| """Knowledge about cryptographic mechanisms implemented in Mbed TLS. |
| |
| This module is entirely based on the PSA API. |
| """ |
| |
| # Copyright The Mbed TLS Contributors |
| # SPDX-License-Identifier: Apache-2.0 |
| # |
| # Licensed under the Apache License, Version 2.0 (the "License"); you may |
| # not use this file except in compliance with the License. |
| # You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT |
| # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| |
| import enum |
| import re |
| from typing import Dict, Iterable, Optional, Pattern, Tuple |
| |
| from mbedtls_dev.asymmetric_key_data import ASYMMETRIC_KEY_DATA |
| |
| |
| BLOCK_CIPHERS = frozenset(['AES', 'ARIA', 'CAMELLIA', 'DES']) |
| BLOCK_MAC_MODES = frozenset(['CBC_MAC', 'CMAC']) |
| BLOCK_CIPHER_MODES = frozenset([ |
| 'CTR', 'CFB', 'OFB', 'XTS', 'CCM_STAR_NO_TAG', |
| 'ECB_NO_PADDING', 'CBC_NO_PADDING', 'CBC_PKCS7', |
| ]) |
| BLOCK_AEAD_MODES = frozenset(['CCM', 'GCM']) |
| |
| class EllipticCurveCategory(enum.Enum): |
| """Categorization of elliptic curve families. |
| |
| The category of a curve determines what algorithms are defined over it. |
| """ |
| |
| SHORT_WEIERSTRASS = 0 |
| MONTGOMERY = 1 |
| TWISTED_EDWARDS = 2 |
| |
| @staticmethod |
| def from_family(family: str) -> 'EllipticCurveCategory': |
| if family == 'PSA_ECC_FAMILY_MONTGOMERY': |
| return EllipticCurveCategory.MONTGOMERY |
| if family == 'PSA_ECC_FAMILY_TWISTED_EDWARDS': |
| return EllipticCurveCategory.TWISTED_EDWARDS |
| # Default to SW, which most curves belong to. |
| return EllipticCurveCategory.SHORT_WEIERSTRASS |
| |
| |
| class KeyType: |
| """Knowledge about a PSA key type.""" |
| |
| def __init__(self, name: str, params: Optional[Iterable[str]] = None) -> None: |
| """Analyze a key type. |
| |
| The key type must be specified in PSA syntax. In its simplest form, |
| `name` is a string 'PSA_KEY_TYPE_xxx' which is the name of a PSA key |
| type macro. For key types that take arguments, the arguments can |
| be passed either through the optional argument `params` or by |
| passing an expression of the form 'PSA_KEY_TYPE_xxx(param1, ...)' |
| in `name` as a string. |
| """ |
| |
| self.name = name.strip() |
| """The key type macro name (``PSA_KEY_TYPE_xxx``). |
| |
| For key types constructed from a macro with arguments, this is the |
| name of the macro, and the arguments are in `self.params`. |
| """ |
| if params is None: |
| if '(' in self.name: |
| m = re.match(r'(\w+)\s*\((.*)\)\Z', self.name) |
| assert m is not None |
| self.name = m.group(1) |
| params = m.group(2).split(',') |
| self.params = (None if params is None else |
| [param.strip() for param in params]) |
| """The parameters of the key type, if there are any. |
| |
| None if the key type is a macro without arguments. |
| """ |
| assert re.match(r'PSA_KEY_TYPE_\w+\Z', self.name) |
| |
| self.expression = self.name |
| """A C expression whose value is the key type encoding.""" |
| if self.params is not None: |
| self.expression += '(' + ', '.join(self.params) + ')' |
| |
| m = re.match(r'PSA_KEY_TYPE_(\w+)', self.name) |
| assert m |
| self.head = re.sub(r'_(?:PUBLIC_KEY|KEY_PAIR)\Z', r'', m.group(1)) |
| """The key type macro name, with common prefixes and suffixes stripped.""" |
| |
| self.private_type = re.sub(r'_PUBLIC_KEY\Z', r'_KEY_PAIR', self.name) |
| """The key type macro name for the corresponding key pair type. |
| |
| For everything other than a public key type, this is the same as |
| `self.name`. |
| """ |
| |
| def is_public(self) -> bool: |
| """Whether the key type is for public keys.""" |
| return self.name.endswith('_PUBLIC_KEY') |
