blob: 0ed0f3c7ef7257f61933574c9700075c8c3d93b3 [file] [log] [blame]
/**************************************************************************//**
* @file spi.c
* @version V3.00
* @brief M2351 series SPI driver source file
*
* @copyright (C) 2016 Nuvoton Technology Corp. All rights reserved.
*****************************************************************************/
#include "NuMicro.h"
/** @addtogroup Standard_Driver Standard Driver
@{
*/
/** @addtogroup SPI_Driver SPI Driver
@{
*/
/** @addtogroup SPI_EXPORTED_FUNCTIONS SPI Exported Functions
@{
*/
static uint32_t SPII2S_GetSourceClockFreq(SPI_T *i2s);
/**
* @brief This function make SPI module be ready to transfer.
* @param[in] spi The pointer of the specified SPI module.
* @param[in] u32MasterSlave Decides the SPI module is operating in master mode or in slave mode. (SPI_SLAVE, SPI_MASTER)
* @param[in] u32SPIMode Decides the transfer timing. (SPI_MODE_0, SPI_MODE_1, SPI_MODE_2, SPI_MODE_3)
* @param[in] u32DataWidth Decides the data width of a SPI transaction.
* @param[in] u32BusClock The expected frequency of SPI bus clock in Hz.
* @return Actual frequency of SPI peripheral clock.
* @details By default, the SPI transfer sequence is MSB first, the slave selection signal is active low and the automatic
* slave selection function is disabled.
* In Slave mode, the u32BusClock shall be NULL and the SPI clock divider setting will be 0.
* The actual clock rate may be different from the target SPI clock rate.
* For example, if the SPI source clock rate is 12 MHz and the target SPI bus clock rate is 7 MHz, the
* actual SPI clock rate will be 6MHz.
* @note If u32BusClock = 0, DIVIDER setting will be set to the maximum value.
* @note If u32BusClock >= system clock frequency for Secure, SPI peripheral clock source will be set to APB clock and DIVIDER will be set to 0.
* @note If u32BusClock >= system clock frequency for Non-Secure, this function does not do anything to avoid the situation that the frequency of
* SPI bus clock cannot be faster than the system clock rate. User should set up carefully.
* @note If u32BusClock >= SPI peripheral clock source, DIVIDER will be set to 0.
* @note In slave mode for Secure, the SPI peripheral clock rate will equal to APB clock rate.
* @note In slave mode for Non-Secure, the SPI peripheral clock rate will equal to the clock rate set in secure mode.
*/
uint32_t SPI_Open(SPI_T *spi,
uint32_t u32MasterSlave,
uint32_t u32SPIMode,
uint32_t u32DataWidth,
uint32_t u32BusClock)
{
uint32_t u32ClkSrc = 0UL, u32Div, u32HCLKFreq, u32PCLK0Freq, u32PCLK1Freq, u32RetValue = 0UL;
/* Disable I2S mode */
spi->I2SCTL &= ~SPI_I2SCTL_I2SEN_Msk;
if(u32DataWidth == 32UL)
{
u32DataWidth = 0UL;
}
/* Get system clock frequency */
u32HCLKFreq = CLK_GetHCLKFreq();
/* Get APB0 clock frequency */
u32PCLK0Freq = CLK_GetPCLK0Freq();
/* Get APB1 clock frequency */
u32PCLK1Freq = CLK_GetPCLK1Freq();
if(u32MasterSlave == SPI_MASTER)
{
/* Default setting: slave selection signal is active low; disable automatic slave selection function. */
spi->SSCTL = SPI_SS_ACTIVE_LOW;
/* Default setting: MSB first, disable unit transfer interrupt, SP_CYCLE = 0. */
spi->CTL = u32MasterSlave | (u32DataWidth << SPI_CTL_DWIDTH_Pos) | (u32SPIMode) | SPI_CTL_SPIEN_Msk;
if(u32BusClock >= u32HCLKFreq)
{
if(!(__PC() & (1UL << 28UL)))
{
/* Select PCLK as the clock source of SPI */
if((spi == SPI0) || (spi == SPI0_NS))
{
CLK->CLKSEL2 = (CLK->CLKSEL2 & (~CLK_CLKSEL2_SPI0SEL_Msk)) | CLK_CLKSEL2_SPI0SEL_PCLK1;
}
else if((spi == SPI1) || (spi == SPI1_NS))
{
CLK->CLKSEL2 = (CLK->CLKSEL2 & (~CLK_CLKSEL2_SPI1SEL_Msk)) | CLK_CLKSEL2_SPI1SEL_PCLK0;
}
else if((spi == SPI2) || (spi == SPI2_NS))
{
CLK->CLKSEL2 = (CLK->CLKSEL2 & (~CLK_CLKSEL2_SPI2SEL_Msk)) | CLK_CLKSEL2_SPI2SEL_PCLK1;
}
else
{
CLK->CLKSEL2 = (CLK->CLKSEL2 & (~CLK_CLKSEL2_SPI3SEL_Msk)) | CLK_CLKSEL2_SPI3SEL_PCLK0;
}
}
}
/* Check clock source of SPI */
if((spi == SPI0) || (spi == SPI0_NS))
{
if((CLK_GetModuleClockSource(SPI0_MODULE) << CLK_CLKSEL2_SPI0SEL_Pos) == CLK_CLKSEL2_SPI0SEL_HXT)
{
u32ClkSrc = __HXT; /* Clock source is HXT */
}
else if((CLK_GetModuleClockSource(SPI0_MODULE) << CLK_CLKSEL2_SPI0SEL_Pos) == CLK_CLKSEL2_SPI0SEL_PLL)
{
u32ClkSrc = CLK_GetPLLClockFreq(); /* Clock source is PLL */
}
else if((CLK_GetModuleClockSource(SPI0_MODULE) << CLK_CLKSEL2_SPI0SEL_Pos) == CLK_CLKSEL2_SPI0SEL_PCLK1)
{
u32ClkSrc = CLK_GetPCLK1Freq(); /* Clock source is PCLK1 */
}
else
{
u32ClkSrc = __HIRC; /* Clock source is HIRC */
}
}
else if((spi == SPI1) || (spi == SPI1_NS))
{
if((CLK_GetModuleClockSource(SPI1_MODULE) << CLK_CLKSEL2_SPI1SEL_Pos) == CLK_CLKSEL2_SPI1SEL_HXT)
{
u32ClkSrc = __HXT; /* Clock source is HXT */
}
else if((CLK_GetModuleClockSource(SPI1_MODULE) << CLK_CLKSEL2_SPI1SEL_Pos) == CLK_CLKSEL2_SPI1SEL_PLL)
{
u32ClkSrc = CLK_GetPLLClockFreq(); /* Clock source is PLL */
}
else if((CLK_GetModuleClockSource(SPI1_MODULE) << CLK_CLKSEL2_SPI1SEL_Pos) == CLK_CLKSEL2_SPI1SEL_PCLK0)
{
u32ClkSrc = CLK_GetPCLK0Freq(); /* Clock source is PCLK0 */
}
else
{
u32ClkSrc = __HIRC; /* Clock source is HIRC */
}
}
else if((spi == SPI2) || (spi == SPI2_NS))
{
if((CLK_GetModuleClockSource(SPI2_MODULE) << CLK_CLKSEL2_SPI2SEL_Pos) == CLK_CLKSEL2_SPI2SEL_HXT)
{
u32ClkSrc = __HXT; /* Clock source is HXT */
}
else if((CLK_GetModuleClockSource(SPI2_MODULE) << CLK_CLKSEL2_SPI2SEL_Pos) == CLK_CLKSEL2_SPI2SEL_PLL)
{
u32ClkSrc = CLK_GetPLLClockFreq(); /* Clock source is PLL */
}
else if((CLK_GetModuleClockSource(SPI2_MODULE) << CLK_CLKSEL2_SPI2SEL_Pos) == CLK_CLKSEL2_SPI2SEL_PCLK1)
{
u32ClkSrc = CLK_GetPCLK1Freq(); /* Clock source is PCLK1 */
}
else
{
u32ClkSrc = __HIRC; /* Clock source is HIRC */
}
}
else
{
if((CLK_GetModuleClockSource(SPI3_MODULE) << CLK_CLKSEL2_SPI3SEL_Pos) == CLK_CLKSEL2_SPI3SEL_HXT)
{
u32ClkSrc = __HXT; /* Clock source is HXT */
}
else if((CLK_GetModuleClockSource(SPI3_MODULE) << CLK_CLKSEL2_SPI3SEL_Pos) == CLK_CLKSEL2_SPI3SEL_PLL)
{
u32ClkSrc = CLK_GetPLLClockFreq(); /* Clock source is PLL */
}
else if((CLK_GetModuleClockSource(SPI3_MODULE) << CLK_CLKSEL2_SPI3SEL_Pos) == CLK_CLKSEL2_SPI3SEL_PCLK0)
{
u32ClkSrc = CLK_GetPCLK0Freq(); /* Clock source is PCLK0 */
}
else
{
u32ClkSrc = __HIRC; /* Clock source is HIRC */
}
}
if(u32BusClock >= u32HCLKFreq)
{
/* Set DIVIDER = 0 */
spi->CLKDIV = 0UL;
/* Return master peripheral clock rate */
