blob: 7529b0c8b676d140c9fe18f70e85c2c3ad2a67c9 [file] [log] [blame]
/*
* -------------------------------------------
* MSP432 DriverLib - v3_10_00_09
* -------------------------------------------
*
* --COPYRIGHT--,BSD,BSD
* Copyright (c) 2014, Texas Instruments Incorporated
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* * Neither the name of Texas Instruments Incorporated nor the names of
* its contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
* --/COPYRIGHT--*/
#include <spi.h>
#include <interrupt.h>
#include <debug.h>
#include <eusci.h>
static bool is_A_Module(uint32_t module)
{
if (module == EUSCI_A0_BASE || module == EUSCI_A1_BASE
#ifdef EUSCI_A2_BASE
|| module == EUSCI_A2_BASE
#endif
#ifdef EUSCI_A3_BASE
|| module == EUSCI_A3_BASE
#endif
)
return true;
else
return false;
}
bool SPI_initMaster(uint32_t moduleInstance, const eUSCI_SPI_MasterConfig *config)
{
/* Returning false if we are not divisible */
if((config->clockSourceFrequency
% config->desiredSpiClock) != 0)
{
return false;
}
if (is_A_Module(moduleInstance))
{
ASSERT(
(EUSCI_A_SPI_CLOCKSOURCE_ACLK == config->selectClockSource)
|| (EUSCI_A_SPI_CLOCKSOURCE_SMCLK
== config->selectClockSource));
ASSERT(
(EUSCI_A_SPI_MSB_FIRST == config->msbFirst)
|| (EUSCI_A_SPI_LSB_FIRST == config->msbFirst));
ASSERT(
(EUSCI_A_SPI_PHASE_DATA_CHANGED_ONFIRST_CAPTURED_ON_NEXT
== config->clockPhase)
|| (EUSCI_A_SPI_PHASE_DATA_CAPTURED_ONFIRST_CHANGED_ON_NEXT
== config->clockPhase));
ASSERT(
(EUSCI_A_SPI_CLOCKPOLARITY_INACTIVITY_HIGH
== config->clockPolarity)
|| (EUSCI_A_SPI_CLOCKPOLARITY_INACTIVITY_LOW
== config->clockPolarity));
ASSERT(
(EUSCI_A_SPI_3PIN == config->spiMode)
|| (EUSCI_A_SPI_4PIN_UCxSTE_ACTIVE_HIGH
== config->spiMode)
|| (EUSCI_A_SPI_4PIN_UCxSTE_ACTIVE_LOW
== config->spiMode));
//Disable the USCI Module
BITBAND_PERI(EUSCI_B_CMSIS(moduleInstance)->CTLW0, EUSCI_A_CTLW0_SWRST_OFS) = 1;
/*
* Configure as SPI master mode.
* Clock phase select, polarity, msb
* EUSCI_A_CTLW0_MST = Master mode
* EUSCI_A_CTLW0_SYNC = Synchronous mode
* UCMODE_0 = 3-pin SPI
*/
EUSCI_A_CMSIS(moduleInstance)->CTLW0 =
(EUSCI_A_CMSIS(moduleInstance)->CTLW0
& ~(EUSCI_A_CTLW0_SSEL_MASK + EUSCI_A_CTLW0_CKPH + EUSCI_A_CTLW0_CKPL + EUSCI_A_CTLW0_SEVENBIT + EUSCI_A_CTLW0_MSB + EUSCI_A_CTLW0_MST
+ EUSCI_A_CTLW0_MODE_3 + EUSCI_A_CTLW0_SYNC))
| (config->selectClockSource + config->msbFirst
+ config->clockPhase + config->clockPolarity
+ EUSCI_A_CTLW0_MST + EUSCI_A_CTLW0_SYNC + config->spiMode);
EUSCI_A_CMSIS(moduleInstance)->BRW =
(uint16_t) (config->clockSourceFrequency
/ config->desiredSpiClock);
//No modulation
EUSCI_A_CMSIS(moduleInstance)->MCTLW = 0;
return true;
} else
{
ASSERT(
(EUSCI_B_SPI_CLOCKSOURCE_ACLK == config->selectClockSource)
|| (EUSCI_B_SPI_CLOCKSOURCE_SMCLK
== config->selectClockSource));
ASSERT(
(EUSCI_B_SPI_MSB_FIRST == config->msbFirst)
|| (EUSCI_B_SPI_LSB_FIRST == config->msbFirst));
ASSERT(
(EUSCI_B_SPI_PHASE_DATA_CHANGED_ONFIRST_CAPTURED_ON_NEXT
== config->clockPhase)
|| (EUSCI_B_SPI_PHASE_DATA_CAPTURED_ONFIRST_CHANGED_ON_NEXT
== config->clockPhase));
ASSERT(
(EUSCI_B_SPI_CLOCKPOLARITY_INACTIVITY_HIGH
== config->clockPolarity)
|| (EUSCI_B_SPI_CLOCKPOLARITY_INACTIVITY_LOW
== config->clockPolarity));
ASSERT(
(EUSCI_B_SPI_3PIN == config->spiMode)
|| (EUSCI_B_SPI_4PIN_UCxSTE_ACTIVE_HIGH
== config->spiMode)
|| (EUSCI_B_SPI_4PIN_UCxSTE_ACTIVE_LOW
== config->spiMode));
//Disable the USCI Module
BITBAND_PERI(EUSCI_B_CMSIS(moduleInstance)->CTLW0, EUSCI_A_CTLW0_SWRST_OFS) = 1;
/*
* Configure as SPI master mode.
