| /* |
| * Helper functions for the RSA module |
| * |
| * Copyright The Mbed TLS Contributors |
| * SPDX-License-Identifier: Apache-2.0 |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); you may |
| * not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT |
| * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| * |
| */ |
| |
| #include "common.h" |
| |
| #if defined(MBEDTLS_RSA_C) |
| |
| #include "mbedtls/rsa.h" |
| #include "mbedtls/bignum.h" |
| #include "mbedtls/rsa_internal.h" |
| |
| /* |
| * Compute RSA prime factors from public and private exponents |
| * |
| * Summary of algorithm: |
| * Setting F := lcm(P-1,Q-1), the idea is as follows: |
| * |
| * (a) For any 1 <= X < N with gcd(X,N)=1, we have X^F = 1 modulo N, so X^(F/2) |
| * is a square root of 1 in Z/NZ. Since Z/NZ ~= Z/PZ x Z/QZ by CRT and the |
| * square roots of 1 in Z/PZ and Z/QZ are +1 and -1, this leaves the four |
| * possibilities X^(F/2) = (+-1, +-1). If it happens that X^(F/2) = (-1,+1) |
| * or (+1,-1), then gcd(X^(F/2) + 1, N) will be equal to one of the prime |
| * factors of N. |
| * |
| * (b) If we don't know F/2 but (F/2) * K for some odd (!) K, then the same |
| * construction still applies since (-)^K is the identity on the set of |
| * roots of 1 in Z/NZ. |
| * |
| * The public and private key primitives (-)^E and (-)^D are mutually inverse |
| * bijections on Z/NZ if and only if (-)^(DE) is the identity on Z/NZ, i.e. |
| * if and only if DE - 1 is a multiple of F, say DE - 1 = F * L. |
| * Splitting L = 2^t * K with K odd, we have |
| * |
| * DE - 1 = FL = (F/2) * (2^(t+1)) * K, |
| * |
| * so (F / 2) * K is among the numbers |
| * |
| * (DE - 1) >> 1, (DE - 1) >> 2, ..., (DE - 1) >> ord |
| * |
| * where ord is the order of 2 in (DE - 1). |
| * We can therefore iterate through these numbers apply the construction |
| * of (a) and (b) above to attempt to factor N. |
| * |
| */ |
| int mbedtls_rsa_deduce_primes( mbedtls_mpi const *N, |
| mbedtls_mpi const *E, mbedtls_mpi const *D, |
| mbedtls_mpi *P, mbedtls_mpi *Q ) |
| { |
| int ret = 0; |
| |
| uint16_t attempt; /* Number of current attempt */ |
| uint16_t iter; /* Number of squares computed in the current attempt */ |
| |
| uint16_t order; /* Order of 2 in DE - 1 */ |
| |
| mbedtls_mpi T; /* Holds largest odd divisor of DE - 1 */ |
| mbedtls_mpi K; /* Temporary holding the current candidate */ |
| |
| const unsigned char primes[] = { 2, |
| 3, 5, 7, 11, 13, 17, 19, 23, |
| 29, 31, 37, 41, 43, 47, 53, 59, |
| 61, 67, 71, 73, 79, 83, 89, 97, |
| 101, 103, 107, 109, 113, 127, 131, 137, |
| 139, 149, 151, 157, 163, 167, 173, 179, |
| 181, 191, 193, 197, 199, 211, 223, 227, |
| 229, 233, 239, 241, 251 |
| }; |
| |
| const size_t num_primes = sizeof( primes ) / sizeof( *primes ); |
| |
| if( P == NULL || Q == NULL || P->p != NULL || Q->p != NULL ) |
| return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA ); |
| |
| if( mbedtls_mpi_cmp_int( N, 0 ) <= 0 || |
| mbedtls_mpi_cmp_int( D, 1 ) <= 0 || |
| mbedtls_mpi_cmp_mpi( D, N ) >= 0 || |
| mbedtls_mpi_cmp_int( E, 1 ) <= 0 || |
| mbedtls_mpi_cmp_mpi( E, N ) >= 0 ) |
| { |
| return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA ); |
| } |
| |
| /* |
| * Initializations and temporary changes |
| */ |
| |
| mbedtls_mpi_init( &K ); |
| mbedtls_mpi_init( &T ); |
| |
| /* T := DE - 1 */ |
| MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T, D, E ) ); |
| MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &T, &T, 1 ) ); |
| |
| if( ( order = (uint16_t) mbedtls_mpi_lsb( &T ) ) == 0 ) |
