blob: 3e885f3dd23b97bc787e59a3d7fc7b53ed643961 [file] [log] [blame]
/*
* Copyright (c) 2001-2004 Swedish Institute of Computer Science.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
* SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
* OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
* OF SUCH DAMAGE.
*
* This file is part of the lwIP TCP/IP stack.
*
* Author: Adam Dunkels <adam@sics.se>
*
*/
/* Standard library includes. */
#include <stdio.h>
#include <string.h>
/* FreeRTOS includes. */
#include "FreeRTOS.h"
#include "task.h"
TaskHandle_t xEthIntTask;
/* lwIP includes. */
#include "lwip/def.h"
#include "lwip/mem.h"
#include "lwip/pbuf.h"
#include "lwip/sys.h"
#include "lwip/stats.h"
#include "lwip/snmp.h"
#include "netif/etharp.h"
/* Hardware includes. */
#include "fec.h"
/* Delay to wait for a DMA buffer to become available if one is not already
available. */
#define netifBUFFER_WAIT_ATTEMPTS 10
#define netifBUFFER_WAIT_DELAY (10 / portTICK_PERIOD_MS)
/* Delay between polling the PHY to see if a link has been established. */
#define netifLINK_DELAY ( 500 / portTICK_PERIOD_MS )
/* Delay between looking for incoming packets. In ideal world this would be
infinite. */
#define netifBLOCK_TIME_WAITING_FOR_INPUT netifLINK_DELAY
/* Name for the netif. */
#define IFNAME0 'e'
#define IFNAME1 'n'
/* Hardware specific. */
#define netifFIRST_FEC_VECTOR 23
/*-----------------------------------------------------------*/
/* The DMA descriptors. This is a char array to allow us to align it correctly. */
static unsigned char xFECTxDescriptors_unaligned[ ( configNUM_FEC_TX_BUFFERS * sizeof( FECBD ) ) + 16 ];
static unsigned char xFECRxDescriptors_unaligned[ ( configNUM_FEC_RX_BUFFERS * sizeof( FECBD ) ) + 16 ];
static FECBD *xFECTxDescriptors;
static FECBD *xFECRxDescriptors;
/* The DMA buffers. These are char arrays to allow them to be alligned correctly. */
static unsigned char ucFECTxBuffers[ ( configNUM_FEC_TX_BUFFERS * configFEC_BUFFER_SIZE ) + 16 ];
static unsigned char ucFECRxBuffers[ ( configNUM_FEC_RX_BUFFERS * configFEC_BUFFER_SIZE ) + 16 ];
static unsigned portBASE_TYPE uxNextRxBuffer = 0, uxNextTxBuffer = 0;
/* Semaphore used by the FEC interrupt handler to wake the handler task. */
static SemaphoreHandle_t xFecSemaphore;
#pragma options align= packed
struct ethernetif
{
struct eth_addr *ethaddr;
/* Add whatever per-interface state that is needed here. */
};
/*-----------------------------------------------------------*/
/* Standard lwIP netif handlers. */
static void prvInitialiseFECBuffers( void );
static void low_level_init( struct netif *netif );
static err_t low_level_output(struct netif *netif, struct pbuf *p);
static struct pbuf *low_level_input(struct netif *netif);
static void ethernetif_input( void *pParams );
/* Functions adapted from Freescale provided code. */
static int fec_mii_write( int phy_addr, int reg_addr, int data );
static int fec_mii_read( int phy_addr, int reg_addr, uint16* data );
static uint8 fec_hash_address( const uint8* addr );
static void fec_set_address( const uint8 *pa );
static void fec_irq_enable( void );
/*-----------------------------------------------------------*/
/********************************************************************/
/*
* Write a value to a PHY's MII register.
*
* Parameters:
* ch FEC channel
* phy_addr Address of the PHY.
* reg_addr Address of the register in the PHY.
* data Data to be written to the PHY register.
*
* Return Values:
* 0 on failure
* 1 on success.
*
* Please refer to your PHY manual for registers and their meanings.
* mii_write() polls for the FEC's MII interrupt event and clears it.
* If after a suitable amount of time the event isn't triggered, a
* value of 0 is returned.
