| /** |
| * PSA API multi-part AEAD demonstration. |
| * |
| * This program AEAD-encrypts a message, using the algorithm and key size |
| * specified on the command line, using the multi-part API. |
| * |
| * It comes with a companion program cipher/cipher_aead_demo.c, which does the |
| * same operations with the legacy Cipher API. The goal is that comparing the |
| * two programs will help people migrating to the PSA Crypto API. |
| * |
| * When used with multi-part AEAD operations, the `mbedtls_cipher_context` |
| * serves a triple purpose (1) hold the key, (2) store the algorithm when no |
| * operation is active, and (3) save progress information for the current |
| * operation. With PSA those roles are held by disinct objects: (1) a |
| * psa_key_id_t to hold the key, a (2) psa_algorithm_t to represent the |
| * algorithm, and (3) a psa_operation_t for multi-part progress. |
| * |
| * On the other hand, with PSA, the algorithms encodes the desired tag length; |
| * with Cipher the desired tag length needs to be tracked separately. |
| * |
| * This program and its companion cipher/cipher_aead_demo.c illustrate this by |
| * doing the same sequence of multi-part AEAD computation with both APIs; |
| * looking at the two side by side should make the differences and |
| * similarities clear. |
| */ |
| |
| /* |
| * Copyright The Mbed TLS Contributors |
| * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later |
| */ |
| |
| /* First include Mbed TLS headers to get the Mbed TLS configuration and |
| * platform definitions that we'll use in this program. Also include |
| * standard C headers for functions we'll use here. */ |
| #include "mbedtls/build_info.h" |
| |
| #include "psa/crypto.h" |
| |
| #include <stdlib.h> |
| #include <stdio.h> |
| #include <string.h> |
| |
| /* If the build options we need are not enabled, compile a placeholder. */ |
| #if !defined(MBEDTLS_PSA_CRYPTO_C) || \ |
| !defined(MBEDTLS_AES_C) || !defined(MBEDTLS_GCM_C) || \ |
| !defined(MBEDTLS_CHACHAPOLY_C) || \ |
| defined(MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER) |
| int main(void) |
| { |
| printf("MBEDTLS_PSA_CRYPTO_C and/or " |
| "MBEDTLS_AES_C and/or MBEDTLS_GCM_C and/or " |
| "MBEDTLS_CHACHAPOLY_C not defined, and/or " |
| "MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER defined\r\n"); |
| return 0; |
| } |
| #else |
| |
| /* The real program starts here. */ |
| |
| const char usage[] = |
| "Usage: aead_demo [aes128-gcm|aes256-gcm|aes128-gcm_8|chachapoly]"; |
| |
| /* Dummy data for encryption: IV/nonce, additional data, 2-part message */ |
| const unsigned char iv1[12] = { 0x00 }; |
| const unsigned char add_data1[] = { 0x01, 0x02 }; |
| const unsigned char msg1_part1[] = { 0x03, 0x04 }; |
| const unsigned char msg1_part2[] = { 0x05, 0x06, 0x07 }; |
| |
| /* Dummy data (2nd message) */ |
| const unsigned char iv2[12] = { 0x10 }; |
| const unsigned char add_data2[] = { 0x11, 0x12 }; |
| const unsigned char msg2_part1[] = { 0x13, 0x14 }; |
| const unsigned char msg2_part2[] = { 0x15, 0x16, 0x17 }; |
| |
