|  | /* | 
|  | *  Elliptic curve DSA | 
|  | * | 
|  | *  Copyright (C) 2006-2014, Brainspark B.V. | 
|  | * | 
|  | *  This file is part of PolarSSL (http://www.polarssl.org) | 
|  | *  Lead Maintainer: Paul Bakker <polarssl_maintainer at polarssl.org> | 
|  | * | 
|  | *  All rights reserved. | 
|  | * | 
|  | *  This program is free software; you can redistribute it and/or modify | 
|  | *  it under the terms of the GNU General Public License as published by | 
|  | *  the Free Software Foundation; either version 2 of the License, or | 
|  | *  (at your option) any later version. | 
|  | * | 
|  | *  This program is distributed in the hope that it will be useful, | 
|  | *  but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | *  GNU General Public License for more details. | 
|  | * | 
|  | *  You should have received a copy of the GNU General Public License along | 
|  | *  with this program; if not, write to the Free Software Foundation, Inc., | 
|  | *  51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * References: | 
|  | * | 
|  | * SEC1 http://www.secg.org/index.php?action=secg,docs_secg | 
|  | */ | 
|  |  | 
|  | #if !defined(POLARSSL_CONFIG_FILE) | 
|  | #include "polarssl/config.h" | 
|  | #else | 
|  | #include POLARSSL_CONFIG_FILE | 
|  | #endif | 
|  |  | 
|  | #if defined(POLARSSL_ECDSA_C) | 
|  |  | 
|  | #include "polarssl/ecdsa.h" | 
|  | #include "polarssl/asn1write.h" | 
|  |  | 
|  | #if defined(POLARSSL_ECDSA_DETERMINISTIC) | 
|  | #include "polarssl/hmac_drbg.h" | 
|  | #endif | 
|  |  | 
|  | #if defined(POLARSSL_ECDSA_DETERMINISTIC) | 
|  | /* | 
|  | * This a hopefully temporary compatibility function. | 
|  | * | 
|  | * Since we can't ensure the caller will pass a valid md_alg before the next | 
|  | * interface change, try to pick up a decent md by size. | 
|  | * | 
|  | * Argument is the minimum size in bytes of the MD output. | 
|  | */ | 
|  | static const md_info_t *md_info_by_size( size_t min_size ) | 
|  | { | 
|  | const md_info_t *md_cur, *md_picked = NULL; | 
|  | const int *md_alg; | 
|  |  | 
|  | for( md_alg = md_list(); *md_alg != 0; md_alg++ ) | 
|  | { | 
|  | if( ( md_cur = md_info_from_type( *md_alg ) ) == NULL || | 
|  | (size_t) md_cur->size < min_size || | 
|  | ( md_picked != NULL && md_cur->size > md_picked->size ) ) | 
|  | continue; | 
|  |  | 
|  | md_picked = md_cur; | 
|  | } | 
|  |  | 
|  | return( md_picked ); | 
|  | } | 
|  | #endif /* POLARSSL_ECDSA_DETERMINISTIC */ | 
|  |  | 
|  | /* | 
|  | * Derive a suitable integer for group grp from a buffer of length len | 
|  | * SEC1 4.1.3 step 5 aka SEC1 4.1.4 step 3 | 
|  | */ | 
|  | static int derive_mpi( const ecp_group *grp, mpi *x, | 
|  | const unsigned char *buf, size_t blen ) | 
|  | { | 
|  | int ret; | 
|  | size_t n_size = ( grp->nbits + 7 ) / 8; | 
|  | size_t use_size = blen > n_size ? n_size : blen; | 
|  |  | 
|  | MPI_CHK( mpi_read_binary( x, buf, use_size ) ); | 
|  | if( use_size * 8 > grp->nbits ) | 
|  | MPI_CHK( mpi_shift_r( x, use_size * 8 - grp->nbits ) ); | 
|  |  | 
|  | /* While at it, reduce modulo N */ | 
|  | if( mpi_cmp_mpi( x, &grp->N ) >= 0 ) | 
