MASK))
/** Whether the specified algorithm is an HMAC algorithm.
*
* HMAC is a family of MAC algorithms that are based on a hash function.
*
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
*
* \return 1 if \p alg is an HMAC algorithm, 0 otherwise.
* This macro may return either 0 or 1 if \p alg is not a supported
* algorithm identifier.
*/
#define PSA_ALG_IS_HMAC(alg) \
(((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
PSA_ALG_HMAC_BASE)
/* In the encoding of a MAC algorithm, the bits corresponding to
* PSA_ALG_MAC_TRUNCATION_MASK encode the length to which the MAC is
* truncated. As an exception, the value 0 means the untruncated algorithm,
* whatever its length is. The length is encoded in 6 bits, so it can
* reach up to 63; the largest MAC is 64 bytes so its trivial truncation
* to full length is correctly encoded as 0 and any non-trivial truncation
* is correctly encoded as a value between 1 and 63. */
#define PSA_ALG_MAC_TRUNCATION_MASK ((psa_algorithm_t)0x003f0000)
#define PSA_MAC_TRUNCATION_OFFSET 16
/* In the encoding of a MAC algorithm, the bit corresponding to
* #PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG encodes the fact that the algorithm
* is a wildcard algorithm. A key with such wildcard algorithm as permitted
* algorithm policy can be used with any algorithm corresponding to the
* same base class and having a (potentially truncated) MAC length greater or
* equal than the one encoded in #PSA_ALG_MAC_TRUNCATION_MASK. */
#define PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG ((psa_algorithm_t)0x00008000)
/** Macro to build a truncated MAC algorithm.
*
* A truncated MAC algorithm is identical to the corresponding MAC
* algorithm except that the MAC value for the truncated algorithm
* consists of only the first \p mac_length bytes of the MAC value
* for the untruncated algorithm.
*
* \note This macro may allow constructing algorithm identifiers that
* are not valid, either because the specified length is larger
* than the untruncated MAC or because the specified length is
* smaller than permitted by the implementation.
*
* \note It is implementation-defined whether a truncated MAC that
* is truncated to the same length as the MAC of the untruncated
* algorithm is considered identical to the untruncated algorithm
* for policy comparison purposes.
*
* \param mac_alg A MAC algorithm identifier (value of type
* #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
* is true). This may be a truncated or untruncated
* MAC algorithm.
* \param mac_length Desired length of the truncated MAC in bytes.
* This must be at most the full length of the MAC
* and must be at least an implementation-specified
* minimum. The implementation-specified minimum
* shall not be zero.
*
* \return The corresponding MAC algorithm with the specified
* length.
* \return Unspecified if \p mac_alg is not a supported
* MAC algorithm or if \p mac_length is too small or
* too large for the specified MAC algorithm.
*/
#define PSA_ALG_TRUNCATED_MAC(mac_alg, mac_length) \
(((mac_alg) & ~(PSA_ALG_MAC_TRUNCATION_MASK | \
PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG)) | \
((mac_length) << PSA_MAC_TRUNCATION_OFFSET & PSA_ALG_MAC_TRUNCATION_MASK))
/** Macro to build the base MAC algorithm corresponding to a truncated
* MAC algorithm.
*
* \param mac_alg A MAC algorithm identifier (value of type
* #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
* is true). This may be a truncated or untruncated
* MAC algorithm.
*
* \return The corresponding base MAC algorithm.
* \return Unspecified if \p mac_alg is not a supported
* MAC algorithm.
*/
#define PSA_ALG_FULL_LENGTH_MAC(mac_alg) \
((mac_alg) & ~(PSA_ALG_MAC_TRUNCATION_MASK | \
PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG))
/** Length to which a MAC algorithm is truncated.
*
* \param mac_alg A MAC algorithm identifier (value of type
* #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
* is true).
*
* \return Length of the truncated MAC in bytes.
* \return 0 if \p mac_alg is a non-truncated MAC algorithm.
* \return Unspecified if \p mac_alg is not a supported
* MAC algorithm.
*/
#define PSA_MAC_TRUNCATED_LENGTH(mac_alg) \
(((mac_alg) & PSA_ALG_MAC_TRUNCATION_MASK) >> PSA_MAC_TRUNCATION_OFFSET)
/** Macro to build a MAC minimum-MAC-length wildcard algorithm.
*
* A minimum-MAC-length MAC wildcard algorithm permits all MAC algorithms
* sharing the same base algorithm, and where the (potentially truncated) MAC
* length of the specific algorithm is equal to or larger then the wildcard
* algorithm's minimum MAC length.
*
* \note When setting the minimum required MAC length to less than the
* smallest MAC length allowed by the base algorithm, this effectively
* becomes an 'any-MAC-length-allowed' policy for that base algorithm.
*
* \param mac_alg A MAC algorithm identifier (value of type
* #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
* is true).
* \param min_mac_length Desired minimum length of the message authentication
* code in bytes. This must be at most the untruncated
* length of the MAC and must be at least 1.
*
* \return The corresponding MAC wildcard algorithm with the
* specified minimum length.
* \return Unspecified if \p mac_alg is not a supported MAC
* algorithm or if \p min_mac_length is less than 1 or
* too large for the specified MAC algorithm.
*/
#define PSA_ALG_AT_LEAST_THIS_LENGTH_MAC(mac_alg, min_mac_length) \
( PSA_ALG_TRUNCATED_MAC(mac_alg, min_mac_length) | \
PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG )
#define PSA_ALG_CIPHER_MAC_BASE ((psa_algorithm_t)0x03c00000)
/** The CBC-MAC construction over a block cipher
*
* \warning CBC-MAC is insecure in many cases.
* A more secure mode, such as #PSA_ALG_CMAC, is recommended.
*/
#define PSA_ALG_CBC_MAC ((psa_algorithm_t)0x03c00100)
/** The CMAC construction over a block cipher */
#define PSA_ALG_CMAC ((psa_algorithm_t)0x03c00200)
/** Whether the specified algorithm is a MAC algorithm based on a block cipher.
*
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
*
* \return 1 if \p alg is a MAC algorithm based on a block cipher, 0 otherwise.
* This macro may return either 0 or 1 if \p alg is not a supported
* algorithm identifier.
*/
#define PSA_ALG_IS_BLOCK_CIPHER_MAC(alg) \
(((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
PSA_ALG_CIPHER_MAC_BASE)
#define PSA_ALG_CIPHER_STREAM_FLAG ((psa_algorithm_t)0x00800000)
#define PSA_ALG_CIPHER_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000)
/** Whether the specified algorithm is a stream cipher.
*
* A stream cipher is a symmetric cipher that encrypts or decrypts messages
* by applying a bitwise-xor with a stream of bytes that is generated
* from a key.
*
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
*
* \return 1 if \p alg is a stream cipher algorithm, 0 otherwise.
* This macro may return either 0 or 1 if \p alg is not a supported
* algorithm identifier or if it is not a symmetric cipher algorithm.
*/
#define PSA_ALG_IS_STREAM_CIPHER(alg) \
(((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_CIPHER_STREAM_FLAG)) == \
(PSA_ALG_CATEGORY_CIPHER | PSA_ALG_CIPHER_STREAM_FLAG))
/** The stream cipher mode of a stream cipher algorithm.
*
* The underlying stream cipher is determined by the key type.
* - To use ChaCha20, use a key type of #PSA_KEY_TYPE_CHACHA20.
*/
#define PSA_ALG_STREAM_CIPHER ((psa_algorithm_t)0x04800100)
/** The CTR stream cipher mode.
*
* CTR is a stream cipher which is built from a block cipher.
* The underlying block cipher is determined by the key type.
* For example, to use AES-128-CTR, use this algorithm with
* a key of type #PSA_KEY_TYPE_AES and a length of 128 bits (16 bytes).
*/
#define PSA_ALG_CTR ((psa_algorithm_t)0x04c01000)
/** The CFB stream cipher mode.
*
* The underlying block cipher is determined by the key type.
*/
#define PSA_ALG_CFB ((psa_algorithm_t)0x04c01100)
/** The OFB stream cipher mode.
*
* The underlying block cipher is determined by the key type.
*/
#define PSA_ALG_OFB ((psa_algorithm_t)0x04c01200)
/** The XTS cipher mode.
*
* XTS is a cipher mode which is built from a block cipher. It requires at
* least one full block of input, but beyond this minimum the input
* does not need to be a whole number of blocks.