*/
static int fec_mii_write( int phy_addr, int reg_addr, int data )
{
int timeout;
uint32 eimr;
/* Clear the MII interrupt bit */
MCF_FEC_EIR = MCF_FEC_EIR_MII;
/* Mask the MII interrupt */
eimr = MCF_FEC_EIMR;
MCF_FEC_EIMR &= ~MCF_FEC_EIMR_MII;
/* Write to the MII Management Frame Register to kick-off the MII write */
MCF_FEC_MMFR = MCF_FEC_MMFR_ST_01 | MCF_FEC_MMFR_OP_WRITE | MCF_FEC_MMFR_PA(phy_addr) | MCF_FEC_MMFR_RA(reg_addr) | MCF_FEC_MMFR_TA_10 | MCF_FEC_MMFR_DATA( data );
/* Poll for the MII interrupt (interrupt should be masked) */
for (timeout = 0; timeout < MII_TIMEOUT; timeout++)
{
if (MCF_FEC_EIR & MCF_FEC_EIR_MII)
{
break;
}
}
if( timeout == MII_TIMEOUT )
{
return 0;
}
/* Clear the MII interrupt bit */
MCF_FEC_EIR = MCF_FEC_EIR_MII;
/* Restore the EIMR */
MCF_FEC_EIMR = eimr;
return 1;
}
/********************************************************************/
/*
* Read a value from a PHY's MII register.
*
* Parameters:
* ch FEC channel
* phy_addr Address of the PHY.
* reg_addr Address of the register in the PHY.
* data Pointer to storage for the Data to be read
* from the PHY register (passed by reference)
*
* Return Values:
* 0 on failure
* 1 on success.
*
* Please refer to your PHY manual for registers and their meanings.
* mii_read() polls for the FEC's MII interrupt event and clears it.
* If after a suitable amount of time the event isn't triggered, a
* value of 0 is returned.
*/
static int fec_mii_read( int phy_addr, int reg_addr, uint16* data )
{
int timeout;
uint32 eimr;
/* Clear the MII interrupt bit */
MCF_FEC_EIR = MCF_FEC_EIR_MII;
/* Mask the MII interrupt */
eimr = MCF_FEC_EIMR;
MCF_FEC_EIMR &= ~MCF_FEC_EIMR_MII;
/* Write to the MII Management Frame Register to kick-off the MII read */
MCF_FEC_MMFR = MCF_FEC_MMFR_ST_01 | MCF_FEC_MMFR_OP_READ | MCF_FEC_MMFR_PA(phy_addr) | MCF_FEC_MMFR_RA(reg_addr) | MCF_FEC_MMFR_TA_10;
/* Poll for the MII interrupt (interrupt should be masked) */
for (timeout = 0; timeout < MII_TIMEOUT; timeout++)
{
if (MCF_FEC_EIR & MCF_FEC_EIR_MII)
{
break;
}
}
if(timeout == MII_TIMEOUT)
{
return 0;
}
/* Clear the MII interrupt bit */
MCF_FEC_EIR = MCF_FEC_EIR_MII;
/* Restore the EIMR */
MCF_FEC_EIMR = eimr;
*data = (uint16)(MCF_FEC_MMFR & 0x0000FFFF);
return 1;
}
/********************************************************************/
/*
* Generate the hash table settings for the given address
*
* Parameters:
* addr 48-bit (6 byte) Address to generate the hash for
*
* Return Value:
* The 6 most significant bits of the 32-bit CRC result
*/
static uint8 fec_hash_address( const uint8* addr )
{
uint32 crc;
uint8 byte;
int i, j;
crc = 0xFFFFFFFF;
for(i=0; i<6; ++i)
{
byte = addr[i];
for(j=0; j<8; ++j)
{
if((byte & 0x01)^(crc & 0x01))
{