|  | MPI_CHK( mpi_sub_mpi( x, x, &grp->N ) ); | 
|  |  | 
|  | cleanup: | 
|  | return( ret ); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Compute ECDSA signature of a hashed message (SEC1 4.1.3) | 
|  | * Obviously, compared to SEC1 4.1.3, we skip step 4 (hash message) | 
|  | */ | 
|  | int ecdsa_sign( ecp_group *grp, mpi *r, mpi *s, | 
|  | const mpi *d, const unsigned char *buf, size_t blen, | 
|  | int (*f_rng)(void *, unsigned char *, size_t), void *p_rng ) | 
|  | { | 
|  | int ret, key_tries, sign_tries, blind_tries; | 
|  | ecp_point R; | 
|  | mpi k, e, t; | 
|  |  | 
|  | /* Fail cleanly on curves such as Curve25519 that can't be used for ECDSA */ | 
|  | if( grp->N.p == NULL ) | 
|  | return( POLARSSL_ERR_ECP_BAD_INPUT_DATA ); | 
|  |  | 
|  | ecp_point_init( &R ); | 
|  | mpi_init( &k ); mpi_init( &e ); mpi_init( &t ); | 
|  |  | 
|  | sign_tries = 0; | 
|  | do | 
|  | { | 
|  | /* | 
|  | * Steps 1-3: generate a suitable ephemeral keypair | 
|  | * and set r = xR mod n | 
|  | */ | 
|  | key_tries = 0; | 
|  | do | 
|  | { | 
|  | MPI_CHK( ecp_gen_keypair( grp, &k, &R, f_rng, p_rng ) ); | 
|  | MPI_CHK( mpi_mod_mpi( r, &R.X, &grp->N ) ); | 
|  |  | 
|  | if( key_tries++ > 10 ) | 
|  | { | 
|  | ret = POLARSSL_ERR_ECP_RANDOM_FAILED; | 
|  | goto cleanup; | 
|  | } | 
|  | } | 
|  | while( mpi_cmp_int( r, 0 ) == 0 ); | 
|  |  | 
|  | /* | 
|  | * Step 5: derive MPI from hashed message | 
|  | */ | 
|  | MPI_CHK( derive_mpi( grp, &e, buf, blen ) ); | 
|  |  | 
|  | /* | 
|  | * Generate a random value to blind inv_mod in next step, | 
|  | * avoiding a potential timing leak. | 
|  | */ | 
|  | blind_tries = 0; | 
|  | do | 
|  | { | 
|  | size_t n_size = ( grp->nbits + 7 ) / 8; | 
|  | MPI_CHK( mpi_fill_random( &t, n_size, f_rng, p_rng ) ); | 
|  | MPI_CHK( mpi_shift_r( &t, 8 * n_size - grp->nbits ) ); | 
|  |  | 
|  | /* See ecp_gen_keypair() */ | 
|  | if( ++blind_tries > 30 ) | 
|  | return( POLARSSL_ERR_ECP_RANDOM_FAILED ); | 
|  | } | 
|  | while( mpi_cmp_int( &t, 1 ) < 0 || | 
|  | mpi_cmp_mpi( &t, &grp->N ) >= 0 ); | 
|  |  | 
|  | /* | 
|  | * Step 6: compute s = (e + r * d) / k = t (e + rd) / (kt) mod n | 
|  | */ | 
|  | MPI_CHK( mpi_mul_mpi( s, r, d ) ); | 
|  | MPI_CHK( mpi_add_mpi( &e, &e, s ) ); | 
|  | MPI_CHK( mpi_mul_mpi( &e, &e, &t ) ); | 
|  | MPI_CHK( mpi_mul_mpi( &k, &k, &t ) ); | 
|  | MPI_CHK( mpi_inv_mod( s, &k, &grp->N ) ); | 
|  | MPI_CHK( mpi_mul_mpi( s, s, &e ) ); | 
|  | MPI_CHK( mpi_mod_mpi( s, s, &grp->N ) ); | 
|  |  | 
|  | if( sign_tries++ > 10 ) | 
|  | { | 
|  | ret = POLARSSL_ERR_ECP_RANDOM_FAILED; | 
|  | goto cleanup; | 
|  | } | 
|  | } | 
|  | while( mpi_cmp_int( s, 0 ) == 0 ); | 
|  |  | 
|  | cleanup: | 
|  | ecp_point_free( &R ); | 
|  | mpi_free( &k ); mpi_free( &e ); mpi_free( &t ); | 
|  |  | 
|  | return( ret ); | 
|  | } | 
|  |  | 
|  | #if defined(POLARSSL_ECDSA_DETERMINISTIC) | 
|  | /* | 
|  | * Deterministic signature wrapper | 
|  | */ | 
|  | int ecdsa_sign_det( ecp_group *grp, mpi *r, mpi *s, | 
|  | const mpi *d, const unsigned char *buf, size_t blen, | 
|  | md_type_t md_alg ) | 
|  | { | 
|  | int ret; | 
