blob: 67e4b386e7dac2af573ea840bfae007bb84abec9 [file] [log] [blame]
/**
******************************************************************************
* @file stm32l1xx_spi.c
* @author MCD Application Team
* @version V1.0.0RC1
* @date 07/02/2010
* @brief This file provides all the SPI firmware functions.
******************************************************************************
* @copy
*
* THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
* WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
* TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
* DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
* FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
* CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
*
* <h2><center>&copy; COPYRIGHT 2010 STMicroelectronics</center></h2>
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32l1xx_spi.h"
#include "stm32l1xx_rcc.h"
/** @addtogroup STM32L1xx_StdPeriph_Driver
* @{
*/
/** @defgroup SPI
* @brief SPI driver modules
* @{
*/
/** @defgroup SPI_Private_TypesDefinitions
* @{
*/
/**
* @}
*/
/** @defgroup SPI_Private_Defines
* @{
*/
/* SPI registers Masks */
#define CR1_CLEAR_MASK ((uint16_t)0x3040)
/**
* @}
*/
/** @defgroup SPI_Private_Macros
* @{
*/
/**
* @}
*/
/** @defgroup SPI_Private_Variables
* @{
*/
/**
* @}
*/
/** @defgroup SPI_Private_FunctionPrototypes
* @{
*/
/**
* @}
*/
/** @defgroup SPI_Private_Functions
* @{
*/
/**
* @brief Deinitializes the SPIx peripheral registers to their default
* reset values.
* @param SPIx: where x can be 1 or 2 to select the SPI peripheral.
* @retval None
*/
void SPI_DeInit(SPI_TypeDef* SPIx)
{
/* Check the parameters */
assert_param(IS_SPI_ALL_PERIPH(SPIx));
if (SPIx == SPI1)
{
/* Enable SPI1 reset state */
RCC_APB2PeriphResetCmd(RCC_APB2Periph_SPI1, ENABLE);
/* Release SPI1 from reset state */
RCC_APB2PeriphResetCmd(RCC_APB2Periph_SPI1, DISABLE);
}
else
{
if (SPIx == SPI2)
{
/* Enable SPI2 reset state */
RCC_APB1PeriphResetCmd(RCC_APB1Periph_SPI2, ENABLE);
/* Release SPI2 from reset state */
RCC_APB1PeriphResetCmd(RCC_APB1Periph_SPI2, DISABLE);
}
}
}
/**
* @brief Initializes the SPIx peripheral according to the specified
* parameters in the SPI_InitStruct.
* @param SPIx: where x can be 1 or 2 to select the SPI peripheral.
* @param SPI_InitStruct: pointer to a SPI_InitTypeDef structure that
* contains the configuration information for the specified SPI peripheral.
* @retval None
*/
void SPI_Init(SPI_TypeDef* SPIx, SPI_InitTypeDef* SPI_InitStruct)
{
uint16_t tmpreg = 0;
/* check the parameters */
assert_param(IS_SPI_ALL_PERIPH(SPIx));
/* Check the SPI parameters */
assert_param(IS_SPI_DIRECTION_MODE(SPI_InitStruct->SPI_Direction));
assert_param(IS_SPI_MODE(SPI_InitStruct->SPI_Mode));
assert_param(IS_SPI_DATASIZE(SPI_InitStruct->SPI_DataSize));
assert_param(IS_SPI_CPOL(SPI_InitStruct->SPI_CPOL));
assert_param(IS_SPI_CPHA(SPI_InitStruct->SPI_CPHA));
assert_param(IS_SPI_NSS(SPI_InitStruct->SPI_NSS));
assert_param(IS_SPI_BAUDRATE_PRESCALER(SPI_InitStruct->SPI_BaudRatePrescaler));
assert_param(IS_SPI_FIRST_BIT(SPI_InitStruct->SPI_FirstBit));
assert_param(IS_SPI_CRC_POLYNOMIAL(SPI_InitStruct->SPI_CRCPolynomial));
/*---------------------------- SPIx CR1 Configuration ------------------------*/
/* Get the SPIx CR1 value */
tmpreg = SPIx->CR1;
/* Clear BIDIMode, BIDIOE, RxONLY, SSM, SSI, LSBFirst, BR, MSTR, CPOL and CPHA bits */
tmpreg &= CR1_CLEAR_MASK;
/* Configure SPIx: direction, NSS management, first transmitted bit, BaudRate prescaler
master/salve mode, CPOL and CPHA */
/* Set BIDImode, BIDIOE and RxONLY bits according to SPI_Direction value */
/* Set SSM, SSI and MSTR bits according to SPI_Mode and SPI_NSS values */
/* Set LSBFirst bit according to SPI_FirstBit value */
/* Set BR bits according to SPI_BaudRatePrescaler value */
/* Set CPOL bit according to SPI_CPOL value */
/* Set CPHA bit according to SPI_CPHA value */
tmpreg |= (uint16_t)((uint32_t)SPI_InitStruct->SPI_Direction | SPI_InitStruct->SPI_Mode |
SPI_InitStruct->SPI_DataSize | SPI_InitStruct->SPI_CPOL |
SPI_InitStruct->SPI_CPHA | SPI_InitStruct->SPI_NSS |
SPI_InitStruct->SPI_BaudRatePrescaler | SPI_InitStruct->SPI_FirstBit);
/* Write to SPIx CR1 */
SPIx->CR1 = tmpreg;
/*---------------------------- SPIx CRCPOLY Configuration --------------------*/
/* Write to SPIx CRCPOLY */
SPIx->CRCPR = SPI_InitStruct->SPI_CRCPolynomial;
}
/**
* @brief Fills each SPI_InitStruct member with its default value.