u32RetValue = u32ClkSrc;
}
else if(u32BusClock >= u32ClkSrc)
{
/* Set DIVIDER = 0 */
spi->CLKDIV = 0UL;
/* Return master peripheral clock rate */
u32RetValue = u32ClkSrc;
}
else if(u32BusClock == 0UL)
{
/* Set DIVIDER to the maximum value 0x1FF. f_spi = f_spi_clk_src / (DIVIDER + 1) */
spi->CLKDIV |= SPI_CLKDIV_DIVIDER_Msk;
/* Return master peripheral clock rate */
u32RetValue = (u32ClkSrc / (0x1FFUL + 1UL));
}
else
{
u32Div = (((u32ClkSrc * 10UL) / u32BusClock + 5UL) / 10UL) - 1UL; /* Round to the nearest integer */
if(u32Div > 0x1FFUL)
{
u32Div = 0x1FFUL;
spi->CLKDIV |= SPI_CLKDIV_DIVIDER_Msk;
/* Return master peripheral clock rate */
u32RetValue = (u32ClkSrc / (0x1FFUL + 1UL));
}
else
{
spi->CLKDIV = (spi->CLKDIV & (~SPI_CLKDIV_DIVIDER_Msk)) | (u32Div << SPI_CLKDIV_DIVIDER_Pos);
/* Return master peripheral clock rate */
u32RetValue = (u32ClkSrc / (u32Div + 1UL));
}
}
}
else /* For slave mode, force the SPI peripheral clock rate to equal APB clock rate. */
{
/* Default setting: slave selection signal is low level active. */
spi->SSCTL = SPI_SS_ACTIVE_LOW;
/* Default setting: MSB first, disable unit transfer interrupt, SP_CYCLE = 0. */
spi->CTL = u32MasterSlave | (u32DataWidth << SPI_CTL_DWIDTH_Pos) | (u32SPIMode) | SPI_CTL_SPIEN_Msk;
/* Set DIVIDER = 0 */
spi->CLKDIV = 0UL;
if(!(__PC() & (1UL << 28UL)))
{
/* Select PCLK as the clock source of SPI */
if((spi == SPI0) || (spi == SPI0_NS))
{
CLK->CLKSEL2 = (CLK->CLKSEL2 & (~CLK_CLKSEL2_SPI0SEL_Msk)) | CLK_CLKSEL2_SPI0SEL_PCLK1;
/* Return slave peripheral clock rate */
u32RetValue = u32PCLK1Freq;
}
else if((spi == SPI1) || (spi == SPI1_NS))
{
CLK->CLKSEL2 = (CLK->CLKSEL2 & (~CLK_CLKSEL2_SPI1SEL_Msk)) | CLK_CLKSEL2_SPI1SEL_PCLK0;
/* Return slave peripheral clock rate */
u32RetValue = u32PCLK0Freq;
}
else if((spi == SPI2) || (spi == SPI2_NS))
{
CLK->CLKSEL2 = (CLK->CLKSEL2 & (~CLK_CLKSEL2_SPI2SEL_Msk)) | CLK_CLKSEL2_SPI2SEL_PCLK1;
/* Return slave peripheral clock rate */
u32RetValue = u32PCLK1Freq;
}
else
{
CLK->CLKSEL2 = (CLK->CLKSEL2 & (~CLK_CLKSEL2_SPI3SEL_Msk)) | CLK_CLKSEL2_SPI3SEL_PCLK0;
/* Return slave peripheral clock rate */
u32RetValue = u32PCLK0Freq;
}
}
else
{
/* Check clock source of SPI */
if((spi == SPI0) || (spi == SPI0_NS))
{
if((CLK_GetModuleClockSource(SPI0_MODULE) << CLK_CLKSEL2_SPI0SEL_Pos) == CLK_CLKSEL2_SPI0SEL_HXT)
{
u32RetValue = __HXT; /* Clock source is HXT */
}
else if((CLK_GetModuleClockSource(SPI0_MODULE) << CLK_CLKSEL2_SPI0SEL_Pos) == CLK_CLKSEL2_SPI0SEL_PLL)
{
u32RetValue = CLK_GetPLLClockFreq(); /* Clock source is PLL */
}
else if((CLK_GetModuleClockSource(SPI0_MODULE) << CLK_CLKSEL2_SPI0SEL_Pos) == CLK_CLKSEL2_SPI0SEL_PCLK1)
{
u32RetValue = u32PCLK1Freq; /* Clock source is PCLK1 */
}
else
{
u32RetValue = __HIRC; /* Clock source is HIRC */
}
}
else if((spi == SPI1) || (spi == SPI1_NS))
{
if((CLK_GetModuleClockSource(SPI1_MODULE) << CLK_CLKSEL2_SPI1SEL_Pos) == CLK_CLKSEL2_SPI1SEL_HXT)
{
u32RetValue = __HXT; /* Clock source is HXT */
}
else if((CLK_GetModuleClockSource(SPI1_MODULE) << CLK_CLKSEL2_SPI1SEL_Pos) == CLK_CLKSEL2_SPI1SEL_PLL)
{
u32RetValue = CLK_GetPLLClockFreq(); /* Clock source is PLL */
}
else if((CLK_GetModuleClockSource(SPI1_MODULE) << CLK_CLKSEL2_SPI1SEL_Pos) == CLK_CLKSEL2_SPI1SEL_PCLK0)
{
u32RetValue = u32PCLK0Freq; /* Clock source is PCLK0 */
}
else
{
u32RetValue = __HIRC; /* Clock source is HIRC */
}
}
else if((spi == SPI2) || (spi == SPI2_NS))
{
if((CLK_GetModuleClockSource(SPI2_MODULE) << CLK_CLKSEL2_SPI2SEL_Pos) == CLK_CLKSEL2_SPI2SEL_HXT)
{
u32RetValue = __HXT; /* Clock source is HXT */
}
else if((CLK_GetModuleClockSource(SPI2_MODULE) << CLK_CLKSEL2_SPI2SEL_Pos) == CLK_CLKSEL2_SPI2SEL_PLL)
{
u32RetValue = CLK_GetPLLClockFreq(); /* Clock source is PLL */
}
else if((CLK_GetModuleClockSource(SPI2_MODULE) << CLK_CLKSEL2_SPI2SEL_Pos) == CLK_CLKSEL2_SPI2SEL_PCLK1)
{
u32RetValue = u32PCLK1Freq; /* Clock source is PCLK1 */
}
else
{
u32RetValue = __HIRC; /* Clock source is HIRC */
}
}
else
{
if((CLK_GetModuleClockSource(SPI3_MODULE) << CLK_CLKSEL2_SPI3SEL_Pos) == CLK_CLKSEL2_SPI3SEL_HXT)
{
u32RetValue = __HXT; /* Clock source is HXT */
}
else if((CLK_GetModuleClockSource(SPI3_MODULE) << CLK_CLKSEL2_SPI3SEL_Pos) == CLK_CLKSEL2_SPI3SEL_PLL)
{
u32RetValue = CLK_GetPLLClockFreq(); /* Clock source is PLL */
}
else if((CLK_GetModuleClockSource(SPI3_MODULE) << CLK_CLKSEL2_SPI3SEL_Pos) == CLK_CLKSEL2_SPI3SEL_PCLK0)
{
u32RetValue = u32PCLK0Freq; /* Clock source is PCLK0 */
}
else
{
u32RetValue = __HIRC; /* Clock source is HIRC */
}
}
}
}
return u32RetValue;
}
/**
* @brief Disable SPI controller.
* @param[in] spi The pointer of the specified SPI module.
* @return None
* @details Clear SPIEN bit of SPI_CTL register to disable SPI transfer control.
*/
void SPI_Close(SPI_T *spi)
{
spi->CTL &= ~SPI_CTL_SPIEN_Msk;
}
/**
* @brief Clear RX FIFO buffer.
* @param[in] spi The pointer of the specified SPI module.
* @return None
* @details This function will clear SPI RX FIFO buffer. The RXEMPTY (SPI_STATUS[8]) will be set to 1.
*/
void SPI_ClearRxFIFO(SPI_T *spi)
{
spi->FIFOCTL |= SPI_FIFOCTL_RXFBCLR_Msk;
}
/**
* @brief Clear TX FIFO buffer.
* @param[in] spi The pointer of the specified SPI module.
* @return None
* @details This function will clear SPI TX FIFO buffer. The TXEMPTY (SPI_STATUS[16]) will be set to 1.
* @note The TX shift register will not be cleared.
*/
void SPI_ClearTxFIFO(SPI_T *spi)
{
spi->FIFOCTL |= SPI_FIFOCTL_TXFBCLR_Msk;
}
/**
* @brief Disable the automatic slave selection function.
* @param[in] spi The pointer of the specified SPI module.
* @return None
* @details This function will disable the automatic slave selection function and set slave selection signal to inactive state.
*/
void SPI_DisableAutoSS(SPI_T *spi)
{
spi->SSCTL &= ~(SPI_SSCTL_AUTOSS_Msk | SPI_SSCTL_SS_Msk);
}
/**
* @brief Enable the automatic slave selection function.
* @param[in] spi The pointer of the specified SPI module.
* @param[in] u32SSPinMask Specifies slave selection pins. (SPI_SS)
* @param[in] u32ActiveLevel Specifies the active level of slave selection signal. (SPI_SS_ACTIVE_HIGH, SPI_SS_ACTIVE_LOW)
* @return None
* @details This function will enable the automatic slave selection function. Only available in Master mode.
* The slave selection pin and the active level will be set in this function.