crc >>= 1;
crc = crc ^ 0xEDB88320;
}
else
{
crc >>= 1;
}
byte >>= 1;
}
}
return (uint8)(crc >> 26);
}
/********************************************************************/
/*
* Set the Physical (Hardware) Address and the Individual Address
* Hash in the selected FEC
*
* Parameters:
* ch FEC channel
* pa Physical (Hardware) Address for the selected FEC
*/
static void fec_set_address( const uint8 *pa )
{
uint8 crc;
/*
* Set the Physical Address
*/
MCF_FEC_PALR = (uint32)((pa[0]<<24) | (pa[1]<<16) | (pa[2]<<8) | pa[3]);
MCF_FEC_PAUR = (uint32)((pa[4]<<24) | (pa[5]<<16));
/*
* Calculate and set the hash for given Physical Address
* in the Individual Address Hash registers
*/
crc = fec_hash_address(pa);
if(crc >= 32)
{
MCF_FEC_IAUR |= (uint32)(1 << (crc - 32));
}
else
{
MCF_FEC_IALR |= (uint32)(1 << crc);
}
}
/********************************************************************/
/*
* Enable interrupts on the selected FEC
*
*/
static void fec_irq_enable( void )
{
int fec_vbase;
#if INTC_LVL_FEC > configMAX_SYSCALL_INTERRUPT_PRIORITY
#error INTC_LVL_FEC must be less than or equal to configMAX_SYSCALL_INTERRUPT_PRIORITY
#endif
fec_vbase = 64 + netifFIRST_FEC_VECTOR;
/* Enable FEC interrupts to the ColdFire core
* Setup each ICR with a unique interrupt level combination */
fec_vbase -= 64;
/* FEC Rx Frame */
MCF_INTC0_ICR(fec_vbase+4) = MCF_INTC_ICR_IL(INTC_LVL_FEC);
/* FEC Rx Buffer */
MCF_INTC0_ICR(fec_vbase+5) = MCF_INTC_ICR_IL(INTC_LVL_FEC);
/* FEC FIFO Underrun */
MCF_INTC0_ICR(fec_vbase+2) = MCF_INTC_ICR_IL(INTC_LVL_FEC+1);
/* FEC Collision Retry Limit */
MCF_INTC0_ICR(fec_vbase+3) = MCF_INTC_ICR_IL(INTC_LVL_FEC+1);
/* FEC Late Collision */
MCF_INTC0_ICR(fec_vbase+7) = MCF_INTC_ICR_IL(INTC_LVL_FEC+1);
/* FEC Heartbeat Error */
MCF_INTC0_ICR(fec_vbase+8) = MCF_INTC_ICR_IL(INTC_LVL_FEC+1);
/* FEC Bus Error */
MCF_INTC0_ICR(fec_vbase+10) = MCF_INTC_ICR_IL(INTC_LVL_FEC+1);
/* FEC Babbling Transmit */
MCF_INTC0_ICR(fec_vbase+11) = MCF_INTC_ICR_IL(INTC_LVL_FEC+1);
/* FEC Babbling Receive */
MCF_INTC0_ICR(fec_vbase+12) = MCF_INTC_ICR_IL(INTC_LVL_FEC+1);
/* Enable the FEC interrupts in the mask register */
MCF_INTC0_IMRH &= ~( MCF_INTC_IMRH_INT_MASK33 | MCF_INTC_IMRH_INT_MASK34 | MCF_INTC_IMRH_INT_MASK35 );
MCF_INTC0_IMRL &= ~( MCF_INTC_IMRL_INT_MASK25 | MCF_INTC_IMRL_INT_MASK26 | MCF_INTC_IMRL_INT_MASK27 | MCF_INTC_IMRL_INT_MASK28 | MCF_INTC_IMRL_INT_MASK29 | MCF_INTC_IMRL_INT_MASK30 | MCF_INTC_IMRL_INT_MASK31 | MCF_INTC_IMRL_MASKALL );
/* Clear any pending FEC interrupt events */
MCF_FEC_EIR = MCF_FEC_EIR_CLEAR_ALL;
/* Unmask all FEC interrupts */
MCF_FEC_EIMR = MCF_FEC_EIMR_UNMASK_ALL;
}
/**
* In this function, the hardware should be initialized.
* Called from ethernetif_init().