* @param SPI_InitStruct : pointer to a SPI_InitTypeDef structure which will be initialized.
* @retval None
*/
void SPI_StructInit(SPI_InitTypeDef* SPI_InitStruct)
{
/*--------------- Reset SPI init structure parameters values -----------------*/
/* Initialize the SPI_Direction member */
SPI_InitStruct->SPI_Direction = SPI_Direction_2Lines_FullDuplex;
/* initialize the SPI_Mode member */
SPI_InitStruct->SPI_Mode = SPI_Mode_Slave;
/* initialize the SPI_DataSize member */
SPI_InitStruct->SPI_DataSize = SPI_DataSize_8b;
/* Initialize the SPI_CPOL member */
SPI_InitStruct->SPI_CPOL = SPI_CPOL_Low;
/* Initialize the SPI_CPHA member */
SPI_InitStruct->SPI_CPHA = SPI_CPHA_1Edge;
/* Initialize the SPI_NSS member */
SPI_InitStruct->SPI_NSS = SPI_NSS_Hard;
/* Initialize the SPI_BaudRatePrescaler member */
SPI_InitStruct->SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_2;
/* Initialize the SPI_FirstBit member */
SPI_InitStruct->SPI_FirstBit = SPI_FirstBit_MSB;
/* Initialize the SPI_CRCPolynomial member */
SPI_InitStruct->SPI_CRCPolynomial = 7;
}
/**
* @brief Enables or disables the specified SPI peripheral.
* @param SPIx: where x can be 1 or 2 to select the SPI peripheral.
* @param NewState: new state of the SPIx peripheral.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void SPI_Cmd(SPI_TypeDef* SPIx, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_SPI_ALL_PERIPH(SPIx));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the selected SPI peripheral */
SPIx->CR1 |= SPI_CR1_SPE;
}
else
{
/* Disable the selected SPI peripheral */
SPIx->CR1 &= (uint16_t)~((uint16_t)SPI_CR1_SPE);
}
}
/**
* @brief Enables or disables the specified SPI interrupts.
* @param SPIx: where x can be 1 or 2 in SPI mode
* @param SPI_IT: specifies the SPI interrupt source to be enabled or disabled.
* This parameter can be one of the following values:
* @arg SPI_IT_TXE: Tx buffer empty interrupt mask
* @arg SPI_IT_RXNE: Rx buffer not empty interrupt mask
* @arg SPI_IT_ERR: Error interrupt mask
* @param NewState: new state of the specified SPI interrupt.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void SPI_ITConfig(SPI_TypeDef* SPIx, uint8_t SPI_IT, FunctionalState NewState)
{
uint16_t itpos = 0, itmask = 0 ;
/* Check the parameters */
assert_param(IS_SPI_ALL_PERIPH(SPIx));
assert_param(IS_FUNCTIONAL_STATE(NewState));
assert_param(IS_SPI_CONFIG_IT(SPI_IT));
/* Get the SPI IT index */
itpos = SPI_IT >> 4;
/* Set the IT mask */
itmask = (uint16_t)1 << (uint16_t)itpos;
if (NewState != DISABLE)
{
/* Enable the selected SPI interrupt */
SPIx->CR2 |= itmask;
}
else
{
/* Disable the selected SPI interrupt */
SPIx->CR2 &= (uint16_t)~itmask;
}
}
/**
* @brief Enables or disables the SPIx DMA interface.
* @param SPIx: where x can be 1 or 2 in SPI mode
* @param SPI_DMAReq: specifies the SPI DMA transfer request to be enabled or disabled.