*/
void SPI_EnableAutoSS(SPI_T *spi, uint32_t u32SSPinMask, uint32_t u32ActiveLevel)
{
spi->SSCTL = (spi->SSCTL & (~(SPI_SSCTL_AUTOSS_Msk | SPI_SSCTL_SSACTPOL_Msk | SPI_SSCTL_SS_Msk))) | (u32SSPinMask | u32ActiveLevel | SPI_SSCTL_AUTOSS_Msk);
}
/**
* @brief Set the SPI bus clock.
* @param[in] spi The pointer of the specified SPI module.
* @param[in] u32BusClock The expected frequency of SPI bus clock in Hz.
* @return Actual frequency of SPI bus clock.
* @details This function is only available in Master mode. The actual clock rate may be different from the target SPI bus clock rate.
* For example, if the SPI source clock rate is 12 MHz and the target SPI bus clock rate is 7 MHz, the actual SPI bus clock
* rate will be 6 MHz.
* @note If u32BusClock = 0, DIVIDER setting will be set to the maximum value.
* @note If u32BusClock >= system clock frequency for Secure, SPI peripheral clock source will be set to APB clock and DIVIDER will be set to 0.
* @note If u32BusClock >= system clock frequency for Non-Secure, this function does not do anything to avoid the situation that the frequency of
* SPI bus clock cannot be faster than the system clock rate. User should set up carefully.
* @note If u32BusClock >= SPI peripheral clock source, DIVIDER will be set to 0.
*/
uint32_t SPI_SetBusClock(SPI_T *spi, uint32_t u32BusClock)
{
uint32_t u32ClkSrc, u32HCLKFreq;
uint32_t u32Div, u32RetValue;
/* Get system clock frequency */
u32HCLKFreq = CLK_GetHCLKFreq();
if(u32BusClock >= u32HCLKFreq)
{
if(!(__PC() & (1UL << 28UL)))
{
/* Select PCLK as the clock source of SPI */
if((spi == SPI0) || (spi == SPI0_NS))
{
CLK->CLKSEL2 = (CLK->CLKSEL2 & (~CLK_CLKSEL2_SPI0SEL_Msk)) | CLK_CLKSEL2_SPI0SEL_PCLK1;
}
else if((spi == SPI1) || (spi == SPI1_NS))
{
CLK->CLKSEL2 = (CLK->CLKSEL2 & (~CLK_CLKSEL2_SPI1SEL_Msk)) | CLK_CLKSEL2_SPI1SEL_PCLK0;
}
else if((spi == SPI2) || (spi == SPI2_NS))
{
CLK->CLKSEL2 = (CLK->CLKSEL2 & (~CLK_CLKSEL2_SPI2SEL_Msk)) | CLK_CLKSEL2_SPI2SEL_PCLK1;
}
else
{
CLK->CLKSEL2 = (CLK->CLKSEL2 & (~CLK_CLKSEL2_SPI3SEL_Msk)) | CLK_CLKSEL2_SPI3SEL_PCLK0;
}
}
}
/* Check clock source of SPI */
if((spi == SPI0) || (spi == SPI0_NS))
{
if((CLK_GetModuleClockSource(SPI0_MODULE) << CLK_CLKSEL2_SPI0SEL_Pos) == CLK_CLKSEL2_SPI0SEL_HXT)
{
u32ClkSrc = __HXT; /* Clock source is HXT */
}
else if((CLK_GetModuleClockSource(SPI0_MODULE) << CLK_CLKSEL2_SPI0SEL_Pos) == CLK_CLKSEL2_SPI0SEL_PLL)
{
u32ClkSrc = CLK_GetPLLClockFreq(); /* Clock source is PLL */
}
else if((CLK_GetModuleClockSource(SPI0_MODULE) << CLK_CLKSEL2_SPI0SEL_Pos) == CLK_CLKSEL2_SPI0SEL_PCLK1)
{
u32ClkSrc = CLK_GetPCLK1Freq(); /* Clock source is PCLK1 */
}
else
{
u32ClkSrc = __HIRC; /* Clock source is HIRC */
}
}
else if((spi == SPI1) || (spi == SPI1_NS))
{
if((CLK_GetModuleClockSource(SPI1_MODULE) << CLK_CLKSEL2_SPI1SEL_Pos) == CLK_CLKSEL2_SPI1SEL_HXT)
{
u32ClkSrc = __HXT; /* Clock source is HXT */
}
else if((CLK_GetModuleClockSource(SPI1_MODULE) << CLK_CLKSEL2_SPI1SEL_Pos) == CLK_CLKSEL2_SPI1SEL_PLL)
{
u32ClkSrc = CLK_GetPLLClockFreq(); /* Clock source is PLL */
}
else if((CLK_GetModuleClockSource(SPI1_MODULE) << CLK_CLKSEL2_SPI1SEL_Pos) == CLK_CLKSEL2_SPI1SEL_PCLK0)
{
u32ClkSrc = CLK_GetPCLK0Freq(); /* Clock source is PCLK0 */
}
else
{
u32ClkSrc = __HIRC; /* Clock source is HIRC */
}
}
else if((spi == SPI2) || (spi == SPI2_NS))
{
if((CLK_GetModuleClockSource(SPI2_MODULE) << CLK_CLKSEL2_SPI2SEL_Pos) == CLK_CLKSEL2_SPI2SEL_HXT)
{
u32ClkSrc = __HXT; /* Clock source is HXT */
}
else if((CLK_GetModuleClockSource(SPI2_MODULE) << CLK_CLKSEL2_SPI2SEL_Pos) == CLK_CLKSEL2_SPI2SEL_PLL)
{
u32ClkSrc = CLK_GetPLLClockFreq(); /* Clock source is PLL */
}
else if((CLK_GetModuleClockSource(SPI2_MODULE) << CLK_CLKSEL2_SPI2SEL_Pos) == CLK_CLKSEL2_SPI2SEL_PCLK1)
{
u32ClkSrc = CLK_GetPCLK1Freq(); /* Clock source is PCLK1 */
}
else
{
u32ClkSrc = __HIRC; /* Clock source is HIRC */
}
}
else
{
if((CLK_GetModuleClockSource(SPI3_MODULE) << CLK_CLKSEL2_SPI3SEL_Pos) == CLK_CLKSEL2_SPI3SEL_HXT)
{
u32ClkSrc = __HXT; /* Clock source is HXT */
}
else if((CLK_GetModuleClockSource(SPI3_MODULE) << CLK_CLKSEL2_SPI3SEL_Pos) == CLK_CLKSEL2_SPI3SEL_PLL)
{
u32ClkSrc = CLK_GetPLLClockFreq(); /* Clock source is PLL */
}
else if((CLK_GetModuleClockSource(SPI3_MODULE) << CLK_CLKSEL2_SPI3SEL_Pos) == CLK_CLKSEL2_SPI3SEL_PCLK0)
{
u32ClkSrc = CLK_GetPCLK0Freq(); /* Clock source is PCLK0 */
}
else
{
u32ClkSrc = __HIRC; /* Clock source is HIRC */
}
}
if(u32BusClock >= u32HCLKFreq)
{
/* Set DIVIDER = 0 */
spi->CLKDIV = 0UL;
/* Return master peripheral clock rate */
u32RetValue = u32ClkSrc;
}
else if(u32BusClock >= u32ClkSrc)
{
/* Set DIVIDER = 0 */
spi->CLKDIV = 0UL;
/* Return master peripheral clock rate */
u32RetValue = u32ClkSrc;
}
else if(u32BusClock == 0UL)
{
/* Set DIVIDER to the maximum value 0x1FF. f_spi = f_spi_clk_src / (DIVIDER + 1) */
spi->CLKDIV |= SPI_CLKDIV_DIVIDER_Msk;
/* Return master peripheral clock rate */
u32RetValue = (u32ClkSrc / (0x1FFUL + 1UL));
}
else
{
u32Div = (((u32ClkSrc * 10UL) / u32BusClock + 5UL) / 10UL) - 1UL; /* Round to the nearest integer */
if(u32Div > 0x1FFUL)
{
u32Div = 0x1FFUL;
spi->CLKDIV |= SPI_CLKDIV_DIVIDER_Msk;
/* Return master peripheral clock rate */
u32RetValue = (u32ClkSrc / (0x1FFUL + 1UL));
}
else
{
spi->CLKDIV = (spi->CLKDIV & (~SPI_CLKDIV_DIVIDER_Msk)) | (u32Div << SPI_CLKDIV_DIVIDER_Pos);
/* Return master peripheral clock rate */
u32RetValue = (u32ClkSrc / (u32Div + 1UL));
}
}
return u32RetValue;
}
/**
* @brief Configure FIFO threshold setting.
* @param[in] spi The pointer of the specified SPI module.
* @param[in] u32TxThreshold Decides the TX FIFO threshold. It could be 0 ~ 7.
* @param[in] u32RxThreshold Decides the RX FIFO threshold. It could be 0 ~ 7.
* @return None
* @details Set TX FIFO threshold and RX FIFO threshold configurations.
*/
void SPI_SetFIFO(SPI_T *spi, uint32_t u32TxThreshold, uint32_t u32RxThreshold)
{
spi->FIFOCTL = (spi->FIFOCTL & ~(SPI_FIFOCTL_TXTH_Msk | SPI_FIFOCTL_RXTH_Msk)) |
(u32TxThreshold << SPI_FIFOCTL_TXTH_Pos) |
(u32RxThreshold << SPI_FIFOCTL_RXTH_Pos);
}
/**
* @brief Get the actual frequency of SPI bus clock. Only available in Master mode.
