|  | /* | 
|  | *  Elliptic curve DSA | 
|  | * | 
|  | *  Copyright (C) 2006-2013, Brainspark B.V. | 
|  | * | 
|  | *  This file is part of PolarSSL (http://www.polarssl.org) | 
|  | *  Lead Maintainer: Paul Bakker <polarssl_maintainer at polarssl.org> | 
|  | * | 
|  | *  All rights reserved. | 
|  | * | 
|  | *  This program is free software; you can redistribute it and/or modify | 
|  | *  it under the terms of the GNU General Public License as published by | 
|  | *  the Free Software Foundation; either version 2 of the License, or | 
|  | *  (at your option) any later version. | 
|  | * | 
|  | *  This program is distributed in the hope that it will be useful, | 
|  | *  but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | *  GNU General Public License for more details. | 
|  | * | 
|  | *  You should have received a copy of the GNU General Public License along | 
|  | *  with this program; if not, write to the Free Software Foundation, Inc., | 
|  | *  51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * References: | 
|  | * | 
|  | * SEC1 http://www.secg.org/index.php?action=secg,docs_secg | 
|  | */ | 
|  |  | 
|  | #include "polarssl/config.h" | 
|  |  | 
|  | #if defined(POLARSSL_ECDSA_C) | 
|  |  | 
|  | #include "polarssl/ecdsa.h" | 
|  |  | 
|  | /* | 
|  | * Derive a suitable integer for group grp from a buffer of length len | 
|  | * SEC1 4.1.3 step 5 aka SEC1 4.1.4 step 3 | 
|  | */ | 
|  | static int derive_mpi( const ecp_group *grp, mpi *x, | 
|  | const unsigned char *buf, size_t blen ) | 
|  | { | 
|  | size_t n_size = (grp->nbits + 7) / 8; | 
|  | return( mpi_read_binary( x, buf, blen > n_size ? n_size : blen ) ); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Compute ECDSA signature of a hashed message (SEC1 4.1.3) | 
|  | * Obviously, compared to SEC1 4.1.3, we skip step 4 (hash message) | 
|  | */ | 
|  | int ecdsa_sign( const ecp_group *grp, mpi *r, mpi *s, | 
|  | const mpi *d, const unsigned char *buf, size_t blen, | 
|  | int (*f_rng)(void *, unsigned char *, size_t), void *p_rng ) | 
|  | { | 
|  | int ret, key_tries, sign_tries; | 
|  | ecp_point R; | 
|  | mpi k, e; | 
|  |  | 
|  | ecp_point_init( &R ); | 
|  | mpi_init( &k ); | 
|  | mpi_init( &e ); | 
|  |  | 
|  | sign_tries = 0; | 
|  | do | 
|  | { | 
|  | /* | 
|  | * Steps 1-3: generate a suitable ephemeral keypair | 
|  | */ | 
|  | key_tries = 0; | 
|  | do | 
|  | { | 
|  | MPI_CHK( ecp_gen_keypair( grp, &k, &R, f_rng, p_rng ) ); | 
|  | MPI_CHK( mpi_copy( r, &R.X ) ); | 
|  |  | 
|  | if( key_tries++ > 10 ) | 
|  | return( POLARSSL_ERR_ECP_GENERIC ); | 
|  | } | 
|  | while( mpi_cmp_int( r, 0 ) == 0 ); | 
|  |  | 
|  | /* | 
|  | * Step 5: derive MPI from hashed message | 
|  | */ | 
|  | MPI_CHK( derive_mpi( grp, &e, buf, blen ) ); | 
|  |  | 
|  | /* | 
|  | * Step 6: compute s = (e + r * d) / k mod n | 
|  | */ | 
|  | MPI_CHK( mpi_mul_mpi( s, r, d ) ); | 