*/
#define PSA_ALG_XTS ((psa_algorithm_t)0x0440ff00)
/** The Electronic Code Book (ECB) mode of a block cipher, with no padding.
*
* \warning ECB mode does not protect the confidentiality of the encrypted data
* except in extremely narrow circumstances. It is recommended that applications
* only use ECB if they need to construct an operating mode that the
* implementation does not provide. Implementations are encouraged to provide
* the modes that applications need in preference to supporting direct access
* to ECB.
*
* The underlying block cipher is determined by the key type.
*
* This symmetric cipher mode can only be used with messages whose lengths are a
* multiple of the block size of the chosen block cipher.
*
* ECB mode does not accept an initialization vector (IV). When using a
* multi-part cipher operation with this algorithm, psa_cipher_generate_iv()
* and psa_cipher_set_iv() must not be called.
*/
#define PSA_ALG_ECB_NO_PADDING ((psa_algorithm_t)0x04404400)
/** The CBC block cipher chaining mode, with no padding.
*
* The underlying block cipher is determined by the key type.
*
* This symmetric cipher mode can only be used with messages whose lengths
* are whole number of blocks for the chosen block cipher.
*/
#define PSA_ALG_CBC_NO_PADDING ((psa_algorithm_t)0x04404000)
/** The CBC block cipher chaining mode with PKCS#7 padding.
*
* The underlying block cipher is determined by the key type.
*
* This is the padding method defined by PKCS#7 (RFC 2315) &sect;10.3.
*/
#define PSA_ALG_CBC_PKCS7 ((psa_algorithm_t)0x04404100)
#define PSA_ALG_AEAD_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000)
/** Whether the specified algorithm is an AEAD mode on a block cipher.
*
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
*
* \return 1 if \p alg is an AEAD algorithm which is an AEAD mode based on
* a block cipher, 0 otherwise.
* This macro may return either 0 or 1 if \p alg is not a supported
* algorithm identifier.
*/
#define PSA_ALG_IS_AEAD_ON_BLOCK_CIPHER(alg) \
(((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_AEAD_FROM_BLOCK_FLAG)) == \
(PSA_ALG_CATEGORY_AEAD | PSA_ALG_AEAD_FROM_BLOCK_FLAG))
/** The CCM authenticated encryption algorithm.
*
* The underlying block cipher is determined by the key type.
*/
#define PSA_ALG_CCM ((psa_algorithm_t)0x05500100)
/** The CCM* cipher mode without authentication.
*
* This is CCM* as specified in IEEE 802.15.4 §7, with a tag length of 0.
* For CCM* with a nonzero tag length, use the AEAD algorithm #PSA_ALG_CCM.
*
* The underlying block cipher is determined by the key type.
*
* Currently only 13-byte long IV's are supported.
*/
#define PSA_ALG_CCM_STAR_NO_TAG ((psa_algorithm_t)0x04c01300)
/** The GCM authenticated encryption algorithm.
*
* The underlying block cipher is determined by the key type.
*/
#define PSA_ALG_GCM ((psa_algorithm_t)0x05500200)
/** The Chacha20-Poly1305 AEAD algorithm.
*
* The ChaCha20_Poly1305 construction is defined in RFC 7539.
*
* Implementations must support 12-byte nonces, may support 8-byte nonces,
* and should reject other sizes.
*
* Implementations must support 16-byte tags and should reject other sizes.
*/
#define PSA_ALG_CHACHA20_POLY1305 ((psa_algorithm_t)0x05100500)
/* In the encoding of a AEAD algorithm, the bits corresponding to
* PSA_ALG_AEAD_TAG_LENGTH_MASK encode the length of the AEAD tag.
* The constants for default lengths follow this encoding.
*/
#define PSA_ALG_AEAD_TAG_LENGTH_MASK ((psa_algorithm_t)0x003f0000)
#define PSA_AEAD_TAG_LENGTH_OFFSET 16
/* In the encoding of an AEAD algorithm, the bit corresponding to
* #PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG encodes the fact that the algorithm
* is a wildcard algorithm. A key with such wildcard algorithm as permitted
* algorithm policy can be used with any algorithm corresponding to the
* same base class and having a tag length greater than or equal to the one
* encoded in #PSA_ALG_AEAD_TAG_LENGTH_MASK. */
#define PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG ((psa_algorithm_t)0x00008000)
/** Macro to build a shortened AEAD algorithm.
*
* A shortened AEAD algorithm is similar to the corresponding AEAD
* algorithm, but has an authentication tag that consists of fewer bytes.
* Depending on the algorithm, the tag length may affect the calculation
* of the ciphertext.
*
* \param aead_alg An AEAD algorithm identifier (value of type
* #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p aead_alg)
* is true).
* \param tag_length Desired length of the authentication tag in bytes.
*
* \return The corresponding AEAD algorithm with the specified
* length.
* \return Unspecified if \p aead_alg is not a supported
* AEAD algorithm or if \p tag_length is not valid
* for the specified AEAD algorithm.
*/
#define PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, tag_length) \
(((aead_alg) & ~(PSA_ALG_AEAD_TAG_LENGTH_MASK | \
PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)) | \
((tag_length) << PSA_AEAD_TAG_LENGTH_OFFSET & \
PSA_ALG_AEAD_TAG_LENGTH_MASK))
/** Retrieve the tag length of a specified AEAD algorithm
*
* \param aead_alg An AEAD algorithm identifier (value of type
* #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p aead_alg)
* is true).
*
* \return The tag length specified by the input algorithm.
* \return Unspecified if \p aead_alg is not a supported
* AEAD algorithm.
*/
#define PSA_ALG_AEAD_GET_TAG_LENGTH(aead_alg) \
(((aead_alg) & PSA_ALG_AEAD_TAG_LENGTH_MASK) >> \
PSA_AEAD_TAG_LENGTH_OFFSET )
/** Calculate the corresponding AEAD algorithm with the default tag length.
*
* \param aead_alg An AEAD algorithm (\c PSA_ALG_XXX value such that
* #PSA_ALG_IS_AEAD(\p aead_alg) is true).
*
* \return The corresponding AEAD algorithm with the default
* tag length for that algorithm.
*/
#define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG(aead_alg) \
( \
PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_CCM) \
PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_GCM) \
PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_CHACHA20_POLY1305) \
0)
#define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, ref) \
PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, 0) == \
PSA_ALG_AEAD_WITH_SHORTENED_TAG(ref, 0) ? \
ref :
/** Macro to build an AEAD minimum-tag-length wildcard algorithm.
*
* A minimum-tag-length AEAD wildcard algorithm permits all AEAD algorithms
* sharing the same base algorithm, and where the tag length of the specific
* algorithm is equal to or larger then the minimum tag length specified by the
* wildcard algorithm.
*
* \note When setting the minimum required tag length to less than the
* smallest tag length allowed by the base algorithm, this effectively
* becomes an 'any-tag-length-allowed' policy for that base algorithm.
*
* \param aead_alg An AEAD algorithm identifier (value of type
* #psa_algorithm_t such that
* #PSA_ALG_IS_AEAD(\p aead_alg) is true).
* \param min_tag_length Desired minimum length of the authentication tag in
* bytes. This must be at least 1 and at most the largest
* allowed tag length of the algorithm.
*
* \return The corresponding AEAD wildcard algorithm with the
* specified minimum length.
* \return Unspecified if \p aead_alg is not a supported
* AEAD algorithm or if \p min_tag_length is less than 1
* or too large for the specified AEAD algorithm.
*/
#define PSA_ALG_AEAD_WITH_AT_LEAST_THIS_LENGTH_TAG(aead_alg, min_tag_length) \
( PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, min_tag_length) | \
PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG )
#define PSA_ALG_RSA_PKCS1V15_SIGN_BASE ((psa_algorithm_t)0x06000200)
/** RSA PKCS#1 v1.5 signature with hashing.
*
* This is the signature scheme defined by RFC 8017
* (PKCS#1: RSA Cryptography Specifications) under the name
* RSASSA-PKCS1-v1_5.
*
* \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
* #PSA_ALG_IS_HASH(\p hash_alg) is true).
* This includes #PSA_ALG_ANY_HASH
* when specifying the algorithm in a usage policy.
*
* \return The corresponding RSA PKCS#1 v1.5 signature algorithm.
* \return Unspecified if \p hash_alg is not a supported
* hash algorithm.