* @param[in] spi The pointer of the specified SPI module.
* @return Actual SPI bus clock frequency in Hz.
* @details This function will calculate the actual SPI bus clock rate according to the SPIxSEL and DIVIDER settings. Only available in Master mode.
*/
uint32_t SPI_GetBusClock(SPI_T *spi)
{
uint32_t u32Div;
uint32_t u32ClkSrc;
/* Get DIVIDER setting */
u32Div = (spi->CLKDIV & SPI_CLKDIV_DIVIDER_Msk) >> SPI_CLKDIV_DIVIDER_Pos;
/* Check clock source of SPI */
if((spi == SPI0) || (spi == SPI0_NS))
{
if((CLK_GetModuleClockSource(SPI0_MODULE) << CLK_CLKSEL2_SPI0SEL_Pos) == CLK_CLKSEL2_SPI0SEL_HXT)
{
u32ClkSrc = __HXT; /* Clock source is HXT */
}
else if((CLK_GetModuleClockSource(SPI0_MODULE) << CLK_CLKSEL2_SPI0SEL_Pos) == CLK_CLKSEL2_SPI0SEL_PLL)
{
u32ClkSrc = CLK_GetPLLClockFreq(); /* Clock source is PLL */
}
else if((CLK_GetModuleClockSource(SPI0_MODULE) << CLK_CLKSEL2_SPI0SEL_Pos) == CLK_CLKSEL2_SPI0SEL_PCLK1)
{
u32ClkSrc = CLK_GetPCLK1Freq(); /* Clock source is PCLK1 */
}
else
{
u32ClkSrc = __HIRC; /* Clock source is HIRC */
}
}
else if((spi == SPI1) || (spi == SPI1_NS))
{
if((CLK_GetModuleClockSource(SPI1_MODULE) << CLK_CLKSEL2_SPI1SEL_Pos) == CLK_CLKSEL2_SPI1SEL_HXT)
{
u32ClkSrc = __HXT; /* Clock source is HXT */
}
else if((CLK_GetModuleClockSource(SPI1_MODULE) << CLK_CLKSEL2_SPI1SEL_Pos) == CLK_CLKSEL2_SPI1SEL_PLL)
{
u32ClkSrc = CLK_GetPLLClockFreq(); /* Clock source is PLL */
}
else if((CLK_GetModuleClockSource(SPI1_MODULE) << CLK_CLKSEL2_SPI1SEL_Pos) == CLK_CLKSEL2_SPI1SEL_PCLK0)
{
u32ClkSrc = CLK_GetPCLK0Freq(); /* Clock source is PCLK0 */
}
else
{
u32ClkSrc = __HIRC; /* Clock source is HIRC */
}
}
else if((spi == SPI2) || (spi == SPI2_NS))
{
if((CLK_GetModuleClockSource(SPI2_MODULE) << CLK_CLKSEL2_SPI2SEL_Pos) == CLK_CLKSEL2_SPI2SEL_HXT)
{
u32ClkSrc = __HXT; /* Clock source is HXT */
}
else if((CLK_GetModuleClockSource(SPI2_MODULE) << CLK_CLKSEL2_SPI2SEL_Pos) == CLK_CLKSEL2_SPI2SEL_PLL)
{
u32ClkSrc = CLK_GetPLLClockFreq(); /* Clock source is PLL */
}
else if((CLK_GetModuleClockSource(SPI2_MODULE) << CLK_CLKSEL2_SPI2SEL_Pos) == CLK_CLKSEL2_SPI2SEL_PCLK1)
{
u32ClkSrc = CLK_GetPCLK1Freq(); /* Clock source is PCLK1 */
}
else
{
u32ClkSrc = __HIRC; /* Clock source is HIRC */
}
}
else
{
if((CLK_GetModuleClockSource(SPI3_MODULE) << CLK_CLKSEL2_SPI3SEL_Pos) == CLK_CLKSEL2_SPI3SEL_HXT)
{
u32ClkSrc = __HXT; /* Clock source is HXT */
}
else if((CLK_GetModuleClockSource(SPI3_MODULE) << CLK_CLKSEL2_SPI3SEL_Pos) == CLK_CLKSEL2_SPI3SEL_PLL)
{
u32ClkSrc = CLK_GetPLLClockFreq(); /* Clock source is PLL */
}
else if((CLK_GetModuleClockSource(SPI3_MODULE) << CLK_CLKSEL2_SPI3SEL_Pos) == CLK_CLKSEL2_SPI3SEL_PCLK0)
{
u32ClkSrc = CLK_GetPCLK0Freq(); /* Clock source is PCLK0 */
}
else
{
u32ClkSrc = __HIRC; /* Clock source is HIRC */
}
}
/* Return SPI bus clock rate */
return (u32ClkSrc / (u32Div + 1UL));
}
/**
* @brief Enable interrupt function.
* @param[in] spi The pointer of the specified SPI module.
* @param[in] u32Mask The combination of all related interrupt enable bits.
* Each bit corresponds to a interrupt enable bit.
* This parameter decides which interrupts will be enabled. It is combination of:
* - \ref SPI_UNIT_INT_MASK
* - \ref SPI_SSACT_INT_MASK
* - \ref SPI_SSINACT_INT_MASK
* - \ref SPI_SLVUR_INT_MASK
* - \ref SPI_SLVBE_INT_MASK
* - \ref SPI_TXUF_INT_MASK
* - \ref SPI_FIFO_TXTH_INT_MASK
* - \ref SPI_FIFO_RXTH_INT_MASK
* - \ref SPI_FIFO_RXOV_INT_MASK
* - \ref SPI_FIFO_RXTO_INT_MASK
*
* @return None
* @details Enable SPI related interrupts specified by u32Mask parameter.
*/
void SPI_EnableInt(SPI_T *spi, uint32_t u32Mask)
{
/* Enable unit transfer interrupt flag */
if((u32Mask & SPI_UNIT_INT_MASK) == SPI_UNIT_INT_MASK)
{
spi->CTL |= SPI_CTL_UNITIEN_Msk;
}
/* Enable slave selection signal active interrupt flag */
if((u32Mask & SPI_SSACT_INT_MASK) == SPI_SSACT_INT_MASK)
{
spi->SSCTL |= SPI_SSCTL_SSACTIEN_Msk;
}
/* Enable slave selection signal inactive interrupt flag */
if((u32Mask & SPI_SSINACT_INT_MASK) == SPI_SSINACT_INT_MASK)
{
spi->SSCTL |= SPI_SSCTL_SSINAIEN_Msk;
}
/* Enable slave TX under run interrupt flag */
if((u32Mask & SPI_SLVUR_INT_MASK) == SPI_SLVUR_INT_MASK)
{
spi->SSCTL |= SPI_SSCTL_SLVURIEN_Msk;
}
/* Enable slave bit count error interrupt flag */
if((u32Mask & SPI_SLVBE_INT_MASK) == SPI_SLVBE_INT_MASK)
{
spi->SSCTL |= SPI_SSCTL_SLVBEIEN_Msk;
}
/* Enable slave TX underflow interrupt flag */
if((u32Mask & SPI_TXUF_INT_MASK) == SPI_TXUF_INT_MASK)
{
spi->FIFOCTL |= SPI_FIFOCTL_TXUFIEN_Msk;
}
/* Enable TX threshold interrupt flag */
if((u32Mask & SPI_FIFO_TXTH_INT_MASK) == SPI_FIFO_TXTH_INT_MASK)
{
spi->FIFOCTL |= SPI_FIFOCTL_TXTHIEN_Msk;
}
/* Enable RX threshold interrupt flag */
if((u32Mask & SPI_FIFO_RXTH_INT_MASK) == SPI_FIFO_RXTH_INT_MASK)
{
spi->FIFOCTL |= SPI_FIFOCTL_RXTHIEN_Msk;
}
/* Enable RX overrun interrupt flag */
if((u32Mask & SPI_FIFO_RXOV_INT_MASK) == SPI_FIFO_RXOV_INT_MASK)
{
spi->FIFOCTL |= SPI_FIFOCTL_RXOVIEN_Msk;
}
/* Enable RX time-out interrupt flag */
if((u32Mask & SPI_FIFO_RXTO_INT_MASK) == SPI_FIFO_RXTO_INT_MASK)
{
spi->FIFOCTL |= SPI_FIFOCTL_RXTOIEN_Msk;
}
}
/**
* @brief Disable interrupt function.
* @param[in] spi The pointer of the specified SPI module.
* @param[in] u32Mask The combination of all related interrupt enable bits.
* Each bit corresponds to a interrupt bit.
* This parameter decides which interrupts will be disabled. It is combination of:
* - \ref SPI_UNIT_INT_MASK
* - \ref SPI_SSACT_INT_MASK
* - \ref SPI_SSINACT_INT_MASK
* - \ref SPI_SLVUR_INT_MASK
* - \ref SPI_SLVBE_INT_MASK
* - \ref SPI_TXUF_INT_MASK
* - \ref SPI_FIFO_TXTH_INT_MASK
* - \ref SPI_FIFO_RXTH_INT_MASK
* - \ref SPI_FIFO_RXOV_INT_MASK
* - \ref SPI_FIFO_RXTO_INT_MASK
*
* @return None
* @details Disable SPI related interrupts specified by u32Mask parameter.