| /* Maximum total size of the messages */ |
| #define MSG1_SIZE (sizeof(msg1_part1) + sizeof(msg1_part2)) |
| #define MSG2_SIZE (sizeof(msg2_part1) + sizeof(msg2_part2)) |
| #define MSG_MAX_SIZE (MSG1_SIZE > MSG2_SIZE ? MSG1_SIZE : MSG2_SIZE) |
| |
| /* Dummy key material - never do this in production! |
| * 32-byte is enough to all the key size supported by this program. */ |
| const unsigned char key_bytes[32] = { 0x2a }; |
| |
| /* Print the contents of a buffer in hex */ |
| void print_buf(const char *title, uint8_t *buf, size_t len) |
| { |
| printf("%s:", title); |
| for (size_t i = 0; i < len; i++) { |
| printf(" %02x", buf[i]); |
| } |
| printf("\n"); |
| } |
| |
| /* Run a PSA function and bail out if it fails. |
| * The symbolic name of the error code can be recovered using: |
| * programs/psa/psa_constant_name status <value> */ |
| #define PSA_CHECK(expr) \ |
| do \ |
| { \ |
| status = (expr); \ |
| if (status != PSA_SUCCESS) \ |
| { \ |
| printf("Error %d at line %d: %s\n", \ |
| (int) status, \ |
| __LINE__, \ |
| #expr); \ |
| goto exit; \ |
| } \ |
| } \ |
| while (0) |
| |
| /* |
| * Prepare encryption material: |
| * - interpret command-line argument |
| * - set up key |
| * - outputs: key and algorithm, which together hold all the information |
| */ |
| static psa_status_t aead_prepare(const char *info, |
| psa_key_id_t *key, |
| psa_algorithm_t *alg) |
| { |
| psa_status_t status; |
| |
| /* Convert arg to alg + key_bits + key_type */ |
| size_t key_bits; |
| psa_key_type_t key_type; |
| if (strcmp(info, "aes128-gcm") == 0) { |
| *alg = PSA_ALG_GCM; |
| key_bits = 128; |
| key_type = PSA_KEY_TYPE_AES; |
| } else if (strcmp(info, "aes256-gcm") == 0) { |
| *alg = PSA_ALG_GCM; |
| key_bits = 256; |
| key_type = PSA_KEY_TYPE_AES; |
| } else if (strcmp(info, "aes128-gcm_8") == 0) { |
| *alg = PSA_ALG_AEAD_WITH_SHORTENED_TAG(PSA_ALG_GCM, 8); |
| key_bits = 128; |
| key_type = PSA_KEY_TYPE_AES; |
| } else if (strcmp(info, "chachapoly") == 0) { |
| *alg = PSA_ALG_CHACHA20_POLY1305; |
| key_bits = 256; |
| key_type = PSA_KEY_TYPE_CHACHA20; |
| } else { |
| puts(usage); |
| return PSA_ERROR_INVALID_ARGUMENT; |
| } |
| |
| /* Prepare key attributes */ |
| psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT; |
| psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_ENCRYPT); |
| psa_set_key_algorithm(&attributes, *alg); |
| psa_set_key_type(&attributes, key_type); |
| psa_set_key_bits(&attributes, key_bits); // optional |
| |
| /* Import key */ |
| PSA_CHECK(psa_import_key(&attributes, key_bytes, key_bits / 8, key)); |
| |
| exit: |
| return status; |
| } |
| |
| /* |
| * Print out some information. |
| * |
| * All of this information was present in the command line argument, but his |
| * function demonstrates how each piece can be recovered from (key, alg). |
| */ |
| static void aead_info(psa_key_id_t key, psa_algorithm_t alg) |
| { |
| psa_key_attributes_t attr = PSA_KEY_ATTRIBUTES_INIT; |
| (void) psa_get_key_attributes(key, &attr); |
| psa_key_type_t key_type = psa_get_key_type(&attr); |