*/
#define PSA_ALG_RSA_PKCS1V15_SIGN(hash_alg) \
(PSA_ALG_RSA_PKCS1V15_SIGN_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
/** Raw PKCS#1 v1.5 signature.
*
* The input to this algorithm is the DigestInfo structure used by
* RFC 8017 (PKCS#1: RSA Cryptography Specifications), &sect;9.2
* steps 3&ndash;6.
*/
#define PSA_ALG_RSA_PKCS1V15_SIGN_RAW PSA_ALG_RSA_PKCS1V15_SIGN_BASE
#define PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) \
(((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PKCS1V15_SIGN_BASE)
#define PSA_ALG_RSA_PSS_BASE ((psa_algorithm_t)0x06000300)
#define PSA_ALG_RSA_PSS_ANY_SALT_BASE ((psa_algorithm_t)0x06001300)
/** RSA PSS signature with hashing.
*
* This is the signature scheme defined by RFC 8017
* (PKCS#1: RSA Cryptography Specifications) under the name
* RSASSA-PSS, with the message generation function MGF1, and with
* a salt length equal to the length of the hash. The specified
* hash algorithm is used to hash the input message, to create the
* salted hash, and for the mask generation.
*
* \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
* #PSA_ALG_IS_HASH(\p hash_alg) is true).
* This includes #PSA_ALG_ANY_HASH
* when specifying the algorithm in a usage policy.
*
* \return The corresponding RSA PSS signature algorithm.
* \return Unspecified if \p hash_alg is not a supported
* hash algorithm.
*/
#define PSA_ALG_RSA_PSS(hash_alg) \
(PSA_ALG_RSA_PSS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
/** RSA PSS signature with hashing with relaxed verification.
*
* This algorithm has the same behavior as #PSA_ALG_RSA_PSS when signing,
* but allows an arbitrary salt length (including \c 0) when verifying a
* signature.
*
* \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
* #PSA_ALG_IS_HASH(\p hash_alg) is true).
* This includes #PSA_ALG_ANY_HASH
* when specifying the algorithm in a usage policy.
*
* \return The corresponding RSA PSS signature algorithm.
* \return Unspecified if \p hash_alg is not a supported
* hash algorithm.
*/
#define PSA_ALG_RSA_PSS_ANY_SALT(hash_alg) \
(PSA_ALG_RSA_PSS_ANY_SALT_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
/** Whether the specified algorithm is RSA PSS with standard salt.
*
* \param alg An algorithm value or an algorithm policy wildcard.
*
* \return 1 if \p alg is of the form
* #PSA_ALG_RSA_PSS(\c hash_alg),
* where \c hash_alg is a hash algorithm or
* #PSA_ALG_ANY_HASH. 0 otherwise.
* This macro may return either 0 or 1 if \p alg is not
* a supported algorithm identifier or policy.
*/
#define PSA_ALG_IS_RSA_PSS_STANDARD_SALT(alg) \
(((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_BASE)
/** Whether the specified algorithm is RSA PSS with any salt.
*
* \param alg An algorithm value or an algorithm policy wildcard.
*
* \return 1 if \p alg is of the form
* #PSA_ALG_RSA_PSS_ANY_SALT_BASE(\c hash_alg),
* where \c hash_alg is a hash algorithm or
* #PSA_ALG_ANY_HASH. 0 otherwise.
* This macro may return either 0 or 1 if \p alg is not
* a supported algorithm identifier or policy.
*/
#define PSA_ALG_IS_RSA_PSS_ANY_SALT(alg) \
(((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_ANY_SALT_BASE)
/** Whether the specified algorithm is RSA PSS.
*
* This includes any of the RSA PSS algorithm variants, regardless of the
* constraints on salt length.
*
* \param alg An algorithm value or an algorithm policy wildcard.
*
* \return 1 if \p alg is of the form
* #PSA_ALG_RSA_PSS(\c hash_alg) or
* #PSA_ALG_RSA_PSS_ANY_SALT_BASE(\c hash_alg),
* where \c hash_alg is a hash algorithm or
* #PSA_ALG_ANY_HASH. 0 otherwise.
* This macro may return either 0 or 1 if \p alg is not
* a supported algorithm identifier or policy.
*/
#define PSA_ALG_IS_RSA_PSS(alg) \
(PSA_ALG_IS_RSA_PSS_STANDARD_SALT(alg) || \
PSA_ALG_IS_RSA_PSS_ANY_SALT(alg))
#define PSA_ALG_ECDSA_BASE ((psa_algorithm_t)0x06000600)
/** ECDSA signature with hashing.
*
* This is the ECDSA signature scheme defined by ANSI X9.62,
* with a random per-message secret number (*k*).
*
* The representation of the signature as a byte string consists of
* the concatenation of the signature values *r* and *s*. Each of
* *r* and *s* is encoded as an *N*-octet string, where *N* is the length
* of the base point of the curve in octets. Each value is represented
* in big-endian order (most significant octet first).
*
* \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
* #PSA_ALG_IS_HASH(\p hash_alg) is true).
* This includes #PSA_ALG_ANY_HASH
* when specifying the algorithm in a usage policy.
*
* \return The corresponding ECDSA signature algorithm.
* \return Unspecified if \p hash_alg is not a supported
* hash algorithm.
*/
#define PSA_ALG_ECDSA(hash_alg) \
(PSA_ALG_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
/** ECDSA signature without hashing.
*
* This is the same signature scheme as #PSA_ALG_ECDSA(), but
* without specifying a hash algorithm. This algorithm may only be
* used to sign or verify a sequence of bytes that should be an
* already-calculated hash. Note that the input is padded with
* zeros on the left or truncated on the left as required to fit
* the curve size.
*/
#define PSA_ALG_ECDSA_ANY PSA_ALG_ECDSA_BASE
#define PSA_ALG_DETERMINISTIC_ECDSA_BASE ((psa_algorithm_t)0x06000700)
/** Deterministic ECDSA signature with hashing.
*
* This is the deterministic ECDSA signature scheme defined by RFC 6979.
*
* The representation of a signature is the same as with #PSA_ALG_ECDSA().
*
* Note that when this algorithm is used for verification, signatures
* made with randomized ECDSA (#PSA_ALG_ECDSA(\p hash_alg)) with the
* same private key are accepted. In other words,
* #PSA_ALG_DETERMINISTIC_ECDSA(\p hash_alg) differs from
* #PSA_ALG_ECDSA(\p hash_alg) only for signature, not for verification.
*
* \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
* #PSA_ALG_IS_HASH(\p hash_alg) is true).
* This includes #PSA_ALG_ANY_HASH
* when specifying the algorithm in a usage policy.
*
* \return The corresponding deterministic ECDSA signature
* algorithm.
* \return Unspecified if \p hash_alg is not a supported
* hash algorithm.
*/
#define PSA_ALG_DETERMINISTIC_ECDSA(hash_alg) \
(PSA_ALG_DETERMINISTIC_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
#define PSA_ALG_ECDSA_DETERMINISTIC_FLAG ((psa_algorithm_t)0x00000100)
#define PSA_ALG_IS_ECDSA(alg) \
(((alg) & ~PSA_ALG_HASH_MASK & ~PSA_ALG_ECDSA_DETERMINISTIC_FLAG) == \
PSA_ALG_ECDSA_BASE)
#define PSA_ALG_ECDSA_IS_DETERMINISTIC(alg) \
(((alg) & PSA_ALG_ECDSA_DETERMINISTIC_FLAG) != 0)
#define PSA_ALG_IS_DETERMINISTIC_ECDSA(alg) \
(PSA_ALG_IS_ECDSA(alg) && PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
#define PSA_ALG_IS_RANDOMIZED_ECDSA(alg) \
(PSA_ALG_IS_ECDSA(alg) && !PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
/** Edwards-curve digital signature algorithm without prehashing (PureEdDSA),
* using standard parameters.
*
* Contexts are not supported in the current version of this specification
* because there is no suitable signature interface that can take the
* context as a parameter. A future version of this specification may add
* suitable functions and extend this algorithm to support contexts.
*
* PureEdDSA requires an elliptic curve key on a twisted Edwards curve.
* In this specification, the following curves are supported:
* - #PSA_ECC_FAMILY_TWISTED_EDWARDS, 255-bit: Ed25519 as specified
* in RFC 8032.
* The curve is Edwards25519.
* The hash function used internally is SHA-512.