* This parameter can be any combination of the following values:
* @arg SPI_DMAReq_Tx: Tx buffer DMA transfer request
* @arg SPI_DMAReq_Rx: Rx buffer DMA transfer request
* @param NewState: new state of the selected SPI DMA transfer request.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void SPI_DMACmd(SPI_TypeDef* SPIx, uint16_t SPI_DMAReq, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_SPI_ALL_PERIPH(SPIx));
assert_param(IS_FUNCTIONAL_STATE(NewState));
assert_param(IS_SPI_DMAREQ(SPI_DMAReq));
if (NewState != DISABLE)
{
/* Enable the selected SPI DMA requests */
SPIx->CR2 |= SPI_DMAReq;
}
else
{
/* Disable the selected SPI DMA requests */
SPIx->CR2 &= (uint16_t)~SPI_DMAReq;
}
}
/**
* @brief Transmits a Data through the SPIx peripheral.
* @param SPIx: where x can be 1 or 2 in SPI mode
* @param Data : Data to be transmitted.
* @retval None
*/
void SPI_SendData(SPI_TypeDef* SPIx, uint16_t Data)
{
/* Check the parameters */
assert_param(IS_SPI_ALL_PERIPH(SPIx));
/* Write in the DR register the data to be sent */
SPIx->DR = Data;
}
/**
* @brief Returns the most recent received data by the SPIx peripheral.
* @param SPIx: where x can be 1 or 2 in SPI mode
* @retval The value of the received data.
*/
uint16_t SPI_ReceiveData(SPI_TypeDef* SPIx)
{
/* Check the parameters */
assert_param(IS_SPI_ALL_PERIPH(SPIx));
/* Return the data in the DR register */
return SPIx->DR;
}
/**
* @brief Configures internally by software the NSS pin for the selected SPI.
* @param SPIx: where x can be 1 or 2 to select the SPI peripheral.
* @param SPI_NSSInternalSoft: specifies the SPI NSS internal state.
* This parameter can be one of the following values:
* @arg SPI_NSSInternalSoft_Set: Set NSS pin internally
* @arg SPI_NSSInternalSoft_Reset: Reset NSS pin internally
* @retval None
*/
void SPI_NSSInternalSoftwareConfig(SPI_TypeDef* SPIx, uint16_t SPI_NSSInternalSoft)
{
/* Check the parameters */
assert_param(IS_SPI_ALL_PERIPH(SPIx));
assert_param(IS_SPI_NSS_INTERNAL(SPI_NSSInternalSoft));
if (SPI_NSSInternalSoft != SPI_NSSInternalSoft_Reset)
{
/* Set NSS pin internally by software */
SPIx->CR1 |= SPI_NSSInternalSoft_Set;
}
else
{
/* Reset NSS pin internally by software */
SPIx->CR1 &= SPI_NSSInternalSoft_Reset;
}
}
/**
* @brief Enables or disables the SS output for the selected SPI.
* @param SPIx: where x can be 1 or 2 to select the SPI peripheral.
* @param NewState: new state of the SPIx SS output.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void SPI_SSOutputCmd(SPI_TypeDef* SPIx, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_SPI_ALL_PERIPH(SPIx));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the selected SPI SS output */
SPIx->CR2 |= (uint16_t)SPI_CR2_SSOE;
}
else
{
/* Disable the selected SPI SS output */
SPIx->CR2 &= (uint16_t)~((uint16_t)SPI_CR2_SSOE);
}
}
/**
* @brief Configures the data size for the selected SPI.
* @param SPIx: where x can be 1 or 2 to select the SPI peripheral.
* @param SPI_DataSize: specifies the SPI data size.
* This parameter can be one of the following values:
* @arg SPI_DataSize_16b: Set data frame format to 16bit
* @arg SPI_DataSize_8b: Set data frame format to 8bit
* @retval None
*/
void SPI_DataSizeConfig(SPI_TypeDef* SPIx, uint16_t SPI_DataSize)
{
/* Check the parameters */
assert_param(IS_SPI_ALL_PERIPH(SPIx));
assert_param(IS_SPI_DATASIZE(SPI_DataSize));
/* Clear DFF bit */
SPIx->CR1 &= (uint16_t)~SPI_DataSize_16b;
/* Set new DFF bit value */
SPIx->CR1 |= SPI_DataSize;
}
/**
* @brief Transmit the SPIx CRC value.
* @param SPIx: where x can be 1 or 2 to select the SPI peripheral.
