blob: 18bd66c812426102ed0c6a38146fd493043d34c1 [file] [log] [blame]
/**
* Cipher API multi-part AEAD demonstration.
*
* This program AEAD-encrypts a message, using the algorithm and key size
* specified on the command line, using the multi-part API.
*
* It comes with a companion program psa/aead_demo.c, which does the same
* operations with the PSA Crypto API. The goal is that comparing the two
* programs will help people migrating to the PSA Crypto API.
*
* When used with multi-part AEAD operations, the `mbedtls_cipher_context`
* serves a triple purpose (1) hold the key, (2) store the algorithm when no
* operation is active, and (3) save progress information for the current
* operation. With PSA those roles are held by disinct objects: (1) a
* psa_key_id_t to hold the key, a (2) psa_algorithm_t to represent the
* algorithm, and (3) a psa_operation_t for multi-part progress.
*
* On the other hand, with PSA, the algorithms encodes the desired tag length;
* with Cipher the desired tag length needs to be tracked separately.
*
* This program and its companion psa/aead_demo.c illustrate this by doing the
* same sequence of multi-part AEAD computation with both APIs; looking at the
* two side by side should make the differences and similarities clear.
*/
/*
* Copyright The Mbed TLS Contributors
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* First include Mbed TLS headers to get the Mbed TLS configuration and
* platform definitions that we'll use in this program. Also include
* standard C headers for functions we'll use here. */
#include "mbedtls/build_info.h"
#include "mbedtls/cipher.h"
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
/* If the build options we need are not enabled, compile a placeholder. */
#if !defined(MBEDTLS_CIPHER_C) || \
!defined(MBEDTLS_AES_C) || !defined(MBEDTLS_GCM_C) || \
!defined(MBEDTLS_CHACHAPOLY_C)
int main( void )
{
printf( "MBEDTLS_MD_C and/or "
"MBEDTLS_AES_C and/or MBEDTLS_GCM_C and/or "
"MBEDTLS_CHACHAPOLY_C not defined\r\n" );
return( 0 );
}
#else
/* The real program starts here. */
const char usage[] =
"Usage: cipher_aead_demo [aes128-gcm|aes256-gcm|aes128-gcm_8|chachapoly]";
/* Dummy data for encryption: IV/nonce, additional data, 2-part message */
const unsigned char iv1[12] = { 0x00 };
const unsigned char add_data1[] = { 0x01, 0x02 };
const unsigned char msg1_part1[] = { 0x03, 0x04 };
const unsigned char msg1_part2[] = { 0x05, 0x06, 0x07 };
/* Dummy data (2nd message) */
const unsigned char iv2[12] = { 0x10 };
const unsigned char add_data2[] = { 0x11, 0x12 };
const unsigned char msg2_part1[] = { 0x13, 0x14 };
const unsigned char msg2_part2[] = { 0x15, 0x16, 0x17 };
/* Maximum total size of the messages */
#define MSG1_SIZE ( sizeof( msg1_part1 ) + sizeof( msg1_part2 ) )
#define MSG2_SIZE ( sizeof( msg2_part1 ) + sizeof( msg2_part2 ) )
#define MSG_MAX_SIZE ( MSG1_SIZE > MSG2_SIZE ? MSG1_SIZE : MSG2_SIZE )
/* Dummy key material - never do this in production!
* 32-byte is enough to all the key size supported by this program. */
const unsigned char key_bytes[32] = { 0x2a };
/* Print the contents of a buffer in hex */
void print_buf( const char *title, unsigned char *buf, size_t len )
{
printf( "%s:", title );
for( size_t i = 0; i < len; i++ )
printf( " %02x", buf[i] );
printf( "\n" );
}
/* Run an Mbed TLS function and bail out if it fails.