* Clock phase select, polarity, msb
* EUSCI_A_CTLW0_MST = Master mode
* EUSCI_A_CTLW0_SYNC = Synchronous mode
* UCMODE_0 = 3-pin SPI
*/
EUSCI_B_CMSIS(moduleInstance)->CTLW0 =
(EUSCI_B_CMSIS(moduleInstance)->CTLW0
& ~(EUSCI_A_CTLW0_SSEL_MASK + EUSCI_A_CTLW0_CKPH + EUSCI_A_CTLW0_CKPL + EUSCI_A_CTLW0_SEVENBIT + EUSCI_A_CTLW0_MSB + EUSCI_A_CTLW0_MST
+ EUSCI_A_CTLW0_MODE_3 + EUSCI_A_CTLW0_SYNC))
| (config->selectClockSource + config->msbFirst
+ config->clockPhase + config->clockPolarity
+ EUSCI_A_CTLW0_MST + EUSCI_A_CTLW0_SYNC + config->spiMode);
EUSCI_B_CMSIS(moduleInstance)->BRW =
(uint16_t) (config->clockSourceFrequency
/ config->desiredSpiClock);
return true;
}
}
void SPI_selectFourPinFunctionality(uint32_t moduleInstance,
uint_fast8_t select4PinFunctionality)
{
if (is_A_Module(moduleInstance))
{
EUSCI_A_SPI_select4PinFunctionality(moduleInstance,
select4PinFunctionality);
} else
{
EUSCI_B_SPI_select4PinFunctionality(moduleInstance,
select4PinFunctionality);
}
}
void SPI_changeMasterClock(uint32_t moduleInstance,
uint32_t clockSourceFrequency, uint32_t desiredSpiClock)
{
if (is_A_Module(moduleInstance))
{
EUSCI_A_SPI_masterChangeClock(moduleInstance, clockSourceFrequency,
desiredSpiClock);
} else
{
EUSCI_B_SPI_masterChangeClock(moduleInstance, clockSourceFrequency,
desiredSpiClock);
}
}
bool SPI_initSlave(uint32_t moduleInstance, const eUSCI_SPI_SlaveConfig *config)
{
if (is_A_Module(moduleInstance))
{
ASSERT(
(EUSCI_A_SPI_MSB_FIRST == config->msbFirst)
|| (EUSCI_A_SPI_LSB_FIRST == config->msbFirst));
ASSERT(
(EUSCI_A_SPI_PHASE_DATA_CHANGED_ONFIRST_CAPTURED_ON_NEXT
== config->clockPhase)
|| (EUSCI_A_SPI_PHASE_DATA_CAPTURED_ONFIRST_CHANGED_ON_NEXT
== config->clockPhase));
ASSERT(
(EUSCI_A_SPI_CLOCKPOLARITY_INACTIVITY_HIGH
== config->clockPolarity)
|| (EUSCI_A_SPI_CLOCKPOLARITY_INACTIVITY_LOW
== config->clockPolarity));
ASSERT(
(EUSCI_A_SPI_3PIN == config->spiMode)
|| (EUSCI_A_SPI_4PIN_UCxSTE_ACTIVE_HIGH
== config->spiMode)
|| (EUSCI_A_SPI_4PIN_UCxSTE_ACTIVE_LOW
== config->spiMode));
//Disable USCI Module
BITBAND_PERI(EUSCI_A_CMSIS(moduleInstance)->CTLW0, EUSCI_A_CTLW0_SWRST_OFS) = 1;
//Reset OFS_UCAxCTLW0 register
EUSCI_A_CMSIS(moduleInstance)->CTLW0 =
(EUSCI_A_CMSIS(moduleInstance)->CTLW0
& ~(EUSCI_A_CTLW0_MSB + EUSCI_A_CTLW0_SEVENBIT + EUSCI_A_CTLW0_MST + EUSCI_A_CTLW0_CKPL + EUSCI_A_CTLW0_CKPH + EUSCI_A_CTLW0_MODE_3))
| (config->clockPhase + config->clockPolarity
+ config->msbFirst + EUSCI_A_CTLW0_SYNC + config->spiMode);
return true;
} else
{
ASSERT(
(EUSCI_B_SPI_MSB_FIRST == config->msbFirst)
|| (EUSCI_B_SPI_LSB_FIRST == config->msbFirst));
ASSERT(
(EUSCI_B_SPI_PHASE_DATA_CHANGED_ONFIRST_CAPTURED_ON_NEXT
== config->clockPhase)
|| (EUSCI_B_SPI_PHASE_DATA_CAPTURED_ONFIRST_CHANGED_ON_NEXT
== config->clockPhase));
ASSERT(
(EUSCI_B_SPI_CLOCKPOLARITY_INACTIVITY_HIGH
== config->clockPolarity)
|| (EUSCI_B_SPI_CLOCKPOLARITY_INACTIVITY_LOW
== config->clockPolarity));
ASSERT(
(EUSCI_B_SPI_3PIN == config->spiMode)
|| (EUSCI_B_SPI_4PIN_UCxSTE_ACTIVE_HIGH
== config->spiMode)
|| (EUSCI_B_SPI_4PIN_UCxSTE_ACTIVE_LOW
== config->spiMode));
//Disable USCI Module
BITBAND_PERI(EUSCI_B_CMSIS(moduleInstance)->CTLW0, EUSCI_A_CTLW0_SWRST_OFS) = 1;
//Reset OFS_UCBxCTLW0 register
EUSCI_B_CMSIS(moduleInstance)->CTLW0 =
(EUSCI_B_CMSIS(moduleInstance)->CTLW0
& ~(EUSCI_A_CTLW0_MSB + EUSCI_A_CTLW0_SEVENBIT + EUSCI_A_CTLW0_MST + EUSCI_A_CTLW0_CKPL + EUSCI_A_CTLW0_CKPH + EUSCI_A_CTLW0_MODE_3))
| (config->clockPhase + config->clockPolarity
+ config->msbFirst + EUSCI_A_CTLW0_SYNC + config->spiMode);
return true;
}
}
void SPI_changeClockPhasePolarity(uint32_t moduleInstance,
uint_fast16_t clockPhase, uint_fast16_t clockPolarity)
{
if (is_A_Module(moduleInstance))
{
EUSCI_A_SPI_changeClockPhasePolarity(moduleInstance, clockPhase,
clockPolarity);
} else
{
EUSCI_B_SPI_changeClockPhasePolarity(moduleInstance, clockPhase,
clockPolarity);
}
}
void SPI_transmitData(uint32_t moduleInstance, uint_fast8_t transmitData)
{
if (is_A_Module(moduleInstance))
{
EUSCI_A_SPI_transmitData(moduleInstance, transmitData);
} else
{
EUSCI_B_SPI_transmitData(moduleInstance, transmitData);
}
}
uint8_t SPI_receiveData(uint32_t moduleInstance)
{
if (is_A_Module(moduleInstance))
{
return EUSCI_A_SPI_receiveData(moduleInstance);
} else
{
return EUSCI_B_SPI_receiveData(moduleInstance);
}
}
void SPI_enableModule(uint32_t moduleInstance)
{
if (is_A_Module(moduleInstance))
{
EUSCI_A_SPI_enable(moduleInstance);
} else
{
EUSCI_B_SPI_enable(moduleInstance);
}
}
void SPI_disableModule(uint32_t moduleInstance)
{
if (is_A_Module(moduleInstance))
{
EUSCI_A_SPI_disable(moduleInstance);
} else
{
EUSCI_B_SPI_disable(moduleInstance);
}
}
uint32_t SPI_getReceiveBufferAddressForDMA(uint32_t moduleInstance)
{
if (is_A_Module(moduleInstance))
{
return EUSCI_A_SPI_getReceiveBufferAddressForDMA(moduleInstance);
