blob: f14a543dc22bdc0038a05367055998fda1a250a8 [file] [log] [blame]
/*
* Copyright (c) 2016, Freescale Semiconductor, Inc.
* Copyright 2016 - 2019 , NXP
* All rights reserved.
*
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef _FSL_CLOCK_H_
#define _FSL_CLOCK_H_
#include "fsl_common.h"
/*! @addtogroup clock */
/*! @{ */
/*! @file */
/*******************************************************************************
* Definitions
*****************************************************************************/
/*! @name Driver version */
/*@{*/
/*! @brief CLOCK driver version 2.3.1. */
#define FSL_CLOCK_DRIVER_VERSION (MAKE_VERSION(2, 3, 1))
/*@}*/
/*! @brief Configure whether driver controls clock
*
* When set to 0, peripheral drivers will enable clock in initialize function
* and disable clock in de-initialize function. When set to 1, peripheral
* driver will not control the clock, application could control the clock out of
* the driver.
*
* @note All drivers share this feature switcher. If it is set to 1, application
* should handle clock enable and disable for all drivers.
*/
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL))
#define FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL 0
#endif
/*!
* @brief User-defined the size of cache for CLOCK_PllGetConfig() function.
*
* Once define this MACRO to be non-zero value, CLOCK_PllGetConfig() function
* would cache the recent calulation and accelerate the execution to get the
* right settings.
*/
#ifndef CLOCK_USR_CFG_PLL_CONFIG_CACHE_COUNT
#define CLOCK_USR_CFG_PLL_CONFIG_CACHE_COUNT 2U
#endif
/* Definition for delay API in clock driver, users can redefine it to the real application. */
#ifndef SDK_DEVICE_MAXIMUM_CPU_CLOCK_FREQUENCY
#define SDK_DEVICE_MAXIMUM_CPU_CLOCK_FREQUENCY (180000000UL)
#endif
/*! @brief Clock ip name array for ADC. */
#define ADC_CLOCKS \
{ \
kCLOCK_Adc0 \
}
/*! @brief Clock ip name array for ROM. */
#define ROM_CLOCKS \
{ \
kCLOCK_Rom \
}
/*! @brief Clock ip name array for SRAM. */
#define SRAM_CLOCKS \
{ \
kCLOCK_Sram1, kCLOCK_Sram2, kCLOCK_Sram3 \
}
/*! @brief Clock ip name array for FLASH. */
#define FLASH_CLOCKS \
{ \
kCLOCK_Flash \
}
/*! @brief Clock ip name array for FMC. */
#define FMC_CLOCKS \
{ \
kCLOCK_Fmc \
}
/*! @brief Clock ip name array for EEPROM. */
#define EEPROM_CLOCKS \
{ \
kCLOCK_Eeprom \
}
/*! @brief Clock ip name array for SPIFI. */
#define SPIFI_CLOCKS \
{ \
kCLOCK_Spifi \
}
/*! @brief Clock ip name array for INPUTMUX. */
#define INPUTMUX_CLOCKS \
{ \
kCLOCK_InputMux \
}
/*! @brief Clock ip name array for IOCON. */
#define IOCON_CLOCKS \
{ \
kCLOCK_Iocon \
}
/*! @brief Clock ip name array for GPIO. */
#define GPIO_CLOCKS \
{ \
kCLOCK_Gpio0, kCLOCK_Gpio1, kCLOCK_Gpio2, kCLOCK_Gpio3, kCLOCK_Gpio4, kCLOCK_Gpio5 \
}
/*! @brief Clock ip name array for PINT. */
#define PINT_CLOCKS \
{ \
kCLOCK_Pint \
}
/*! @brief Clock ip name array for GINT. */
#define GINT_CLOCKS \
{ \
kCLOCK_Gint, kCLOCK_Gint \
}
/*! @brief Clock ip name array for DMA. */
#define DMA_CLOCKS \
{ \
kCLOCK_Dma \
}
/*! @brief Clock ip name array for CRC. */
#define CRC_CLOCKS \
{ \
kCLOCK_Crc \
}
/*! @brief Clock ip name array for WWDT. */
#define WWDT_CLOCKS \
{ \
kCLOCK_Wwdt \
}
/*! @brief Clock ip name array for RTC. */
#define RTC_CLOCKS \
{ \
kCLOCK_Rtc \
}
/*! @brief Clock ip name array for ADC0. */
#define ADC0_CLOCKS \
{ \
kCLOCK_Adc0 \
}
/*! @brief Clock ip name array for MRT. */
#define MRT_CLOCKS \
{ \
kCLOCK_Mrt \
}
/*! @brief Clock ip name array for RIT. */
#define RIT_CLOCKS \
{ \
kCLOCK_Rit \
}
/*! @brief Clock ip name array for SCT0. */
#define SCT_CLOCKS \
{ \
kCLOCK_Sct0 \
}
/*! @brief Clock ip name array for MCAN. */
#define MCAN_CLOCKS \
{ \
kCLOCK_Mcan0, kCLOCK_Mcan1 \
}
/*! @brief Clock ip name array for UTICK. */
#define UTICK_CLOCKS \
{ \
kCLOCK_Utick \
}
/*! @brief Clock ip name array for FLEXCOMM. */
#define FLEXCOMM_CLOCKS \
{ \
kCLOCK_FlexComm0, kCLOCK_FlexComm1, kCLOCK_FlexComm2, kCLOCK_FlexComm3, kCLOCK_FlexComm4, kCLOCK_FlexComm5, \
kCLOCK_FlexComm6, kCLOCK_FlexComm7, kCLOCK_FlexComm8, kCLOCK_FlexComm9, kCLOCK_FlexComm10 \
}
/*! @brief Clock ip name array for LPUART. */
#define LPUART_CLOCKS \
{ \
kCLOCK_MinUart0, kCLOCK_MinUart1, kCLOCK_MinUart2, kCLOCK_MinUart3, kCLOCK_MinUart4, kCLOCK_MinUart5, \
kCLOCK_MinUart6, kCLOCK_MinUart7, kCLOCK_MinUart8, kCLOCK_MinUart9 \
}
/*! @brief Clock ip name array for BI2C. */
#define BI2C_CLOCKS \
{ \
kCLOCK_BI2c0, kCLOCK_BI2c1, kCLOCK_BI2c2, kCLOCK_BI2c3, kCLOCK_BI2c4, kCLOCK_BI2c5, kCLOCK_BI2c6, \
kCLOCK_BI2c7, kCLOCK_BI2c8, kCLOCK_BI2c9 \
}
/*! @brief Clock ip name array for LSPI. */
#define LPSI_CLOCKS \
{ \
kCLOCK_LSpi0, kCLOCK_LSpi1, kCLOCK_LSpi2, kCLOCK_LSpi3, kCLOCK_LSpi4, kCLOCK_LSpi5, kCLOCK_LSpi6, \
kCLOCK_LSpi7, kCLOCK_LSpi8, kCLOCK_LSpi9 \
}
/*! @brief Clock ip name array for FLEXI2S. */
#define FLEXI2S_CLOCKS \
{ \
kCLOCK_FlexI2s0, kCLOCK_FlexI2s1, kCLOCK_FlexI2s2, kCLOCK_FlexI2s3, kCLOCK_FlexI2s4, kCLOCK_FlexI2s5, \
kCLOCK_FlexI2s6, kCLOCK_FlexI2s7, kCLOCK_FlexI2s8, kCLOCK_FlexI2s9 \
}
/*! @brief Clock ip name array for DMIC. */
#define DMIC_CLOCKS \
{ \
kCLOCK_DMic \
}
/*! @brief Clock ip name array for CT32B. */
#define CTIMER_CLOCKS \
{ \
kCLOCK_Ct32b0, kCLOCK_Ct32b1, kCLOCK_Ct32b2, kCLOCK_Ct32b3, kCLOCK_Ct32b4 \
}
/*! @brief Clock ip name array for LCD. */