* A string description of the error code can be recovered with:
* programs/util/strerror <value> */
#define CHK( expr ) \
do \
{ \
ret = ( expr ); \
if( ret != 0 ) \
{ \
printf( "Error %d at line %d: %s\n", \
ret, \
__LINE__, \
#expr ); \
goto exit; \
} \
} while( 0 )
/*
* Prepare encryption material:
* - interpret command-line argument
* - set up key
* - outputs: context and tag length, which together hold all the information
*/
static int aead_prepare( const char *info,
mbedtls_cipher_context_t *ctx,
size_t *tag_len )
{
int ret;
/* Convert arg to type + tag_len */
mbedtls_cipher_type_t type;
if( strcmp( info, "aes128-gcm" ) == 0 ) {
type = MBEDTLS_CIPHER_AES_128_GCM;
*tag_len = 16;
} else if( strcmp( info, "aes256-gcm" ) == 0 ) {
type = MBEDTLS_CIPHER_AES_256_GCM;
*tag_len = 16;
} else if( strcmp( info, "aes128-gcm_8" ) == 0 ) {
type = MBEDTLS_CIPHER_AES_128_GCM;
*tag_len = 8;
} else if( strcmp( info, "chachapoly" ) == 0 ) {
type = MBEDTLS_CIPHER_CHACHA20_POLY1305;
*tag_len = 16;
} else {
puts( usage );
return( MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA );
}
/* Prepare context for the given type */
CHK( mbedtls_cipher_setup( ctx,
mbedtls_cipher_info_from_type( type ) ) );
/* Import key */
int key_len = mbedtls_cipher_get_key_bitlen( ctx );
CHK( mbedtls_cipher_setkey( ctx, key_bytes, key_len, MBEDTLS_ENCRYPT ) );
exit:
return( ret );
}
/*
* Print out some information.
*
* All of this information was present in the command line argument, but his
* function demonstrates how each piece can be recovered from (ctx, tag_len).
*/
static void aead_info( const mbedtls_cipher_context_t *ctx, size_t tag_len )
{
mbedtls_cipher_type_t type = mbedtls_cipher_get_type( ctx );
const mbedtls_cipher_info_t *info = mbedtls_cipher_info_from_type( type );
const char *ciph = mbedtls_cipher_info_get_name( info );
int key_bits = mbedtls_cipher_get_key_bitlen( ctx );
mbedtls_cipher_mode_t mode = mbedtls_cipher_get_cipher_mode( ctx );
const char *mode_str = mode == MBEDTLS_MODE_GCM ? "GCM"
: mode == MBEDTLS_MODE_CHACHAPOLY ? "ChachaPoly"
: "???";
printf( "%s, %d, %s, %u\n",
ciph, key_bits, mode_str, (unsigned) tag_len );
}
/*
* Encrypt a 2-part message.
*/
static int aead_encrypt( mbedtls_cipher_context_t *ctx, size_t tag_len,
const unsigned char *iv, size_t iv_len,
const unsigned char *ad, size_t ad_len,
const unsigned char *part1, size_t part1_len,
const unsigned char *part2, size_t part2_len )
{
int ret;
size_t olen;
#define MAX_TAG_LENGTH 16
unsigned char out[MSG_MAX_SIZE + MAX_TAG_LENGTH];
unsigned char *p = out;
CHK( mbedtls_cipher_set_iv( ctx, iv, iv_len ) );
CHK( mbedtls_cipher_reset( ctx ) );
CHK( mbedtls_cipher_update_ad( ctx, ad, ad_len ) );
CHK( mbedtls_cipher_update( ctx, part1, part1_len, p, &olen ) );
p += olen;
CHK( mbedtls_cipher_update( ctx, part2, part2_len, p, &olen ) );
p += olen;
CHK( mbedtls_cipher_finish( ctx, p, &olen ) );
p += olen;
CHK( mbedtls_cipher_write_tag( ctx, p, tag_len ) );
p += tag_len;
olen = p - out;
print_buf( "out", out, olen );
exit:
return( ret );
}
/*
* AEAD demo: set up key/alg, print out info, encrypt messages.
*/
static int aead_demo( const char *info )
{
int ret = 0;
mbedtls_cipher_context_t ctx;
size_t tag_len;
mbedtls_cipher_init( &ctx );
CHK( aead_prepare( info, &ctx, &tag_len ) );
aead_info( &ctx, tag_len );
CHK( aead_encrypt( &ctx, tag_len,
iv1, sizeof( iv1 ), add_data1, sizeof( add_data1 ),
msg1_part1, sizeof( msg1_part1 ),
msg1_part2, sizeof( msg1_part2 ) ) );
CHK( aead_encrypt( &ctx, tag_len,
iv2, sizeof( iv2 ), add_data2, sizeof( add_data2 ),
msg2_part1, sizeof( msg2_part1 ),
msg2_part2, sizeof( msg2_part2 ) ) );
exit:
mbedtls_cipher_free( &ctx );
return( ret );
}
/*
* Main function
*/
int main( int argc, char **argv )
{
/* Check usage */
if( argc != 2 )
{
puts( usage );
return( 1 );
}
int ret;
/* Run the demo */
CHK( aead_demo( argv[1] ) );
exit:
return( ret == 0 ? EXIT_SUCCESS : EXIT_FAILURE );
}
#endif