blob: ae6e59072a1d4480c7db75cf159cd66585fffd0b [file] [log] [blame]
/** Mutex usage verification framework. */
/*
* Copyright The Mbed TLS Contributors
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <test/helpers.h>
#include <test/macros.h>
#if defined(MBEDTLS_TEST_MUTEX_USAGE)
#include "mbedtls/threading.h"
/** Mutex usage verification framework.
*
* The mutex usage verification code below aims to detect bad usage of
* Mbed TLS's mutex abstraction layer at runtime. Note that this is solely
* about the use of the mutex itself, not about checking whether the mutex
* correctly protects whatever it is supposed to protect.
*
* The normal usage of a mutex is:
* ```
* digraph mutex_states {
* "UNINITIALIZED"; // the initial state
* "IDLE";
* "FREED";
* "LOCKED";
* "UNINITIALIZED" -> "IDLE" [label="init"];
* "FREED" -> "IDLE" [label="init"];
* "IDLE" -> "LOCKED" [label="lock"];
* "LOCKED" -> "IDLE" [label="unlock"];
* "IDLE" -> "FREED" [label="free"];
* }
* ```
*
* All bad transitions that can be unambiguously detected are reported.
* An attempt to use an uninitialized mutex cannot be detected in general
* since the memory content may happen to denote a valid state. For the same
* reason, a double init cannot be detected.
* All-bits-zero is the state of a freed mutex, which is distinct from an
* initialized mutex, so attempting to use zero-initialized memory as a mutex
* without calling the init function is detected.
*
* The framework attempts to detect missing calls to init and free by counting
* calls to init and free. If there are more calls to init than free, this
* means that a mutex is not being freed somewhere, which is a memory leak
* on platforms where a mutex consumes resources other than the
* mbedtls_threading_mutex_t object itself. If there are more calls to free
* than init, this indicates a missing init, which is likely to be detected
* by an attempt to lock the mutex as well. A limitation of this framework is
* that it cannot detect scenarios where there is exactly the same number of
* calls to init and free but the calls don't match. A bug like this is
* unlikely to happen uniformly throughout the whole test suite though.
*
* If an error is detected, this framework will report what happened and the
* test case will be marked as failed. Unfortunately, the error report cannot
* indicate the exact location of the problematic call. To locate the error,
* use a debugger and set a breakpoint on mbedtls_test_mutex_usage_error().
*/
enum value_of_mutex_is_valid_field {
/* Potential values for the is_valid field of mbedtls_threading_mutex_t.
* Note that MUTEX_FREED must be 0 and MUTEX_IDLE must be 1 for
* compatibility with threading_mutex_init_pthread() and
* threading_mutex_free_pthread(). MUTEX_LOCKED could be any nonzero
* value. */
MUTEX_FREED = 0, //!< Set by threading_mutex_free_pthread
MUTEX_IDLE = 1, //!< Set by threading_mutex_init_pthread and by our unlock
MUTEX_LOCKED = 2, //!< Set by our lock
};
typedef struct {
void (*init)(mbedtls_threading_mutex_t *);
void (*free)(mbedtls_threading_mutex_t *);
int (*lock)(mbedtls_threading_mutex_t *);
int (*unlock)(mbedtls_threading_mutex_t *);
} mutex_functions_t;
static mutex_functions_t mutex_functions;
/** The total number of calls to mbedtls_mutex_init(), minus the total number
* of calls to mbedtls_mutex_free().
*
* Reset to 0 after each test case.