#define LCD_CLOCKS \
{ \
kCLOCK_Lcd \
}
/*! @brief Clock ip name array for SDIO. */
#define SDIO_CLOCKS \
{ \
kCLOCK_Sdio \
}
/*! @brief Clock ip name array for USBRAM. */
#define USBRAM_CLOCKS \
{ \
kCLOCK_UsbRam1 \
}
/*! @brief Clock ip name array for EMC. */
#define EMC_CLOCKS \
{ \
kCLOCK_Emc \
}
/*! @brief Clock ip name array for ETH. */
#define ETH_CLOCKS \
{ \
kCLOCK_Eth \
}
/*! @brief Clock ip name array for AES. */
#define AES_CLOCKS \
{ \
kCLOCK_Aes \
}
/*! @brief Clock ip name array for OTP. */
#define OTP_CLOCKS \
{ \
kCLOCK_Otp \
}
/*! @brief Clock ip name array for RNG. */
#define RNG_CLOCKS \
{ \
kCLOCK_Rng \
}
/*! @brief Clock ip name array for USBHMR0. */
#define USBHMR0_CLOCKS \
{ \
kCLOCK_Usbhmr0 \
}
/*! @brief Clock ip name array for USBHSL0. */
#define USBHSL0_CLOCKS \
{ \
kCLOCK_Usbhsl0 \
}
/*! @brief Clock ip name array for SHA0. */
#define SHA0_CLOCKS \
{ \
kCLOCK_Sha0 \
}
/*! @brief Clock ip name array for SMARTCARD. */
#define SMARTCARD_CLOCKS \
{ \
kCLOCK_SmartCard0, kCLOCK_SmartCard1 \
}
/*! @brief Clock ip name array for USBD. */
#define USBD_CLOCKS \
{ \
kCLOCK_Usbd0, kCLOCK_Usbh1, kCLOCK_Usbd1 \
}
/*! @brief Clock ip name array for USBH. */
#define USBH_CLOCKS \
{ \
kCLOCK_Usbh1 \
}
/*! @brief Clock gate name used for CLOCK_EnableClock/CLOCK_DisableClock. */
/*------------------------------------------------------------------------------
clock_ip_name_t definition:
------------------------------------------------------------------------------*/
#define CLK_GATE_REG_OFFSET_SHIFT 8U
#define CLK_GATE_REG_OFFSET_MASK 0xFFFFFF00U
#define CLK_GATE_BIT_SHIFT_SHIFT 0U
#define CLK_GATE_BIT_SHIFT_MASK 0x000000FFU
#define CLK_GATE_DEFINE(reg_offset, bit_shift) \
((((reg_offset) << CLK_GATE_REG_OFFSET_SHIFT) & CLK_GATE_REG_OFFSET_MASK) | \
(((bit_shift) << CLK_GATE_BIT_SHIFT_SHIFT) & CLK_GATE_BIT_SHIFT_MASK))
#define CLK_GATE_ABSTRACT_REG_OFFSET(x) (((uint32_t)(x)&CLK_GATE_REG_OFFSET_MASK) >> CLK_GATE_REG_OFFSET_SHIFT)
#define CLK_GATE_ABSTRACT_BITS_SHIFT(x) (((uint32_t)(x)&CLK_GATE_BIT_SHIFT_MASK) >> CLK_GATE_BIT_SHIFT_SHIFT)
#define AHB_CLK_CTRL0 0
#define AHB_CLK_CTRL1 1
#define AHB_CLK_CTRL2 2
#define ASYNC_CLK_CTRL0 3
/*! @brief Clock gate name used for CLOCK_EnableClock/CLOCK_DisableClock. */
typedef enum _clock_ip_name
{
kCLOCK_IpInvalid = 0U,
kCLOCK_Rom = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 1),
kCLOCK_Sram1 = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 3),
kCLOCK_Sram2 = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 4),
kCLOCK_Sram3 = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 5),
kCLOCK_Spifi = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 10),
kCLOCK_InputMux = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 11),
kCLOCK_Iocon = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 13),
kCLOCK_Gpio0 = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 14),
kCLOCK_Gpio1 = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 15),
kCLOCK_Gpio2 = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 16),
kCLOCK_Gpio3 = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 17),
kCLOCK_Pint = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 18),
kCLOCK_Gint = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 19),
kCLOCK_Dma = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 20),
kCLOCK_Crc = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 21),
kCLOCK_Wwdt = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 22),
kCLOCK_Rtc = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 23),
kCLOCK_Adc0 = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 27),
kCLOCK_Mrt = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 0),
kCLOCK_Rit = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 1),
kCLOCK_Sct0 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 2),
kCLOCK_Mcan0 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 7),
kCLOCK_Mcan1 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 8),
kCLOCK_Utick = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 10),
kCLOCK_FlexComm0 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 11),
kCLOCK_FlexComm1 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 12),
kCLOCK_FlexComm2 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 13),
kCLOCK_FlexComm3 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 14),
kCLOCK_FlexComm4 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 15),
kCLOCK_FlexComm5 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 16),
kCLOCK_FlexComm6 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 17),
kCLOCK_FlexComm7 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 18),
kCLOCK_MinUart0 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 11),
kCLOCK_MinUart1 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 12),
kCLOCK_MinUart2 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 13),
kCLOCK_MinUart3 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 14),
kCLOCK_MinUart4 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 15),
kCLOCK_MinUart5 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 16),
kCLOCK_MinUart6 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 17),
kCLOCK_MinUart7 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 18),
kCLOCK_LSpi0 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 11),