*/
void SPI_DisableInt(SPI_T *spi, uint32_t u32Mask)
{
/* Disable unit transfer interrupt flag */
if((u32Mask & SPI_UNIT_INT_MASK) == SPI_UNIT_INT_MASK)
{
spi->CTL &= ~SPI_CTL_UNITIEN_Msk;
}
/* Disable slave selection signal active interrupt flag */
if((u32Mask & SPI_SSACT_INT_MASK) == SPI_SSACT_INT_MASK)
{
spi->SSCTL &= ~SPI_SSCTL_SSACTIEN_Msk;
}
/* Disable slave selection signal inactive interrupt flag */
if((u32Mask & SPI_SSINACT_INT_MASK) == SPI_SSINACT_INT_MASK)
{
spi->SSCTL &= ~SPI_SSCTL_SSINAIEN_Msk;
}
/* Disable slave TX under run interrupt flag */
if((u32Mask & SPI_SLVUR_INT_MASK) == SPI_SLVUR_INT_MASK)
{
spi->SSCTL &= ~SPI_SSCTL_SLVURIEN_Msk;
}
/* Disable slave bit count error interrupt flag */
if((u32Mask & SPI_SLVBE_INT_MASK) == SPI_SLVBE_INT_MASK)
{
spi->SSCTL &= ~SPI_SSCTL_SLVBEIEN_Msk;
}
/* Disable slave TX underflow interrupt flag */
if((u32Mask & SPI_TXUF_INT_MASK) == SPI_TXUF_INT_MASK)
{
spi->FIFOCTL &= ~SPI_FIFOCTL_TXUFIEN_Msk;
}
/* Disable TX threshold interrupt flag */
if((u32Mask & SPI_FIFO_TXTH_INT_MASK) == SPI_FIFO_TXTH_INT_MASK)
{
spi->FIFOCTL &= ~SPI_FIFOCTL_TXTHIEN_Msk;
}
/* Disable RX threshold interrupt flag */
if((u32Mask & SPI_FIFO_RXTH_INT_MASK) == SPI_FIFO_RXTH_INT_MASK)
{
spi->FIFOCTL &= ~SPI_FIFOCTL_RXTHIEN_Msk;
}
/* Disable RX overrun interrupt flag */
if((u32Mask & SPI_FIFO_RXOV_INT_MASK) == SPI_FIFO_RXOV_INT_MASK)
{
spi->FIFOCTL &= ~SPI_FIFOCTL_RXOVIEN_Msk;
}
/* Disable RX time-out interrupt flag */
if((u32Mask & SPI_FIFO_RXTO_INT_MASK) == SPI_FIFO_RXTO_INT_MASK)
{
spi->FIFOCTL &= ~SPI_FIFOCTL_RXTOIEN_Msk;
}
}
/**
* @brief Get interrupt flag.
* @param[in] spi The pointer of the specified SPI module.
* @param[in] u32Mask The combination of all related interrupt sources.
* Each bit corresponds to a interrupt source.
* This parameter decides which interrupt flags will be read. It is combination of:
* - \ref SPI_UNIT_INT_MASK
* - \ref SPI_SSACT_INT_MASK
* - \ref SPI_SSINACT_INT_MASK
* - \ref SPI_SLVUR_INT_MASK
* - \ref SPI_SLVBE_INT_MASK
* - \ref SPI_TXUF_INT_MASK
* - \ref SPI_FIFO_TXTH_INT_MASK
* - \ref SPI_FIFO_RXTH_INT_MASK
* - \ref SPI_FIFO_RXOV_INT_MASK
* - \ref SPI_FIFO_RXTO_INT_MASK
*
* @return Interrupt flags of selected sources.
* @details Get SPI related interrupt flags specified by u32Mask parameter.
*/
uint32_t SPI_GetIntFlag(SPI_T *spi, uint32_t u32Mask)
{
uint32_t u32IntStatus;
uint32_t u32IntFlag = 0UL;
u32IntStatus = spi->STATUS;
/* Check unit transfer interrupt flag */
if((u32Mask & SPI_UNIT_INT_MASK) && (u32IntStatus & SPI_STATUS_UNITIF_Msk))
{
u32IntFlag |= SPI_UNIT_INT_MASK;
}
/* Check slave selection signal active interrupt flag */
if((u32Mask & SPI_SSACT_INT_MASK) && (u32IntStatus & SPI_STATUS_SSACTIF_Msk))
{
u32IntFlag |= SPI_SSACT_INT_MASK;
}
/* Check slave selection signal inactive interrupt flag */
if((u32Mask & SPI_SSINACT_INT_MASK) && (u32IntStatus & SPI_STATUS_SSINAIF_Msk))
{
u32IntFlag |= SPI_SSINACT_INT_MASK;
}
/* Check slave TX under run interrupt flag */
if((u32Mask & SPI_SLVUR_INT_MASK) && (u32IntStatus & SPI_STATUS_SLVURIF_Msk))
{
u32IntFlag |= SPI_SLVUR_INT_MASK;
}
/* Check slave bit count error interrupt flag */
if((u32Mask & SPI_SLVBE_INT_MASK) && (u32IntStatus & SPI_STATUS_SLVBEIF_Msk))
{
u32IntFlag |= SPI_SLVBE_INT_MASK;
}
/* Check slave TX underflow interrupt flag */
if((u32Mask & SPI_TXUF_INT_MASK) && (u32IntStatus & SPI_STATUS_TXUFIF_Msk))
{
u32IntFlag |= SPI_TXUF_INT_MASK;
}
/* Check TX threshold interrupt flag */
if((u32Mask & SPI_FIFO_TXTH_INT_MASK) && (u32IntStatus & SPI_STATUS_TXTHIF_Msk))
{
u32IntFlag |= SPI_FIFO_TXTH_INT_MASK;
}
/* Check RX threshold interrupt flag */
if((u32Mask & SPI_FIFO_RXTH_INT_MASK) && (u32IntStatus & SPI_STATUS_RXTHIF_Msk))
{
u32IntFlag |= SPI_FIFO_RXTH_INT_MASK;
}
/* Check RX overrun interrupt flag */
if((u32Mask & SPI_FIFO_RXOV_INT_MASK) && (u32IntStatus & SPI_STATUS_RXOVIF_Msk))
{
u32IntFlag |= SPI_FIFO_RXOV_INT_MASK;
}
/* Check RX time-out interrupt flag */
if((u32Mask & SPI_FIFO_RXTO_INT_MASK) && (u32IntStatus & SPI_STATUS_RXTOIF_Msk))
{
u32IntFlag |= SPI_FIFO_RXTO_INT_MASK;
}
return u32IntFlag;
}
/**
* @brief Clear interrupt flag.
* @param[in] spi The pointer of the specified SPI module.
* @param[in] u32Mask The combination of all related interrupt sources.
* Each bit corresponds to a interrupt source.
* This parameter decides which interrupt flags will be cleared. It could be the combination of:
* - \ref SPI_UNIT_INT_MASK
* - \ref SPI_SSACT_INT_MASK
* - \ref SPI_SSINACT_INT_MASK
* - \ref SPI_SLVUR_INT_MASK
* - \ref SPI_SLVBE_INT_MASK
* - \ref SPI_TXUF_INT_MASK
* - \ref SPI_FIFO_RXOV_INT_MASK
* - \ref SPI_FIFO_RXTO_INT_MASK
*
* @return None
* @details Clear SPI related interrupt flags specified by u32Mask parameter.
*/
void SPI_ClearIntFlag(SPI_T *spi, uint32_t u32Mask)
{
if(u32Mask & SPI_UNIT_INT_MASK)
{
spi->STATUS = SPI_STATUS_UNITIF_Msk; /* Clear unit transfer interrupt flag */
}
if(u32Mask & SPI_SSACT_INT_MASK)
{
spi->STATUS = SPI_STATUS_SSACTIF_Msk; /* Clear slave selection signal active interrupt flag */
}
if(u32Mask & SPI_SSINACT_INT_MASK)
{
spi->STATUS = SPI_STATUS_SSINAIF_Msk; /* Clear slave selection signal inactive interrupt flag */
}
if(u32Mask & SPI_SLVUR_INT_MASK)
{
spi->STATUS = SPI_STATUS_SLVURIF_Msk; /* Clear slave TX under run interrupt flag */
}
if(u32Mask & SPI_SLVBE_INT_MASK)
{
spi->STATUS = SPI_STATUS_SLVBEIF_Msk; /* Clear slave bit count error interrupt flag */
}
if(u32Mask & SPI_TXUF_INT_MASK)
{
spi->STATUS = SPI_STATUS_TXUFIF_Msk; /* Clear slave TX underflow interrupt flag */
}
if(u32Mask & SPI_FIFO_RXOV_INT_MASK)
{
spi->STATUS = SPI_STATUS_RXOVIF_Msk; /* Clear RX overrun interrupt flag */
}
if(u32Mask & SPI_FIFO_RXTO_INT_MASK)
{
spi->STATUS = SPI_STATUS_RXTOIF_Msk; /* Clear RX time-out interrupt flag */
}
}
/**
* @brief Get SPI status.
* @param[in] spi The pointer of the specified SPI module.
* @param[in] u32Mask The combination of all related sources.
* Each bit corresponds to a source.