* - #PSA_ECC_FAMILY_TWISTED_EDWARDS, 448-bit: Ed448 as specified
* in RFC 8032.
* The curve is Edwards448.
* The hash function used internally is the first 114 bytes of the
* SHAKE256 output.
*
* This algorithm can be used with psa_sign_message() and
* psa_verify_message(). Since there is no prehashing, it cannot be used
* with psa_sign_hash() or psa_verify_hash().
*
* The signature format is the concatenation of R and S as defined by
* RFC 8032 §5.1.6 and §5.2.6 (a 64-byte string for Ed25519, a 114-byte
* string for Ed448).
*/
#define PSA_ALG_PURE_EDDSA ((psa_algorithm_t)0x06000800)
#define PSA_ALG_HASH_EDDSA_BASE ((psa_algorithm_t)0x06000900)
#define PSA_ALG_IS_HASH_EDDSA(alg) \
(((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HASH_EDDSA_BASE)
/** Edwards-curve digital signature algorithm with prehashing (HashEdDSA),
* using SHA-512 and the Edwards25519 curve.
*
* See #PSA_ALG_PURE_EDDSA regarding context support and the signature format.
*
* This algorithm is Ed25519 as specified in RFC 8032.
* The curve is Edwards25519.
* The prehash is SHA-512.
* The hash function used internally is SHA-512.
*
* This is a hash-and-sign algorithm: to calculate a signature,
* you can either:
* - call psa_sign_message() on the message;
* - or calculate the SHA-512 hash of the message
* with psa_hash_compute()
* or with a multi-part hash operation started with psa_hash_setup(),
* using the hash algorithm #PSA_ALG_SHA_512,
* then sign the calculated hash with psa_sign_hash().
* Verifying a signature is similar, using psa_verify_message() or
* psa_verify_hash() instead of the signature function.
*/
#define PSA_ALG_ED25519PH \
(PSA_ALG_HASH_EDDSA_BASE | (PSA_ALG_SHA_512 & PSA_ALG_HASH_MASK))
/** Edwards-curve digital signature algorithm with prehashing (HashEdDSA),
* using SHAKE256 and the Edwards448 curve.
*
* See #PSA_ALG_PURE_EDDSA regarding context support and the signature format.
*
* This algorithm is Ed448 as specified in RFC 8032.
* The curve is Edwards448.
* The prehash is the first 64 bytes of the SHAKE256 output.
* The hash function used internally is the first 114 bytes of the
* SHAKE256 output.
*
* This is a hash-and-sign algorithm: to calculate a signature,
* you can either:
* - call psa_sign_message() on the message;
* - or calculate the first 64 bytes of the SHAKE256 output of the message
* with psa_hash_compute()
* or with a multi-part hash operation started with psa_hash_setup(),
* using the hash algorithm #PSA_ALG_SHAKE256_512,
* then sign the calculated hash with psa_sign_hash().
* Verifying a signature is similar, using psa_verify_message() or
* psa_verify_hash() instead of the signature function.
*/
#define PSA_ALG_ED448PH \
(PSA_ALG_HASH_EDDSA_BASE | (PSA_ALG_SHAKE256_512 & PSA_ALG_HASH_MASK))
/* Default definition, to be overridden if the library is extended with
* more hash-and-sign algorithms that we want to keep out of this header
* file. */
#define PSA_ALG_IS_VENDOR_HASH_AND_SIGN(alg) 0
/** Whether the specified algorithm is a signature algorithm that can be used
* with psa_sign_hash() and psa_verify_hash().
*
* This encompasses all strict hash-and-sign algorithms categorized by
* PSA_ALG_IS_HASH_AND_SIGN(), as well as algorithms that follow the
* paradigm more loosely:
* - #PSA_ALG_RSA_PKCS1V15_SIGN_RAW (expects its input to be an encoded hash)
* - #PSA_ALG_ECDSA_ANY (doesn't specify what kind of hash the input is)
*
* \param alg An algorithm identifier (value of type psa_algorithm_t).
*
* \return 1 if alg is a signature algorithm that can be used to sign a
* hash. 0 if alg is a signature algorithm that can only be used
* to sign a message. 0 if alg is not a signature algorithm.
* This macro can return either 0 or 1 if alg is not a
* supported algorithm identifier.
*/
#define PSA_ALG_IS_SIGN_HASH(alg) \
(PSA_ALG_IS_RSA_PSS(alg) || PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) || \
PSA_ALG_IS_ECDSA(alg) || PSA_ALG_IS_HASH_EDDSA(alg) || \
PSA_ALG_IS_VENDOR_HASH_AND_SIGN(alg))
/** Whether the specified algorithm is a signature algorithm that can be used
* with psa_sign_message() and psa_verify_message().
*
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
*
* \return 1 if alg is a signature algorithm that can be used to sign a
* message. 0 if \p alg is a signature algorithm that can only be used
* to sign an already-calculated hash. 0 if \p alg is not a signature
* algorithm. This macro can return either 0 or 1 if \p alg is not a
* supported algorithm identifier.
*/
#define PSA_ALG_IS_SIGN_MESSAGE(alg) \
(PSA_ALG_IS_SIGN_HASH(alg) || (alg) == PSA_ALG_PURE_EDDSA )
/** Whether the specified algorithm is a hash-and-sign algorithm.
*
* Hash-and-sign algorithms are asymmetric (public-key) signature algorithms
* structured in two parts: first the calculation of a hash in a way that
* does not depend on the key, then the calculation of a signature from the
* hash value and the key. Hash-and-sign algorithms encode the hash
* used for the hashing step, and you can call #PSA_ALG_SIGN_GET_HASH
* to extract this algorithm.
*
* Thus, for a hash-and-sign algorithm,
* `psa_sign_message(key, alg, input, ...)` is equivalent to
* ```
* psa_hash_compute(PSA_ALG_SIGN_GET_HASH(alg), input, ..., hash, ...);
* psa_sign_hash(key, alg, hash, ..., signature, ...);
* ```
* Most usefully, separating the hash from the signature allows the hash
* to be calculated in multiple steps with psa_hash_setup(), psa_hash_update()
* and psa_hash_finish(). Likewise psa_verify_message() is equivalent to
* calculating the hash and then calling psa_verify_hash().
*
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
*
* \return 1 if \p alg is a hash-and-sign algorithm, 0 otherwise.
* This macro may return either 0 or 1 if \p alg is not a supported
* algorithm identifier.
*/
#define PSA_ALG_IS_HASH_AND_SIGN(alg) \
(PSA_ALG_IS_SIGN_HASH(alg) && \
((alg) & PSA_ALG_HASH_MASK) != 0)
/** Get the hash used by a hash-and-sign signature algorithm.
*
* A hash-and-sign algorithm is a signature algorithm which is
* composed of two phases: first a hashing phase which does not use
* the key and produces a hash of the input message, then a signing
* phase which only uses the hash and the key and not the message
* itself.
*
* \param alg A signature algorithm (\c PSA_ALG_XXX value such that
* #PSA_ALG_IS_SIGN(\p alg) is true).
*
* \return The underlying hash algorithm if \p alg is a hash-and-sign
* algorithm.
* \return 0 if \p alg is a signature algorithm that does not
* follow the hash-and-sign structure.
* \return Unspecified if \p alg is not a signature algorithm or
* if it is not supported by the implementation.
*/
#define PSA_ALG_SIGN_GET_HASH(alg) \
(PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
0)
/** RSA PKCS#1 v1.5 encryption.
*/
#define PSA_ALG_RSA_PKCS1V15_CRYPT ((psa_algorithm_t)0x07000200)
#define PSA_ALG_RSA_OAEP_BASE ((psa_algorithm_t)0x07000300)
/** RSA OAEP encryption.
*
* This is the encryption scheme defined by RFC 8017
* (PKCS#1: RSA Cryptography Specifications) under the name
* RSAES-OAEP, with the message generation function MGF1.
*
* \param hash_alg The hash algorithm (\c PSA_ALG_XXX value such that
* #PSA_ALG_IS_HASH(\p hash_alg) is true) to use
* for MGF1.
*
* \return The corresponding RSA OAEP encryption algorithm.
* \return Unspecified if \p hash_alg is not a supported
* hash algorithm.