kCLOCK_LSpi1 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 12),
kCLOCK_LSpi2 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 13),
kCLOCK_LSpi3 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 14),
kCLOCK_LSpi4 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 15),
kCLOCK_LSpi5 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 16),
kCLOCK_LSpi6 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 17),
kCLOCK_LSpi7 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 18),
kCLOCK_BI2c0 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 11),
kCLOCK_BI2c1 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 12),
kCLOCK_BI2c2 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 13),
kCLOCK_BI2c3 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 14),
kCLOCK_BI2c4 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 15),
kCLOCK_BI2c5 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 16),
kCLOCK_BI2c6 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 17),
kCLOCK_BI2c7 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 18),
kCLOCK_FlexI2s0 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 11),
kCLOCK_FlexI2s1 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 12),
kCLOCK_FlexI2s2 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 13),
kCLOCK_FlexI2s3 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 14),
kCLOCK_FlexI2s4 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 15),
kCLOCK_FlexI2s5 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 16),
kCLOCK_FlexI2s6 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 17),
kCLOCK_FlexI2s7 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 18),
kCLOCK_DMic = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 19),
kCLOCK_Ct32b2 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 22),
kCLOCK_Usbd0 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 25),
kCLOCK_Ct32b0 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 26),
kCLOCK_Ct32b1 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 27),
kCLOCK_BodyBias0 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 29),
kCLOCK_EzhArchB0 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 31),
kCLOCK_Lcd = CLK_GATE_DEFINE(AHB_CLK_CTRL2, 2),
kCLOCK_Sdio = CLK_GATE_DEFINE(AHB_CLK_CTRL2, 3),
kCLOCK_Usbh1 = CLK_GATE_DEFINE(AHB_CLK_CTRL2, 4),
kCLOCK_Usbd1 = CLK_GATE_DEFINE(AHB_CLK_CTRL2, 5),
kCLOCK_UsbRam1 = CLK_GATE_DEFINE(AHB_CLK_CTRL2, 6),
kCLOCK_Emc = CLK_GATE_DEFINE(AHB_CLK_CTRL2, 7),
kCLOCK_Eth = CLK_GATE_DEFINE(AHB_CLK_CTRL2, 8),
kCLOCK_Gpio4 = CLK_GATE_DEFINE(AHB_CLK_CTRL2, 9),
kCLOCK_Gpio5 = CLK_GATE_DEFINE(AHB_CLK_CTRL2, 10),
kCLOCK_Aes = CLK_GATE_DEFINE(AHB_CLK_CTRL2, 11),
kCLOCK_Otp = CLK_GATE_DEFINE(AHB_CLK_CTRL2, 12),
kCLOCK_Rng = CLK_GATE_DEFINE(AHB_CLK_CTRL2, 13),
kCLOCK_FlexComm8 = CLK_GATE_DEFINE(AHB_CLK_CTRL2, 14),
kCLOCK_FlexComm9 = CLK_GATE_DEFINE(AHB_CLK_CTRL2, 15),
kCLOCK_MinUart8 = CLK_GATE_DEFINE(AHB_CLK_CTRL2, 14),
kCLOCK_MinUart9 = CLK_GATE_DEFINE(AHB_CLK_CTRL2, 15),
kCLOCK_LSpi8 = CLK_GATE_DEFINE(AHB_CLK_CTRL2, 14),
kCLOCK_LSpi9 = CLK_GATE_DEFINE(AHB_CLK_CTRL2, 15),
kCLOCK_BI2c8 = CLK_GATE_DEFINE(AHB_CLK_CTRL2, 14),
kCLOCK_BI2c9 = CLK_GATE_DEFINE(AHB_CLK_CTRL2, 15),
kCLOCK_FlexI2s8 = CLK_GATE_DEFINE(AHB_CLK_CTRL2, 14),
kCLOCK_FlexI2s9 = CLK_GATE_DEFINE(AHB_CLK_CTRL2, 15),
kCLOCK_Usbhmr0 = CLK_GATE_DEFINE(AHB_CLK_CTRL2, 16),
kCLOCK_Usbhsl0 = CLK_GATE_DEFINE(AHB_CLK_CTRL2, 17),
kCLOCK_Sha0 = CLK_GATE_DEFINE(AHB_CLK_CTRL2, 18),
kCLOCK_SmartCard0 = CLK_GATE_DEFINE(AHB_CLK_CTRL2, 19),
kCLOCK_SmartCard1 = CLK_GATE_DEFINE(AHB_CLK_CTRL2, 20),
kCLOCK_FlexComm10 = CLK_GATE_DEFINE(AHB_CLK_CTRL2, 21),
kCLOCK_Ct32b3 = CLK_GATE_DEFINE(ASYNC_CLK_CTRL0, 13),
kCLOCK_Ct32b4 = CLK_GATE_DEFINE(ASYNC_CLK_CTRL0, 14)
} clock_ip_name_t;
/*! @brief Clock name used to get clock frequency. */
typedef enum _clock_name
{
kCLOCK_CoreSysClk, /*!< Core/system clock (aka MAIN_CLK) */
kCLOCK_BusClk, /*!< Bus clock (AHB clock) */
kCLOCK_ClockOut, /*!< CLOCKOUT */
kCLOCK_FroHf, /*!< FRO48/96 */
kCLOCK_UsbPll, /*!< USB1 PLL */
kCLOCK_Mclk, /*!< MCLK */
kCLOCK_Fro12M, /*!< FRO12M */
kCLOCK_ExtClk, /*!< External Clock */
kCLOCK_PllOut, /*!< PLL Output */
kCLOCK_UsbClk, /*!< USB input */
kCLOCK_WdtOsc, /*!< Watchdog Oscillator */
kCLOCK_Frg, /*!< Frg Clock */
kCLOCK_AsyncApbClk, /*!< Async APB clock */
} clock_name_t;
/**
* Clock source selections for the asynchronous APB clock
*/
typedef enum _async_clock_src
{
kCLOCK_AsyncMainClk = 0, /*!< Main System clock */
kCLOCK_AsyncFro12Mhz, /*!< 12MHz FRO */
kCLOCK_AsyncAudioPllClk,
kCLOCK_AsyncI2cClkFc6,
} async_clock_src_t;
/*! @brief Clock Mux Switches
* The encoding is as follows each connection identified is 32bits wide while 24bits are valuable
* starting from LSB upwards
*
* [4 bits for choice, 0 means invalid choice] [8 bits mux ID]*
*
*/
#define CLK_ATTACH_ID(mux, sel, pos) ((((uint32_t)(mux) << 0U) | (((uint32_t)(sel) + 1U) & 0xFU) << 8U) << ((pos)*12U))
#define MUX_A(mux, sel) CLK_ATTACH_ID((mux), (sel), 0U)
#define MUX_B(mux, sel, selector) (CLK_ATTACH_ID((mux), (sel), 1U) | ((selector) << 24U))
#define GET_ID_ITEM(connection) ((connection)&0xFFFU)
#define GET_ID_NEXT_ITEM(connection) ((connection) >> 12U)
#define GET_ID_ITEM_MUX(connection) ((uint8_t)((connection)&0xFFU))
#define GET_ID_ITEM_SEL(connection) ((uint8_t)((((connection)&0xF00U) >> 8U) - 1U))