*
* @param netif the already initialized lwip network interface structure
* for this ethernetif
*/
static void low_level_init( struct netif *netif )
{
unsigned short usData;
const unsigned char ucMACAddress[6] =
{
configMAC_0, configMAC_1,configMAC_2,configMAC_3,configMAC_4,configMAC_5
};
prvInitialiseFECBuffers();
vSemaphoreCreateBinary( xFecSemaphore );
for( usData = 0; usData < 6; usData++ )
{
netif->hwaddr[ usData ] = ucMACAddress[ usData ];
}
/* Set the Reset bit and clear the Enable bit */
MCF_FEC_ECR = MCF_FEC_ECR_RESET;
/* Wait at least 8 clock cycles */
for( usData = 0; usData < 10; usData++ )
{
asm( "NOP" );
}
/* Set MII speed to 2.5MHz. */
MCF_FEC_MSCR = MCF_FEC_MSCR_MII_SPEED( ( ( configCPU_CLOCK_HZ / 1000000 ) / 5 ) + 1 );
/*
* Make sure the external interface signals are enabled
*/
MCF_GPIO_PNQPAR = MCF_GPIO_PNQPAR_IRQ3_FEC_MDIO | MCF_GPIO_PNQPAR_IRQ5_FEC_MDC;
MCF_GPIO_PTIPAR = MCF_GPIO_PTIPAR_FEC_COL_FEC_COL
| MCF_GPIO_PTIPAR_FEC_CRS_FEC_CRS
| MCF_GPIO_PTIPAR_FEC_RXCLK_FEC_RXCLK
| MCF_GPIO_PTIPAR_FEC_RXD0_FEC_RXD0
| MCF_GPIO_PTIPAR_FEC_RXD1_FEC_RXD1
| MCF_GPIO_PTIPAR_FEC_RXD2_FEC_RXD2
| MCF_GPIO_PTIPAR_FEC_RXD3_FEC_RXD3
| MCF_GPIO_PTIPAR_FEC_RXDV_FEC_RXDV;
MCF_GPIO_PTJPAR = MCF_GPIO_PTJPAR_FEC_RXER_FEC_RXER
| MCF_GPIO_PTJPAR_FEC_TXCLK_FEC_TXCLK
| MCF_GPIO_PTJPAR_FEC_TXD0_FEC_TXD0
| MCF_GPIO_PTJPAR_FEC_TXD1_FEC_TXD1
| MCF_GPIO_PTJPAR_FEC_TXD2_FEC_TXD2
| MCF_GPIO_PTJPAR_FEC_TXD3_FEC_TXD3
| MCF_GPIO_PTJPAR_FEC_TXEN_FEC_TXEN
| MCF_GPIO_PTJPAR_FEC_TXER_FEC_TXER;
/* Can we talk to the PHY? */
do
{
vTaskDelay( netifLINK_DELAY );
usData = 0;
fec_mii_read( configPHY_ADDRESS, PHY_PHYIDR1, &usData );
} while( ( usData == 0xffff ) || ( usData == 0 ) );
/* Start auto negotiate. */
fec_mii_write( configPHY_ADDRESS, PHY_BMCR, ( PHY_BMCR_AN_RESTART | PHY_BMCR_AN_ENABLE ) );
/* Wait for auto negotiate to complete. */
do
{
vTaskDelay( netifLINK_DELAY );
fec_mii_read( configPHY_ADDRESS, PHY_BMSR, &usData );
} while( !( usData & PHY_BMSR_AN_COMPLETE ) );
/* When we get here we have a link - find out what has been negotiated. */
fec_mii_read( configPHY_ADDRESS, PHY_ANLPAR, &usData );
if( ( usData & PHY_ANLPAR_100BTX_FDX ) || ( usData & PHY_ANLPAR_100BTX ) )
{
/* Speed is 100. */
}
else
{
/* Speed is 10. */
}
if( ( usData & PHY_ANLPAR_100BTX_FDX ) || ( usData & PHY_ANLPAR_10BTX_FDX ) )
{
/* Full duplex. */
MCF_FEC_RCR &= (uint32)~MCF_FEC_RCR_DRT;
MCF_FEC_TCR |= MCF_FEC_TCR_FDEN;
}
else
{
MCF_FEC_RCR |= MCF_FEC_RCR_DRT;
MCF_FEC_TCR &= (uint32)~MCF_FEC_TCR_FDEN;
}
/* Clear the Individual and Group Address Hash registers */
MCF_FEC_IALR = 0;
MCF_FEC_IAUR = 0;
MCF_FEC_GALR = 0;
MCF_FEC_GAUR = 0;
/* Set the Physical Address for the selected FEC */
fec_set_address( ucMACAddress );
/* Set Rx Buffer Size */
MCF_FEC_EMRBR = (uint16)configFEC_BUFFER_SIZE;
/* Point to the start of the circular Rx buffer descriptor queue */
MCF_FEC_ERDSR = ( volatile unsigned long ) &( xFECRxDescriptors[ 0 ] );
/* Point to the start of the circular Tx buffer descriptor queue */