| |
| ECC_KEY_SIZES = { |
| 'PSA_ECC_FAMILY_SECP_K1': (192, 224, 256), |
| 'PSA_ECC_FAMILY_SECP_R1': (225, 256, 384, 521), |
| 'PSA_ECC_FAMILY_SECP_R2': (160,), |
| 'PSA_ECC_FAMILY_SECT_K1': (163, 233, 239, 283, 409, 571), |
| 'PSA_ECC_FAMILY_SECT_R1': (163, 233, 283, 409, 571), |
| 'PSA_ECC_FAMILY_SECT_R2': (163,), |
| 'PSA_ECC_FAMILY_BRAINPOOL_P_R1': (160, 192, 224, 256, 320, 384, 512), |
| 'PSA_ECC_FAMILY_MONTGOMERY': (255, 448), |
| 'PSA_ECC_FAMILY_TWISTED_EDWARDS': (255, 448), |
| } |
| KEY_TYPE_SIZES = { |
| 'PSA_KEY_TYPE_AES': (128, 192, 256), # exhaustive |
| 'PSA_KEY_TYPE_ARIA': (128, 192, 256), # exhaustive |
| 'PSA_KEY_TYPE_CAMELLIA': (128, 192, 256), # exhaustive |
| 'PSA_KEY_TYPE_CHACHA20': (256,), # exhaustive |
| 'PSA_KEY_TYPE_DERIVE': (120, 128), # sample |
| 'PSA_KEY_TYPE_DES': (64, 128, 192), # exhaustive |
| 'PSA_KEY_TYPE_HMAC': (128, 160, 224, 256, 384, 512), # standard size for each supported hash |
| 'PSA_KEY_TYPE_PASSWORD': (48, 168, 336), # sample |
| 'PSA_KEY_TYPE_PASSWORD_HASH': (128, 256), # sample |
| 'PSA_KEY_TYPE_PEPPER': (128, 256), # sample |
| 'PSA_KEY_TYPE_RAW_DATA': (8, 40, 128), # sample |
| 'PSA_KEY_TYPE_RSA_KEY_PAIR': (1024, 1536), # small sample |
| } |
| def sizes_to_test(self) -> Tuple[int, ...]: |
| """Return a tuple of key sizes to test. |
| |
| For key types that only allow a single size, or only a small set of |
| sizes, these are all the possible sizes. For key types that allow a |
| wide range of sizes, these are a representative sample of sizes, |
| excluding large sizes for which a typical resource-constrained platform |
| may run out of memory. |
| """ |
| if self.private_type == 'PSA_KEY_TYPE_ECC_KEY_PAIR': |
| assert self.params is not None |
| return self.ECC_KEY_SIZES[self.params[0]] |
| return self.KEY_TYPE_SIZES[self.private_type] |
| |
| # "48657265006973206b6579a064617461" |
| DATA_BLOCK = b'Here\000is key\240data' |
| def key_material(self, bits: int) -> bytes: |
| """Return a byte string containing suitable key material with the given bit length. |
| |
| Use the PSA export representation. The resulting byte string is one that |
| can be obtained with the following code: |
| ``` |
| psa_set_key_type(&attributes, `self.expression`); |
| psa_set_key_bits(&attributes, `bits`); |
| psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_EXPORT); |
| psa_generate_key(&attributes, &id); |
| psa_export_key(id, `material`, ...); |
| ``` |
| """ |
| if self.expression in ASYMMETRIC_KEY_DATA: |
| if bits not in ASYMMETRIC_KEY_DATA[self.expression]: |
| raise ValueError('No key data for {}-bit {}' |
| .format(bits, self.expression)) |
| return ASYMMETRIC_KEY_DATA[self.expression][bits] |
| if bits % 8 != 0: |
| raise ValueError('Non-integer number of bytes: {} bits for {}' |
| .format(bits, self.expression)) |
| length = bits // 8 |
| if self.name == 'PSA_KEY_TYPE_DES': |
| # "644573206b457901644573206b457902644573206b457904" |
| des3 = b'dEs kEy\001dEs kEy\002dEs kEy\004' |
| return des3[:length] |
| return b''.join([self.DATA_BLOCK] * (length // len(self.DATA_BLOCK)) + |
| [self.DATA_BLOCK[:length % len(self.DATA_BLOCK)]]) |
| |
| KEY_TYPE_FOR_SIGNATURE = { |
| 'PSA_KEY_USAGE_SIGN_HASH': re.compile('.*KEY_PAIR'), |
| 'PSA_KEY_USAGE_VERIFY_HASH': re.compile('.*KEY.*') |
| } #type: Dict[str, Pattern] |
| """Use a regexp to determine key types for which signature is possible |
| when using the actual usage flag. |
| """ |
| def is_valid_for_signature(self, usage: str) -> bool: |
| """Determine if the key type is compatible with the specified |
| signitute type. |
| |
| """ |