} else
{
return EUSCI_B_SPI_getReceiveBufferAddressForDMA(moduleInstance);
}
}
uint32_t SPI_getTransmitBufferAddressForDMA(uint32_t moduleInstance)
{
if (is_A_Module(moduleInstance))
{
return EUSCI_A_SPI_getTransmitBufferAddressForDMA(moduleInstance);
} else
{
return EUSCI_B_SPI_getTransmitBufferAddressForDMA(moduleInstance);
}
}
uint_fast8_t SPI_isBusy(uint32_t moduleInstance)
{
if (is_A_Module(moduleInstance))
{
return EUSCI_A_SPI_isBusy(moduleInstance);
} else
{
return EUSCI_B_SPI_isBusy(moduleInstance);
}
}
void SPI_enableInterrupt(uint32_t moduleInstance, uint_fast8_t mask)
{
if (is_A_Module(moduleInstance))
{
EUSCI_A_SPI_enableInterrupt(moduleInstance, mask);
} else
{
EUSCI_B_SPI_enableInterrupt(moduleInstance, mask);
}
}
void SPI_disableInterrupt(uint32_t moduleInstance, uint_fast8_t mask)
{
if (is_A_Module(moduleInstance))
{
EUSCI_A_SPI_disableInterrupt(moduleInstance, mask);
} else
{
EUSCI_B_SPI_disableInterrupt(moduleInstance, mask);
}
}
uint_fast8_t SPI_getInterruptStatus(uint32_t moduleInstance, uint16_t mask)
{
if (is_A_Module(moduleInstance))
{
return EUSCI_A_SPI_getInterruptStatus(moduleInstance, mask);
} else
{
return EUSCI_B_SPI_getInterruptStatus(moduleInstance, mask);
}
}
uint_fast8_t SPI_getEnabledInterruptStatus(uint32_t moduleInstance)
{
if (is_A_Module(moduleInstance))
{
return SPI_getInterruptStatus(moduleInstance,
EUSCI_SPI_TRANSMIT_INTERRUPT | EUSCI_SPI_RECEIVE_INTERRUPT)
& EUSCI_A_CMSIS(moduleInstance)->IE;
} else
{
return SPI_getInterruptStatus(moduleInstance,
EUSCI_SPI_TRANSMIT_INTERRUPT | EUSCI_SPI_RECEIVE_INTERRUPT)
& EUSCI_B_CMSIS(moduleInstance)->IE;
}
}
void SPI_clearInterruptFlag(uint32_t moduleInstance, uint_fast8_t mask)
{
if (is_A_Module(moduleInstance))
{
EUSCI_A_SPI_clearInterruptFlag(moduleInstance, mask);
} else
{
EUSCI_B_SPI_clearInterruptFlag(moduleInstance, mask);
}
}
void SPI_registerInterrupt(uint32_t moduleInstance, void (*intHandler)(void))
{
switch (moduleInstance)
{
case EUSCI_A0_BASE:
Interrupt_registerInterrupt(INT_EUSCIA0, intHandler);
Interrupt_enableInterrupt(INT_EUSCIA0);
break;
case EUSCI_A1_BASE:
Interrupt_registerInterrupt(INT_EUSCIA1, intHandler);
Interrupt_enableInterrupt(INT_EUSCIA1);
break;
#ifdef EUSCI_A2_BASE
case EUSCI_A2_BASE:
Interrupt_registerInterrupt(INT_EUSCIA2, intHandler);
Interrupt_enableInterrupt(INT_EUSCIA2);
break;
#endif
#ifdef EUSCI_A3_BASE
case EUSCI_A3_BASE:
Interrupt_registerInterrupt(INT_EUSCIA3, intHandler);
Interrupt_enableInterrupt(INT_EUSCIA3);
break;
#endif
case EUSCI_B0_BASE:
Interrupt_registerInterrupt(INT_EUSCIB0, intHandler);
Interrupt_enableInterrupt(INT_EUSCIB0);
break;
case EUSCI_B1_BASE:
Interrupt_registerInterrupt(INT_EUSCIB1, intHandler);
Interrupt_enableInterrupt(INT_EUSCIB1);
break;
#ifdef EUSCI_B2_BASE
case EUSCI_B2_BASE:
Interrupt_registerInterrupt(INT_EUSCIB2, intHandler);
Interrupt_enableInterrupt(INT_EUSCIB2);
break;
#endif
#ifdef EUSCI_B3_BASE
case EUSCI_B3_BASE:
Interrupt_registerInterrupt(INT_EUSCIB3, intHandler);
Interrupt_enableInterrupt(INT_EUSCIB3);
break;
#endif
default:
ASSERT(false);
}
}
void SPI_unregisterInterrupt(uint32_t moduleInstance)
{
switch (moduleInstance)
{
case EUSCI_A0_BASE:
Interrupt_disableInterrupt(INT_EUSCIA0);
Interrupt_unregisterInterrupt(INT_EUSCIA0);
break;
case EUSCI_A1_BASE:
Interrupt_disableInterrupt(INT_EUSCIA1);
Interrupt_unregisterInterrupt(INT_EUSCIA1);
break;
#ifdef EUSCI_A2_BASE
case EUSCI_A2_BASE:
Interrupt_disableInterrupt(INT_EUSCIA2);
Interrupt_unregisterInterrupt(INT_EUSCIA2);
break;
#endif
#ifdef EUSCI_A3_BASE
case EUSCI_A3_BASE:
Interrupt_disableInterrupt(INT_EUSCIA3);
Interrupt_unregisterInterrupt(INT_EUSCIA3);
break;
#endif
case EUSCI_B0_BASE:
Interrupt_disableInterrupt(INT_EUSCIB0);
Interrupt_unregisterInterrupt(INT_EUSCIB0);
break;
case EUSCI_B1_BASE:
Interrupt_disableInterrupt(INT_EUSCIB1);
Interrupt_unregisterInterrupt(INT_EUSCIB1);
break;
#ifdef EUSCI_B2_BASE
case EUSCI_B2_BASE:
Interrupt_disableInterrupt(INT_EUSCIB2);
Interrupt_unregisterInterrupt(INT_EUSCIB2);
break;
#endif
#ifdef EUSCI_B3_BASE
case EUSCI_B3_BASE:
Interrupt_disableInterrupt(INT_EUSCIB3);
Interrupt_unregisterInterrupt(INT_EUSCIB3);
break;
#endif
default:
ASSERT(false);
}
}
/* Backwards Compatibility Layer */
//*****************************************************************************
//
//! \brief Selects 4Pin Functionality
//!
//! This function should be invoked only in 4-wire mode. Invoking this function
//! has no effect in 3-wire mode.
//!
//! \param baseAddress is the base address of the EUSCI_B_SPI module.
//! \param select4PinFunctionality selects 4 pin functionality
//! Valid values are:
//! - \b EUSCI_B_SPI_PREVENT_CONFLICTS_WITH_OTHER_MASTERS
//! - \b EUSCI_B_SPI_ENABLE_SIGNAL_FOR_4WIRE_SLAVE
//!
//! Modified bits are \b UCSTEM of \b UCAxCTLW0 register.
//!