MCF_FEC_ETSDR = ( volatile unsigned long ) &( xFECTxDescriptors[ 0 ] );
/* Mask all FEC interrupts */
MCF_FEC_EIMR = MCF_FEC_EIMR_MASK_ALL;
/* Clear all FEC interrupt events */
MCF_FEC_EIR = MCF_FEC_EIR_CLEAR_ALL;
/* Initialize the Receive Control Register */
MCF_FEC_RCR = MCF_FEC_RCR_MAX_FL(ETH_MAX_FRM) | MCF_FEC_RCR_FCE;
MCF_FEC_RCR |= MCF_FEC_RCR_MII_MODE;
#if( configUSE_PROMISCUOUS_MODE == 1 )
{
MCF_FEC_RCR |= MCF_FEC_RCR_PROM;
}
#endif
/* Create the task that handles the EMAC. */
xTaskCreate( ethernetif_input, "ETH_INT", configETHERNET_INPUT_TASK_STACK_SIZE, (void *)netif, configETHERNET_INPUT_TASK_PRIORITY, &xEthIntTask );
fec_irq_enable();
MCF_FEC_ECR = MCF_FEC_ECR_ETHER_EN;
MCF_FEC_RDAR = MCF_FEC_RDAR_R_DES_ACTIVE;
}
/**
* This function should do the actual transmission of the packet. The packet is
* contained in the pbuf that is passed to the function. This pbuf
* might be chained.
*
* @param netif the lwip network interface structure for this ethernetif
* @param p the MAC packet to send (e.g. IP packet including MAC addresses and type)
* @return ERR_OK if the packet could be sent
* an err_t value if the packet couldn't be sent
*
* @note Returning ERR_MEM here if a DMA queue of your MAC is full can lead to
* strange results. You might consider waiting for space in the DMA queue
* to become availale since the stack doesn't retry to send a packet
* dropped because of memory failure (except for the TCP timers).
*/
static err_t low_level_output(struct netif *netif, struct pbuf *p)
{
struct pbuf *q;
u32_t l = 0;
unsigned char *pcTxData = NULL;
portBASE_TYPE i;
( void ) netif;
#if ETH_PAD_SIZE
pbuf_header(p, -ETH_PAD_SIZE); /* drop the padding word */
#endif
/* Get a DMA buffer into which we can write the data to send. */
for( i = 0; i < netifBUFFER_WAIT_ATTEMPTS; i++ )
{
if( xFECTxDescriptors[ uxNextTxBuffer ].status & TX_BD_R )
{
/* Wait for the buffer to become available. */
vTaskDelay( netifBUFFER_WAIT_DELAY );
}
else
{
pcTxData = xFECTxDescriptors[ uxNextTxBuffer ].data;
break;
}
}
if( pcTxData == NULL )
{
/* For break point only. */
portNOP();
return ERR_BUF;
}
else
{
for( q = p; q != NULL; q = q->next )
{
/* Send the data from the pbuf to the interface, one pbuf at a
time. The size of the data in each pbuf is kept in the ->len
variable. */
memcpy( &pcTxData[l], (u8_t*)q->payload, q->len );
l += q->len;
}
}
/* Setup the buffer descriptor for transmission */
xFECTxDescriptors[ uxNextTxBuffer ].length = l;//nbuf->length + ETH_HDR_LEN;
xFECTxDescriptors[ uxNextTxBuffer ].status |= (TX_BD_R | TX_BD_L);
/* Continue the Tx DMA task (in case it was waiting for a new TxBD) */
MCF_FEC_TDAR = MCF_FEC_TDAR_X_DES_ACTIVE;
uxNextTxBuffer++;
if( uxNextTxBuffer >= configNUM_FEC_TX_BUFFERS )
{
uxNextTxBuffer = 0;
}
#if ETH_PAD_SIZE
pbuf_header(p, ETH_PAD_SIZE); /* reclaim the padding word */
#endif
LINK_STATS_INC(link.xmit);
return ERR_OK;
}
/**
* Should allocate a pbuf and transfer the bytes of the incoming
* packet from the interface into the pbuf.