|  | MPI_CHK( mpi_add_mpi( &e, &e, s ) ); | 
|  | MPI_CHK( mpi_inv_mod( s, &k, &grp->N ) ); | 
|  | MPI_CHK( mpi_mul_mpi( s, s, &e ) ); | 
|  | MPI_CHK( mpi_mod_mpi( s, s, &grp->N ) ); | 
|  |  | 
|  | if( sign_tries++ > 10 ) | 
|  | return( POLARSSL_ERR_ECP_GENERIC ); | 
|  | } | 
|  | while( mpi_cmp_int( s, 0 ) == 0 ); | 
|  |  | 
|  | cleanup: | 
|  | ecp_point_free( &R ); | 
|  | mpi_free( &k ); | 
|  | mpi_free( &e ); | 
|  |  | 
|  | return( ret ); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Verify ECDSA signature of hashed message (SEC1 4.1.4) | 
|  | * Obviously, compared to SEC1 4.1.3, we skip step 2 (hash message) | 
|  | */ | 
|  | int ecdsa_verify( const ecp_group *grp, | 
|  | const unsigned char *buf, size_t blen, | 
|  | const ecp_point *Q, const mpi *r, const mpi *s) | 
|  | { | 
|  | int ret; | 
|  | mpi e, s_inv, u1, u2; | 
|  | ecp_point R, P; | 
|  |  | 
|  | ecp_point_init( &R ); ecp_point_init( &P ); | 
|  | mpi_init( &e ); mpi_init( &s_inv ); mpi_init( &u1 ); mpi_init( &u2 ); | 
|  |  | 
|  | /* | 
|  | * Step 1: make sure r and s are in range 1..n-1 | 
|  | */ | 
|  | if( mpi_cmp_int( r, 1 ) < 0 || mpi_cmp_mpi( r, &grp->N ) >= 0 || | 
|  | mpi_cmp_int( s, 1 ) < 0 || mpi_cmp_mpi( s, &grp->N ) >= 0 ) | 
|  | { | 
|  | return( POLARSSL_ERR_ECP_BAD_INPUT_DATA ); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Additional precaution: make sure Q is valid | 
|  | */ | 
|  | MPI_CHK( ecp_check_pubkey( grp, Q ) ); | 
|  |  | 
|  | /* | 
|  | * Step 3: derive MPI from hashed message | 
|  | */ | 
|  | MPI_CHK( derive_mpi( grp, &e, buf, blen ) ); | 
|  |  | 
|  | /* | 
|  | * Step 4: u1 = e / s mod n, u2 = r / s mod n | 
|  | */ | 
|  | MPI_CHK( mpi_inv_mod( &s_inv, s, &grp->N ) ); | 
|  |  | 
|  | MPI_CHK( mpi_mul_mpi( &u1, &e, &s_inv ) ); | 
|  | MPI_CHK( mpi_mod_mpi( &u1, &u1, &grp->N ) ); | 
|  |  | 
|  | MPI_CHK( mpi_mul_mpi( &u2, r, &s_inv ) ); | 
|  | MPI_CHK( mpi_mod_mpi( &u2, &u2, &grp->N ) ); | 
|  |  | 
|  | /* | 
|  | * Step 5: R = u1 G + u2 Q | 
|  | */ | 
|  | MPI_CHK( ecp_mul( grp, &R, &u1, &grp->G ) ); | 
|  | MPI_CHK( ecp_mul( grp, &P, &u2, Q ) ); | 
|  | MPI_CHK( ecp_add( grp, &R, &R, &P ) ); | 
|  |  | 
|  | if( ecp_is_zero( &R ) ) | 
|  | return( POLARSSL_ERR_ECP_BAD_INPUT_DATA ); | 
|  |  | 
|  | /* | 
|  | * Step 6: check that xR == r | 
|  | */ | 
|  | if( mpi_cmp_mpi( &R.X, r ) != 0 ) | 
|  | return( POLARSSL_ERR_ECP_BAD_INPUT_DATA ); | 
|  |  | 
|  | cleanup: | 
|  | ecp_point_free( &R ); ecp_point_free( &P ); | 
|  | mpi_free( &e ); mpi_free( &s_inv ); mpi_free( &u1 ); mpi_free( &u2 ); | 
|  |  | 
|  | return( ret ); | 
|  | } | 
|  |  | 
|  |  | 
|  | #if defined(POLARSSL_SELF_TEST) | 
|  |  | 
|  | /* | 
|  | * Checkup routine | 
|  | */ | 
|  | int ecdsa_self_test( int verbose ) | 
|  | { | 
|  | return( verbose++ ); | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | #endif /* defined(POLARSSL_ECDSA_C) */ |