*/
#define PSA_ALG_RSA_OAEP(hash_alg) \
(PSA_ALG_RSA_OAEP_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
#define PSA_ALG_IS_RSA_OAEP(alg) \
(((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_OAEP_BASE)
#define PSA_ALG_RSA_OAEP_GET_HASH(alg) \
(PSA_ALG_IS_RSA_OAEP(alg) ? \
((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
0)
#define PSA_ALG_HKDF_BASE ((psa_algorithm_t)0x08000100)
/** Macro to build an HKDF algorithm.
*
* For example, `PSA_ALG_HKDF(PSA_ALG_SHA256)` is HKDF using HMAC-SHA-256.
*
* This key derivation algorithm uses the following inputs:
* - #PSA_KEY_DERIVATION_INPUT_SALT is the salt used in the "extract" step.
* It is optional; if omitted, the derivation uses an empty salt.
* - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key used in the "extract" step.
* - #PSA_KEY_DERIVATION_INPUT_INFO is the info string used in the "expand" step.
* You must pass #PSA_KEY_DERIVATION_INPUT_SALT before #PSA_KEY_DERIVATION_INPUT_SECRET.
* You may pass #PSA_KEY_DERIVATION_INPUT_INFO at any time after steup and before
* starting to generate output.
*
* \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
* #PSA_ALG_IS_HASH(\p hash_alg) is true).
*
* \return The corresponding HKDF algorithm.
* \return Unspecified if \p hash_alg is not a supported
* hash algorithm.
*/
#define PSA_ALG_HKDF(hash_alg) \
(PSA_ALG_HKDF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
/** Whether the specified algorithm is an HKDF algorithm.
*
* HKDF is a family of key derivation algorithms that are based on a hash
* function and the HMAC construction.
*
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
*
* \return 1 if \c alg is an HKDF algorithm, 0 otherwise.
* This macro may return either 0 or 1 if \c alg is not a supported
* key derivation algorithm identifier.
*/
#define PSA_ALG_IS_HKDF(alg) \
(((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_BASE)
#define PSA_ALG_HKDF_GET_HASH(hkdf_alg) \
(PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
#define PSA_ALG_TLS12_PRF_BASE ((psa_algorithm_t)0x08000200)
/** Macro to build a TLS-1.2 PRF algorithm.
*
* TLS 1.2 uses a custom pseudorandom function (PRF) for key schedule,
* specified in Section 5 of RFC 5246. It is based on HMAC and can be
* used with either SHA-256 or SHA-384.
*
* This key derivation algorithm uses the following inputs, which must be
* passed in the order given here:
* - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
* - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
* - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
*
* For the application to TLS-1.2 key expansion, the seed is the
* concatenation of ServerHello.Random + ClientHello.Random,
* and the label is "key expansion".
*
* For example, `PSA_ALG_TLS12_PRF(PSA_ALG_SHA256)` represents the
* TLS 1.2 PRF using HMAC-SHA-256.
*
* \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
* #PSA_ALG_IS_HASH(\p hash_alg) is true).
*
* \return The corresponding TLS-1.2 PRF algorithm.
* \return Unspecified if \p hash_alg is not a supported
* hash algorithm.
*/
#define PSA_ALG_TLS12_PRF(hash_alg) \
(PSA_ALG_TLS12_PRF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
/** Whether the specified algorithm is a TLS-1.2 PRF algorithm.
*
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
*
* \return 1 if \c alg is a TLS-1.2 PRF algorithm, 0 otherwise.
* This macro may return either 0 or 1 if \c alg is not a supported
* key derivation algorithm identifier.
*/
#define PSA_ALG_IS_TLS12_PRF(alg) \
(((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PRF_BASE)
#define PSA_ALG_TLS12_PRF_GET_HASH(hkdf_alg) \
(PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
#define PSA_ALG_TLS12_PSK_TO_MS_BASE ((psa_algorithm_t)0x08000300)
/** Macro to build a TLS-1.2 PSK-to-MasterSecret algorithm.
*
* In a pure-PSK handshake in TLS 1.2, the master secret is derived
* from the PreSharedKey (PSK) through the application of padding
* (RFC 4279, Section 2) and the TLS-1.2 PRF (RFC 5246, Section 5).
* The latter is based on HMAC and can be used with either SHA-256
* or SHA-384.
*
* This key derivation algorithm uses the following inputs, which must be
* passed in the order given here:
* - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
* - #PSA_KEY_DERIVATION_INPUT_OTHER_SECRET is the other secret for the
* computation of the premaster secret. This input is optional;
* if omitted, it defaults to a string of null bytes with the same length
* as the secret (PSK) input.
* - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
* - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
*
* For the application to TLS-1.2, the seed (which is
* forwarded to the TLS-1.2 PRF) is the concatenation of the
* ClientHello.Random + ServerHello.Random,
* the label is "master secret" or "extended master secret" and
* the other secret depends on the key exchange specified in the cipher suite:
* - for a plain PSK cipher suite (RFC 4279, Section 2), omit
* PSA_KEY_DERIVATION_INPUT_OTHER_SECRET
* - for a DHE-PSK (RFC 4279, Section 3) or ECDHE-PSK cipher suite
* (RFC 5489, Section 2), the other secret should be the output of the
* PSA_ALG_FFDH or PSA_ALG_ECDH key agreement performed with the peer.
* The recommended way to pass this input is to use a key derivation
* algorithm constructed as
* PSA_ALG_KEY_AGREEMENT(ka_alg, PSA_ALG_TLS12_PSK_TO_MS(hash_alg))
* and to call psa_key_derivation_key_agreement(). Alternatively,
* this input may be an output of `psa_raw_key_agreement()` passed with
* psa_key_derivation_input_bytes(), or an equivalent input passed with
* psa_key_derivation_input_bytes() or psa_key_derivation_input_key().
* - for a RSA-PSK cipher suite (RFC 4279, Section 4), the other secret
* should be the 48-byte client challenge (the PreMasterSecret of
* (RFC 5246, Section 7.4.7.1)) concatenation of the TLS version and
* a 46-byte random string chosen by the client. On the server, this is
* typically an output of psa_asymmetric_decrypt() using
* PSA_ALG_RSA_PKCS1V15_CRYPT, passed to the key derivation operation
* with `psa_key_derivation_input_bytes()`.
*
* For example, `PSA_ALG_TLS12_PSK_TO_MS(PSA_ALG_SHA256)` represents the
* TLS-1.2 PSK to MasterSecret derivation PRF using HMAC-SHA-256.
*
* \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
* #PSA_ALG_IS_HASH(\p hash_alg) is true).
*
* \return The corresponding TLS-1.2 PSK to MS algorithm.
* \return Unspecified if \p hash_alg is not a supported
* hash algorithm.
*/
#define PSA_ALG_TLS12_PSK_TO_MS(hash_alg) \
(PSA_ALG_TLS12_PSK_TO_MS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
/** Whether the specified algorithm is a TLS-1.2 PSK to MS algorithm.
*
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
*
* \return 1 if \c alg is a TLS-1.2 PSK to MS algorithm, 0 otherwise.
* This macro may return either 0 or 1 if \c alg is not a supported
* key derivation algorithm identifier.
*/
#define PSA_ALG_IS_TLS12_PSK_TO_MS(alg) \
(((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PSK_TO_MS_BASE)
#define PSA_ALG_TLS12_PSK_TO_MS_GET_HASH(hkdf_alg) \
(PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
/* This flag indicates whether the key derivation algorithm is suitable for
* use on low-entropy secrets such as password - these algorithms are also
* known as key stretching or password hashing schemes. These are also the
* algorithms that accepts inputs of type #PSA_KEY_DERIVATION_INPUT_PASSWORD.
*
* Those algorithms cannot be combined with a key agreement algorithm.
*/
#define PSA_ALG_KEY_DERIVATION_STRETCHING_FLAG ((psa_algorithm_t)0x00800000)
#define PSA_ALG_PBKDF2_HMAC_BASE ((psa_algorithm_t)0x08800100)
/** Macro to build a PBKDF2-HMAC password hashing / key stretching algorithm.
*
* PBKDF2 is defined by PKCS#5, republished as RFC 8018 (section 5.2).
* This macro specifies the PBKDF2 algorithm constructed using a PRF based on
* HMAC with the specified hash.
* For example, `PSA_ALG_PBKDF2_HMAC(PSA_ALG_SHA256)` specifies PBKDF2
* using the PRF HMAC-SHA-256.
*
* This key derivation algorithm uses the following inputs, which must be
* provided in the following order:
* - #PSA_KEY_DERIVATION_INPUT_COST is the iteration count.