//! \return None
//
//*****************************************************************************
void EUSCI_B_SPI_select4PinFunctionality(uint32_t baseAddress,
uint8_t select4PinFunctionality)
{
ASSERT(
(EUSCI_B_SPI_PREVENT_CONFLICTS_WITH_OTHER_MASTERS
== select4PinFunctionality)
|| (EUSCI_B_SPI_ENABLE_SIGNAL_FOR_4WIRE_SLAVE
== select4PinFunctionality));
EUSCI_B_CMSIS(baseAddress)->CTLW0 = (EUSCI_B_CMSIS(baseAddress)->CTLW0
& ~EUSCI_B_CTLW0_STEM) | select4PinFunctionality;
}
//*****************************************************************************
//
//! \brief Initializes the SPI Master clock. At the end of this function call,
//! SPI module is left enabled.
//!
//! \param baseAddress is the base address of the EUSCI_B_SPI module.
//! \param clockSourceFrequency is the frequency of the slected clock source
//! \param desiredSpiClock is the desired clock rate for SPI communication
//!
//! Modified bits are \b UCSWRST of \b UCAxCTLW0 register.
//!
//! \return None
//
//*****************************************************************************
void EUSCI_B_SPI_masterChangeClock(uint32_t baseAddress,
uint32_t clockSourceFrequency, uint32_t desiredSpiClock)
{
//Disable the USCI Module
BITBAND_PERI(EUSCI_B_CMSIS(baseAddress)->CTLW0, EUSCI_A_CTLW0_SWRST_OFS) = 1;
EUSCI_B_CMSIS(baseAddress)->BRW = (uint16_t) (clockSourceFrequency
/ desiredSpiClock);
//Reset the UCSWRST bit to enable the USCI Module
BITBAND_PERI(EUSCI_B_CMSIS(baseAddress)->CTLW0, EUSCI_A_CTLW0_SWRST_OFS) = 0;
}
//*****************************************************************************
//
//! \brief Initializes the SPI Slave block.
//!
//! Upon successful initialization of the SPI slave block, this function will
//! have initailized the slave block, but the SPI Slave block still remains
//! disabled and must be enabled with EUSCI_B_SPI_enable()
//!
//! \param baseAddress is the base address of the EUSCI_B_SPI Slave module.
//! \param msbFirst controls the direction of the receive and transmit shift
//! register.
//! Valid values are:
//! - \b EUSCI_B_SPI_MSB_FIRST
//! - \b EUSCI_B_SPI_LSB_FIRST [Default]
//! \param clockPhase is clock phase select.
//! Valid values are:
//! - \b EUSCI_B_SPI_PHASE_DATA_CHANGED_ONFIRST_CAPTURED_ON_NEXT
//! [Default]
//! - \b EUSCI_B_SPI_PHASE_DATA_CAPTURED_ONFIRST_CHANGED_ON_NEXT
//! \param clockPolarity is clock polarity select
//! Valid values are:
//! - \b EUSCI_B_SPI_CLOCKPOLARITY_INACTIVITY_HIGH
//! - \b EUSCI_B_SPI_CLOCKPOLARITY_INACTIVITY_LOW [Default]
//! \param spiMode is SPI mode select
//! Valid values are:
//! - \b EUSCI_B_SPI_3PIN
//! - \b EUSCI_B_SPI_4PIN_UCxSTE_ACTIVE_HIGH
//! - \b EUSCI_B_SPI_4PIN_UCxSTE_ACTIVE_LOW
//!
//! Modified bits are \b EUSCI_A_CTLW0_MSB, \b EUSCI_A_CTLW0_MST, \b EUSCI_A_CTLW0_SEVENBIT, \b EUSCI_A_CTLW0_CKPL, \b EUSCI_A_CTLW0_CKPH, \b
//! UCMODE and \b UCSWRST of \b UCAxCTLW0 register.
//!
//! \return STATUS_SUCCESS
//
//*****************************************************************************
bool EUSCI_B_SPI_slaveInit(uint32_t baseAddress, uint16_t msbFirst,
uint16_t clockPhase, uint16_t clockPolarity, uint16_t spiMode)
{
ASSERT(
(EUSCI_B_SPI_MSB_FIRST == msbFirst)
|| (EUSCI_B_SPI_LSB_FIRST == msbFirst));
ASSERT(
(EUSCI_B_SPI_PHASE_DATA_CHANGED_ONFIRST_CAPTURED_ON_NEXT
== clockPhase)
|| (EUSCI_B_SPI_PHASE_DATA_CAPTURED_ONFIRST_CHANGED_ON_NEXT
== clockPhase));
ASSERT(
(EUSCI_B_SPI_CLOCKPOLARITY_INACTIVITY_HIGH == clockPolarity)
|| (EUSCI_B_SPI_CLOCKPOLARITY_INACTIVITY_LOW
== clockPolarity));
ASSERT(
(EUSCI_B_SPI_3PIN == spiMode)
|| (EUSCI_B_SPI_4PIN_UCxSTE_ACTIVE_HIGH == spiMode)
|| (EUSCI_B_SPI_4PIN_UCxSTE_ACTIVE_LOW == spiMode));
//Disable USCI Module
BITBAND_PERI(EUSCI_B_CMSIS(baseAddress)->CTLW0, EUSCI_A_CTLW0_SWRST_OFS) = 1;
//Reset OFS_UCBxCTLW0 register
EUSCI_B_CMSIS(baseAddress)->CTLW0 = (EUSCI_B_CMSIS(baseAddress)->CTLW0
& ~(EUSCI_A_CTLW0_MSB + EUSCI_A_CTLW0_SEVENBIT + EUSCI_A_CTLW0_MST + EUSCI_A_CTLW0_CKPL + EUSCI_A_CTLW0_CKPH + EUSCI_A_CTLW0_MODE_3))
| (clockPhase + clockPolarity + msbFirst + EUSCI_A_CTLW0_SYNC + spiMode);
return true;
}
//*****************************************************************************
//
//! \brief Changes the SPI colock phase and polarity. At the end of this
//! function call, SPI module is left enabled.
//!
//! \param baseAddress is the base address of the EUSCI_B_SPI module.
//! \param clockPhase is clock phase select.
//! Valid values are:
//! - \b EUSCI_B_SPI_PHASE_DATA_CHANGED_ONFIRST_CAPTURED_ON_NEXT
//! [Default]
//! - \b EUSCI_B_SPI_PHASE_DATA_CAPTURED_ONFIRST_CHANGED_ON_NEXT
//! \param clockPolarity is clock polarity select
//! Valid values are:
//! - \b EUSCI_B_SPI_CLOCKPOLARITY_INACTIVITY_HIGH
//! - \b EUSCI_B_SPI_CLOCKPOLARITY_INACTIVITY_LOW [Default]
//!
//! Modified bits are \b EUSCI_A_CTLW0_CKPL, \b EUSCI_A_CTLW0_CKPH and \b UCSWRST of \b UCAxCTLW0
//! register.
//!