* This parameter decides which flags will be read. It is combination of:
* - \ref SPI_BUSY_MASK
* - \ref SPI_RX_EMPTY_MASK
* - \ref SPI_RX_FULL_MASK
* - \ref SPI_TX_EMPTY_MASK
* - \ref SPI_TX_FULL_MASK
* - \ref SPI_TXRX_RESET_MASK
* - \ref SPI_SPIEN_STS_MASK
* - \ref SPI_SSLINE_STS_MASK
*
* @return Flags of selected sources.
* @details Get SPI related status specified by u32Mask parameter.
*/
uint32_t SPI_GetStatus(SPI_T *spi, uint32_t u32Mask)
{
uint32_t u32TmpStatus;
uint32_t u32Flag = 0UL;
u32TmpStatus = spi->STATUS;
/* Check busy status */
if((u32Mask & SPI_BUSY_MASK) && (u32TmpStatus & SPI_STATUS_BUSY_Msk))
{
u32Flag |= SPI_BUSY_MASK;
}
/* Check RX empty flag */
if((u32Mask & SPI_RX_EMPTY_MASK) && (u32TmpStatus & SPI_STATUS_RXEMPTY_Msk))
{
u32Flag |= SPI_RX_EMPTY_MASK;
}
/* Check RX full flag */
if((u32Mask & SPI_RX_FULL_MASK) && (u32TmpStatus & SPI_STATUS_RXFULL_Msk))
{
u32Flag |= SPI_RX_FULL_MASK;
}
/* Check TX empty flag */
if((u32Mask & SPI_TX_EMPTY_MASK) && (u32TmpStatus & SPI_STATUS_TXEMPTY_Msk))
{
u32Flag |= SPI_TX_EMPTY_MASK;
}
/* Check TX full flag */
if((u32Mask & SPI_TX_FULL_MASK) && (u32TmpStatus & SPI_STATUS_TXFULL_Msk))
{
u32Flag |= SPI_TX_FULL_MASK;
}
/* Check TX/RX reset flag */
if((u32Mask & SPI_TXRX_RESET_MASK) && (u32TmpStatus & SPI_STATUS_TXRXRST_Msk))
{
u32Flag |= SPI_TXRX_RESET_MASK;
}
/* Check SPIEN flag */
if((u32Mask & SPI_SPIEN_STS_MASK) && (u32TmpStatus & SPI_STATUS_SPIENSTS_Msk))
{
u32Flag |= SPI_SPIEN_STS_MASK;
}
/* Check SPIx_SS line status */
if((u32Mask & SPI_SSLINE_STS_MASK) && (u32TmpStatus & SPI_STATUS_SSLINE_Msk))
{
u32Flag |= SPI_SSLINE_STS_MASK;
}
return u32Flag;
}
/**
* @brief This function is used to get I2S source clock frequency.
* @param[in] i2s The pointer of the specified I2S module.
* @return I2S source clock frequency (Hz).
* @details Return the source clock frequency according to the setting of SPI0SEL (CLK_CLKSEL2[5:4]) or SPI1SEL (CLK_CLKSEL2[7:6]) or SPI2SEL (CLK_CLKSEL2[11:10]) or SPI3SEL (CLK_CLKSEL2[13:12]).
*/
static uint32_t SPII2S_GetSourceClockFreq(SPI_T *i2s)
{
uint32_t u32Freq;
if((i2s == SPI0) || (i2s == SPI0_NS))
{
if((CLK_GetModuleClockSource(SPI0_MODULE) << CLK_CLKSEL2_SPI0SEL_Pos) == CLK_CLKSEL2_SPI0SEL_HXT)
{
u32Freq = __HXT; /* Clock source is HXT */
}
else if((CLK_GetModuleClockSource(SPI0_MODULE) << CLK_CLKSEL2_SPI0SEL_Pos) == CLK_CLKSEL2_SPI0SEL_PLL)
{
u32Freq = CLK_GetPLLClockFreq(); /* Clock source is PLL */
}
else if((CLK_GetModuleClockSource(SPI0_MODULE) << CLK_CLKSEL2_SPI0SEL_Pos) == CLK_CLKSEL2_SPI0SEL_PCLK1)
{
u32Freq = CLK_GetPCLK1Freq(); /* Clock source is PCLK1 */
}
else
{
u32Freq = __HIRC; /* Clock source is HIRC */
}
}
else if((i2s == SPI1) || (i2s == SPI1_NS))
{
if((CLK_GetModuleClockSource(SPI1_MODULE) << CLK_CLKSEL2_SPI1SEL_Pos) == CLK_CLKSEL2_SPI1SEL_HXT)
{
u32Freq = __HXT; /* Clock source is HXT */
}
else if((CLK_GetModuleClockSource(SPI1_MODULE) << CLK_CLKSEL2_SPI1SEL_Pos) == CLK_CLKSEL2_SPI1SEL_PLL)
{
u32Freq = CLK_GetPLLClockFreq(); /* Clock source is PLL */
}
else if((CLK_GetModuleClockSource(SPI1_MODULE) << CLK_CLKSEL2_SPI1SEL_Pos) == CLK_CLKSEL2_SPI1SEL_PCLK0)
{
u32Freq = CLK_GetPCLK0Freq(); /* Clock source is PCLK0 */
}
else
{
u32Freq = __HIRC; /* Clock source is HIRC */
}
}
else if((i2s == SPI2) || (i2s == SPI2_NS))
{
if((CLK_GetModuleClockSource(SPI2_MODULE) << CLK_CLKSEL2_SPI2SEL_Pos) == CLK_CLKSEL2_SPI2SEL_HXT)
{
u32Freq = __HXT; /* Clock source is HXT */
}
else if((CLK_GetModuleClockSource(SPI2_MODULE) << CLK_CLKSEL2_SPI2SEL_Pos) == CLK_CLKSEL2_SPI2SEL_PLL)
{
u32Freq = CLK_GetPLLClockFreq(); /* Clock source is PLL */
}
else if((CLK_GetModuleClockSource(SPI2_MODULE) << CLK_CLKSEL2_SPI2SEL_Pos) == CLK_CLKSEL2_SPI2SEL_PCLK1)
{
u32Freq = CLK_GetPCLK1Freq(); /* Clock source is PCLK1 */
}
else
{
u32Freq = __HIRC; /* Clock source is HIRC */
}
}
else
{
if((CLK_GetModuleClockSource(SPI3_MODULE) << CLK_CLKSEL2_SPI3SEL_Pos) == CLK_CLKSEL2_SPI3SEL_HXT)
{
u32Freq = __HXT; /* Clock source is HXT */
}
else if((CLK_GetModuleClockSource(SPI3_MODULE) << CLK_CLKSEL2_SPI3SEL_Pos) == CLK_CLKSEL2_SPI3SEL_PLL)
{
u32Freq = CLK_GetPLLClockFreq(); /* Clock source is PLL */
}
else if((CLK_GetModuleClockSource(SPI3_MODULE) << CLK_CLKSEL2_SPI3SEL_Pos) == CLK_CLKSEL2_SPI3SEL_PCLK0)
{
u32Freq = CLK_GetPCLK0Freq(); /* Clock source is PCLK0 */
}
else
{
u32Freq = __HIRC; /* Clock source is HIRC */
}
}
return u32Freq;
}
/**
* @brief This function configures some parameters of I2S interface for general purpose use.
* @param[in] i2s The pointer of the specified I2S module.
* @param[in] u32MasterSlave I2S operation mode. Valid values are listed below.
* - \ref SPII2S_MODE_MASTER
* - \ref SPII2S_MODE_SLAVE
* @param[in] u32SampleRate Sample rate
* @param[in] u32WordWidth Data length. Valid values are listed below.
* - \ref SPII2S_DATABIT_8
* - \ref SPII2S_DATABIT_16
* - \ref SPII2S_DATABIT_24
* - \ref SPII2S_DATABIT_32
* @param[in] u32Channels Audio format. Valid values are listed below.
* - \ref SPII2S_MONO
* - \ref SPII2S_STEREO
* @param[in] u32DataFormat Data format. Valid values are listed below.
* - \ref SPII2S_FORMAT_I2S
* - \ref SPII2S_FORMAT_MSB
* - \ref SPII2S_FORMAT_PCMA
* - \ref SPII2S_FORMAT_PCMB
* @return Real sample rate of master mode or peripheral clock rate of slave mode.
* @details This function will reset SPI/I2S controller and configure I2S controller according to the input parameters.
* Set TX FIFO threshold to 2 and RX FIFO threshold to 1. Both the TX and RX functions will be enabled.
* The actual sample rate may be different from the target sample rate. The real sample rate will be returned for reference.
* @note In slave mode for Secure, the SPI peripheral clock rate will equal to APB clock rate.
* @note In slave mode for Non-Secure, the SPI peripheral clock rate will equal to the clock rate set in secure mode.