#define GET_ID_SELECTOR(connection) ((connection)&0xF000000U)
#define CM_STICKCLKSEL 0
#define CM_MAINCLKSELA 1
#define CM_MAINCLKSELB 2
#define CM_CLKOUTCLKSELA 3
#define CM_SYSPLLCLKSEL 5
#define CM_AUDPLLCLKSEL 7
#define CM_SPIFICLKSEL 9
#define CM_ADCASYNCCLKSEL 10
#define CM_USB0CLKSEL 11
#define CM_USB1CLKSEL 12
#define CM_FXCOMCLKSEL0 13
#define CM_FXCOMCLKSEL1 14
#define CM_FXCOMCLKSEL2 15
#define CM_FXCOMCLKSEL3 16
#define CM_FXCOMCLKSEL4 17
#define CM_FXCOMCLKSEL5 18
#define CM_FXCOMCLKSEL6 19
#define CM_FXCOMCLKSEL7 20
#define CM_FXCOMCLKSEL8 21
#define CM_FXCOMCLKSEL9 22
#define CM_FXCOMCLKSEL10 23
#define CM_MCLKCLKSEL 25
#define CM_FRGCLKSEL 27
#define CM_DMICCLKSEL 28
#define CM_SCTCLKSEL 29
#define CM_LCDCLKSEL 30
#define CM_SDIOCLKSEL 31
#define CM_ASYNCAPB 32U
typedef enum _clock_attach_id
{
kSYSTICK_DIV_CLK_to_SYSTICKCLK = MUX_A(CM_STICKCLKSEL, 0),
kWDT_OSC_to_SYSTICKCLK = MUX_A(CM_STICKCLKSEL, 1),
kOSC32K_to_SYSTICKCLK = MUX_A(CM_STICKCLKSEL, 2),
kFRO12M_to_SYSTICKCLK = MUX_A(CM_STICKCLKSEL, 3),
kNONE_to_SYSTICKCLK = MUX_A(CM_STICKCLKSEL, 7),
kFRO12M_to_MAIN_CLK = MUX_A(CM_MAINCLKSELA, 0) | MUX_B(CM_MAINCLKSELB, 0, 0),
kEXT_CLK_to_MAIN_CLK = MUX_A(CM_MAINCLKSELA, 1) | MUX_B(CM_MAINCLKSELB, 0, 0),
kWDT_OSC_to_MAIN_CLK = MUX_A(CM_MAINCLKSELA, 2) | MUX_B(CM_MAINCLKSELB, 0, 0),
kFRO_HF_to_MAIN_CLK = MUX_A(CM_MAINCLKSELA, 3) | MUX_B(CM_MAINCLKSELB, 0, 0),
kSYS_PLL_to_MAIN_CLK = MUX_A(CM_MAINCLKSELA, 0) | MUX_B(CM_MAINCLKSELB, 2, 0),
kOSC32K_to_MAIN_CLK = MUX_A(CM_MAINCLKSELA, 0) | MUX_B(CM_MAINCLKSELB, 3, 0),
kMAIN_CLK_to_CLKOUT = MUX_A(CM_CLKOUTCLKSELA, 0),
kEXT_CLK_to_CLKOUT = MUX_A(CM_CLKOUTCLKSELA, 1),
kWDT_OSC_to_CLKOUT = MUX_A(CM_CLKOUTCLKSELA, 2),
kFRO_HF_to_CLKOUT = MUX_A(CM_CLKOUTCLKSELA, 3),
kSYS_PLL_to_CLKOUT = MUX_A(CM_CLKOUTCLKSELA, 4),
kUSB_PLL_to_CLKOUT = MUX_A(CM_CLKOUTCLKSELA, 5),
kAUDIO_PLL_to_CLKOUT = MUX_A(CM_CLKOUTCLKSELA, 6),
kOSC32K_OSC_to_CLKOUT = MUX_A(CM_CLKOUTCLKSELA, 7),
kFRO12M_to_SYS_PLL = MUX_A(CM_SYSPLLCLKSEL, 0),
kEXT_CLK_to_SYS_PLL = MUX_A(CM_SYSPLLCLKSEL, 1),
kWDT_OSC_to_SYS_PLL = MUX_A(CM_SYSPLLCLKSEL, 2),
kOSC32K_to_SYS_PLL = MUX_A(CM_SYSPLLCLKSEL, 3),
kNONE_to_SYS_PLL = MUX_A(CM_SYSPLLCLKSEL, 7),
kFRO12M_to_AUDIO_PLL = MUX_A(CM_AUDPLLCLKSEL, 0),
kEXT_CLK_to_AUDIO_PLL = MUX_A(CM_AUDPLLCLKSEL, 1),
kNONE_to_AUDIO_PLL = MUX_A(CM_AUDPLLCLKSEL, 7),
kMAIN_CLK_to_SPIFI_CLK = MUX_A(CM_SPIFICLKSEL, 0),
kSYS_PLL_to_SPIFI_CLK = MUX_A(CM_SPIFICLKSEL, 1),
kUSB_PLL_to_SPIFI_CLK = MUX_A(CM_SPIFICLKSEL, 2),
kFRO_HF_to_SPIFI_CLK = MUX_A(CM_SPIFICLKSEL, 3),
kAUDIO_PLL_to_SPIFI_CLK = MUX_A(CM_SPIFICLKSEL, 4),
kNONE_to_SPIFI_CLK = MUX_A(CM_SPIFICLKSEL, 7),
kFRO_HF_to_ADC_CLK = MUX_A(CM_ADCASYNCCLKSEL, 0),
kSYS_PLL_to_ADC_CLK = MUX_A(CM_ADCASYNCCLKSEL, 1),
kUSB_PLL_to_ADC_CLK = MUX_A(CM_ADCASYNCCLKSEL, 2),
kAUDIO_PLL_to_ADC_CLK = MUX_A(CM_ADCASYNCCLKSEL, 3),
kNONE_to_ADC_CLK = MUX_A(CM_ADCASYNCCLKSEL, 7),
kFRO_HF_to_USB0_CLK = MUX_A(CM_USB0CLKSEL, 0),
kSYS_PLL_to_USB0_CLK = MUX_A(CM_USB0CLKSEL, 1),
kUSB_PLL_to_USB0_CLK = MUX_A(CM_USB0CLKSEL, 2),
kNONE_to_USB0_CLK = MUX_A(CM_USB0CLKSEL, 7),
kFRO_HF_to_USB1_CLK = MUX_A(CM_USB1CLKSEL, 0),
kSYS_PLL_to_USB1_CLK = MUX_A(CM_USB1CLKSEL, 1),
kUSB_PLL_to_USB1_CLK = MUX_A(CM_USB1CLKSEL, 2),
kNONE_to_USB1_CLK = MUX_A(CM_USB1CLKSEL, 7),
kFRO12M_to_FLEXCOMM0 = MUX_A(CM_FXCOMCLKSEL0, 0),
kFRO_HF_to_FLEXCOMM0 = MUX_A(CM_FXCOMCLKSEL0, 1),
kAUDIO_PLL_to_FLEXCOMM0 = MUX_A(CM_FXCOMCLKSEL0, 2),
kMCLK_to_FLEXCOMM0 = MUX_A(CM_FXCOMCLKSEL0, 3),
kFRG_to_FLEXCOMM0 = MUX_A(CM_FXCOMCLKSEL0, 4),
kNONE_to_FLEXCOMM0 = MUX_A(CM_FXCOMCLKSEL0, 7),
kFRO12M_to_FLEXCOMM1 = MUX_A(CM_FXCOMCLKSEL1, 0),
kFRO_HF_to_FLEXCOMM1 = MUX_A(CM_FXCOMCLKSEL1, 1),
kAUDIO_PLL_to_FLEXCOMM1 = MUX_A(CM_FXCOMCLKSEL1, 2),
kMCLK_to_FLEXCOMM1 = MUX_A(CM_FXCOMCLKSEL1, 3),
kFRG_to_FLEXCOMM1 = MUX_A(CM_FXCOMCLKSEL1, 4),
kNONE_to_FLEXCOMM1 = MUX_A(CM_FXCOMCLKSEL1, 7),
kFRO12M_to_FLEXCOMM2 = MUX_A(CM_FXCOMCLKSEL2, 0),
kFRO_HF_to_FLEXCOMM2 = MUX_A(CM_FXCOMCLKSEL2, 1),
kAUDIO_PLL_to_FLEXCOMM2 = MUX_A(CM_FXCOMCLKSEL2, 2),
kMCLK_to_FLEXCOMM2 = MUX_A(CM_FXCOMCLKSEL2, 3),
kFRG_to_FLEXCOMM2 = MUX_A(CM_FXCOMCLKSEL2, 4),
kNONE_to_FLEXCOMM2 = MUX_A(CM_FXCOMCLKSEL2, 7),
kFRO12M_to_FLEXCOMM3 = MUX_A(CM_FXCOMCLKSEL3, 0),
kFRO_HF_to_FLEXCOMM3 = MUX_A(CM_FXCOMCLKSEL3, 1),
kAUDIO_PLL_to_FLEXCOMM3 = MUX_A(CM_FXCOMCLKSEL3, 2),
kMCLK_to_FLEXCOMM3 = MUX_A(CM_FXCOMCLKSEL3, 3),
kFRG_to_FLEXCOMM3 = MUX_A(CM_FXCOMCLKSEL3, 4),
kNONE_to_FLEXCOMM3 = MUX_A(CM_FXCOMCLKSEL3, 7),
kFRO12M_to_FLEXCOMM4 = MUX_A(CM_FXCOMCLKSEL4, 0),
kFRO_HF_to_FLEXCOMM4 = MUX_A(CM_FXCOMCLKSEL4, 1),
kAUDIO_PLL_to_FLEXCOMM4 = MUX_A(CM_FXCOMCLKSEL4, 2),
kMCLK_to_FLEXCOMM4 = MUX_A(CM_FXCOMCLKSEL4, 3),
kFRG_to_FLEXCOMM4 = MUX_A(CM_FXCOMCLKSEL4, 4),
kNONE_to_FLEXCOMM4 = MUX_A(CM_FXCOMCLKSEL4, 7),
kFRO12M_to_FLEXCOMM5 = MUX_A(CM_FXCOMCLKSEL5, 0),
kFRO_HF_to_FLEXCOMM5 = MUX_A(CM_FXCOMCLKSEL5, 1),
kAUDIO_PLL_to_FLEXCOMM5 = MUX_A(CM_FXCOMCLKSEL5, 2),
kMCLK_to_FLEXCOMM5 = MUX_A(CM_FXCOMCLKSEL5, 3),
kFRG_to_FLEXCOMM5 = MUX_A(CM_FXCOMCLKSEL5, 4),
kNONE_to_FLEXCOMM5 = MUX_A(CM_FXCOMCLKSEL5, 7),
kFRO12M_to_FLEXCOMM6 = MUX_A(CM_FXCOMCLKSEL6, 0),
kFRO_HF_to_FLEXCOMM6 = MUX_A(CM_FXCOMCLKSEL6, 1),
kAUDIO_PLL_to_FLEXCOMM6 = MUX_A(CM_FXCOMCLKSEL6, 2),
kMCLK_to_FLEXCOMM6 = MUX_A(CM_FXCOMCLKSEL6, 3),
kFRG_to_FLEXCOMM6 = MUX_A(CM_FXCOMCLKSEL6, 4),