//! \return None
//
//*****************************************************************************
void EUSCI_B_SPI_changeClockPhasePolarity(uint32_t baseAddress,
uint16_t clockPhase, uint16_t clockPolarity)
{
ASSERT(
(EUSCI_B_SPI_CLOCKPOLARITY_INACTIVITY_HIGH == clockPolarity)
|| (EUSCI_B_SPI_CLOCKPOLARITY_INACTIVITY_LOW
== clockPolarity));
ASSERT(
(EUSCI_B_SPI_PHASE_DATA_CHANGED_ONFIRST_CAPTURED_ON_NEXT
== clockPhase)
|| (EUSCI_B_SPI_PHASE_DATA_CAPTURED_ONFIRST_CHANGED_ON_NEXT
== clockPhase));
//Disable the USCI Module
BITBAND_PERI(EUSCI_B_CMSIS(baseAddress)->CTLW0, EUSCI_A_CTLW0_SWRST_OFS) = 1;
EUSCI_B_CMSIS(baseAddress)->CTLW0 = (EUSCI_B_CMSIS(baseAddress)->CTLW0
& ~(EUSCI_A_CTLW0_CKPH + EUSCI_A_CTLW0_CKPL)) | (clockPhase + clockPolarity);
//Reset the UCSWRST bit to enable the USCI Module
BITBAND_PERI(EUSCI_B_CMSIS(baseAddress)->CTLW0, EUSCI_A_CTLW0_SWRST_OFS) = 0;
}
//*****************************************************************************
//
//! \brief Transmits a byte from the SPI Module.
//!
//! This function will place the supplied data into SPI trasmit data register
//! to start transmission.
//!
//! \param baseAddress is the base address of the EUSCI_B_SPI module.
//! \param transmitData data to be transmitted from the SPI module
//!
//! \return None
//
//*****************************************************************************
void EUSCI_B_SPI_transmitData(uint32_t baseAddress, uint8_t transmitData)
{
EUSCI_B_CMSIS(baseAddress)->TXBUF = transmitData;
}
//*****************************************************************************
//
//! \brief Receives a byte that has been sent to the SPI Module.
//!
//! This function reads a byte of data from the SPI receive data Register.
//!
//! \param baseAddress is the base address of the EUSCI_B_SPI module.
//!
//! \return Returns the byte received from by the SPI module, cast as an
//! uint8_t.
//
//*****************************************************************************
uint8_t EUSCI_B_SPI_receiveData(uint32_t baseAddress)
{
return EUSCI_B_CMSIS(baseAddress)->RXBUF;
}
//*****************************************************************************
//
//! \brief Enables individual SPI interrupt sources.
//!
//! Enables the indicated SPI interrupt sources. Only the sources that are
//! enabled can be reflected to the processor interrupt; disabled sources have
//! no effect on the processor. Does not clear interrupt flags.
//!
//! \param baseAddress is the base address of the EUSCI_B_SPI module.
//! \param mask is the bit mask of the interrupt sources to be enabled.
//! Mask value is the logical OR of any of the following:
//! - \b EUSCI_B_SPI_TRANSMIT_INTERRUPT
//! - \b EUSCI_B_SPI_RECEIVE_INTERRUPT
//!
//! Modified bits of \b UCAxIFG register and bits of \b UCAxIE register.
//!
//! \return None
//
//*****************************************************************************
void EUSCI_B_SPI_enableInterrupt(uint32_t baseAddress, uint8_t mask)
{
ASSERT(
!(mask
& ~(EUSCI_B_SPI_RECEIVE_INTERRUPT
| EUSCI_B_SPI_TRANSMIT_INTERRUPT)));
EUSCI_B_CMSIS(baseAddress)->IE |= mask;
}
//*****************************************************************************
//
//! \brief Disables individual SPI interrupt sources.
//!
//! Disables the indicated SPI interrupt sources. Only the sources that are
//! enabled can be reflected to the processor interrupt; disabled sources have
//! no effect on the processor.
//!
//! \param baseAddress is the base address of the EUSCI_B_SPI module.
//! \param mask is the bit mask of the interrupt sources to be disabled.
//! Mask value is the logical OR of any of the following:
//! - \b EUSCI_B_SPI_TRANSMIT_INTERRUPT
//! - \b EUSCI_B_SPI_RECEIVE_INTERRUPT
//!
//! Modified bits of \b UCAxIE register.
//!
//! \return None
//
//*****************************************************************************
void EUSCI_B_SPI_disableInterrupt(uint32_t baseAddress, uint8_t mask)
{
ASSERT(
!(mask
& ~(EUSCI_B_SPI_RECEIVE_INTERRUPT
| EUSCI_B_SPI_TRANSMIT_INTERRUPT)));
EUSCI_B_CMSIS(baseAddress)->IE &= ~mask;
}
//*****************************************************************************
//
//! \brief Gets the current SPI interrupt status.
//!
//! This returns the interrupt status for the SPI module based on which flag is
//! passed.
//!
//! \param baseAddress is the base address of the EUSCI_B_SPI module.
//! \param mask is the masked interrupt flag status to be returned.
//! Mask value is the logical OR of any of the following:
//! - \b EUSCI_B_SPI_TRANSMIT_INTERRUPT
//! - \b EUSCI_B_SPI_RECEIVE_INTERRUPT
//!
//! \return Logical OR of any of the following:
//! - \b EUSCI_B_SPI_TRANSMIT_INTERRUPT
//! - \b EUSCI_B_SPI_RECEIVE_INTERRUPT
//! \n indicating the status of the masked interrupts
//
//*****************************************************************************
uint8_t EUSCI_B_SPI_getInterruptStatus(uint32_t baseAddress, uint8_t mask)
{
ASSERT(
!(mask
& ~(EUSCI_B_SPI_RECEIVE_INTERRUPT
| EUSCI_B_SPI_TRANSMIT_INTERRUPT)));
return EUSCI_B_CMSIS(baseAddress)->IFG & mask;
}
//*****************************************************************************
//
//! \brief Clears the selected SPI interrupt status flag.
//!
//! \param baseAddress is the base address of the EUSCI_B_SPI module.
//! \param mask is the masked interrupt flag to be cleared.
//! Mask value is the logical OR of any of the following:
//! - \b EUSCI_B_SPI_TRANSMIT_INTERRUPT
//! - \b EUSCI_B_SPI_RECEIVE_INTERRUPT
//!
//! Modified bits of \b UCAxIFG register.
//!
//! \return None
//
//*****************************************************************************
void EUSCI_B_SPI_clearInterruptFlag(uint32_t baseAddress, uint8_t mask)
{
ASSERT(
!(mask
& ~(EUSCI_B_SPI_RECEIVE_INTERRUPT
| EUSCI_B_SPI_TRANSMIT_INTERRUPT)));
EUSCI_B_CMSIS(baseAddress)->IFG &= ~mask;
}
//*****************************************************************************
//
//! \brief Enables the SPI block.
//!