*
* @param netif the lwip network interface structure for this ethernetif
* @return a pbuf filled with the received packet (including MAC header)
* NULL on memory error
*/
static struct pbuf *low_level_input(struct netif *netif)
{
struct pbuf *p, *q;
u16_t len, l;
( void ) netif;
l = 0;
p = NULL;
/* Obtain the size of the packet and put it into the "len" variable. */
len = xFECRxDescriptors[ uxNextRxBuffer ].length;
if( ( len != 0 ) && ( ( xFECRxDescriptors[ uxNextRxBuffer ].status & RX_BD_E ) == 0 ) )
{
#if ETH_PAD_SIZE
len += ETH_PAD_SIZE; /* allow room for Ethernet padding */
#endif
/* We allocate a pbuf chain of pbufs from the pool. */
p = pbuf_alloc(PBUF_RAW, len, PBUF_POOL);
if (p != NULL)
{
#if ETH_PAD_SIZE
pbuf_header(p, -ETH_PAD_SIZE); /* drop the padding word */
#endif
/* We iterate over the pbuf chain until we have read the entire
* packet into the pbuf. */
for(q = p; q != NULL; q = q->next)
{
/* Read enough bytes to fill this pbuf in the chain. The
* available data in the pbuf is given by the q->len
* variable. */
memcpy((u8_t*)q->payload, &(xFECRxDescriptors[ uxNextRxBuffer ].data[l]), q->len);
l = l + q->len;
}
#if ETH_PAD_SIZE
pbuf_header(p, ETH_PAD_SIZE); /* reclaim the padding word */
#endif
LINK_STATS_INC(link.recv);
}
else
{
LINK_STATS_INC(link.memerr);
LINK_STATS_INC(link.drop);
} /* End else */
/* Free the descriptor. */
xFECRxDescriptors[ uxNextRxBuffer ].status |= RX_BD_E;
MCF_FEC_RDAR = MCF_FEC_RDAR_R_DES_ACTIVE;
uxNextRxBuffer++;
if( uxNextRxBuffer >= configNUM_FEC_RX_BUFFERS )
{
uxNextRxBuffer = 0;
}
} /* End if */
return p;
}
/**
* This function should be called when a packet is ready to be read
* from the interface. It uses the function low_level_input() that
* should handle the actual reception of bytes from the network
* interface.Then the type of the received packet is determined and
* the appropriate input function is called.
*
* @param netif the lwip network interface structure for this ethernetif
*/
static void ethernetif_input( void *pParams )
{
struct netif *netif;
struct ethernetif *ethernetif;
struct eth_hdr *ethhdr;
struct pbuf *p;
netif = (struct netif*) pParams;
ethernetif = netif->state;
for( ;; )
{
do
{
/* move received packet into a new pbuf */
p = low_level_input( netif );
if( p == NULL )
{
/* No packet could be read. Wait a for an interrupt to tell us
there is more data available. */
xSemaphoreTake( xFecSemaphore, netifBLOCK_TIME_WAITING_FOR_INPUT );
}
} while( p == NULL );
/* points to packet payload, which starts with an Ethernet header */
ethhdr = p->payload;
switch (htons(ethhdr->type)) {
/* IP or ARP packet? */
case ETHTYPE_IP:
pbuf_header( p, (s16_t)-sizeof(struct eth_hdr) );
/* full packet send to tcpip_thread to process */
if (netif->input(p, netif) != ERR_OK)
{
LWIP_DEBUGF(NETIF_DEBUG, ("ethernetif_input: IP input error\n"));
pbuf_free(p);
p = NULL;
}
break;
case ETHTYPE_ARP:
#if ETHARP_TRUST_IP_MAC
etharp_ip_input(netif, p);
#endif
etharp_arp_input(netif, ethernetif->ethaddr, p);
break;
default:
pbuf_free(p);
p = NULL;
break;
}
}
}
/**
* Should be called at the beginning of the program to set up the
* network interface. It calls the function low_level_init() to do the
* actual setup of the hardware.
*
* This function should be passed as a parameter to netif_add().
*
* @param netif the lwip network interface structure for this ethernetif
* @return ERR_OK if the loopif is initialized
* ERR_MEM if private data couldn't be allocated
* any other err_t on error
*/
err_t ethernetif_init(struct netif *netif)
{
struct ethernetif *ethernetif;
LWIP_ASSERT("netif != NULL", (netif != NULL));
ethernetif = mem_malloc(sizeof(struct ethernetif));
if (ethernetif == NULL)
{
LWIP_DEBUGF(NETIF_DEBUG, ("ethernetif_init: out of memory\n"));
return ERR_MEM;
}
#if LWIP_NETIF_HOSTNAME
/* Initialize interface hostname */
netif->hostname = "lwip";
#endif /* LWIP_NETIF_HOSTNAME */
/*
* Initialize the snmp variables and counters inside the struct netif.