* This input step must be used exactly once.
* - #PSA_KEY_DERIVATION_INPUT_SALT is the salt.
* This input step must be used one or more times; if used several times, the
* inputs will be concatenated. This can be used to build the final salt
* from multiple sources, both public and secret (also known as pepper).
* - #PSA_KEY_DERIVATION_INPUT_PASSWORD is the password to be hashed.
* This input step must be used exactly once.
*
* \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
* #PSA_ALG_IS_HASH(\p hash_alg) is true).
*
* \return The corresponding PBKDF2-HMAC-XXX algorithm.
* \return Unspecified if \p hash_alg is not a supported
* hash algorithm.
*/
#define PSA_ALG_PBKDF2_HMAC(hash_alg) \
(PSA_ALG_PBKDF2_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
/** Whether the specified algorithm is a PBKDF2-HMAC algorithm.
*
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
*
* \return 1 if \c alg is a PBKDF2-HMAC algorithm, 0 otherwise.
* This macro may return either 0 or 1 if \c alg is not a supported
* key derivation algorithm identifier.
*/
#define PSA_ALG_IS_PBKDF2_HMAC(alg) \
(((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_PBKDF2_HMAC_BASE)
/** The PBKDF2-AES-CMAC-PRF-128 password hashing / key stretching algorithm.
*
* PBKDF2 is defined by PKCS#5, republished as RFC 8018 (section 5.2).
* This macro specifies the PBKDF2 algorithm constructed using the
* AES-CMAC-PRF-128 PRF specified by RFC 4615.
*
* This key derivation algorithm uses the same inputs as
* #PSA_ALG_PBKDF2_HMAC() with the same constraints.
*/
#define PSA_ALG_PBKDF2_AES_CMAC_PRF_128 ((psa_algorithm_t)0x08800200)
#define PSA_ALG_KEY_DERIVATION_MASK ((psa_algorithm_t)0xfe00ffff)
#define PSA_ALG_KEY_AGREEMENT_MASK ((psa_algorithm_t)0xffff0000)
/** Macro to build a combined algorithm that chains a key agreement with
* a key derivation.
*
* \param ka_alg A key agreement algorithm (\c PSA_ALG_XXX value such
* that #PSA_ALG_IS_KEY_AGREEMENT(\p ka_alg) is true).
* \param kdf_alg A key derivation algorithm (\c PSA_ALG_XXX value such
* that #PSA_ALG_IS_KEY_DERIVATION(\p kdf_alg) is true).
*
* \return The corresponding key agreement and derivation
* algorithm.
* \return Unspecified if \p ka_alg is not a supported
* key agreement algorithm or \p kdf_alg is not a
* supported key derivation algorithm.
*/
#define PSA_ALG_KEY_AGREEMENT(ka_alg, kdf_alg) \
((ka_alg) | (kdf_alg))
#define PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) \
(((alg) & PSA_ALG_KEY_DERIVATION_MASK) | PSA_ALG_CATEGORY_KEY_DERIVATION)
#define PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) \
(((alg) & PSA_ALG_KEY_AGREEMENT_MASK) | PSA_ALG_CATEGORY_KEY_AGREEMENT)
/** Whether the specified algorithm is a raw key agreement algorithm.
*
* A raw key agreement algorithm is one that does not specify
* a key derivation function.
* Usually, raw key agreement algorithms are constructed directly with
* a \c PSA_ALG_xxx macro while non-raw key agreement algorithms are
* constructed with #PSA_ALG_KEY_AGREEMENT().
*
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
*
* \return 1 if \p alg is a raw key agreement algorithm, 0 otherwise.
* This macro may return either 0 or 1 if \p alg is not a supported
* algorithm identifier.
*/
#define PSA_ALG_IS_RAW_KEY_AGREEMENT(alg) \
(PSA_ALG_IS_KEY_AGREEMENT(alg) && \
PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) == PSA_ALG_CATEGORY_KEY_DERIVATION)
#define PSA_ALG_IS_KEY_DERIVATION_OR_AGREEMENT(alg) \
((PSA_ALG_IS_KEY_DERIVATION(alg) || PSA_ALG_IS_KEY_AGREEMENT(alg)))
/** The finite-field Diffie-Hellman (DH) key agreement algorithm.
*
* The shared secret produced by key agreement is
* `g^{ab}` in big-endian format.
* It is `ceiling(m / 8)` bytes long where `m` is the size of the prime `p`
* in bits.
*/
#define PSA_ALG_FFDH ((psa_algorithm_t)0x09010000)
/** Whether the specified algorithm is a finite field Diffie-Hellman algorithm.
*
* This includes the raw finite field Diffie-Hellman algorithm as well as
* finite-field Diffie-Hellman followed by any supporter key derivation
* algorithm.
*
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
*
* \return 1 if \c alg is a finite field Diffie-Hellman algorithm, 0 otherwise.
* This macro may return either 0 or 1 if \c alg is not a supported
* key agreement algorithm identifier.
*/
#define PSA_ALG_IS_FFDH(alg) \
(PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_FFDH)
/** The elliptic curve Diffie-Hellman (ECDH) key agreement algorithm.
*
* The shared secret produced by key agreement is the x-coordinate of
* the shared secret point. It is always `ceiling(m / 8)` bytes long where
* `m` is the bit size associated with the curve, i.e. the bit size of the
* order of the curve's coordinate field. When `m` is not a multiple of 8,
* the byte containing the most significant bit of the shared secret
* is padded with zero bits. The byte order is either little-endian
* or big-endian depending on the curve type.
*
* - For Montgomery curves (curve types `PSA_ECC_FAMILY_CURVEXXX`),
* the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
* in little-endian byte order.
* The bit size is 448 for Curve448 and 255 for Curve25519.
* - For Weierstrass curves over prime fields (curve types
* `PSA_ECC_FAMILY_SECPXXX` and `PSA_ECC_FAMILY_BRAINPOOL_PXXX`),
* the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
* in big-endian byte order.
* The bit size is `m = ceiling(log_2(p))` for the field `F_p`.
* - For Weierstrass curves over binary fields (curve types
* `PSA_ECC_FAMILY_SECTXXX`),
* the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
* in big-endian byte order.
* The bit size is `m` for the field `F_{2^m}`.
*/
#define PSA_ALG_ECDH ((psa_algorithm_t)0x09020000)
/** Whether the specified algorithm is an elliptic curve Diffie-Hellman
* algorithm.
*
* This includes the raw elliptic curve Diffie-Hellman algorithm as well as
* elliptic curve Diffie-Hellman followed by any supporter key derivation
* algorithm.
*
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
*
* \return 1 if \c alg is an elliptic curve Diffie-Hellman algorithm,
* 0 otherwise.
* This macro may return either 0 or 1 if \c alg is not a supported
* key agreement algorithm identifier.
*/
#define PSA_ALG_IS_ECDH(alg) \
(PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_ECDH)
/** Whether the specified algorithm encoding is a wildcard.
*
* Wildcard values may only be used to set the usage algorithm field in
* a policy, not to perform an operation.
*
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
*
* \return 1 if \c alg is a wildcard algorithm encoding.
* \return 0 if \c alg is a non-wildcard algorithm encoding (suitable for
* an operation).
* \return This macro may return either 0 or 1 if \c alg is not a supported
* algorithm identifier.
*/
#define PSA_ALG_IS_WILDCARD(alg) \
(PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
PSA_ALG_SIGN_GET_HASH(alg) == PSA_ALG_ANY_HASH : \
PSA_ALG_IS_MAC(alg) ? \
(alg & PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG) != 0 : \
PSA_ALG_IS_AEAD(alg) ? \
(alg & PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG) != 0 : \
(alg) == PSA_ALG_ANY_HASH)
/** Get the hash used by a composite algorithm.
*
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
*
* \return The underlying hash algorithm if alg is a composite algorithm that
* uses a hash algorithm.
*
* \return \c 0 if alg is not a composite algorithm that uses a hash.
*/
#define PSA_ALG_GET_HASH(alg) \
(((alg) & 0x000000ff) == 0 ? ((psa_algorithm_t)0) : 0x02000000 | ((alg) & 0x000000ff))
/**@}*/
/** \defgroup key_lifetimes Key lifetimes
* @{
*/
/** The default lifetime for volatile keys.
*
* A volatile key only exists as long as the identifier to it is not destroyed.