//! This will enable operation of the SPI block.
//!
//! \param baseAddress is the base address of the EUSCI_B_SPI module.
//!
//! Modified bits are \b UCSWRST of \b UCBxCTLW0 register.
//!
//! \return None
//
//*****************************************************************************
void EUSCI_B_SPI_enable(uint32_t baseAddress)
{
//Reset the UCSWRST bit to enable the USCI Module
BITBAND_PERI(EUSCI_B_CMSIS(baseAddress)->CTLW0, EUSCI_A_CTLW0_SWRST_OFS) = 0;
}
//*****************************************************************************
//
//! \brief Disables the SPI block.
//!
//! This will disable operation of the SPI block.
//!
//! \param baseAddress is the base address of the EUSCI_B_SPI module.
//!
//! Modified bits are \b UCSWRST of \b UCBxCTLW0 register.
//!
//! \return None
//
//*****************************************************************************
void EUSCI_B_SPI_disable(uint32_t baseAddress)
{
//Set the UCSWRST bit to disable the USCI Module
BITBAND_PERI(EUSCI_B_CMSIS(baseAddress)->CTLW0, EUSCI_A_CTLW0_SWRST_OFS) = 1;
}
//*****************************************************************************
//
//! \brief Returns the address of the RX Buffer of the SPI for the DMA module.
//!
//! Returns the address of the SPI RX Buffer. This can be used in conjunction
//! with the DMA to store the received data directly to memory.
//!
//! \param baseAddress is the base address of the EUSCI_B_SPI module.
//!
//! \return the address of the RX Buffer
//
//*****************************************************************************
uint32_t EUSCI_B_SPI_getReceiveBufferAddressForDMA(uint32_t baseAddress)
{
return ((uint32_t)(&EUSCI_B_CMSIS(baseAddress)->RXBUF));
}
//*****************************************************************************
//
//! \brief Returns the address of the TX Buffer of the SPI for the DMA module.
//!
//! Returns the address of the SPI TX Buffer. This can be used in conjunction
//! with the DMA to obtain transmitted data directly from memory.
//!
//! \param baseAddress is the base address of the EUSCI_B_SPI module.
//!
//! \return the address of the TX Buffer
//
//*****************************************************************************
uint32_t EUSCI_B_SPI_getTransmitBufferAddressForDMA(uint32_t baseAddress)
{
return ((uint32_t)(&EUSCI_B_CMSIS(baseAddress)->TXBUF));
}
//*****************************************************************************
//
//! \brief Indicates whether or not the SPI bus is busy.
//!
//! This function returns an indication of whether or not the SPI bus is
//! busy.This function checks the status of the bus via UCBBUSY bit
//!
//! \param baseAddress is the base address of the EUSCI_B_SPI module.
//!
//! \return true if busy, false otherwise
//
//*****************************************************************************
bool EUSCI_B_SPI_isBusy(uint32_t baseAddress)
{
//Return the bus busy status.
return BITBAND_PERI(EUSCI_B_CMSIS(baseAddress)->STATW, EUSCI_B_STATW_BBUSY_OFS);
}
//*****************************************************************************
//
//! \brief Selects 4Pin Functionality
//!
//! This function should be invoked only in 4-wire mode. Invoking this function
//! has no effect in 3-wire mode.
//!
//! \param baseAddress is the base address of the EUSCI_A_SPI module.
//! \param select4PinFunctionality selects 4 pin functionality
//! Valid values are:
//! - \b EUSCI_A_SPI_PREVENT_CONFLICTS_WITH_OTHER_MASTERS
//! - \b EUSCI_A_SPI_ENABLE_SIGNAL_FOR_4WIRE_SLAVE
//!
//! Modified bits are \b UCSTEM of \b UCAxCTLW0 register.
//!
//! \return None
//
//*****************************************************************************
void EUSCI_A_SPI_select4PinFunctionality(uint32_t baseAddress,
uint8_t select4PinFunctionality)
{
ASSERT(
(EUSCI_A_SPI_PREVENT_CONFLICTS_WITH_OTHER_MASTERS
== select4PinFunctionality)
|| (EUSCI_A_SPI_ENABLE_SIGNAL_FOR_4WIRE_SLAVE
== select4PinFunctionality));
EUSCI_A_CMSIS(baseAddress)->CTLW0 = (EUSCI_A_CMSIS(baseAddress)->CTLW0
& ~EUSCI_A_CTLW0_STEM) | select4PinFunctionality;
}
//*****************************************************************************
//
//! \brief Initializes the SPI Master clock. At the end of this function call,
//! SPI module is left enabled.
//!
//! \param baseAddress is the base address of the EUSCI_A_SPI module.
//! \param clockSourceFrequency is the frequency of the slected clock source
//! \param desiredSpiClock is the desired clock rate for SPI communication
//!
//! Modified bits are \b UCSWRST of \b UCAxCTLW0 register.
//!
//! \return None
//
//*****************************************************************************
void EUSCI_A_SPI_masterChangeClock(uint32_t baseAddress,
uint32_t clockSourceFrequency, uint32_t desiredSpiClock)
{
//Disable the USCI Module
BITBAND_PERI(EUSCI_A_CMSIS(baseAddress)->CTLW0, EUSCI_A_CTLW0_SWRST_OFS) = 1;
EUSCI_A_CMSIS(baseAddress)->BRW = (uint16_t) (clockSourceFrequency
/ desiredSpiClock);
//Reset the UCSWRST bit to enable the USCI Module
BITBAND_PERI(EUSCI_A_CMSIS(baseAddress)->CTLW0, EUSCI_A_CTLW0_SWRST_OFS) = 0;
}
//*****************************************************************************
//
//! \brief Initializes the SPI Slave block.
//!
//! Upon successful initialization of the SPI slave block, this function will
//! have initailized the slave block, but the SPI Slave block still remains
//! disabled and must be enabled with EUSCI_A_SPI_enable()
//!
//! \param baseAddress is the base address of the EUSCI_A_SPI Slave module.
//! \param msbFirst controls the direction of the receive and transmit shift
//! register.
//! Valid values are:
//! - \b EUSCI_A_SPI_MSB_FIRST
//! - \b EUSCI_A_SPI_LSB_FIRST [Default]
//! \param clockPhase is clock phase select.
//! Valid values are:
//! - \b EUSCI_A_SPI_PHASE_DATA_CHANGED_ONFIRST_CAPTURED_ON_NEXT
//! [Default]
//! - \b EUSCI_A_SPI_PHASE_DATA_CAPTURED_ONFIRST_CHANGED_ON_NEXT
//! \param clockPolarity is clock polarity select
//! Valid values are:
//! - \b EUSCI_A_SPI_CLOCKPOLARITY_INACTIVITY_HIGH
//! - \b EUSCI_A_SPI_CLOCKPOLARITY_INACTIVITY_LOW [Default]
//! \param spiMode is SPI mode select
//! Valid values are:
//! - \b EUSCI_A_SPI_3PIN
//! - \b EUSCI_A_SPI_4PIN_UCxSTE_ACTIVE_HIGH
//! - \b EUSCI_A_SPI_4PIN_UCxSTE_ACTIVE_LOW
//!