| { |
| ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA; |
| goto cleanup; |
| } |
| |
| /* After this operation, T holds the largest odd divisor of DE - 1. */ |
| MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &T, order ) ); |
| |
| /* |
| * Actual work |
| */ |
| |
| /* Skip trying 2 if N == 1 mod 8 */ |
| attempt = 0; |
| if( N->p[0] % 8 == 1 ) |
| attempt = 1; |
| |
| for( ; attempt < num_primes; ++attempt ) |
| { |
| mbedtls_mpi_lset( &K, primes[attempt] ); |
| |
| /* Check if gcd(K,N) = 1 */ |
| MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( P, &K, N ) ); |
| if( mbedtls_mpi_cmp_int( P, 1 ) != 0 ) |
| continue; |
| |
| /* Go through K^T + 1, K^(2T) + 1, K^(4T) + 1, ... |
| * and check whether they have nontrivial GCD with N. */ |
| MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &K, &K, &T, N, |
| Q /* temporarily use Q for storing Montgomery |
| * multiplication helper values */ ) ); |
| |
| for( iter = 1; iter <= order; ++iter ) |
| { |
| /* If we reach 1 prematurely, there's no point |
| * in continuing to square K */ |
| if( mbedtls_mpi_cmp_int( &K, 1 ) == 0 ) |
| break; |
| |
| MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( &K, &K, 1 ) ); |
| MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( P, &K, N ) ); |
| |
| if( mbedtls_mpi_cmp_int( P, 1 ) == 1 && |
| mbedtls_mpi_cmp_mpi( P, N ) == -1 ) |
| { |
| /* |
| * Have found a nontrivial divisor P of N. |
| * Set Q := N / P. |
| */ |
| |
| MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( Q, NULL, N, P ) ); |
| goto cleanup; |
| } |
| |
| MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, &K, 1 ) ); |
| MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, &K, &K ) ); |
| MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &K, &K, N ) ); |
| } |
| |
| /* |
| * If we get here, then either we prematurely aborted the loop because |
| * we reached 1, or K holds primes[attempt]^(DE - 1) mod N, which must |
| * be 1 if D,E,N were consistent. |
| * Check if that's the case and abort if not, to avoid very long, |
| * yet eventually failing, computations if N,D,E were not sane. |
| */ |
| if( mbedtls_mpi_cmp_int( &K, 1 ) != 0 ) |
| { |
| break; |
| } |
| } |
| |
| ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA; |
| |
| cleanup: |
| |
| mbedtls_mpi_free( &K ); |
| mbedtls_mpi_free( &T ); |
| return( ret ); |
| } |
| |
| /* |
| * Given P, Q and the public exponent E, deduce D. |
| * This is essentially a modular inversion. |
| */ |
| int mbedtls_rsa_deduce_private_exponent( mbedtls_mpi const *P, |
| mbedtls_mpi const *Q, |
| mbedtls_mpi const *E, |
| mbedtls_mpi *D ) |
| { |
| int ret = 0; |
| mbedtls_mpi K, L; |
| |
| if( D == NULL || mbedtls_mpi_cmp_int( D, 0 ) != 0 ) |
| return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA ); |
| |
| if( mbedtls_mpi_cmp_int( P, 1 ) <= 0 || |
| mbedtls_mpi_cmp_int( Q, 1 ) <= 0 || |
| mbedtls_mpi_cmp_int( E, 0 ) == 0 ) |
| { |
| return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA ); |
| } |
| |
| mbedtls_mpi_init( &K ); |
| mbedtls_mpi_init( &L ); |
| |
| /* Temporarily put K := P-1 and L := Q-1 */ |
| MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, P, 1 ) ); |
| MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &L, Q, 1 ) ); |
| |
| /* Temporarily put D := gcd(P-1, Q-1) */ |
| MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( D, &K, &L ) ); |
| |
| /* K := LCM(P-1, Q-1) */ |
| MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, &K, &L ) ); |
| MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( &K, NULL, &K, D ) ); |
| |
| /* Compute modular inverse of E in LCM(P-1, Q-1) */ |
| MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( D, E, &K ) ); |
| |
| cleanup: |
| |
| mbedtls_mpi_free( &K ); |
| mbedtls_mpi_free( &L ); |
| |
| return( ret ); |
| } |
| |
| /* |
| * Check that RSA CRT parameters are in accordance with core parameters. |
| */ |
| int mbedtls_rsa_validate_crt( const mbedtls_mpi *P, const mbedtls_mpi *Q, |
| const mbedtls_mpi *D, const mbedtls_mpi *DP, |
| const mbedtls_mpi *DQ, const mbedtls_mpi *QP ) |
| { |
| int ret = 0; |
| |
| mbedtls_mpi K, L; |
| mbedtls_mpi_init( &K ); |
| mbedtls_mpi_init( &L ); |
| |
| /* Check that DP - D == 0 mod P - 1 */ |
| if( DP != NULL ) |
| { |
| if( P == NULL ) |
| { |
| ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA; |
| goto cleanup; |
| } |
| |
| MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, P, 1 ) ); |
| MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &L, DP, D ) ); |
| MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &L, &L, &K ) ); |
| |
| if( mbedtls_mpi_cmp_int( &L, 0 ) != 0 ) |
| { |
| ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; |
| goto cleanup; |
| } |
| } |
| |
| /* Check that DQ - D == 0 mod Q - 1 */ |
| if( DQ != NULL ) |
| { |
| if( Q == NULL ) |
| { |
| ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA; |
| goto cleanup; |
| } |
| |
| MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, Q, 1 ) ); |
| MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &L, DQ, D ) ); |
| MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &L, &L, &K ) ); |
| |
| if( mbedtls_mpi_cmp_int( &L, 0 ) != 0 ) |
| { |
| ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; |
| goto cleanup; |
| } |
| } |
| |
| /* Check that QP * Q - 1 == 0 mod P */ |
| if( QP != NULL ) |
| { |
| if( P == NULL || Q == NULL ) |
| { |
| ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA; |
| goto cleanup; |
| } |
| |
| MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, QP, Q ) ); |
| MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, &K, 1 ) ); |
| MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &K, &K, P ) ); |
| if( mbedtls_mpi_cmp_int( &K, 0 ) != 0 ) |
| { |
| ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; |
| goto cleanup; |
| } |
| } |
| |
| cleanup: |
| |
| /* Wrap MPI error codes by RSA check failure error code */ |
| if( ret != 0 && |
| ret != MBEDTLS_ERR_RSA_KEY_CHECK_FAILED && |
| ret != MBEDTLS_ERR_RSA_BAD_INPUT_DATA ) |
| { |
| ret += MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; |
| } |
| |
| mbedtls_mpi_free( &K ); |
| mbedtls_mpi_free( &L ); |
| |
| return( ret ); |
| } |
| |
| /* |
| * Check that core RSA parameters are sane. |
| */ |
| int mbedtls_rsa_validate_params( const mbedtls_mpi *N, const mbedtls_mpi *P, |
| const mbedtls_mpi *Q, const mbedtls_mpi *D, |
| const mbedtls_mpi *E, |
| int (*f_rng)(void *, unsigned char *, size_t), |
| void *p_rng ) |
| { |
| int ret = 0; |
| mbedtls_mpi K, L; |
| |
| mbedtls_mpi_init( &K ); |
| mbedtls_mpi_init( &L ); |
| |
| /* |
| * Step 1: If PRNG provided, check that P and Q are prime |
| */ |
| |
| #if defined(MBEDTLS_GENPRIME) |
| /* |
| * When generating keys, the strongest security we support aims for an error |
| * rate of at most 2^-100 and we are aiming for the same certainty here as |
| * well. |
| */ |
| if( f_rng != NULL && P != NULL && |
| ( ret = mbedtls_mpi_is_prime_ext( P, 50, f_rng, p_rng ) ) != 0 ) |
| { |
| ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; |
| goto cleanup; |
| } |
| |
| if( f_rng != NULL && Q != NULL && |
| ( ret = mbedtls_mpi_is_prime_ext( Q, 50, f_rng, p_rng ) ) != 0 ) |
| { |
| ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; |
| goto cleanup; |
| } |
| #else |
| ((void) f_rng); |
| ((void) p_rng); |
| #endif /* MBEDTLS_GENPRIME */ |
| |
| /* |
| * Step 2: Check that 1 < N = P * Q |
| */ |
| |
| if( P != NULL && Q != NULL && N != NULL ) |
| { |
| MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, P, Q ) ); |
| if( mbedtls_mpi_cmp_int( N, 1 ) <= 0 || |
| mbedtls_mpi_cmp_mpi( &K, N ) != 0 ) |
| { |
| ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; |
| goto cleanup; |
| } |
| } |
| |
| /* |
| * Step 3: Check and 1 < D, E < N if present. |
| */ |
| |
| if( N != NULL && D != NULL && E != NULL ) |
| { |
| if ( mbedtls_mpi_cmp_int( D, 1 ) <= 0 || |
| mbedtls_mpi_cmp_int( E, 1 ) <= 0 || |
| mbedtls_mpi_cmp_mpi( D, N ) >= 0 || |
| mbedtls_mpi_cmp_mpi( E, N ) >= 0 ) |
| { |
| ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; |
| goto cleanup; |
| } |
| } |
| |
| /* |
| * Step 4: Check that D, E are inverse modulo P-1 and Q-1 |
| */ |
| |
| if( P != NULL && Q != NULL && D != NULL && E != NULL ) |
| { |
| if( mbedtls_mpi_cmp_int( P, 1 ) <= 0 || |
| mbedtls_mpi_cmp_int( Q, 1 ) <= 0 ) |
| { |
| ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; |
| goto cleanup; |
| } |
| |
| /* Compute DE-1 mod P-1 */ |
| MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, D, E ) ); |
| MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, &K, 1 ) ); |
| MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &L, P, 1 ) ); |
| MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &K, &K, &L ) ); |
| if( mbedtls_mpi_cmp_int( &K, 0 ) != 0 ) |
| { |
| ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; |
| goto cleanup; |
| } |
| |
| /* Compute DE-1 mod Q-1 */ |
| MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, D, E ) ); |
| MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, &K, 1 ) ); |
| MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &L, Q, 1 ) ); |
| MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &K, &K, &L ) ); |
| if( mbedtls_mpi_cmp_int( &K, 0 ) != 0 ) |
| { |
| ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; |
| goto cleanup; |
| } |
| } |
| |
| cleanup: |
| |
| mbedtls_mpi_free( &K ); |
| mbedtls_mpi_free( &L ); |
| |
| /* Wrap MPI error codes by RSA check failure error code */ |
| if( ret != 0 && ret != MBEDTLS_ERR_RSA_KEY_CHECK_FAILED ) |
| { |
| ret += MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; |
| } |
| |
| return( ret ); |
| } |
| |
| int mbedtls_rsa_deduce_crt( const mbedtls_mpi *P, const mbedtls_mpi *Q, |
| const mbedtls_mpi *D, mbedtls_mpi *DP, |
| mbedtls_mpi *DQ, mbedtls_mpi *QP ) |
| { |
| int ret = 0; |
| mbedtls_mpi K; |
| mbedtls_mpi_init( &K ); |
| |
| /* DP = D mod P-1 */ |
| if( DP != NULL ) |
| { |
| MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, P, 1 ) ); |
| MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( DP, D, &K ) ); |
| } |
| |
| /* DQ = D mod Q-1 */ |
| if( DQ != NULL ) |
| { |
| MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, Q, 1 ) ); |
| MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( DQ, D, &K ) ); |
| } |
| |
| /* QP = Q^{-1} mod P */ |
| if( QP != NULL ) |
| { |
| MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( QP, Q, P ) ); |
| } |
| |
| cleanup: |
| mbedtls_mpi_free( &K ); |
| |
| return( ret ); |
| } |
| |
| #endif /* MBEDTLS_RSA_C */ |