*/
uint32_t SPII2S_Open(SPI_T *i2s, uint32_t u32MasterSlave, uint32_t u32SampleRate, uint32_t u32WordWidth, uint32_t u32Channels, uint32_t u32DataFormat)
{
uint32_t u32Divider;
uint32_t u32BitRate, u32SrcClk, u32RetValue;
uint32_t u32PCLK0Freq, u32PCLK1Freq;
if(!(__PC() & (1UL << 28UL)))
{
/* Reset SPI/I2S */
if((i2s == SPI0) || (i2s == SPI0_NS))
{
SYS->IPRST1 |= SYS_IPRST1_SPI0RST_Msk;
SYS->IPRST1 &= ~SYS_IPRST1_SPI0RST_Msk;
}
else if((i2s == SPI1) || (i2s == SPI1_NS))
{
SYS->IPRST1 |= SYS_IPRST1_SPI1RST_Msk;
SYS->IPRST1 &= ~SYS_IPRST1_SPI1RST_Msk;
}
else if((i2s == SPI2) || (i2s == SPI2_NS))
{
SYS->IPRST1 |= SYS_IPRST1_SPI2RST_Msk;
SYS->IPRST1 &= ~SYS_IPRST1_SPI2RST_Msk;
}
else
{
SYS->IPRST2 |= SYS_IPRST2_SPI3RST_Msk;
SYS->IPRST2 &= ~SYS_IPRST2_SPI3RST_Msk;
}
}
/* Configure I2S controller */
i2s->I2SCTL = u32MasterSlave | u32WordWidth | u32Channels | u32DataFormat;
/* Set TX FIFO threshold to 2 and RX FIFO threshold to 1 */
i2s->FIFOCTL = SPII2S_FIFO_TX_LEVEL_WORD_2 | SPII2S_FIFO_RX_LEVEL_WORD_2;
if(u32MasterSlave == SPI_MASTER)
{
/* Get the source clock rate */
u32SrcClk = SPII2S_GetSourceClockFreq(i2s);
/* Calculate the bit clock rate */
u32BitRate = u32SampleRate * ((u32WordWidth >> SPI_I2SCTL_WDWIDTH_Pos) + 1UL) * 16UL;
u32Divider = (((((u32SrcClk * 10UL) / u32BitRate) >> 1UL) + 5UL) / 10UL) - 1UL; /* Round to the nearest integer */
/* Set BCLKDIV setting */
i2s->I2SCLK = (i2s->I2SCLK & ~SPI_I2SCLK_BCLKDIV_Msk) | (u32Divider << SPI_I2SCLK_BCLKDIV_Pos);
/* Calculate bit clock rate */
u32BitRate = u32SrcClk / ((u32Divider + 1UL) * 2UL);
/* Calculate real sample rate */
u32SampleRate = u32BitRate / (((u32WordWidth >> SPI_I2SCTL_WDWIDTH_Pos) + 1UL) * 16UL);
/* Enable TX function, RX function and I2S mode. */
i2s->I2SCTL |= (SPI_I2SCTL_RXEN_Msk | SPI_I2SCTL_TXEN_Msk | SPI_I2SCTL_I2SEN_Msk);
/* Return the real sample rate */
u32RetValue = u32SampleRate;
}
else
{
/* Set BCLKDIV = 0 */
i2s->I2SCLK &= ~SPI_I2SCLK_BCLKDIV_Msk;
/* Get APB0 clock frequency */
u32PCLK0Freq = CLK_GetPCLK0Freq();
/* Get APB1 clock frequency */
u32PCLK1Freq = CLK_GetPCLK1Freq();
if((i2s == SPI0) || (i2s == SPI0_NS))
{
if(!(__PC() & (1UL << 28UL)))
{
/* Set the peripheral clock rate to equal APB clock rate */
CLK->CLKSEL2 = (CLK->CLKSEL2 & (~CLK_CLKSEL2_SPI0SEL_Msk)) | CLK_CLKSEL2_SPI0SEL_PCLK1;
/* Return slave peripheral clock rate */
u32RetValue = u32PCLK1Freq;
}
else
{
/* Check clock source of I2S */
if((CLK_GetModuleClockSource(SPI0_MODULE) << CLK_CLKSEL2_SPI0SEL_Pos) == CLK_CLKSEL2_SPI0SEL_HXT)
{
u32RetValue = __HXT; /* Clock source is HXT */
}
else if((CLK_GetModuleClockSource(SPI0_MODULE) << CLK_CLKSEL2_SPI0SEL_Pos) == CLK_CLKSEL2_SPI0SEL_PLL)
{
u32RetValue = CLK_GetPLLClockFreq(); /* Clock source is PLL */
}
else if((CLK_GetModuleClockSource(SPI0_MODULE) << CLK_CLKSEL2_SPI0SEL_Pos) == CLK_CLKSEL2_SPI0SEL_PCLK1)
{
u32RetValue = CLK_GetPCLK1Freq(); /* Clock source is PCLK1 */
}
else
{
u32RetValue = __HIRC; /* Clock source is HIRC */
}
}
/* Enable TX function, RX function and I2S mode. */
i2s->I2SCTL |= (SPI_I2SCTL_RXEN_Msk | SPI_I2SCTL_TXEN_Msk | SPI_I2SCTL_I2SEN_Msk);
}
else if((i2s == SPI1) || (i2s == SPI1_NS))
{
if(!(__PC() & (1UL << 28UL)))
{
/* Set the peripheral clock rate to equal APB clock rate */
CLK->CLKSEL2 = (CLK->CLKSEL2 & (~CLK_CLKSEL2_SPI1SEL_Msk)) | CLK_CLKSEL2_SPI1SEL_PCLK0;
/* Return slave peripheral clock rate */
u32RetValue = u32PCLK0Freq;
}
else
{
/* Check clock source of I2S */
if((CLK_GetModuleClockSource(SPI1_MODULE) << CLK_CLKSEL2_SPI1SEL_Pos) == CLK_CLKSEL2_SPI1SEL_HXT)
{
u32RetValue = __HXT; /* Clock source is HXT */
}
else if((CLK_GetModuleClockSource(SPI1_MODULE) << CLK_CLKSEL2_SPI1SEL_Pos) == CLK_CLKSEL2_SPI1SEL_PLL)
{
u32RetValue = CLK_GetPLLClockFreq(); /* Clock source is PLL */
}
else if((CLK_GetModuleClockSource(SPI1_MODULE) << CLK_CLKSEL2_SPI1SEL_Pos) == CLK_CLKSEL2_SPI1SEL_PCLK0)
{
u32RetValue = CLK_GetPCLK0Freq(); /* Clock source is PCLK0 */
}
else
{
u32RetValue = __HIRC; /* Clock source is HIRC */
}
}
/* Enable TX function, RX function and I2S mode. */
i2s->I2SCTL |= (SPI_I2SCTL_RXEN_Msk | SPI_I2SCTL_TXEN_Msk | SPI_I2SCTL_I2SEN_Msk);
}
else if((i2s == SPI2) || (i2s == SPI2_NS))
{
if(!(__PC() & (1UL << 28UL)))
{
/* Set the peripheral clock rate to equal APB clock rate */
CLK->CLKSEL2 = (CLK->CLKSEL2 & (~CLK_CLKSEL2_SPI2SEL_Msk)) | CLK_CLKSEL2_SPI2SEL_PCLK1;
/* Return slave peripheral clock rate */
u32RetValue = u32PCLK1Freq;
}
else
{
/* Check clock source of I2S */
if((CLK_GetModuleClockSource(SPI2_MODULE) << CLK_CLKSEL2_SPI2SEL_Pos) == CLK_CLKSEL2_SPI2SEL_HXT)
{
u32RetValue = __HXT; /* Clock source is HXT */
}
else if((CLK_GetModuleClockSource(SPI2_MODULE) << CLK_CLKSEL2_SPI2SEL_Pos) == CLK_CLKSEL2_SPI2SEL_PLL)
{
u32RetValue = CLK_GetPLLClockFreq(); /* Clock source is PLL */
}
else if((CLK_GetModuleClockSource(SPI2_MODULE) << CLK_CLKSEL2_SPI2SEL_Pos) == CLK_CLKSEL2_SPI2SEL_PCLK1)
{
u32RetValue = CLK_GetPCLK1Freq(); /* Clock source is PCLK1 */
}
else
{
u32RetValue = __HIRC; /* Clock source is HIRC */
}
}
/* Enable TX function, RX function and I2S mode. */
i2s->I2SCTL |= (SPI_I2SCTL_RXEN_Msk | SPI_I2SCTL_TXEN_Msk | SPI_I2SCTL_I2SEN_Msk);
}
else
{
if(!(__PC() & (1UL << 28UL)))
{
/* Set the peripheral clock rate to equal APB clock rate */
CLK->CLKSEL2 = (CLK->CLKSEL2 & (~CLK_CLKSEL2_SPI3SEL_Msk)) | CLK_CLKSEL2_SPI3SEL_PCLK0;
/* Return slave peripheral clock rate */
u32RetValue = u32PCLK0Freq;
}
else
{
/* Check clock source of I2S */
if((CLK_GetModuleClockSource(SPI3_MODULE) << CLK_CLKSEL2_SPI3SEL_Pos) == CLK_CLKSEL2_SPI3SEL_HXT)
{
u32RetValue = __HXT; /* Clock source is HXT */
}
else if((CLK_GetModuleClockSource(SPI3_MODULE) << CLK_CLKSEL2_SPI3SEL_Pos) == CLK_CLKSEL2_SPI3SEL_PLL)
{
u32RetValue = CLK_GetPLLClockFreq(); /* Clock source is PLL */
}
else if((CLK_GetModuleClockSource(SPI3_MODULE) << CLK_CLKSEL2_SPI3SEL_Pos) == CLK_CLKSEL2_SPI3SEL_PCLK0)
{
u32RetValue = CLK_GetPCLK0Freq(); /* Clock source is PCLK0 */
}
else
{
u32RetValue = __HIRC; /* Clock source is HIRC */
}
}
/* Enable TX function, RX function and I2S mode. */
i2s->I2SCTL |= (SPI_I2SCTL_RXEN_Msk | SPI_I2SCTL_TXEN_Msk | SPI_I2SCTL_I2SEN_Msk);
}
}
return u32RetValue;
}
/**
* @brief Disable I2S function.