| # This is just temporaly solution for the implicit usage flags. |
| return re.match(self.KEY_TYPE_FOR_SIGNATURE[usage], self.name) is not None |
| |
| def can_do(self, alg: 'Algorithm') -> bool: |
| """Whether this key type can be used for operations with the given algorithm. |
| |
| This function does not currently handle key derivation or PAKE. |
| """ |
| #pylint: disable=too-many-return-statements |
| if alg.is_wildcard: |
| return False |
| if self.head == 'HMAC' and alg.head == 'HMAC': |
| return True |
| if self.head in BLOCK_CIPHERS and \ |
| alg.head in frozenset.union(BLOCK_MAC_MODES, |
| BLOCK_CIPHER_MODES, |
| BLOCK_AEAD_MODES): |
| return True |
| if self.head == 'CHACHA20' and alg.head == 'CHACHA20_POLY1305': |
| return True |
| if self.head in {'ARC4', 'CHACHA20'} and \ |
| alg.head == 'STREAM_CIPHER': |
| return True |
| if self.head == 'RSA' and alg.head.startswith('RSA_'): |
| return True |
| if self.head == 'ECC': |
| assert self.params is not None |
| eccc = EllipticCurveCategory.from_family(self.params[0]) |
| if alg.head == 'ECDH' and \ |
| eccc in {EllipticCurveCategory.SHORT_WEIERSTRASS, |
| EllipticCurveCategory.MONTGOMERY}: |
| return True |
| if alg.head == 'ECDSA' and \ |
| eccc == EllipticCurveCategory.SHORT_WEIERSTRASS: |
| return True |
| if alg.head in {'PURE_EDDSA', 'EDDSA_PREHASH'} and \ |
| eccc == EllipticCurveCategory.TWISTED_EDWARDS: |
| return True |
| return False |
| |
| |
| class AlgorithmCategory(enum.Enum): |
| """PSA algorithm categories.""" |
| # The numbers are aligned with the category bits in numerical values of |
| # algorithms. |
| HASH = 2 |
| MAC = 3 |
| CIPHER = 4 |
| AEAD = 5 |
| SIGN = 6 |
| ASYMMETRIC_ENCRYPTION = 7 |
| KEY_DERIVATION = 8 |
| KEY_AGREEMENT = 9 |
| PAKE = 10 |
| |
| def requires_key(self) -> bool: |
| """Whether operations in this category are set up with a key.""" |
| return self not in {self.HASH, self.KEY_DERIVATION} |
| |
| def is_asymmetric(self) -> bool: |
| """Whether operations in this category involve asymmetric keys.""" |
| return self in { |
| self.SIGN, |
| self.ASYMMETRIC_ENCRYPTION, |
| self.KEY_AGREEMENT |
| } |
| |
| |
| class AlgorithmNotRecognized(Exception): |
| def __init__(self, expr: str) -> None: |
| super().__init__('Algorithm not recognized: ' + expr) |
| self.expr = expr |
| |
| |
| class Algorithm: |
| """Knowledge about a PSA algorithm.""" |
| |
| @staticmethod |
| def determine_base(expr: str) -> str: |
| """Return an expression for the "base" of the algorithm. |
| |
| This strips off variants of algorithms such as MAC truncation. |
| |
| This function does not attempt to detect invalid inputs. |
| """ |
| m = re.match(r'PSA_ALG_(?:' |
| r'(?:TRUNCATED|AT_LEAST_THIS_LENGTH)_MAC|' |
| r'AEAD_WITH_(?:SHORTENED|AT_LEAST_THIS_LENGTH)_TAG' |
| r')\((.*),[^,]+\)\Z', expr) |
| if m: |
| expr = m.group(1) |
| return expr |
| |
| @staticmethod |
| def determine_head(expr: str) -> str: |
| """Return the head of an algorithm expression. |
| |
| The head is the first (outermost) constructor, without its PSA_ALG_ |
| prefix, and with some normalization of similar algorithms. |
| """ |
| m = re.match(r'PSA_ALG_(?:DETERMINISTIC_)?(\w+)', expr) |
| if not m: |
| raise AlgorithmNotRecognized(expr) |
| head = m.group(1) |
| if head == 'KEY_AGREEMENT': |
| m = re.match(r'PSA_ALG_KEY_AGREEMENT\s*\(\s*PSA_ALG_(\w+)', expr) |
| if not m: |
| raise AlgorithmNotRecognized(expr) |
| head = m.group(1) |
| head = re.sub(r'_ANY\Z', r'', head) |
| if re.match(r'ED[0-9]+PH\Z', head): |
| head = 'EDDSA_PREHASH' |
| return head |
| |
| CATEGORY_FROM_HEAD = { |
| 'SHA': AlgorithmCategory.HASH, |
| 'SHAKE256_512': AlgorithmCategory.HASH, |