* @retval None
*/
void SPI_TransmitCRC(SPI_TypeDef* SPIx)
{
/* Check the parameters */
assert_param(IS_SPI_ALL_PERIPH(SPIx));
/* Enable the selected SPI CRC transmission */
SPIx->CR1 |= SPI_CR1_CRCNEXT;
}
/**
* @brief Enables or disables the CRC value calculation of the transfered bytes.
* @param SPIx: where x can be 1 or 2 to select the SPI peripheral.
* @param NewState: new state of the SPIx CRC value calculation.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void SPI_CalculateCRC(SPI_TypeDef* SPIx, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_SPI_ALL_PERIPH(SPIx));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the selected SPI CRC calculation */
SPIx->CR1 |= SPI_CR1_CRCEN;
}
else
{
/* Disable the selected SPI CRC calculation */
SPIx->CR1 &= (uint16_t)~((uint16_t)SPI_CR1_CRCEN);
}
}
/**
* @brief Returns the transmit or the receive CRC register value for the specified SPI.
* @param SPIx: where x can be 1 or 2 to select the SPI peripheral.
* @param SPI_CRC: specifies the CRC register to be read.
* This parameter can be one of the following values:
* @arg SPI_CRC_Tx: Selects Tx CRC register
* @arg SPI_CRC_Rx: Selects Rx CRC register
* @retval The selected CRC register value..
*/
uint16_t SPI_GetCRC(SPI_TypeDef* SPIx, uint8_t SPI_CRC)
{
uint16_t crcreg = 0;
/* Check the parameters */
assert_param(IS_SPI_ALL_PERIPH(SPIx));
assert_param(IS_SPI_CRC(SPI_CRC));
if (SPI_CRC != SPI_CRC_Rx)
{
/* Get the Tx CRC register */
crcreg = SPIx->TXCRCR;
}
else
{
/* Get the Rx CRC register */
crcreg = SPIx->RXCRCR;
}
/* Return the selected CRC register */
return crcreg;
}
/**
* @brief Returns the CRC Polynomial register value for the specified SPI.
* @param SPIx: where x can be 1 or 2 to select the SPI peripheral.
* @retval The CRC Polynomial register value.
*/
uint16_t SPI_GetCRCPolynomial(SPI_TypeDef* SPIx)
{
/* Check the parameters */
assert_param(IS_SPI_ALL_PERIPH(SPIx));
/* Return the CRC polynomial register */
return SPIx->CRCPR;
}
/**
* @brief Selects the data transfer direction in bi-directional mode for the specified SPI.
* @param SPIx: where x can be 1 or 2 to select the SPI peripheral.
* @param SPI_Direction: specifies the data transfer direction in bi-directional mode.
* This parameter can be one of the following values:
* @arg SPI_Direction_Tx: Selects Tx transmission direction
* @arg SPI_Direction_Rx: Selects Rx receive direction
* @retval None
*/
void SPI_BiDirectionalLineConfig(SPI_TypeDef* SPIx, uint16_t SPI_Direction)
{
/* Check the parameters */
assert_param(IS_SPI_ALL_PERIPH(SPIx));
assert_param(IS_SPI_DIRECTION(SPI_Direction));
if (SPI_Direction == SPI_Direction_Tx)
{
/* Set the Tx only mode */
SPIx->CR1 |= SPI_Direction_Tx;
}
else
{
/* Set the Rx only mode */
SPIx->CR1 &= SPI_Direction_Rx;
}
}
/**
* @brief Checks whether the specified SPI flag is set or not.
* @param SPIx: where x can be 1 or 2 in SPI mode
* @param SPI_FLAG: specifies the SPI flag to check.
* This parameter can be one of the following values:
* @arg SPI_FLAG_TXE: Transmit buffer empty flag.
* @arg SPI_FLAG_RXNE: Receive buffer not empty flag.
* @arg SPI_FLAG_BSY: Busy flag.
* @arg SPI_FLAG_OVR: Overrun flag.
* @arg SPI_FLAG_MODF: Mode Fault flag.
* @arg SPI_FLAG_CRCERR: CRC Error flag.
* @retval The new state of SPI_FLAG (SET or RESET).
*/
FlagStatus SPI_GetFlagStatus(SPI_TypeDef* SPIx, uint16_t SPI_FLAG)
{
FlagStatus bitstatus = RESET;
/* Check the parameters */
assert_param(IS_SPI_ALL_PERIPH(SPIx));
assert_param(IS_SPI_GET_FLAG(SPI_FLAG));
/* Check the status of the specified SPI flag */
if ((SPIx->SR & SPI_FLAG) != (uint16_t)RESET)
{
/* SPI_FLAG is set */
bitstatus = SET;
}
else
{
/* SPI_FLAG is reset */
bitstatus = RESET;
}
/* Return the SPI_FLAG status */
return bitstatus;
}
/**
* @brief Clears the SPIx CRC Error (CRCERR) flag.