//! Modified bits are \b EUSCI_A_CTLW0_MSB, \b EUSCI_A_CTLW0_MST, \b EUSCI_A_CTLW0_SEVENBIT, \b EUSCI_A_CTLW0_CKPL, \b EUSCI_A_CTLW0_CKPH, \b
//! UCMODE and \b UCSWRST of \b UCAxCTLW0 register.
//!
//! \return STATUS_SUCCESS
//
//*****************************************************************************
bool EUSCI_A_SPI_slaveInit(uint32_t baseAddress, uint16_t msbFirst,
uint16_t clockPhase, uint16_t clockPolarity, uint16_t spiMode)
{
ASSERT(
(EUSCI_A_SPI_MSB_FIRST == msbFirst)
|| (EUSCI_A_SPI_LSB_FIRST == msbFirst));
ASSERT(
(EUSCI_A_SPI_PHASE_DATA_CHANGED_ONFIRST_CAPTURED_ON_NEXT
== clockPhase)
|| (EUSCI_A_SPI_PHASE_DATA_CAPTURED_ONFIRST_CHANGED_ON_NEXT
== clockPhase));
ASSERT(
(EUSCI_A_SPI_CLOCKPOLARITY_INACTIVITY_HIGH == clockPolarity)
|| (EUSCI_A_SPI_CLOCKPOLARITY_INACTIVITY_LOW
== clockPolarity));
ASSERT(
(EUSCI_A_SPI_3PIN == spiMode)
|| (EUSCI_A_SPI_4PIN_UCxSTE_ACTIVE_HIGH == spiMode)
|| (EUSCI_A_SPI_4PIN_UCxSTE_ACTIVE_LOW == spiMode));
//Disable USCI Module
BITBAND_PERI(EUSCI_A_CMSIS(baseAddress)->CTLW0, EUSCI_A_CTLW0_SWRST_OFS) = 1;
//Reset OFS_UCAxCTLW0 register
EUSCI_A_CMSIS(baseAddress)->CTLW0 = (EUSCI_A_CMSIS(baseAddress)->CTLW0
& ~(EUSCI_A_CTLW0_MSB + EUSCI_A_CTLW0_SEVENBIT + EUSCI_A_CTLW0_MST + EUSCI_A_CTLW0_CKPL + EUSCI_A_CTLW0_CKPH + EUSCI_A_CTLW0_MODE_3))
| (clockPhase + clockPolarity + msbFirst + EUSCI_A_CTLW0_SYNC + spiMode);
return true;
}
//*****************************************************************************
//
//! \brief Changes the SPI colock phase and polarity. At the end of this
//! function call, SPI module is left enabled.
//!
//! \param baseAddress is the base address of the EUSCI_A_SPI module.
//! \param clockPhase is clock phase select.
//! Valid values are:
//! - \b EUSCI_A_SPI_PHASE_DATA_CHANGED_ONFIRST_CAPTURED_ON_NEXT
//! [Default]
//! - \b EUSCI_A_SPI_PHASE_DATA_CAPTURED_ONFIRST_CHANGED_ON_NEXT
//! \param clockPolarity is clock polarity select
//! Valid values are:
//! - \b EUSCI_A_SPI_CLOCKPOLARITY_INACTIVITY_HIGH
//! - \b EUSCI_A_SPI_CLOCKPOLARITY_INACTIVITY_LOW [Default]
//!
//! Modified bits are \b EUSCI_A_CTLW0_CKPL, \b EUSCI_A_CTLW0_CKPH and \b UCSWRST of \b UCAxCTLW0
//! register.
//!
//! \return None
//
//*****************************************************************************
void EUSCI_A_SPI_changeClockPhasePolarity(uint32_t baseAddress,
uint16_t clockPhase, uint16_t clockPolarity)
{
ASSERT(
(EUSCI_A_SPI_CLOCKPOLARITY_INACTIVITY_HIGH == clockPolarity)
|| (EUSCI_A_SPI_CLOCKPOLARITY_INACTIVITY_LOW
== clockPolarity));
ASSERT(
(EUSCI_A_SPI_PHASE_DATA_CHANGED_ONFIRST_CAPTURED_ON_NEXT
== clockPhase)
|| (EUSCI_A_SPI_PHASE_DATA_CAPTURED_ONFIRST_CHANGED_ON_NEXT
== clockPhase));
//Disable the USCI Module
BITBAND_PERI(EUSCI_A_CMSIS(baseAddress)->CTLW0, EUSCI_A_CTLW0_SWRST_OFS) = 1;
EUSCI_A_CMSIS(baseAddress)->CTLW0 = (EUSCI_A_CMSIS(baseAddress)->CTLW0
& ~(EUSCI_A_CTLW0_CKPH + EUSCI_A_CTLW0_CKPL)) | (clockPhase + clockPolarity);
//Reset the UCSWRST bit to enable the USCI Module
BITBAND_PERI(EUSCI_A_CMSIS(baseAddress)->CTLW0, EUSCI_A_CTLW0_SWRST_OFS) = 0;
}
//*****************************************************************************
//
//! \brief Transmits a byte from the SPI Module.
//!
//! This function will place the supplied data into SPI trasmit data register
//! to start transmission.
//!
//! \param baseAddress is the base address of the EUSCI_A_SPI module.
//! \param transmitData data to be transmitted from the SPI module
//!
//! \return None
//
//*****************************************************************************
void EUSCI_A_SPI_transmitData(uint32_t baseAddress, uint8_t transmitData)
{
EUSCI_A_CMSIS(baseAddress)->TXBUF = transmitData;
}
//*****************************************************************************
//
//! \brief Receives a byte that has been sent to the SPI Module.
//!
//! This function reads a byte of data from the SPI receive data Register.
//!
//! \param baseAddress is the base address of the EUSCI_A_SPI module.
//!
//! \return Returns the byte received from by the SPI module, cast as an
//! uint8_t.
//
//*****************************************************************************
uint8_t EUSCI_A_SPI_receiveData(uint32_t baseAddress)
{
return EUSCI_A_CMSIS(baseAddress)->RXBUF;
}
//*****************************************************************************
//
//! \brief Enables individual SPI interrupt sources.
//!
//! Enables the indicated SPI interrupt sources. Only the sources that are
//! enabled can be reflected to the processor interrupt; disabled sources have
//! no effect on the processor. Does not clear interrupt flags.
//!
//! \param baseAddress is the base address of the EUSCI_A_SPI module.
//! \param mask is the bit mask of the interrupt sources to be enabled.
//! Mask value is the logical OR of any of the following:
//! - \b EUSCI_A_SPI_TRANSMIT_INTERRUPT
//! - \b EUSCI_A_SPI_RECEIVE_INTERRUPT
//!