|  | hmac_drbg_context rng_ctx; | 
|  | unsigned char data[2 * POLARSSL_ECP_MAX_BYTES]; | 
|  | size_t grp_len = ( grp->nbits + 7 ) / 8; | 
|  | const md_info_t *md_info; | 
|  | mpi h; | 
|  |  | 
|  | /* Temporary fallback */ | 
|  | if( md_alg == POLARSSL_MD_NONE ) | 
|  | md_info = md_info_by_size( blen ); | 
|  | else | 
|  | md_info = md_info_from_type( md_alg ); | 
|  |  | 
|  | if( md_info == NULL ) | 
|  | return( POLARSSL_ERR_ECP_BAD_INPUT_DATA ); | 
|  |  | 
|  | mpi_init( &h ); | 
|  | memset( &rng_ctx, 0, sizeof( hmac_drbg_context ) ); | 
|  |  | 
|  | /* Use private key and message hash (reduced) to initialize HMAC_DRBG */ | 
|  | MPI_CHK( mpi_write_binary( d, data, grp_len ) ); | 
|  | MPI_CHK( derive_mpi( grp, &h, buf, blen ) ); | 
|  | MPI_CHK( mpi_write_binary( &h, data + grp_len, grp_len ) ); | 
|  | hmac_drbg_init_buf( &rng_ctx, md_info, data, 2 * grp_len ); | 
|  |  | 
|  | ret = ecdsa_sign( grp, r, s, d, buf, blen, | 
|  | hmac_drbg_random, &rng_ctx ); | 
|  |  | 
|  | cleanup: | 
|  | hmac_drbg_free( &rng_ctx ); | 
|  | mpi_free( &h ); | 
|  |  | 
|  | return( ret ); | 
|  | } | 
|  | #endif /* POLARSSL_ECDSA_DETERMINISTIC */ | 
|  |  | 
|  | /* | 
|  | * Verify ECDSA signature of hashed message (SEC1 4.1.4) | 
|  | * Obviously, compared to SEC1 4.1.3, we skip step 2 (hash message) | 
|  | */ | 
|  | int ecdsa_verify( ecp_group *grp, | 
|  | const unsigned char *buf, size_t blen, | 
|  | const ecp_point *Q, const mpi *r, const mpi *s) | 
|  | { | 
|  | int ret; | 
|  | mpi e, s_inv, u1, u2; | 
|  | ecp_point R, P; | 
|  |  | 
|  | ecp_point_init( &R ); ecp_point_init( &P ); | 
|  | mpi_init( &e ); mpi_init( &s_inv ); mpi_init( &u1 ); mpi_init( &u2 ); | 
|  |  | 
|  | /* Fail cleanly on curves such as Curve25519 that can't be used for ECDSA */ | 
|  | if( grp->N.p == NULL ) | 
|  | return( POLARSSL_ERR_ECP_BAD_INPUT_DATA ); | 
|  |  | 
|  | /* | 
|  | * Step 1: make sure r and s are in range 1..n-1 | 
|  | */ | 
|  | if( mpi_cmp_int( r, 1 ) < 0 || mpi_cmp_mpi( r, &grp->N ) >= 0 || | 
|  | mpi_cmp_int( s, 1 ) < 0 || mpi_cmp_mpi( s, &grp->N ) >= 0 ) | 
|  | { | 
|  | ret = POLARSSL_ERR_ECP_VERIFY_FAILED; | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Additional precaution: make sure Q is valid | 
|  | */ | 
|  | MPI_CHK( ecp_check_pubkey( grp, Q ) ); | 
|  |  | 
|  | /* | 
|  | * Step 3: derive MPI from hashed message | 
|  | */ | 
|  | MPI_CHK( derive_mpi( grp, &e, buf, blen ) ); | 
|  |  | 
|  | /* | 
|  | * Step 4: u1 = e / s mod n, u2 = r / s mod n | 
|  | */ | 
|  | MPI_CHK( mpi_inv_mod( &s_inv, s, &grp->N ) ); | 
|  |  | 
|  | MPI_CHK( mpi_mul_mpi( &u1, &e, &s_inv ) ); | 
|  | MPI_CHK( mpi_mod_mpi( &u1, &u1, &grp->N ) ); | 
|  |  | 
|  | MPI_CHK( mpi_mul_mpi( &u2, r, &s_inv ) ); | 
|  | MPI_CHK( mpi_mod_mpi( &u2, &u2, &grp->N ) ); | 
|  |  | 
|  | /* | 
|  | * Step 5: R = u1 G + u2 Q | 
|  | * | 
|  | * Since we're not using any secret data, no need to pass a RNG to | 
|  | * ecp_mul() for countermesures. | 
|  | */ | 
|  | MPI_CHK( ecp_mul( grp, &R, &u1, &grp->G, NULL, NULL ) ); | 
|  | MPI_CHK( ecp_mul( grp, &P, &u2, Q, NULL, NULL ) ); | 