* The key material is guaranteed to be erased on a power reset.
*
* A key with this lifetime is typically stored in the RAM area of the
* PSA Crypto subsystem. However this is an implementation choice.
* If an implementation stores data about the key in a non-volatile memory,
* it must release all the resources associated with the key and erase the
* key material if the calling application terminates.
*/
#define PSA_KEY_LIFETIME_VOLATILE ((psa_key_lifetime_t)0x00000000)
/** The default lifetime for persistent keys.
*
* A persistent key remains in storage until it is explicitly destroyed or
* until the corresponding storage area is wiped. This specification does
* not define any mechanism to wipe a storage area, but integrations may
* provide their own mechanism (for example to perform a factory reset,
* to prepare for device refurbishment, or to uninstall an application).
*
* This lifetime value is the default storage area for the calling
* application. Integrations of Mbed TLS may support other persistent lifetimes.
* See ::psa_key_lifetime_t for more information.
*/
#define PSA_KEY_LIFETIME_PERSISTENT ((psa_key_lifetime_t)0x00000001)
/** The persistence level of volatile keys.
*
* See ::psa_key_persistence_t for more information.
*/
#define PSA_KEY_PERSISTENCE_VOLATILE ((psa_key_persistence_t)0x00)
/** The default persistence level for persistent keys.
*
* See ::psa_key_persistence_t for more information.
*/
#define PSA_KEY_PERSISTENCE_DEFAULT ((psa_key_persistence_t)0x01)
/** A persistence level indicating that a key is never destroyed.
*
* See ::psa_key_persistence_t for more information.
*/
#define PSA_KEY_PERSISTENCE_READ_ONLY ((psa_key_persistence_t)0xff)
#define PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) \
((psa_key_persistence_t)((lifetime) & 0x000000ff))
#define PSA_KEY_LIFETIME_GET_LOCATION(lifetime) \
((psa_key_location_t)((lifetime) >> 8))
/** Whether a key lifetime indicates that the key is volatile.
*
* A volatile key is automatically destroyed by the implementation when
* the application instance terminates. In particular, a volatile key
* is automatically destroyed on a power reset of the device.
*
* A key that is not volatile is persistent. Persistent keys are
* preserved until the application explicitly destroys them or until an
* implementation-specific device management event occurs (for example,
* a factory reset).
*
* \param lifetime The lifetime value to query (value of type
* ::psa_key_lifetime_t).
*
* \return \c 1 if the key is volatile, otherwise \c 0.
*/
#define PSA_KEY_LIFETIME_IS_VOLATILE(lifetime) \
(PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) == \
PSA_KEY_PERSISTENCE_VOLATILE)
/** Whether a key lifetime indicates that the key is read-only.
*
* Read-only keys cannot be created or destroyed through the PSA Crypto API.
* They must be created through platform-specific means that bypass the API.
*
* Some platforms may offer ways to destroy read-only keys. For example,
* consider a platform with multiple levels of privilege, where a
* low-privilege application can use a key but is not allowed to destroy
* it, and the platform exposes the key to the application with a read-only
* lifetime. High-privilege code can destroy the key even though the
* application sees the key as read-only.
*
* \param lifetime The lifetime value to query (value of type
* ::psa_key_lifetime_t).
*
* \return \c 1 if the key is read-only, otherwise \c 0.
*/
#define PSA_KEY_LIFETIME_IS_READ_ONLY(lifetime) \
(PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) == \
PSA_KEY_PERSISTENCE_READ_ONLY)
/** Construct a lifetime from a persistence level and a location.
*
* \param persistence The persistence level
* (value of type ::psa_key_persistence_t).
* \param location The location indicator
* (value of type ::psa_key_location_t).
*
* \return The constructed lifetime value.
*/
#define PSA_KEY_LIFETIME_FROM_PERSISTENCE_AND_LOCATION(persistence, location) \
((location) << 8 | (persistence))
/** The local storage area for persistent keys.
*
* This storage area is available on all systems that can store persistent
* keys without delegating the storage to a third-party cryptoprocessor.
*
* See ::psa_key_location_t for more information.
*/
#define PSA_KEY_LOCATION_LOCAL_STORAGE ((psa_key_location_t)0x000000)
#define PSA_KEY_LOCATION_VENDOR_FLAG ((psa_key_location_t)0x800000)
/** The null key identifier.
*/
#define PSA_KEY_ID_NULL ((psa_key_id_t)0)
/** The minimum value for a key identifier chosen by the application.
*/
#define PSA_KEY_ID_USER_MIN ((psa_key_id_t)0x00000001)
/** The maximum value for a key identifier chosen by the application.
*/
#define PSA_KEY_ID_USER_MAX ((psa_key_id_t)0x3fffffff)
/** The minimum value for a key identifier chosen by the implementation.
*/
#define PSA_KEY_ID_VENDOR_MIN ((psa_key_id_t)0x40000000)
/** The maximum value for a key identifier chosen by the implementation.
*/
#define PSA_KEY_ID_VENDOR_MAX ((psa_key_id_t)0x7fffffff)
#if !defined(MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER)
#define MBEDTLS_SVC_KEY_ID_INIT ( (psa_key_id_t)0 )
#define MBEDTLS_SVC_KEY_ID_GET_KEY_ID( id ) ( id )
#define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID( id ) ( 0 )
/** Utility to initialize a key identifier at runtime.
*
* \param unused Unused parameter.
* \param key_id Identifier of the key.
*/
static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make(
unsigned int unused, psa_key_id_t key_id )
{
(void)unused;
return( key_id );
}
/** Compare two key identifiers.
*
* \param id1 First key identifier.
* \param id2 Second key identifier.
*
* \return Non-zero if the two key identifier are equal, zero otherwise.
*/
static inline int mbedtls_svc_key_id_equal( mbedtls_svc_key_id_t id1,
mbedtls_svc_key_id_t id2 )
{
return( id1 == id2 );
}
/** Check whether a key identifier is null.
*
* \param key Key identifier.
*
* \return Non-zero if the key identifier is null, zero otherwise.
*/
static inline int mbedtls_svc_key_id_is_null( mbedtls_svc_key_id_t key )
{
return( key == 0 );
}
#else /* MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */
#define MBEDTLS_SVC_KEY_ID_INIT ( (mbedtls_svc_key_id_t){ 0, 0 } )
#define MBEDTLS_SVC_KEY_ID_GET_KEY_ID( id ) ( ( id ).MBEDTLS_PRIVATE(key_id) )
#define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID( id ) ( ( id ).MBEDTLS_PRIVATE(owner) )
/** Utility to initialize a key identifier at runtime.
*
* \param owner_id Identifier of the key owner.
* \param key_id Identifier of the key.
*/
static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make(
mbedtls_key_owner_id_t owner_id, psa_key_id_t key_id )
{
return( (mbedtls_svc_key_id_t){ .MBEDTLS_PRIVATE(key_id) = key_id,
.MBEDTLS_PRIVATE(owner) = owner_id } );
}
/** Compare two key identifiers.
*
* \param id1 First key identifier.
* \param id2 Second key identifier.
*
* \return Non-zero if the two key identifier are equal, zero otherwise.
*/
static inline int mbedtls_svc_key_id_equal( mbedtls_svc_key_id_t id1,
mbedtls_svc_key_id_t id2 )
{
return( ( id1.MBEDTLS_PRIVATE(key_id) == id2.MBEDTLS_PRIVATE(key_id) ) &&
mbedtls_key_owner_id_equal( id1.MBEDTLS_PRIVATE(owner), id2.MBEDTLS_PRIVATE(owner) ) );
}
/** Check whether a key identifier is null.
*
* \param key Key identifier.
*
* \return Non-zero if the key identifier is null, zero otherwise.
*/
static inline int mbedtls_svc_key_id_is_null( mbedtls_svc_key_id_t key )
{
return( key.MBEDTLS_PRIVATE(key_id) == 0 );
}
#endif /* !MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */
/**@}*/
/** \defgroup policy Key policies
* @{
*/
/** Whether the key may be exported.
*
* A public key or the public part of a key pair may always be exported
* regardless of the value of this permission flag.
*
* If a key does not have export permission, implementations shall not
* allow the key to be exported in plain form from the cryptoprocessor,
* whether through psa_export_key() or through a proprietary interface.
* The key may however be exportable in a wrapped form, i.e. in a form
* where it is encrypted by another key.