*/
static int live_mutexes;
static void mbedtls_test_mutex_usage_error(mbedtls_threading_mutex_t *mutex,
const char *msg)
{
(void) mutex;
if (mbedtls_test_info.mutex_usage_error == NULL) {
mbedtls_test_info.mutex_usage_error = msg;
}
mbedtls_fprintf(stdout, "[mutex: %s] ", msg);
/* Don't mark the test as failed yet. This way, if the test fails later
* for a functional reason, the test framework will report the message
* and location for this functional reason. If the test passes,
* mbedtls_test_mutex_usage_check() will mark it as failed. */
}
static void mbedtls_test_wrap_mutex_init(mbedtls_threading_mutex_t *mutex)
{
mutex_functions.init(mutex);
if (mutex->is_valid) {
++live_mutexes;
}
}
static void mbedtls_test_wrap_mutex_free(mbedtls_threading_mutex_t *mutex)
{
switch (mutex->is_valid) {
case MUTEX_FREED:
mbedtls_test_mutex_usage_error(mutex, "free without init or double free");
break;
case MUTEX_IDLE:
/* Do nothing. The underlying free function will reset is_valid
* to 0. */
break;
case MUTEX_LOCKED:
mbedtls_test_mutex_usage_error(mutex, "free without unlock");
break;
default:
mbedtls_test_mutex_usage_error(mutex, "corrupted state");
break;
}
if (mutex->is_valid) {
--live_mutexes;
}
mutex_functions.free(mutex);
}
static int mbedtls_test_wrap_mutex_lock(mbedtls_threading_mutex_t *mutex)
{
int ret = mutex_functions.lock(mutex);
switch (mutex->is_valid) {
case MUTEX_FREED:
mbedtls_test_mutex_usage_error(mutex, "lock without init");
break;
case MUTEX_IDLE:
if (ret == 0) {
mutex->is_valid = 2;
}
break;
case MUTEX_LOCKED:
mbedtls_test_mutex_usage_error(mutex, "double lock");
break;
default:
mbedtls_test_mutex_usage_error(mutex, "corrupted state");
break;
}
return ret;
}
static int mbedtls_test_wrap_mutex_unlock(mbedtls_threading_mutex_t *mutex)
{
int ret = mutex_functions.unlock(mutex);
switch (mutex->is_valid) {
case MUTEX_FREED:
mbedtls_test_mutex_usage_error(mutex, "unlock without init");
break;
case MUTEX_IDLE:
mbedtls_test_mutex_usage_error(mutex, "unlock without lock");
break;
case MUTEX_LOCKED:
if (ret == 0) {
mutex->is_valid = MUTEX_IDLE;
}
break;
default:
mbedtls_test_mutex_usage_error(mutex, "corrupted state");
break;
}
return ret;
}
void mbedtls_test_mutex_usage_init(void)
{
mutex_functions.init = mbedtls_mutex_init;
mutex_functions.free = mbedtls_mutex_free;
mutex_functions.lock = mbedtls_mutex_lock;
mutex_functions.unlock = mbedtls_mutex_unlock;
mbedtls_mutex_init = &mbedtls_test_wrap_mutex_init;
mbedtls_mutex_free = &mbedtls_test_wrap_mutex_free;
mbedtls_mutex_lock = &mbedtls_test_wrap_mutex_lock;
mbedtls_mutex_unlock = &mbedtls_test_wrap_mutex_unlock;
}
void mbedtls_test_mutex_usage_check(void)
{
if (live_mutexes != 0) {
/* A positive number (more init than free) means that a mutex resource
* is leaking (on platforms where a mutex consumes more than the
* mbedtls_threading_mutex_t object itself). The rare case of a
* negative number means a missing init somewhere. */
mbedtls_fprintf(stdout, "[mutex: %d leaked] ", live_mutexes);
live_mutexes = 0;
if (mbedtls_test_info.mutex_usage_error == NULL) {
mbedtls_test_info.mutex_usage_error = "missing free";
}
}
if (mbedtls_test_info.mutex_usage_error != NULL &&
mbedtls_test_info.result != MBEDTLS_TEST_RESULT_FAILED) {
/* Functionally, the test passed. But there was a mutex usage error,
* so mark the test as failed after all. */
mbedtls_test_fail("Mutex usage error", __LINE__, __FILE__);
}
mbedtls_test_info.mutex_usage_error = NULL;
}
#endif /* MBEDTLS_TEST_MUTEX_USAGE */