|  | MPI_CHK( ecp_add( grp, &R, &R, &P ) ); | 
|  |  | 
|  | if( ecp_is_zero( &R ) ) | 
|  | { | 
|  | ret = POLARSSL_ERR_ECP_VERIFY_FAILED; | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Step 6: convert xR to an integer (no-op) | 
|  | * Step 7: reduce xR mod n (gives v) | 
|  | */ | 
|  | MPI_CHK( mpi_mod_mpi( &R.X, &R.X, &grp->N ) ); | 
|  |  | 
|  | /* | 
|  | * Step 8: check if v (that is, R.X) is equal to r | 
|  | */ | 
|  | if( mpi_cmp_mpi( &R.X, r ) != 0 ) | 
|  | { | 
|  | ret = POLARSSL_ERR_ECP_VERIFY_FAILED; | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | cleanup: | 
|  | ecp_point_free( &R ); ecp_point_free( &P ); | 
|  | mpi_free( &e ); mpi_free( &s_inv ); mpi_free( &u1 ); mpi_free( &u2 ); | 
|  |  | 
|  | return( ret ); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * RFC 4492 page 20: | 
|  | * | 
|  | *     Ecdsa-Sig-Value ::= SEQUENCE { | 
|  | *         r       INTEGER, | 
|  | *         s       INTEGER | 
|  | *     } | 
|  | * | 
|  | * Size is at most | 
|  | *    1 (tag) + 1 (len) + 1 (initial 0) + ECP_MAX_BYTES for each of r and s, | 
|  | *    twice that + 1 (tag) + 2 (len) for the sequence | 
|  | * (assuming ECP_MAX_BYTES is less than 126 for r and s, | 
|  | * and less than 124 (total len <= 255) for the sequence) | 
|  | */ | 
|  | #if POLARSSL_ECP_MAX_BYTES > 124 | 
|  | #error "POLARSSL_ECP_MAX_BYTES bigger than expected, please fix MAX_SIG_LEN" | 
|  | #endif | 
|  | #define MAX_SIG_LEN ( 3 + 2 * ( 2 + POLARSSL_ECP_MAX_BYTES ) ) | 
|  |  | 
|  | /* | 
|  | * Convert a signature (given by context) to ASN.1 | 
|  | */ | 
|  | static int ecdsa_signature_to_asn1( ecdsa_context *ctx, | 
|  | unsigned char *sig, size_t *slen ) | 
|  | { | 
|  | int ret; | 
|  | unsigned char buf[MAX_SIG_LEN]; | 
|  | unsigned char *p = buf + sizeof( buf ); | 
|  | size_t len = 0; | 
|  |  | 
|  | ASN1_CHK_ADD( len, asn1_write_mpi( &p, buf, &ctx->s ) ); | 
|  | ASN1_CHK_ADD( len, asn1_write_mpi( &p, buf, &ctx->r ) ); | 
|  |  | 
|  | ASN1_CHK_ADD( len, asn1_write_len( &p, buf, len ) ); | 
|  | ASN1_CHK_ADD( len, asn1_write_tag( &p, buf, | 
|  | ASN1_CONSTRUCTED | ASN1_SEQUENCE ) ); | 
|  |  | 
|  | memcpy( sig, p, len ); | 
|  | *slen = len; | 
|  |  | 
|  | return( 0 ); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Compute and write signature | 
|  | */ | 
|  | int ecdsa_write_signature( ecdsa_context *ctx, | 
|  | const unsigned char *hash, size_t hlen, | 
|  | unsigned char *sig, size_t *slen, | 
|  | int (*f_rng)(void *, unsigned char *, size_t), | 
|  | void *p_rng ) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if( ( ret = ecdsa_sign( &ctx->grp, &ctx->r, &ctx->s, &ctx->d, | 
|  | hash, hlen, f_rng, p_rng ) ) != 0 ) | 
|  | { | 
|  | return( ret ); | 
|  | } | 
|  |  | 
|  | return( ecdsa_signature_to_asn1( ctx, sig, slen ) ); | 
|  | } | 
|  |  | 
|  | #if defined(POLARSSL_ECDSA_DETERMINISTIC) | 
|  | /* | 
|  | * Compute and write signature deterministically | 
|  | */ | 
|  | int ecdsa_write_signature_det( ecdsa_context *ctx, | 
|  | const unsigned char *hash, size_t hlen, | 
|  | unsigned char *sig, size_t *slen, | 