kNONE_to_FLEXCOMM6 = MUX_A(CM_FXCOMCLKSEL6, 7),
kFRO12M_to_FLEXCOMM7 = MUX_A(CM_FXCOMCLKSEL7, 0),
kFRO_HF_to_FLEXCOMM7 = MUX_A(CM_FXCOMCLKSEL7, 1),
kAUDIO_PLL_to_FLEXCOMM7 = MUX_A(CM_FXCOMCLKSEL7, 2),
kMCLK_to_FLEXCOMM7 = MUX_A(CM_FXCOMCLKSEL7, 3),
kFRG_to_FLEXCOMM7 = MUX_A(CM_FXCOMCLKSEL7, 4),
kNONE_to_FLEXCOMM7 = MUX_A(CM_FXCOMCLKSEL7, 7),
kFRO12M_to_FLEXCOMM8 = MUX_A(CM_FXCOMCLKSEL8, 0),
kFRO_HF_to_FLEXCOMM8 = MUX_A(CM_FXCOMCLKSEL8, 1),
kAUDIO_PLL_to_FLEXCOMM8 = MUX_A(CM_FXCOMCLKSEL8, 2),
kMCLK_to_FLEXCOMM8 = MUX_A(CM_FXCOMCLKSEL8, 3),
kFRG_to_FLEXCOMM8 = MUX_A(CM_FXCOMCLKSEL8, 4),
kNONE_to_FLEXCOMM8 = MUX_A(CM_FXCOMCLKSEL8, 7),
kFRO12M_to_FLEXCOMM9 = MUX_A(CM_FXCOMCLKSEL9, 0),
kFRO_HF_to_FLEXCOMM9 = MUX_A(CM_FXCOMCLKSEL9, 1),
kAUDIO_PLL_to_FLEXCOMM9 = MUX_A(CM_FXCOMCLKSEL9, 2),
kMCLK_to_FLEXCOMM9 = MUX_A(CM_FXCOMCLKSEL9, 3),
kFRG_to_FLEXCOMM9 = MUX_A(CM_FXCOMCLKSEL9, 4),
kNONE_to_FLEXCOMM9 = MUX_A(CM_FXCOMCLKSEL9, 7),
kMAIN_CLK_to_FLEXCOMM10 = MUX_A(CM_FXCOMCLKSEL10, 0),
kSYS_PLL_to_FLEXCOMM10 = MUX_A(CM_FXCOMCLKSEL10, 1),
kUSB_PLL_to_FLEXCOMM10 = MUX_A(CM_FXCOMCLKSEL10, 2),
kFRO_HF_to_FLEXCOMM10 = MUX_A(CM_FXCOMCLKSEL10, 3),
kAUDIO_PLL_to_FLEXCOMM10 = MUX_A(CM_FXCOMCLKSEL10, 4),
kNONE_to_FLEXCOMM10 = MUX_A(CM_FXCOMCLKSEL10, 7),
kFRO_HF_to_MCLK = MUX_A(CM_MCLKCLKSEL, 0),
kAUDIO_PLL_to_MCLK = MUX_A(CM_MCLKCLKSEL, 1),
kNONE_to_MCLK = MUX_A(CM_MCLKCLKSEL, 7),
kMAIN_CLK_to_FRG = MUX_A(CM_FRGCLKSEL, 0),
kSYS_PLL_to_FRG = MUX_A(CM_FRGCLKSEL, 1),
kFRO12M_to_FRG = MUX_A(CM_FRGCLKSEL, 2),
kFRO_HF_to_FRG = MUX_A(CM_FRGCLKSEL, 3),
kNONE_to_FRG = MUX_A(CM_FRGCLKSEL, 7),
kFRO12M_to_DMIC = MUX_A(CM_DMICCLKSEL, 0),
kFRO_HF_DIV_to_DMIC = MUX_A(CM_DMICCLKSEL, 1),
kAUDIO_PLL_to_DMIC = MUX_A(CM_DMICCLKSEL, 2),
kMCLK_to_DMIC = MUX_A(CM_DMICCLKSEL, 3),
kMAIN_CLK_to_DMIC = MUX_A(CM_DMICCLKSEL, 4),
kWDT_OSC_to_DMIC = MUX_A(CM_DMICCLKSEL, 5),
kNONE_to_DMIC = MUX_A(CM_DMICCLKSEL, 7),
kMAIN_CLK_to_SCT_CLK = MUX_A(CM_SCTCLKSEL, 0),
kSYS_PLL_to_SCT_CLK = MUX_A(CM_SCTCLKSEL, 1),
kFRO_HF_to_SCT_CLK = MUX_A(CM_SCTCLKSEL, 2),
kAUDIO_PLL_to_SCT_CLK = MUX_A(CM_SCTCLKSEL, 3),
kNONE_to_SCT_CLK = MUX_A(CM_SCTCLKSEL, 7),
kMAIN_CLK_to_LCD_CLK = MUX_A(CM_LCDCLKSEL, 0),
kLCDCLKIN_to_LCD_CLK = MUX_A(CM_LCDCLKSEL, 1),
kFRO_HF_to_LCD_CLK = MUX_A(CM_LCDCLKSEL, 2),
kNONE_to_LCD_CLK = MUX_A(CM_LCDCLKSEL, 3),
kMAIN_CLK_to_SDIO_CLK = MUX_A(CM_SDIOCLKSEL, 0),
kSYS_PLL_to_SDIO_CLK = MUX_A(CM_SDIOCLKSEL, 1),
kUSB_PLL_to_SDIO_CLK = MUX_A(CM_SDIOCLKSEL, 2),
kFRO_HF_to_SDIO_CLK = MUX_A(CM_SDIOCLKSEL, 3),
kAUDIO_PLL_to_SDIO_CLK = MUX_A(CM_SDIOCLKSEL, 4),
kNONE_to_SDIO_CLK = MUX_A(CM_SDIOCLKSEL, 7),
kMAIN_CLK_to_ASYNC_APB = MUX_A(CM_ASYNCAPB, 0),
kFRO12M_to_ASYNC_APB = MUX_A(CM_ASYNCAPB, 1),
kAUDIO_PLL_to_ASYNC_APB = MUX_A(CM_ASYNCAPB, 2),
kI2C_CLK_FC6_to_ASYNC_APB = MUX_A(CM_ASYNCAPB, 3),
kNONE_to_NONE = (int)0x80000000U,
} clock_attach_id_t;
/* Clock dividers */
typedef enum _clock_div_name
{
kCLOCK_DivSystickClk = 0,
kCLOCK_DivArmTrClkDiv = 1,
kCLOCK_DivCan0Clk = 2,
kCLOCK_DivCan1Clk = 3,
kCLOCK_DivSmartCard0Clk = 4,
kCLOCK_DivSmartCard1Clk = 5,
kCLOCK_DivAhbClk = 32,
kCLOCK_DivClkOut = 33,
kCLOCK_DivFrohfClk = 34,
kCLOCK_DivSpifiClk = 36,
kCLOCK_DivAdcAsyncClk = 37,
kCLOCK_DivUsb0Clk = 38,
kCLOCK_DivUsb1Clk = 39,
kCLOCK_DivFrg = 40,
kCLOCK_DivDmicClk = 42,
kCLOCK_DivMClk = 43,
kCLOCK_DivLcdClk = 44,
kCLOCK_DivSctClk = 45,
kCLOCK_DivEmcClk = 46,
kCLOCK_DivSdioClk = 47
} clock_div_name_t;
/*******************************************************************************
* API
******************************************************************************/
#if defined(__cplusplus)
extern "C" {
#endif /* __cplusplus */
static inline void CLOCK_EnableClock(clock_ip_name_t clk)
{
uint32_t index = CLK_GATE_ABSTRACT_REG_OFFSET(clk);
if (index < 3UL)
{
SYSCON->AHBCLKCTRLSET[index] = (1UL << CLK_GATE_ABSTRACT_BITS_SHIFT(clk));
}
else
{
SYSCON->ASYNCAPBCTRL = SYSCON_ASYNCAPBCTRL_ENABLE(1);
ASYNC_SYSCON->ASYNCAPBCLKCTRLSET = (1UL << CLK_GATE_ABSTRACT_BITS_SHIFT(clk));
}
}
static inline void CLOCK_DisableClock(clock_ip_name_t clk)
{
uint32_t index = CLK_GATE_ABSTRACT_REG_OFFSET(clk);
if (index < 3UL)
{
SYSCON->AHBCLKCTRLCLR[index] = (1UL << CLK_GATE_ABSTRACT_BITS_SHIFT(clk));
}
else
{
ASYNC_SYSCON->ASYNCAPBCLKCTRLCLR = (1UL << CLK_GATE_ABSTRACT_BITS_SHIFT(clk));
SYSCON->ASYNCAPBCTRL = SYSCON_ASYNCAPBCTRL_ENABLE(0);
}
}
/**
* @brief
* Initialize the Core clock to given frequency (12, 48 or 96 MHz), this API is implememnt in ROM code.
* Turns on FRO and uses default CCO, if freq is 12000000, then high speed output is off, else high speed
* output is enabled.
* Usage: CLOCK_SetupFROClocking(frequency), (frequency must be one of 12, 48 or 96 MHz)
* Note: Need to make sure ROM and OTP has power(PDRUNCFG0[17,29]= 0U) before calling this API since this API is
* implemented in ROM code and the FROHF TRIM value is stored in OTP
*
* @param froFreq target fro frequency.
* @return Nothing
*/
void CLOCK_SetupFROClocking(uint32_t froFreq);
/**
* @brief Configure the clock selection muxes.
* @param connection : Clock to be configured.
* @return Nothing
*/
void CLOCK_AttachClk(clock_attach_id_t connection);
/**
* @brief Get the actual clock attach id.
* This fuction uses the offset in input attach id, then it reads the actual source value in
* the register and combine the offset to obtain an actual attach id.