* @param[in] i2s The pointer of the specified I2S module.
* @return None
* @details Disable I2S function.
*/
void SPII2S_Close(SPI_T *i2s)
{
i2s->I2SCTL &= ~SPI_I2SCTL_I2SEN_Msk;
}
/**
* @brief Enable interrupt function.
* @param[in] i2s The pointer of the specified I2S module.
* @param[in] u32Mask The combination of all related interrupt enable bits.
* Each bit corresponds to a interrupt source. Valid values are listed below.
* - \ref SPII2S_FIFO_TXTH_INT_MASK
* - \ref SPII2S_FIFO_RXTH_INT_MASK
* - \ref SPII2S_FIFO_RXOV_INT_MASK
* - \ref SPII2S_FIFO_RXTO_INT_MASK
* - \ref SPII2S_TXUF_INT_MASK
* - \ref SPII2S_RIGHT_ZC_INT_MASK
* - \ref SPII2S_LEFT_ZC_INT_MASK
* @return None
* @details This function enables the interrupt according to the u32Mask parameter.
*/
void SPII2S_EnableInt(SPI_T *i2s, uint32_t u32Mask)
{
/* Enable TX threshold interrupt flag */
if((u32Mask & SPII2S_FIFO_TXTH_INT_MASK) == SPII2S_FIFO_TXTH_INT_MASK)
{
i2s->FIFOCTL |= SPI_FIFOCTL_TXTHIEN_Msk;
}
/* Enable RX threshold interrupt flag */
if((u32Mask & SPII2S_FIFO_RXTH_INT_MASK) == SPII2S_FIFO_RXTH_INT_MASK)
{
i2s->FIFOCTL |= SPI_FIFOCTL_RXTHIEN_Msk;
}
/* Enable RX overrun interrupt flag */
if((u32Mask & SPII2S_FIFO_RXOV_INT_MASK) == SPII2S_FIFO_RXOV_INT_MASK)
{
i2s->FIFOCTL |= SPI_FIFOCTL_RXOVIEN_Msk;
}
/* Enable RX time-out interrupt flag */
if((u32Mask & SPII2S_FIFO_RXTO_INT_MASK) == SPII2S_FIFO_RXTO_INT_MASK)
{
i2s->FIFOCTL |= SPI_FIFOCTL_RXTOIEN_Msk;
}
/* Enable TX underflow interrupt flag */
if((u32Mask & SPII2S_TXUF_INT_MASK) == SPII2S_TXUF_INT_MASK)
{
i2s->FIFOCTL |= SPI_FIFOCTL_TXUFIEN_Msk;
}
/* Enable right channel zero cross interrupt flag */
if((u32Mask & SPII2S_RIGHT_ZC_INT_MASK) == SPII2S_RIGHT_ZC_INT_MASK)
{
i2s->I2SCTL |= SPI_I2SCTL_RZCIEN_Msk;
}
/* Enable left channel zero cross interrupt flag */
if((u32Mask & SPII2S_LEFT_ZC_INT_MASK) == SPII2S_LEFT_ZC_INT_MASK)
{
i2s->I2SCTL |= SPI_I2SCTL_LZCIEN_Msk;
}
}
/**
* @brief Disable interrupt function.
* @param[in] i2s The pointer of the specified I2S module.
* @param[in] u32Mask The combination of all related interrupt enable bits.
* Each bit corresponds to a interrupt source. Valid values are listed below.
* - \ref SPII2S_FIFO_TXTH_INT_MASK
* - \ref SPII2S_FIFO_RXTH_INT_MASK
* - \ref SPII2S_FIFO_RXOV_INT_MASK
* - \ref SPII2S_FIFO_RXTO_INT_MASK
* - \ref SPII2S_TXUF_INT_MASK
* - \ref SPII2S_RIGHT_ZC_INT_MASK
* - \ref SPII2S_LEFT_ZC_INT_MASK
* @return None
* @details This function disables the interrupt according to the u32Mask parameter.
*/
void SPII2S_DisableInt(SPI_T *i2s, uint32_t u32Mask)
{
/* Disable TX threshold interrupt flag */
if((u32Mask & SPII2S_FIFO_TXTH_INT_MASK) == SPII2S_FIFO_TXTH_INT_MASK)
{
i2s->FIFOCTL &= ~SPI_FIFOCTL_TXTHIEN_Msk;
}
/* Disable RX threshold interrupt flag */
if((u32Mask & SPII2S_FIFO_RXTH_INT_MASK) == SPII2S_FIFO_RXTH_INT_MASK)
{
i2s->FIFOCTL &= ~SPI_FIFOCTL_RXTHIEN_Msk;
}
/* Disable RX overrun interrupt flag */
if((u32Mask & SPII2S_FIFO_RXOV_INT_MASK) == SPII2S_FIFO_RXOV_INT_MASK)
{
i2s->FIFOCTL &= ~SPI_FIFOCTL_RXOVIEN_Msk;
}
/* Disable RX time-out interrupt flag */
if((u32Mask & SPII2S_FIFO_RXTO_INT_MASK) == SPII2S_FIFO_RXTO_INT_MASK)
{
i2s->FIFOCTL &= ~SPI_FIFOCTL_RXTOIEN_Msk;
}
/* Disable TX underflow interrupt flag */
if((u32Mask & SPII2S_TXUF_INT_MASK) == SPII2S_TXUF_INT_MASK)
{
i2s->FIFOCTL &= ~SPI_FIFOCTL_TXUFIEN_Msk;
}
/* Disable right channel zero cross interrupt flag */
if((u32Mask & SPII2S_RIGHT_ZC_INT_MASK) == SPII2S_RIGHT_ZC_INT_MASK)
{
i2s->I2SCTL &= ~SPI_I2SCTL_RZCIEN_Msk;
}
/* Disable left channel zero cross interrupt flag */
if((u32Mask & SPII2S_LEFT_ZC_INT_MASK) == SPII2S_LEFT_ZC_INT_MASK)
{
i2s->I2SCTL &= ~SPI_I2SCTL_LZCIEN_Msk;
}
}
/**
* @brief Enable master clock (MCLK).
* @param[in] i2s The pointer of the specified I2S module.
* @param[in] u32BusClock The target MCLK clock rate.
* @return Actual MCLK clock rate
* @details Set the master clock rate according to u32BusClock parameter and enable master clock output.
* The actual master clock rate may be different from the target master clock rate. The real master clock rate will be returned for reference.
*/
uint32_t SPII2S_EnableMCLK(SPI_T *i2s, uint32_t u32BusClock)
{
uint32_t u32Divider;
uint32_t u32SrcClk, u32RetValue;
u32SrcClk = SPII2S_GetSourceClockFreq(i2s);
if(u32BusClock == u32SrcClk)
{
u32Divider = 0UL;
}
else
{
u32Divider = (u32SrcClk / u32BusClock) >> 1UL;
/* MCLKDIV is a 7-bit width configuration. The maximum value is 0x7F. */
if(u32Divider > 0x7FUL)
{
u32Divider = 0x7FUL;
}
}
/* Write u32Divider to MCLKDIV (SPI_I2SCLK[6:0]) */
i2s->I2SCLK = (i2s->I2SCLK & ~SPI_I2SCLK_MCLKDIV_Msk) | (u32Divider << SPI_I2SCLK_MCLKDIV_Pos);
/* Enable MCLK output */
i2s->I2SCTL |= SPI_I2SCTL_MCLKEN_Msk;
if(u32Divider == 0UL)
{
u32RetValue = u32SrcClk; /* If MCLKDIV=0, master clock rate is equal to the source clock rate. */
}
else
{
u32RetValue = ((u32SrcClk >> 1UL) / u32Divider); /* If MCLKDIV>0, master clock rate = source clock rate / (MCLKDIV * 2) */
}
return u32RetValue;
}
/**
* @brief Disable master clock (MCLK).
* @param[in] i2s The pointer of the specified I2S module.
* @return None
* @details Clear MCLKEN bit of SPI_I2SCTL register to disable master clock output.
*/
void SPII2S_DisableMCLK(SPI_T *i2s)
{
i2s->I2SCTL &= ~SPI_I2SCTL_MCLKEN_Msk;
}
/**
* @brief Configure FIFO threshold setting.
* @param[in] i2s The pointer of the specified I2S module.
* @param[in] u32TxThreshold Decides the TX FIFO threshold. It could be 0 ~ 7.
* @param[in] u32RxThreshold Decides the RX FIFO threshold. It could be 0 ~ 7.
* @return None
* @details Set TX FIFO threshold and RX FIFO threshold configurations.
*/
void SPII2S_SetFIFO(SPI_T *i2s, uint32_t u32TxThreshold, uint32_t u32RxThreshold)
{
i2s->FIFOCTL = (i2s->FIFOCTL & ~(SPI_FIFOCTL_TXTH_Msk | SPI_FIFOCTL_RXTH_Msk)) |
(u32TxThreshold << SPI_FIFOCTL_TXTH_Pos) |
(u32RxThreshold << SPI_FIFOCTL_RXTH_Pos);
}
/*@}*/ /* end of group SPI_EXPORTED_FUNCTIONS */
/*@}*/ /* end of group SPI_Driver */
/*@}*/ /* end of group Standard_Driver */
/*** (C) COPYRIGHT 2016 Nuvoton Technology Corp. ***/