|  | md_type_t md_alg ) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if( ( ret = ecdsa_sign_det( &ctx->grp, &ctx->r, &ctx->s, &ctx->d, | 
|  | hash, hlen, md_alg ) ) != 0 ) | 
|  | { | 
|  | return( ret ); | 
|  | } | 
|  |  | 
|  | return( ecdsa_signature_to_asn1( ctx, sig, slen ) ); | 
|  | } | 
|  | #endif /* POLARSSL_ECDSA_DETERMINISTIC */ | 
|  |  | 
|  | /* | 
|  | * Read and check signature | 
|  | */ | 
|  | int ecdsa_read_signature( ecdsa_context *ctx, | 
|  | const unsigned char *hash, size_t hlen, | 
|  | const unsigned char *sig, size_t slen ) | 
|  | { | 
|  | int ret; | 
|  | unsigned char *p = (unsigned char *) sig; | 
|  | const unsigned char *end = sig + slen; | 
|  | size_t len; | 
|  |  | 
|  | if( ( ret = asn1_get_tag( &p, end, &len, | 
|  | ASN1_CONSTRUCTED | ASN1_SEQUENCE ) ) != 0 ) | 
|  | { | 
|  | return( POLARSSL_ERR_ECP_BAD_INPUT_DATA + ret ); | 
|  | } | 
|  |  | 
|  | if( p + len != end ) | 
|  | return( POLARSSL_ERR_ECP_BAD_INPUT_DATA + | 
|  | POLARSSL_ERR_ASN1_LENGTH_MISMATCH ); | 
|  |  | 
|  | if( ( ret = asn1_get_mpi( &p, end, &ctx->r ) ) != 0 || | 
|  | ( ret = asn1_get_mpi( &p, end, &ctx->s ) ) != 0 ) | 
|  | return( POLARSSL_ERR_ECP_BAD_INPUT_DATA + ret ); | 
|  |  | 
|  | if( ( ret = ecdsa_verify( &ctx->grp, hash, hlen, | 
|  | &ctx->Q, &ctx->r, &ctx->s ) ) != 0 ) | 
|  | return( ret ); | 
|  |  | 
|  | if( p != end ) | 
|  | return( POLARSSL_ERR_ECP_SIG_LEN_MISMATCH ); | 
|  |  | 
|  | return( 0 ); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Generate key pair | 
|  | */ | 
|  | int ecdsa_genkey( ecdsa_context *ctx, ecp_group_id gid, | 
|  | int (*f_rng)(void *, unsigned char *, size_t), void *p_rng ) | 
|  | { | 
|  | return( ecp_use_known_dp( &ctx->grp, gid ) || | 
|  | ecp_gen_keypair( &ctx->grp, &ctx->d, &ctx->Q, f_rng, p_rng ) ); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set context from an ecp_keypair | 
|  | */ | 
|  | int ecdsa_from_keypair( ecdsa_context *ctx, const ecp_keypair *key ) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if( ( ret = ecp_group_copy( &ctx->grp, &key->grp ) ) != 0 || | 
|  | ( ret = mpi_copy( &ctx->d, &key->d ) ) != 0 || | 
|  | ( ret = ecp_copy( &ctx->Q, &key->Q ) ) != 0 ) | 
|  | { | 
|  | ecdsa_free( ctx ); | 
|  | } | 
|  |  | 
|  | return( ret ); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialize context | 
|  | */ | 
|  | void ecdsa_init( ecdsa_context *ctx ) | 
|  | { | 
|  | ecp_group_init( &ctx->grp ); | 
|  | mpi_init( &ctx->d ); | 
|  | ecp_point_init( &ctx->Q ); | 
|  | mpi_init( &ctx->r ); | 
|  | mpi_init( &ctx->s ); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Free context | 
|  | */ | 
|  | void ecdsa_free( ecdsa_context *ctx ) | 
|  | { | 
|  | ecp_group_free( &ctx->grp ); | 
|  | mpi_free( &ctx->d ); | 
|  | ecp_point_free( &ctx->Q ); | 
|  | mpi_free( &ctx->r ); | 
|  | mpi_free( &ctx->s ); | 
|  | } | 
|  |  | 
|  | #if defined(POLARSSL_SELF_TEST) | 
|  |  | 
|  | /* | 
|  | * Checkup routine | 
|  | */ | 
|  | int ecdsa_self_test( int verbose ) | 
|  | { | 
|  | ((void) verbose ); | 
|  | return( 0 ); | 
|  | } | 
|  |  | 
|  | #endif /* POLARSSL_SELF_TEST */ | 
|  |  | 
|  | #endif /* POLARSSL_ECDSA_C */ |