| 'MD': AlgorithmCategory.HASH, |
| 'RIPEMD': AlgorithmCategory.HASH, |
| 'ANY_HASH': AlgorithmCategory.HASH, |
| 'HMAC': AlgorithmCategory.MAC, |
| 'STREAM_CIPHER': AlgorithmCategory.CIPHER, |
| 'CHACHA20_POLY1305': AlgorithmCategory.AEAD, |
| 'DSA': AlgorithmCategory.SIGN, |
| 'ECDSA': AlgorithmCategory.SIGN, |
| 'EDDSA': AlgorithmCategory.SIGN, |
| 'PURE_EDDSA': AlgorithmCategory.SIGN, |
| 'RSA_PSS': AlgorithmCategory.SIGN, |
| 'RSA_PKCS1V15_SIGN': AlgorithmCategory.SIGN, |
| 'RSA_PKCS1V15_CRYPT': AlgorithmCategory.ASYMMETRIC_ENCRYPTION, |
| 'RSA_OAEP': AlgorithmCategory.ASYMMETRIC_ENCRYPTION, |
| 'HKDF': AlgorithmCategory.KEY_DERIVATION, |
| 'TLS12_PRF': AlgorithmCategory.KEY_DERIVATION, |
| 'TLS12_PSK_TO_MS': AlgorithmCategory.KEY_DERIVATION, |
| 'PBKDF': AlgorithmCategory.KEY_DERIVATION, |
| 'ECDH': AlgorithmCategory.KEY_AGREEMENT, |
| 'FFDH': AlgorithmCategory.KEY_AGREEMENT, |
| # KEY_AGREEMENT(...) is a key derivation with a key agreement component |
| 'KEY_AGREEMENT': AlgorithmCategory.KEY_DERIVATION, |
| 'JPAKE': AlgorithmCategory.PAKE, |
| } |
| for x in BLOCK_MAC_MODES: |
| CATEGORY_FROM_HEAD[x] = AlgorithmCategory.MAC |
| for x in BLOCK_CIPHER_MODES: |
| CATEGORY_FROM_HEAD[x] = AlgorithmCategory.CIPHER |
| for x in BLOCK_AEAD_MODES: |
| CATEGORY_FROM_HEAD[x] = AlgorithmCategory.AEAD |
| |
| def determine_category(self, expr: str, head: str) -> AlgorithmCategory: |
| """Return the category of the given algorithm expression. |
| |
| This function does not attempt to detect invalid inputs. |
| """ |
| prefix = head |
| while prefix: |
| if prefix in self.CATEGORY_FROM_HEAD: |
| return self.CATEGORY_FROM_HEAD[prefix] |
| if re.match(r'.*[0-9]\Z', prefix): |
| prefix = re.sub(r'_*[0-9]+\Z', r'', prefix) |
| else: |
| prefix = re.sub(r'_*[^_]*\Z', r'', prefix) |
| raise AlgorithmNotRecognized(expr) |
| |
| @staticmethod |
| def determine_wildcard(expr) -> bool: |
| """Whether the given algorithm expression is a wildcard. |
| |
| This function does not attempt to detect invalid inputs. |
| """ |
| if re.search(r'\bPSA_ALG_ANY_HASH\b', expr): |
| return True |
| if re.search(r'_AT_LEAST_', expr): |
| return True |
| return False |
| |
| def __init__(self, expr: str) -> None: |
| """Analyze an algorithm value. |
| |
| The algorithm must be expressed as a C expression containing only |
| calls to PSA algorithm constructor macros and numeric literals. |
| |
| This class is only programmed to handle valid expressions. Invalid |
| expressions may result in exceptions or in nonsensical results. |
| """ |
| self.expression = re.sub(r'\s+', r'', expr) |
| self.base_expression = self.determine_base(self.expression) |
| self.head = self.determine_head(self.base_expression) |
| self.category = self.determine_category(self.base_expression, self.head) |
| self.is_wildcard = self.determine_wildcard(self.expression) |
| |
| def is_key_agreement_with_derivation(self) -> bool: |
| """Whether this is a combined key agreement and key derivation algorithm.""" |
| if self.category != AlgorithmCategory.KEY_AGREEMENT: |
| return False |
| m = re.match(r'PSA_ALG_KEY_AGREEMENT\(\w+,\s*(.*)\)\Z', self.expression) |
| if not m: |
| return False |
| kdf_alg = m.group(1) |
| # Assume kdf_alg is either a valid KDF or 0. |
| return not re.match(r'(?:0[Xx])?0+\s*\Z', kdf_alg) |
| |
| def can_do(self, category: AlgorithmCategory) -> bool: |
| """Whether this algorithm fits the specified operation category.""" |
| if category == self.category: |
| return True |
| if category == AlgorithmCategory.KEY_DERIVATION and \ |
| self.is_key_agreement_with_derivation(): |
| return True |
| return False |