//! Modified bits of \b UCAxIFG register and bits of \b UCAxIE register.
//!
//! \return None
//
//*****************************************************************************
void EUSCI_A_SPI_enableInterrupt(uint32_t baseAddress, uint8_t mask)
{
ASSERT(
!(mask
& ~(EUSCI_A_SPI_RECEIVE_INTERRUPT
| EUSCI_A_SPI_TRANSMIT_INTERRUPT)));
EUSCI_A_CMSIS(baseAddress)->IE |= mask;
}
//*****************************************************************************
//
//! \brief Disables individual SPI interrupt sources.
//!
//! Disables the indicated SPI interrupt sources. Only the sources that are
//! enabled can be reflected to the processor interrupt; disabled sources have
//! no effect on the processor.
//!
//! \param baseAddress is the base address of the EUSCI_A_SPI module.
//! \param mask is the bit mask of the interrupt sources to be disabled.
//! Mask value is the logical OR of any of the following:
//! - \b EUSCI_A_SPI_TRANSMIT_INTERRUPT
//! - \b EUSCI_A_SPI_RECEIVE_INTERRUPT
//!
//! Modified bits of \b UCAxIE register.
//!
//! \return None
//
//*****************************************************************************
void EUSCI_A_SPI_disableInterrupt(uint32_t baseAddress, uint8_t mask)
{
ASSERT(
!(mask
& ~(EUSCI_A_SPI_RECEIVE_INTERRUPT
| EUSCI_A_SPI_TRANSMIT_INTERRUPT)));
EUSCI_A_CMSIS(baseAddress)->IE &= ~mask;
}
//*****************************************************************************
//
//! \brief Gets the current SPI interrupt status.
//!
//! This returns the interrupt status for the SPI module based on which flag is
//! passed.
//!
//! \param baseAddress is the base address of the EUSCI_A_SPI module.
//! \param mask is the masked interrupt flag status to be returned.
//! Mask value is the logical OR of any of the following:
//! - \b EUSCI_A_SPI_TRANSMIT_INTERRUPT
//! - \b EUSCI_A_SPI_RECEIVE_INTERRUPT
//!
//! \return Logical OR of any of the following:
//! - \b EUSCI_A_SPI_TRANSMIT_INTERRUPT
//! - \b EUSCI_A_SPI_RECEIVE_INTERRUPT
//! \n indicating the status of the masked interrupts
//
//*****************************************************************************
uint8_t EUSCI_A_SPI_getInterruptStatus(uint32_t baseAddress, uint8_t mask)
{
ASSERT(
!(mask
& ~(EUSCI_A_SPI_RECEIVE_INTERRUPT
| EUSCI_A_SPI_TRANSMIT_INTERRUPT)));
return EUSCI_A_CMSIS(baseAddress)->IFG & mask;
}
//*****************************************************************************
//
//! \brief Clears the selected SPI interrupt status flag.
//!
//! \param baseAddress is the base address of the EUSCI_A_SPI module.
//! \param mask is the masked interrupt flag to be cleared.
//! Mask value is the logical OR of any of the following:
//! - \b EUSCI_A_SPI_TRANSMIT_INTERRUPT
//! - \b EUSCI_A_SPI_RECEIVE_INTERRUPT
//!
//! Modified bits of \b UCAxIFG register.
//!
//! \return None
//
//*****************************************************************************
void EUSCI_A_SPI_clearInterruptFlag(uint32_t baseAddress, uint8_t mask)
{
ASSERT(
!(mask
& ~(EUSCI_A_SPI_RECEIVE_INTERRUPT
| EUSCI_A_SPI_TRANSMIT_INTERRUPT)));
EUSCI_A_CMSIS(baseAddress)->IFG &= ~mask;
}
//*****************************************************************************
//
//! \brief Enables the SPI block.
//!
//! This will enable operation of the SPI block.
//!
//! \param baseAddress is the base address of the EUSCI_A_SPI module.
//!
//! Modified bits are \b UCSWRST of \b UCAxCTLW0 register.
//!
//! \return None
//
//*****************************************************************************
void EUSCI_A_SPI_enable(uint32_t baseAddress)
{
//Reset the UCSWRST bit to enable the USCI Module
BITBAND_PERI(EUSCI_A_CMSIS(baseAddress)->CTLW0, EUSCI_A_CTLW0_SWRST_OFS) = 0;
}
//*****************************************************************************
//
//! \brief Disables the SPI block.
//!
//! This will disable operation of the SPI block.
//!
//! \param baseAddress is the base address of the EUSCI_A_SPI module.
//!
//! Modified bits are \b UCSWRST of \b UCAxCTLW0 register.
//!
//! \return None
//
//*****************************************************************************
void EUSCI_A_SPI_disable(uint32_t baseAddress)
{
//Set the UCSWRST bit to disable the USCI Module
BITBAND_PERI(EUSCI_A_CMSIS(baseAddress)->CTLW0, EUSCI_A_CTLW0_SWRST_OFS) = 1;
}
//*****************************************************************************
//
//! \brief Returns the address of the RX Buffer of the SPI for the DMA module.
//!
//! Returns the address of the SPI RX Buffer. This can be used in conjunction
//! with the DMA to store the received data directly to memory.
//!
//! \param baseAddress is the base address of the EUSCI_A_SPI module.
//!
//! \return the address of the RX Buffer
//
//*****************************************************************************
uint32_t EUSCI_A_SPI_getReceiveBufferAddressForDMA(uint32_t baseAddress)
{
return (uint32_t)&EUSCI_A_CMSIS(baseAddress)->RXBUF;
}
//*****************************************************************************
//
//! \brief Returns the address of the TX Buffer of the SPI for the DMA module.
//!
//! Returns the address of the SPI TX Buffer. This can be used in conjunction
//! with the DMA to obtain transmitted data directly from memory.
//!
//! \param baseAddress is the base address of the EUSCI_A_SPI module.
//!
//! \return the address of the TX Buffer
//
//*****************************************************************************
uint32_t EUSCI_A_SPI_getTransmitBufferAddressForDMA(uint32_t baseAddress)
{
return (uint32_t)&EUSCI_A_CMSIS(baseAddress)->TXBUF;
}
//*****************************************************************************
//
//! \brief Indicates whether or not the SPI bus is busy.
//!
//! This function returns an indication of whether or not the SPI bus is
//! busy.This function checks the status of the bus via UCBBUSY bit
//!
//! \param baseAddress is the base address of the EUSCI_A_SPI module.
//!
//! \return true if busy, false otherwise
//*****************************************************************************
bool EUSCI_A_SPI_isBusy(uint32_t baseAddress)
{
//Return the bus busy status.
return BITBAND_PERI(EUSCI_A_CMSIS(baseAddress)->STATW, EUSCI_B_STATW_BBUSY_OFS);
}