* @param attachId : Clock attach id to get.
* @return Clock source value.
*/
clock_attach_id_t CLOCK_GetClockAttachId(clock_attach_id_t attachId);
/**
* @brief Setup peripheral clock dividers.
* @param div_name : Clock divider name
* @param divided_by_value: Value to be divided
* @param reset : Whether to reset the divider counter.
* @return Nothing
*/
void CLOCK_SetClkDiv(clock_div_name_t div_name, uint32_t divided_by_value, bool reset);
/*! @brief Return Frequency of selected clock
* @return Frequency of selected clock
*/
uint32_t CLOCK_GetFreq(clock_name_t clockName);
/*! @brief Return Frequency of FRO 12MHz
* @return Frequency of FRO 12MHz
*/
uint32_t CLOCK_GetFro12MFreq(void);
/*! @brief Return Frequency of ClockOut
* @return Frequency of ClockOut
*/
uint32_t CLOCK_GetClockOutClkFreq(void);
/*! @brief Return Frequency of Spifi Clock
* @return Frequency of Spifi.
*/
uint32_t CLOCK_GetSpifiClkFreq(void);
/*! @brief Return Frequency of Adc Clock
* @return Frequency of Adc Clock.
*/
uint32_t CLOCK_GetAdcClkFreq(void);
/*! brief Return Frequency of MCAN Clock
* param MCanSel : 0U: MCAN0; 1U: MCAN1
* return Frequency of MCAN Clock
*/
uint32_t CLOCK_GetMCanClkFreq(uint32_t MCanSel);
/*! @brief Return Frequency of Usb0 Clock
* @return Frequency of Usb0 Clock.
*/
uint32_t CLOCK_GetUsb0ClkFreq(void);
/*! @brief Return Frequency of Usb1 Clock
* @return Frequency of Usb1 Clock.
*/
uint32_t CLOCK_GetUsb1ClkFreq(void);
/*! @brief Return Frequency of MClk Clock
* @return Frequency of MClk Clock.
*/
uint32_t CLOCK_GetMclkClkFreq(void);
/*! @brief Return Frequency of SCTimer Clock
* @return Frequency of SCTimer Clock.
*/
uint32_t CLOCK_GetSctClkFreq(void);
/*! @brief Return Frequency of SDIO Clock
* @return Frequency of SDIO Clock.
*/
uint32_t CLOCK_GetSdioClkFreq(void);
/*! @brief Return Frequency of LCD Clock
* @return Frequency of LCD Clock.
*/
uint32_t CLOCK_GetLcdClkFreq(void);
/*! @brief Return Frequency of LCD CLKIN Clock
* @return Frequency of LCD CLKIN Clock.
*/
uint32_t CLOCK_GetLcdClkIn(void);
/*! @brief Return Frequency of External Clock
* @return Frequency of External Clock. If no external clock is used returns 0.
*/
uint32_t CLOCK_GetExtClkFreq(void);
/*! @brief Return Frequency of Watchdog Oscillator
* @return Frequency of Watchdog Oscillator
*/
uint32_t CLOCK_GetWdtOscFreq(void);
/*! @brief Return Frequency of High-Freq output of FRO
* @return Frequency of High-Freq output of FRO
*/
uint32_t CLOCK_GetFroHfFreq(void);
/*! @brief Return Frequency of frg
* @return Frequency of FRG
*/
uint32_t CLOCK_GetFrgClkFreq(void);
/*! @brief Return Frequency of dmic
* @return Frequency of DMIC
*/
uint32_t CLOCK_GetDmicClkFreq(void);
/*!
* @brief Set FRG Clk
* @return
* 1: if set FRG CLK successfully.
* 0: if set FRG CLK fail.
*/
uint32_t CLOCK_SetFRGClock(uint32_t freq);
/*! @brief Return Frequency of PLL
* @return Frequency of PLL
*/
uint32_t CLOCK_GetPllOutFreq(void);
/*! @brief Return Frequency of USB PLL
* @return Frequency of PLL
*/
uint32_t CLOCK_GetUsbPllOutFreq(void);
/*! @brief Return Frequency of AUDIO PLL
* @return Frequency of PLL
*/
uint32_t CLOCK_GetAudioPllOutFreq(void);
/*! @brief Return Frequency of 32kHz osc
* @return Frequency of 32kHz osc
*/
uint32_t CLOCK_GetOsc32KFreq(void);
/*! @brief Return Frequency of Core System
* @return Frequency of Core System
*/
uint32_t CLOCK_GetCoreSysClkFreq(void);
/*! @brief Return Frequency of I2S MCLK Clock
* @return Frequency of I2S MCLK Clock
*/
uint32_t CLOCK_GetI2SMClkFreq(void);
/*! @brief Return Frequency of Flexcomm functional Clock
* @return Frequency of Flexcomm functional Clock
*/
uint32_t CLOCK_GetFlexCommClkFreq(uint32_t id);
/*! @brief return FRG Clk
* @return Frequency of FRG CLK.
*/
uint32_t CLOCK_GetFRGInputClock(void);
/*! @brief Return Asynchronous APB Clock source
* @return Asynchronous APB CLock source
*/
__STATIC_INLINE async_clock_src_t CLOCK_GetAsyncApbClkSrc(void)
{
return (async_clock_src_t)(uint32_t)(ASYNC_SYSCON->ASYNCAPBCLKSELA & 0x3U);
}
/*! @brief Return Frequency of Asynchronous APB Clock
* @return Frequency of Asynchronous APB Clock Clock
*/
uint32_t CLOCK_GetAsyncApbClkFreq(void);
/*! @brief Return EMC source
* @return EMC source
*/
__STATIC_INLINE uint32_t CLOCK_GetEmcClkFreq(void)
{
uint32_t freqtmp;
freqtmp = CLOCK_GetCoreSysClkFreq() / ((SYSCON->AHBCLKDIV & 0xffU) + 1U);
return freqtmp / ((SYSCON->EMCCLKDIV & 0xffU) + 1U);
}
/*! @brief Return Audio PLL input clock rate
* @return Audio PLL input clock rate
*/
uint32_t CLOCK_GetAudioPLLInClockRate(void);
/*! @brief Return System PLL input clock rate
* @return System PLL input clock rate
*/
uint32_t CLOCK_GetSystemPLLInClockRate(void);
/*! @brief Return System PLL output clock rate
* @param recompute : Forces a PLL rate recomputation if true
* @return System PLL output clock rate
* @note The PLL rate is cached in the driver in a variable as
* the rate computation function can take some time to perform. It
* is recommended to use 'false' with the 'recompute' parameter.
*/
uint32_t CLOCK_GetSystemPLLOutClockRate(bool recompute);
/*! @brief Return System AUDIO PLL output clock rate
* @param recompute : Forces a AUDIO PLL rate recomputation if true
* @return System AUDIO PLL output clock rate
* @note The AUDIO PLL rate is cached in the driver in a variable as
* the rate computation function can take some time to perform. It
* is recommended to use 'false' with the 'recompute' parameter.
*/
uint32_t CLOCK_GetAudioPLLOutClockRate(bool recompute);
/*! @brief Return System USB PLL output clock rate
* @param recompute : Forces a USB PLL rate recomputation if true
* @return System USB PLL output clock rate
* @note The USB PLL rate is cached in the driver in a variable as
* the rate computation function can take some time to perform. It
* is recommended to use 'false' with the 'recompute' parameter.