* The last argument should be replaced with your link speed, in units
* of bits per second.
*/
NETIF_INIT_SNMP(netif, snmp_ifType_ethernet_csmacd, 100);
netif->state = ethernetif;
netif->name[0] = IFNAME0;
netif->name[1] = IFNAME1;
/* We directly use etharp_output() here to save a function call.
* You can instead declare your own function an call etharp_output()
* from it if you have to do some checks before sending (e.g. if link
* is available...)
*/
netif->output = etharp_output;
netif->linkoutput = low_level_output;
ethernetif->ethaddr = (struct eth_addr *)&(netif->hwaddr[0]);
low_level_init(netif);
return ERR_OK;
}
/*-----------------------------------------------------------*/
static void prvInitialiseFECBuffers( void )
{
unsigned portBASE_TYPE ux;
unsigned char *pcBufPointer;
pcBufPointer = &( xFECTxDescriptors_unaligned[ 0 ] );
while( ( ( unsigned long ) pcBufPointer & 0x0fUL ) != 0 )
{
pcBufPointer++;
}
xFECTxDescriptors = ( FECBD * ) pcBufPointer;
pcBufPointer = &( xFECRxDescriptors_unaligned[ 0 ] );
while( ( ( unsigned long ) pcBufPointer & 0x0fUL ) != 0 )
{
pcBufPointer++;
}
xFECRxDescriptors = ( FECBD * ) pcBufPointer;
/* Setup the buffers and descriptors. */
pcBufPointer = &( ucFECTxBuffers[ 0 ] );
while( ( ( unsigned long ) pcBufPointer & 0x0fUL ) != 0 )
{
pcBufPointer++;
}
for( ux = 0; ux < configNUM_FEC_TX_BUFFERS; ux++ )
{
xFECTxDescriptors[ ux ].status = TX_BD_TC;
xFECTxDescriptors[ ux ].data = pcBufPointer;
pcBufPointer += configFEC_BUFFER_SIZE;
xFECTxDescriptors[ ux ].length = 0;
}
pcBufPointer = &( ucFECRxBuffers[ 0 ] );
while( ( ( unsigned long ) pcBufPointer & 0x0fUL ) != 0 )
{
pcBufPointer++;
}
for( ux = 0; ux < configNUM_FEC_RX_BUFFERS; ux++ )
{
xFECRxDescriptors[ ux ].status = RX_BD_E;
xFECRxDescriptors[ ux ].length = configFEC_BUFFER_SIZE;
xFECRxDescriptors[ ux ].data = pcBufPointer;
pcBufPointer += configFEC_BUFFER_SIZE;
}
/* Set the wrap bit in the last descriptors to form a ring. */
xFECTxDescriptors[ configNUM_FEC_TX_BUFFERS - 1 ].status |= TX_BD_W;
xFECRxDescriptors[ configNUM_FEC_RX_BUFFERS - 1 ].status |= RX_BD_W;
uxNextRxBuffer = 0;
uxNextTxBuffer = 0;
}
/*-----------------------------------------------------------*/
__declspec(interrupt:0) void vFECISRHandler( void )
{
unsigned long ulEvent;
portBASE_TYPE xHighPriorityTaskWoken = pdFALSE;
ulEvent = MCF_FEC_EIR & MCF_FEC_EIMR;
MCF_FEC_EIR = ulEvent;
if( ( ulEvent & MCF_FEC_EIR_RXB ) || ( ulEvent & MCF_FEC_EIR_RXF ) )
{
/* A packet has been received. Wake the handler task. */
xSemaphoreGiveFromISR( xFecSemaphore, &xHighPriorityTaskWoken );
}
if (ulEvent & ( MCF_FEC_EIR_UN | MCF_FEC_EIR_RL | MCF_FEC_EIR_LC | MCF_FEC_EIR_EBERR | MCF_FEC_EIR_BABT | MCF_FEC_EIR_BABR | MCF_FEC_EIR_HBERR ) )
{
/* Sledge hammer error handling. */
prvInitialiseFECBuffers();
MCF_FEC_RDAR = MCF_FEC_RDAR_R_DES_ACTIVE;
}
portEND_SWITCHING_ISR( xHighPriorityTaskWoken );
}