*/
#define PSA_KEY_USAGE_EXPORT ((psa_key_usage_t)0x00000001)
/** Whether the key may be copied.
*
* This flag allows the use of psa_copy_key() to make a copy of the key
* with the same policy or a more restrictive policy.
*
* For lifetimes for which the key is located in a secure element which
* enforce the non-exportability of keys, copying a key outside the secure
* element also requires the usage flag #PSA_KEY_USAGE_EXPORT.
* Copying the key inside the secure element is permitted with just
* #PSA_KEY_USAGE_COPY if the secure element supports it.
* For keys with the lifetime #PSA_KEY_LIFETIME_VOLATILE or
* #PSA_KEY_LIFETIME_PERSISTENT, the usage flag #PSA_KEY_USAGE_COPY
* is sufficient to permit the copy.
*/
#define PSA_KEY_USAGE_COPY ((psa_key_usage_t)0x00000002)
/** Whether the key may be used to encrypt a message.
*
* This flag allows the key to be used for a symmetric encryption operation,
* for an AEAD encryption-and-authentication operation,
* or for an asymmetric encryption operation,
* if otherwise permitted by the key's type and policy.
*
* For a key pair, this concerns the public key.
*/
#define PSA_KEY_USAGE_ENCRYPT ((psa_key_usage_t)0x00000100)
/** Whether the key may be used to decrypt a message.
*
* This flag allows the key to be used for a symmetric decryption operation,
* for an AEAD decryption-and-verification operation,
* or for an asymmetric decryption operation,
* if otherwise permitted by the key's type and policy.
*
* For a key pair, this concerns the private key.
*/
#define PSA_KEY_USAGE_DECRYPT ((psa_key_usage_t)0x00000200)
/** Whether the key may be used to sign a message.
*
* This flag allows the key to be used for a MAC calculation operation or for
* an asymmetric message signature operation, if otherwise permitted by the
* key’s type and policy.
*
* For a key pair, this concerns the private key.
*/
#define PSA_KEY_USAGE_SIGN_MESSAGE ((psa_key_usage_t)0x00000400)
/** Whether the key may be used to verify a message.
*
* This flag allows the key to be used for a MAC verification operation or for
* an asymmetric message signature verification operation, if otherwise
* permitted by the key’s type and policy.
*
* For a key pair, this concerns the public key.
*/
#define PSA_KEY_USAGE_VERIFY_MESSAGE ((psa_key_usage_t)0x00000800)
/** Whether the key may be used to sign a message.
*
* This flag allows the key to be used for a MAC calculation operation
* or for an asymmetric signature operation,
* if otherwise permitted by the key's type and policy.
*
* For a key pair, this concerns the private key.
*/
#define PSA_KEY_USAGE_SIGN_HASH ((psa_key_usage_t)0x00001000)
/** Whether the key may be used to verify a message signature.
*
* This flag allows the key to be used for a MAC verification operation
* or for an asymmetric signature verification operation,
* if otherwise permitted by by the key's type and policy.
*
* For a key pair, this concerns the public key.
*/
#define PSA_KEY_USAGE_VERIFY_HASH ((psa_key_usage_t)0x00002000)
/** Whether the key may be used to derive other keys or produce a password
* hash.
*
* This flag allows the key to be used for a key derivation operation or for
* a key agreement operation, if otherwise permitted by by the key's type and
* policy.
*
* If this flag is present on all keys used in calls to
* psa_key_derivation_input_key() for a key derivation operation, then it
* permits calling psa_key_derivation_output_bytes() or
* psa_key_derivation_output_key() at the end of the operation.
*/
#define PSA_KEY_USAGE_DERIVE ((psa_key_usage_t)0x00004000)
/** Whether the key may be used to verify the result of a key derivation,
* including password hashing.
*
* This flag allows the key to be used:
*
* This flag allows the key to be used in a key derivation operation, if
* otherwise permitted by by the key's type and policy.
*
* If this flag is present on all keys used in calls to
* psa_key_derivation_input_key() for a key derivation operation, then it
* permits calling psa_key_derivation_verify_bytes() or
* psa_key_derivation_verify_key() at the end of the operation.
*/
#define PSA_KEY_USAGE_VERIFY_DERIVATION ((psa_key_usage_t)0x00008000)
/**@}*/
/** \defgroup derivation Key derivation
* @{
*/
/** A secret input for key derivation.
*
* This should be a key of type #PSA_KEY_TYPE_DERIVE
* (passed to psa_key_derivation_input_key())
* or the shared secret resulting from a key agreement
* (obtained via psa_key_derivation_key_agreement()).
*
* The secret can also be a direct input (passed to
* key_derivation_input_bytes()). In this case, the derivation operation
* may not be used to derive keys: the operation will only allow
* psa_key_derivation_output_bytes(),
* psa_key_derivation_verify_bytes(), or
* psa_key_derivation_verify_key(), but not
* psa_key_derivation_output_key().
*/
#define PSA_KEY_DERIVATION_INPUT_SECRET ((psa_key_derivation_step_t)0x0101)
/** A low-entropy secret input for password hashing / key stretching.
*
* This is usually a key of type #PSA_KEY_TYPE_PASSWORD (passed to
* psa_key_derivation_input_key()) or a direct input (passed to
* psa_key_derivation_input_bytes()) that is a password or passphrase. It can
* also be high-entropy secret such as a key of type #PSA_KEY_TYPE_DERIVE or
* the shared secret resulting from a key agreement.
*
* The secret can also be a direct input (passed to
* key_derivation_input_bytes()). In this case, the derivation operation
* may not be used to derive keys: the operation will only allow
* psa_key_derivation_output_bytes(),
* psa_key_derivation_verify_bytes(), or
* psa_key_derivation_verify_key(), but not
* psa_key_derivation_output_key().
*/
#define PSA_KEY_DERIVATION_INPUT_PASSWORD ((psa_key_derivation_step_t)0x0102)
/** A high-entropy additional secret input for key derivation.
*
* This is typically the shared secret resulting from a key agreement obtained
* via `psa_key_derivation_key_agreement()`. It may alternatively be a key of
* type `PSA_KEY_TYPE_DERIVE` passed to `psa_key_derivation_input_key()`, or
* a direct input passed to `psa_key_derivation_input_bytes()`.
*/
#define PSA_KEY_DERIVATION_INPUT_OTHER_SECRET \
((psa_key_derivation_step_t)0x0103)
/** A label for key derivation.
*
* This should be a direct input.
* It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
*/
#define PSA_KEY_DERIVATION_INPUT_LABEL ((psa_key_derivation_step_t)0x0201)
/** A salt for key derivation.
*
* This should be a direct input.
* It can also be a key of type #PSA_KEY_TYPE_RAW_DATA or
* #PSA_KEY_TYPE_PEPPER.
*/
#define PSA_KEY_DERIVATION_INPUT_SALT ((psa_key_derivation_step_t)0x0202)
/** An information string for key derivation.
*
* This should be a direct input.
* It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
*/
#define PSA_KEY_DERIVATION_INPUT_INFO ((psa_key_derivation_step_t)0x0203)
/** A seed for key derivation.
*
* This should be a direct input.
* It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
*/
#define PSA_KEY_DERIVATION_INPUT_SEED ((psa_key_derivation_step_t)0x0204)
/** A cost parameter for password hashing / key stretching.
*
* This must be a direct input, passed to psa_key_derivation_input_integer().
*/
#define PSA_KEY_DERIVATION_INPUT_COST ((psa_key_derivation_step_t)0x0205)
/**@}*/
/** \defgroup helper_macros Helper macros
* @{
*/
/* Helper macros */
/** Check if two AEAD algorithm identifiers refer to the same AEAD algorithm
* regardless of the tag length they encode.
*
* \param aead_alg_1 An AEAD algorithm identifier.
* \param aead_alg_2 An AEAD algorithm identifier.
*
* \return 1 if both identifiers refer to the same AEAD algorithm,
* 0 otherwise.
* Unspecified if neither \p aead_alg_1 nor \p aead_alg_2 are
* a supported AEAD algorithm.
*/
#define MBEDTLS_PSA_ALG_AEAD_EQUAL(aead_alg_1, aead_alg_2) \
(!(((aead_alg_1) ^ (aead_alg_2)) & \
~(PSA_ALG_AEAD_TAG_LENGTH_MASK | PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)))
/**@}*/
#endif /* PSA_CRYPTO_VALUES_H */