| size_t key_bits = psa_get_key_bits(&attr); |
| psa_algorithm_t base_alg = PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG(alg); |
| size_t tag_len = PSA_AEAD_TAG_LENGTH(key_type, key_bits, alg); |
| |
| const char *type_str = key_type == PSA_KEY_TYPE_AES ? "AES" |
| : key_type == PSA_KEY_TYPE_CHACHA20 ? "Chacha" |
| : "???"; |
| const char *base_str = base_alg == PSA_ALG_GCM ? "GCM" |
| : base_alg == PSA_ALG_CHACHA20_POLY1305 ? "ChachaPoly" |
| : "???"; |
| |
| printf("%s, %u, %s, %u\n", |
| type_str, (unsigned) key_bits, base_str, (unsigned) tag_len); |
| } |
| |
| /* |
| * Encrypt a 2-part message. |
| */ |
| static int aead_encrypt(psa_key_id_t key, psa_algorithm_t alg, |
| const unsigned char *iv, size_t iv_len, |
| const unsigned char *ad, size_t ad_len, |
| const unsigned char *part1, size_t part1_len, |
| const unsigned char *part2, size_t part2_len) |
| { |
| psa_status_t status; |
| size_t olen, olen_tag; |
| unsigned char out[PSA_AEAD_ENCRYPT_OUTPUT_MAX_SIZE(MSG_MAX_SIZE)]; |
| unsigned char *p = out, *end = out + sizeof(out); |
| unsigned char tag[PSA_AEAD_TAG_MAX_SIZE]; |
| |
| psa_aead_operation_t op = PSA_AEAD_OPERATION_INIT; |
| PSA_CHECK(psa_aead_encrypt_setup(&op, key, alg)); |
| |
| PSA_CHECK(psa_aead_set_nonce(&op, iv, iv_len)); |
| PSA_CHECK(psa_aead_update_ad(&op, ad, ad_len)); |
| PSA_CHECK(psa_aead_update(&op, part1, part1_len, p, end - p, &olen)); |
| p += olen; |
| PSA_CHECK(psa_aead_update(&op, part2, part2_len, p, end - p, &olen)); |
| p += olen; |
| PSA_CHECK(psa_aead_finish(&op, p, end - p, &olen, |
| tag, sizeof(tag), &olen_tag)); |
| p += olen; |
| memcpy(p, tag, olen_tag); |
| p += olen_tag; |
| |
| olen = p - out; |
| print_buf("out", out, olen); |
| |
| exit: |
| psa_aead_abort(&op); // required on errors, harmless on success |
| return status; |
| } |
| |
| /* |
| * AEAD demo: set up key/alg, print out info, encrypt messages. |
| */ |
| static psa_status_t aead_demo(const char *info) |
| { |
| psa_status_t status; |
| |
| psa_key_id_t key; |
| psa_algorithm_t alg; |
| |
| PSA_CHECK(aead_prepare(info, &key, &alg)); |
| |
| aead_info(key, alg); |
| |
| PSA_CHECK(aead_encrypt(key, alg, |
| iv1, sizeof(iv1), add_data1, sizeof(add_data1), |
| msg1_part1, sizeof(msg1_part1), |
| msg1_part2, sizeof(msg1_part2))); |
| PSA_CHECK(aead_encrypt(key, alg, |
| iv2, sizeof(iv2), add_data2, sizeof(add_data2), |
| msg2_part1, sizeof(msg2_part1), |
| msg2_part2, sizeof(msg2_part2))); |
| |
| exit: |
| psa_destroy_key(key); |
| |
| return status; |
| } |
| |
| /* |
| * Main function |
| */ |
| int main(int argc, char **argv) |
| { |
| psa_status_t status = PSA_SUCCESS; |
| |
| /* Check usage */ |
| if (argc != 2) { |
| puts(usage); |
| return EXIT_FAILURE; |
| } |
| |
| /* Initialize the PSA crypto library. */ |
| PSA_CHECK(psa_crypto_init()); |
| |
| /* Run the demo */ |
| PSA_CHECK(aead_demo(argv[1])); |
| |
| /* Deinitialize the PSA crypto library. */ |
| mbedtls_psa_crypto_free(); |
| |
| exit: |
| return status == PSA_SUCCESS ? EXIT_SUCCESS : EXIT_FAILURE; |
| } |
| |
| #endif |