* @param SPIx: where x can be 1 or 2 in SPI mode
* @param SPI_FLAG: specifies the SPI flag to clear.
* This function clears only CRCERR flag.
* @note
* - OVR (OverRun error) flag is cleared by software sequence: a read
* operation to SPI_DR register (SPI_ReceiveData()) followed by a read
* operation to SPI_SR register (SPI_GetFlagStatus()).
* - UDR (UnderRun error) flag is cleared by a read operation to
* SPI_SR register (SPI_GetFlagStatus()).
* - MODF (Mode Fault) flag is cleared by software sequence: a read/write
* operation to SPI_SR register (SPI_GetFlagStatus()) followed by a
* write operation to SPI_CR1 register (SPI_Cmd() to enable the SPI).
* @retval None
*/
void SPI_ClearFlag(SPI_TypeDef* SPIx, uint16_t SPI_FLAG)
{
/* Check the parameters */
assert_param(IS_SPI_ALL_PERIPH(SPIx));
assert_param(IS_SPI_CLEAR_FLAG(SPI_FLAG));
/* Clear the selected SPI CRC Error (CRCERR) flag */
SPIx->SR = (uint16_t)~SPI_FLAG;
}
/**
* @brief Checks whether the specified SPI interrupt has occurred or not.
* @param SPIx: where x can be
* - 1 or 2 in SPI mode
* @param SPI_IT: specifies the SPI interrupt source to check.
* This parameter can be one of the following values:
* @arg SPI_IT_TXE: Transmit buffer empty interrupt.
* @arg SPI_IT_RXNE: Receive buffer not empty interrupt.
* @arg SPI_IT_OVR: Overrun interrupt.
* @arg SPI_IT_MODF: Mode Fault interrupt.
* @arg SPI_IT_CRCERR: CRC Error interrupt.
* @retval The new state of SPI_IT (SET or RESET).
*/
ITStatus SPI_GetITStatus(SPI_TypeDef* SPIx, uint8_t SPI_IT)
{
ITStatus bitstatus = RESET;
uint16_t itpos = 0, itmask = 0, enablestatus = 0;
/* Check the parameters */
assert_param(IS_SPI_ALL_PERIPH(SPIx));
assert_param(IS_SPI_GET_IT(SPI_IT));
/* Get the SPI IT index */
itpos = 0x01 << (SPI_IT & 0x0F);
/* Get the SPI IT mask */
itmask = SPI_IT >> 4;
/* Set the IT mask */
itmask = 0x01 << itmask;
/* Get the SPI_IT enable bit status */
enablestatus = (SPIx->CR2 & itmask) ;
/* Check the status of the specified SPI interrupt */
if (((SPIx->SR & itpos) != (uint16_t)RESET) && enablestatus)
{
/* SPI_IT is set */
bitstatus = SET;
}
else
{
/* SPI_IT is reset */
bitstatus = RESET;
}
/* Return the SPI_IT status */
return bitstatus;
}
/**
* @brief Clears the SPIx CRC Error (CRCERR) interrupt pending bit.
* @param SPIx: where x can be
* - 1 or 2 in SPI mode
* @param SPI_IT: specifies the SPI interrupt pending bit to clear.
* This function clears only CRCERR intetrrupt pending bit.
* @note
* - OVR (OverRun Error) interrupt pending bit is cleared by software
* sequence: a read operation to SPI_DR register (SPI_ReceiveData())
* followed by a read operation to SPI_SR register (SPI_GetITStatus()).
* - UDR (UnderRun Error) interrupt pending bit is cleared by a read
* operation to SPI_SR register (SPI_GetITStatus()).
* - MODF (Mode Fault) interrupt pending bit is cleared by software sequence:
* a read/write operation to SPI_SR register (SPI_GetITStatus())
* followed by a write operation to SPI_CR1 register (SPI_Cmd() to enable
* the SPI).
* @retval None
*/
void SPI_ClearITPendingBit(SPI_TypeDef* SPIx, uint8_t SPI_IT)
{
uint16_t itpos = 0;
/* Check the parameters */
assert_param(IS_SPI_ALL_PERIPH(SPIx));
assert_param(IS_SPI_CLEAR_IT(SPI_IT));
/* Get the SPI IT index */
itpos = 0x01 << (SPI_IT & 0x0F);
/* Clear the selected SPI CRC Error (CRCERR) interrupt pending bit */
SPIx->SR = (uint16_t)~itpos;
}
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/******************* (C) COPYRIGHT 2010 STMicroelectronics *****END OF FILE****/