*/
uint32_t CLOCK_GetUsbPLLOutClockRate(bool recompute);
/*! @brief Enables and disables PLL bypass mode
* @brief bypass : true to bypass PLL (PLL output = PLL input, false to disable bypass
* @return System PLL output clock rate
*/
__STATIC_INLINE void CLOCK_SetBypassPLL(bool bypass)
{
if (bypass)
{
SYSCON->SYSPLLCTRL |= (1UL << SYSCON_SYSPLLCTRL_BYPASS_SHIFT);
}
else
{
SYSCON->SYSPLLCTRL &= ~(1UL << SYSCON_SYSPLLCTRL_BYPASS_SHIFT);
}
}
/*! @brief Check if PLL is locked or not
* @return true if the PLL is locked, false if not locked
*/
__STATIC_INLINE bool CLOCK_IsSystemPLLLocked(void)
{
return (bool)((SYSCON->SYSPLLSTAT & SYSCON_SYSPLLSTAT_LOCK_MASK) != 0U);
}
/*! @brief Check if USB PLL is locked or not
* @return true if the USB PLL is locked, false if not locked
*/
__STATIC_INLINE bool CLOCK_IsUsbPLLLocked(void)
{
return (bool)((SYSCON->USBPLLSTAT & SYSCON_USBPLLSTAT_LOCK_MASK) != 0U);
}
/*! @brief Check if AUDIO PLL is locked or not
* @return true if the AUDIO PLL is locked, false if not locked
*/
__STATIC_INLINE bool CLOCK_IsAudioPLLLocked(void)
{
return (bool)((SYSCON->AUDPLLSTAT & SYSCON_AUDPLLSTAT_LOCK_MASK) != 0U);
}
/*! @brief Enables and disables SYS OSC
* @brief enable : true to enable SYS OSC, false to disable SYS OSC
*/
__STATIC_INLINE void CLOCK_Enable_SysOsc(bool enable)
{
if (enable)
{
SYSCON->PDRUNCFGCLR[0] |= SYSCON_PDRUNCFG_PDEN_VD2_ANA_MASK;
SYSCON->PDRUNCFGCLR[1] |= SYSCON_PDRUNCFG_PDEN_SYSOSC_MASK;
}
else
{
SYSCON->PDRUNCFGSET[0] = SYSCON_PDRUNCFG_PDEN_VD2_ANA_MASK;
SYSCON->PDRUNCFGSET[1] = SYSCON_PDRUNCFG_PDEN_SYSOSC_MASK;
}
}
/*! @brief Store the current PLL rate
* @param rate: Current rate of the PLL
* @return Nothing
**/
void CLOCK_SetStoredPLLClockRate(uint32_t rate);
/*! @brief Store the current AUDIO PLL rate
* @param rate: Current rate of the PLL
* @return Nothing
**/
void CLOCK_SetStoredAudioPLLClockRate(uint32_t rate);
/*! @brief PLL configuration structure flags for 'flags' field
* These flags control how the PLL configuration function sets up the PLL setup structure.<br>
*
* When the PLL_CONFIGFLAG_USEINRATE flag is selected, the 'InputRate' field in the
* configuration structure must be assigned with the expected PLL frequency. If the
* PLL_CONFIGFLAG_USEINRATE is not used, 'InputRate' is ignored in the configuration
* function and the driver will determine the PLL rate from the currently selected
* PLL source. This flag might be used to configure the PLL input clock more accurately
* when using the WDT oscillator or a more dyanmic CLKIN source.<br>
*
* When the PLL_CONFIGFLAG_FORCENOFRACT flag is selected, the PLL hardware for the
* automatic bandwidth selection, Spread Spectrum (SS) support, and fractional M-divider
* are not used.<br>
*/
#define PLL_CONFIGFLAG_USEINRATE (1U << 0U) /*!< Flag to use InputRate in PLL configuration structure for setup */
#define PLL_CONFIGFLAG_FORCENOFRACT \
(1U << 2U) /*!< Force non-fractional output mode, PLL output will not use the fractional, automatic bandwidth, or \
SS hardware */
/*! @brief PLL configuration structure
*
* This structure can be used to configure the settings for a PLL
* setup structure. Fill in the desired configuration for the PLL
* and call the PLL setup function to fill in a PLL setup structure.
*/
typedef struct _pll_config
{
uint32_t desiredRate; /*!< Desired PLL rate in Hz */
uint32_t inputRate; /*!< PLL input clock in Hz, only used if PLL_CONFIGFLAG_USEINRATE flag is set */
uint32_t flags; /*!< PLL configuration flags, Or'ed value of PLL_CONFIGFLAG_* definitions */
} pll_config_t;
/*! @brief PLL setup structure flags for 'flags' field
* These flags control how the PLL setup function sets up the PLL
*/
#define PLL_SETUPFLAG_POWERUP (1U << 0U) /*!< Setup will power on the PLL after setup */
#define PLL_SETUPFLAG_WAITLOCK (1U << 1U) /*!< Setup will wait for PLL lock, implies the PLL will be pwoered on */
#define PLL_SETUPFLAG_ADGVOLT (1U << 2U) /*!< Optimize system voltage for the new PLL rate */
/*! @brief PLL setup structure
* This structure can be used to pre-build a PLL setup configuration
* at run-time and quickly set the PLL to the configuration. It can be
* populated with the PLL setup function. If powering up or waiting
* for PLL lock, the PLL input clock source should be configured prior
* to PLL setup.
*/
typedef struct _pll_setup
{
uint32_t pllctrl; /*!< PLL control register SYSPLLCTRL */
uint32_t pllndec; /*!< PLL NDEC register SYSPLLNDEC */
uint32_t pllpdec; /*!< PLL PDEC register SYSPLLPDEC */
uint32_t pllmdec; /*!< PLL MDEC registers SYSPLLPDEC */
uint32_t pllRate; /*!< Acutal PLL rate */
uint32_t audpllfrac; /*!< only aduio PLL has this function*/
uint32_t flags; /*!< PLL setup flags, Or'ed value of PLL_SETUPFLAG_* definitions */
} pll_setup_t;
/*! @brief PLL status definitions
*/
typedef enum _pll_error
{
kStatus_PLL_Success = MAKE_STATUS(kStatusGroup_Generic, 0), /*!< PLL operation was successful */
kStatus_PLL_OutputTooLow = MAKE_STATUS(kStatusGroup_Generic, 1), /*!< PLL output rate request was too low */
kStatus_PLL_OutputTooHigh = MAKE_STATUS(kStatusGroup_Generic, 2), /*!< PLL output rate request was too high */
kStatus_PLL_InputTooLow = MAKE_STATUS(kStatusGroup_Generic, 3), /*!< PLL input rate is too low */
kStatus_PLL_InputTooHigh = MAKE_STATUS(kStatusGroup_Generic, 4), /*!< PLL input rate is too high */
kStatus_PLL_OutsideIntLimit = MAKE_STATUS(kStatusGroup_Generic, 5), /*!< Requested output rate isn't possible */
kStatus_PLL_CCOTooLow = MAKE_STATUS(kStatusGroup_Generic, 6), /*!< Requested CCO rate isn't possible */
kStatus_PLL_CCOTooHigh = MAKE_STATUS(kStatusGroup_Generic, 7) /*!< Requested CCO rate isn't possible */
} pll_error_t;
/*! @brief USB clock source definition. */
typedef enum _clock_usb_src
{
kCLOCK_UsbSrcFro = (uint32_t)kCLOCK_FroHf, /*!< Use FRO 96 or 48 MHz. */
kCLOCK_UsbSrcSystemPll = (uint32_t)kCLOCK_PllOut, /*!< Use System PLL output. */
kCLOCK_UsbSrcMainClock = (uint32_t)kCLOCK_CoreSysClk, /*!< Use Main clock. */
kCLOCK_UsbSrcUsbPll = (uint32_t)kCLOCK_UsbPll, /*!< Use USB PLL clock. */
kCLOCK_UsbSrcNone = SYSCON_USB0CLKSEL_SEL(
7U) /*!< Use None, this may be selected in order to reduce power when no output is needed.. */
} clock_usb_src_t;
/*! @brief USB PDEL Divider. */
typedef enum _usb_pll_psel
{
pSel_Divide_1 = 0U,
pSel_Divide_2,
pSel_Divide_4,
pSel_Divide_8
} usb_pll_psel;
/*! @brief PLL setup structure
* This structure can be used to pre-build a USB PLL setup configuration
* at run-time and quickly set the usb PLL to the configuration. It can be
* populated with the USB PLL setup function. If powering up or waiting
* for USB PLL lock, the PLL input clock source should be configured prior
* to USB PLL setup.
*/
typedef struct _usb_pll_setup
{
uint8_t msel; /*!< USB PLL control register msel:1U-256U */
uint8_t psel; /*!< USB PLL control register psel:only support inter 1U 2U 4U 8U */
uint8_t nsel; /*!< USB PLL control register nsel:only suppoet inter 1U 2U 3U 4U */
bool direct; /*!< USB PLL CCO output control */
bool bypass; /*!< USB PLL inout clock bypass control */
bool fbsel; /*!< USB PLL ineter mode and non-integer mode control*/
uint32_t inputRate; /*!< USB PLL input rate */
} usb_pll_setup_t;
/*! @brief Return System PLL output clock rate from setup structure
* @param pSetup : Pointer to a PLL setup structure
* @return System PLL output clock rate the setup structure will generate
*/
uint32_t CLOCK_GetSystemPLLOutFromSetup(pll_setup_t *pSetup);
/*! @brief Return System AUDIO PLL output clock rate from setup structure
* @param pSetup : Pointer to a PLL setup structure
* @return System PLL output clock rate the setup structure will generate
*/
uint32_t CLOCK_GetAudioPLLOutFromSetup(pll_setup_t *pSetup);
/*! @brief Return System AUDIO PLL output clock rate from audio fractioanl setup structure
* @param pSetup : Pointer to a PLL setup structure
* @return System PLL output clock rate the setup structure will generate
*/
uint32_t CLOCK_GetAudioPLLOutFromFractSetup(pll_setup_t *pSetup);
/*! @brief Return System USB PLL output clock rate from setup structure
* @param pSetup : Pointer to a PLL setup structure
* @return System PLL output clock rate the setup structure will generate
*/
uint32_t CLOCK_GetUsbPLLOutFromSetup(const usb_pll_setup_t *pSetup);
/*! @brief Set PLL output based on the passed PLL setup data
* @param pControl : Pointer to populated PLL control structure to generate setup with
* @param pSetup : Pointer to PLL setup structure to be filled
* @return PLL_ERROR_SUCCESS on success, or PLL setup error code
* @note Actual frequency for setup may vary from the desired frequency based on the
* accuracy of input clocks, rounding, non-fractional PLL mode, etc.
*/
pll_error_t CLOCK_SetupPLLData(pll_config_t *pControl, pll_setup_t *pSetup);
/*! @brief Set AUDIO PLL output based on the passed AUDIO PLL setup data
* @param pControl : Pointer to populated PLL control structure to generate setup with
* @param pSetup : Pointer to PLL setup structure to be filled
* @return PLL_ERROR_SUCCESS on success, or PLL setup error code
* @note Actual frequency for setup may vary from the desired frequency based on the
* accuracy of input clocks, rounding, non-fractional PLL mode, etc.
*/
pll_error_t CLOCK_SetupAudioPLLData(pll_config_t *pControl, pll_setup_t *pSetup);
/*! @brief Set PLL output from PLL setup structure (precise frequency)
* @param pSetup : Pointer to populated PLL setup structure
* @param flagcfg : Flag configuration for PLL config structure
* @return PLL_ERROR_SUCCESS on success, or PLL setup error code
* @note This function will power off the PLL, setup the PLL with the
* new setup data, and then optionally powerup the PLL, wait for PLL lock,
* and adjust system voltages to the new PLL rate. The function will not
* alter any source clocks (ie, main systen clock) that may use the PLL,
* so these should be setup prior to and after exiting the function.
*/
pll_error_t CLOCK_SetupSystemPLLPrec(pll_setup_t *pSetup, uint32_t flagcfg);
/*! @brief Set AUDIO PLL output from AUDIOPLL setup structure (precise frequency)
* @param pSetup : Pointer to populated PLL setup structure
* @param flagcfg : Flag configuration for PLL config structure
* @return PLL_ERROR_SUCCESS on success, or PLL setup error code
* @note This function will power off the PLL, setup the PLL with the
* new setup data, and then optionally powerup the AUDIO PLL, wait for PLL lock,
* and adjust system voltages to the new AUDIOPLL rate. The function will not
* alter any source clocks (ie, main systen clock) that may use the AUDIO PLL,
* so these should be setup prior to and after exiting the function.
*/
pll_error_t CLOCK_SetupAudioPLLPrec(pll_setup_t *pSetup, uint32_t flagcfg);
/*! @brief Set AUDIO PLL output from AUDIOPLL setup structure using the Audio Fractional divider register(precise
* frequency)
* @param pSetup : Pointer to populated PLL setup structure
* @param flagcfg : Flag configuration for PLL config structure
* @return PLL_ERROR_SUCCESS on success, or PLL setup error code
* @note This function will power off the PLL, setup the PLL with the
* new setup data, and then optionally powerup the AUDIO PLL, wait for PLL lock,
* and adjust system voltages to the new AUDIOPLL rate. The function will not
* alter any source clocks (ie, main systen clock) that may use the AUDIO PLL,
* so these should be setup prior to and after exiting the function.
*/
pll_error_t CLOCK_SetupAudioPLLPrecFract(pll_setup_t *pSetup, uint32_t flagcfg);
/**
* @brief Set PLL output from PLL setup structure (precise frequency)
* @param pSetup : Pointer to populated PLL setup structure
* @return kStatus_PLL_Success on success, or PLL setup error code
* @note This function will power off the PLL, setup the PLL with the
* new setup data, and then optionally powerup the PLL, wait for PLL lock,
* and adjust system voltages to the new PLL rate. The function will not
* alter any source clocks (ie, main systen clock) that may use the PLL,
* so these should be setup prior to and after exiting the function.
*/
pll_error_t CLOCK_SetPLLFreq(const pll_setup_t *pSetup);
/**
* @brief Set Audio PLL output from Audio PLL setup structure (precise frequency)
* @param pSetup : Pointer to populated PLL setup structure
* @return kStatus_PLL_Success on success, or Audio PLL setup error code
* @note This function will power off the PLL, setup the Audio PLL with the
* new setup data, and then optionally powerup the PLL, wait for Audio PLL lock,
* and adjust system voltages to the new PLL rate. The function will not
* alter any source clocks (ie, main systen clock) that may use the Audio PLL,
* so these should be setup prior to and after exiting the function.
*/
pll_error_t CLOCK_SetAudioPLLFreq(const pll_setup_t *pSetup);
/**
* @brief Set USB PLL output from USB PLL setup structure (precise frequency)
* @param pSetup : Pointer to populated USB PLL setup structure
* @return kStatus_PLL_Success on success, or USB PLL setup error code
* @note This function will power off the USB PLL, setup the PLL with the
* new setup data, and then optionally powerup the USB PLL, wait for USB PLL lock,
* and adjust system voltages to the new USB PLL rate. The function will not
* alter any source clocks (ie, usb pll clock) that may use the USB PLL,
* so these should be setup prior to and after exiting the function.
*/
pll_error_t CLOCK_SetUsbPLLFreq(const usb_pll_setup_t *pSetup);
/*! @brief Set PLL output based on the multiplier and input frequency
* @param multiply_by : multiplier
* @param input_freq : Clock input frequency of the PLL
* @return Nothing
* @note Unlike the Chip_Clock_SetupSystemPLLPrec() function, this
* function does not disable or enable PLL power, wait for PLL lock,
* or adjust system voltages. These must be done in the application.
* The function will not alter any source clocks (ie, main systen clock)
* that may use the PLL, so these should be setup prior to and after
* exiting the function.
*/
void CLOCK_SetupSystemPLLMult(uint32_t multiply_by, uint32_t input_freq);
/*! @brief Disable USB clock.
*
* Disable USB clock.
*/
static inline void CLOCK_DisableUsbDevicefs0Clock(clock_ip_name_t clk)
{
CLOCK_DisableClock(clk);
}
/*! @brief Enable USB Device FS clock.
* @param src : clock source
* @param freq: clock frequency
* Enable USB Device Full Speed clock.
*/
bool CLOCK_EnableUsbfs0DeviceClock(clock_usb_src_t src, uint32_t freq);
/*! @brief Enable USB HOST FS clock.
* @param src : clock source
* @param freq: clock frequency
* Enable USB HOST Full Speed clock.
*/
bool CLOCK_EnableUsbfs0HostClock(clock_usb_src_t src, uint32_t freq);
/*! @brief Set the current Usb PLL Rate
*/
void CLOCK_SetStoredUsbPLLClockRate(uint32_t rate);
/*! @brief Enable USB Device HS clock.
* @param src : clock source
* @param freq: clock frequency
* Enable USB Device High Speed clock.
*/
bool CLOCK_EnableUsbhs0DeviceClock(clock_usb_src_t src, uint32_t freq);
/*! @brief Enable USB HOST HS clock.
* @param src : clock source
* @param freq: clock frequency
* Enable USB HOST High Speed clock.
*/
bool CLOCK_EnableUsbhs0HostClock(clock_usb_src_t src, uint32_t freq);
#if defined(__cplusplus)
}
#endif /* __cplusplus */
/*! @} */
#endif /* _FSL_CLOCK_H_ */