blob: 82ccb3cbeb180a5da0ed5a5893c5d844382e4065 [file] [log] [blame]
/* --COPYRIGHT--,BSD
* Copyright (c) 2014, Texas Instruments Incorporated
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* * Neither the name of Texas Instruments Incorporated nor the names of
* its contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
* --/COPYRIGHT--*/
//*****************************************************************************
//
// rtc_c.c - Driver for the rtc_c Module.
//
//*****************************************************************************
//*****************************************************************************
//
//! \addtogroup rtc_c_api rtc_c
//! @{
//
//*****************************************************************************
#include "inc/hw_regaccess.h"
#include "inc/hw_memmap.h"
#ifdef __MSP430_HAS_RTC_C__
#include "rtc_c.h"
#include <assert.h>
void RTC_C_startClock(uint16_t baseAddress)
{
HWREG8(baseAddress + OFS_RTCCTL0_H) = RTCKEY_H;
HWREG8(baseAddress + OFS_RTCCTL13_L) &= ~(RTCHOLD);
HWREG8(baseAddress + OFS_RTCCTL0_H) = 0x00;
}
void RTC_C_holdClock(uint16_t baseAddress)
{
HWREG8(baseAddress + OFS_RTCCTL0_H) = RTCKEY_H;
HWREG8(baseAddress + OFS_RTCCTL13_L) |= RTCHOLD;
HWREG8(baseAddress + OFS_RTCCTL0_H) = 0x00;
}
void RTC_C_setCalibrationFrequency(uint16_t baseAddress,
uint16_t frequencySelect)
{
HWREG8(baseAddress + OFS_RTCCTL0_H) = RTCKEY_H;
HWREG16(baseAddress + OFS_RTCCTL13) &= ~(RTCCALF_3);
HWREG16(baseAddress + OFS_RTCCTL13) |= frequencySelect;
HWREG8(baseAddress + OFS_RTCCTL0_H) = 0x00;
}
void RTC_C_setCalibrationData(uint16_t baseAddress,
uint8_t offsetDirection,
uint8_t offsetValue)
{
HWREG8(baseAddress + OFS_RTCCTL0_H) = RTCKEY_H;
HWREG16(baseAddress + OFS_RTCOCAL) = offsetValue + offsetDirection;
HWREG8(baseAddress + OFS_RTCCTL0_H) = 0x00;
}
void RTC_C_initCounter(uint16_t baseAddress,
uint16_t clockSelect,
uint16_t counterSizeSelect)
{
HWREG8(baseAddress + OFS_RTCCTL13) |= RTCHOLD;
HWREG8(baseAddress + OFS_RTCCTL13) &= ~(RTCMODE);
HWREG16(baseAddress + OFS_RTCCTL13) &= ~(RTCSSEL_3 | RTCTEV_3);
HWREG16(baseAddress + OFS_RTCCTL13) |= clockSelect + counterSizeSelect;
}
bool RTC_C_setTemperatureCompensation(uint16_t baseAddress,
uint16_t offsetDirection,
uint8_t offsetValue)
{
while(!(HWREG8(baseAddress + OFS_RTCTCMP_H) & RTCTCRDY_H))
{
;
}
HWREG16(baseAddress + OFS_RTCTCMP) = offsetValue + offsetDirection;
if(HWREG8(baseAddress + OFS_RTCTCMP_H) & RTCTCOK_H)
{
return(STATUS_SUCCESS);
}
else
{
return(STATUS_FAIL);
}
}
void RTC_C_initCalendar(uint16_t baseAddress,
Calendar *CalendarTime,
uint16_t formatSelect)
{
HWREG8(baseAddress + OFS_RTCCTL0_H) = RTCKEY_H;
HWREG8(baseAddress + OFS_RTCCTL13_L) |= RTCHOLD;
HWREG16(baseAddress + OFS_RTCCTL13_L) &= ~(RTCBCD);
HWREG16(baseAddress + OFS_RTCCTL13_L) |= formatSelect;
HWREG8(baseAddress + OFS_RTCTIM0_L) = CalendarTime->Seconds;
HWREG8(baseAddress + OFS_RTCTIM0_H) = CalendarTime->Minutes;
HWREG8(baseAddress + OFS_RTCTIM1_L) = CalendarTime->Hours;
HWREG8(baseAddress + OFS_RTCTIM1_H) = CalendarTime->DayOfWeek;
HWREG8(baseAddress + OFS_RTCDATE_L) = CalendarTime->DayOfMonth;
HWREG8(baseAddress + OFS_RTCDATE_H) = CalendarTime->Month;
HWREG16(baseAddress + OFS_RTCYEAR) = CalendarTime->Year;
HWREG8(baseAddress + OFS_RTCCTL0_H) = 0x00;
}
Calendar RTC_C_getCalendarTime(uint16_t baseAddress)
{
Calendar tempCal;
while(!(HWREG8(baseAddress + OFS_RTCCTL13_L) & RTCRDY))
{
;
}
tempCal.Seconds = HWREG8(baseAddress + OFS_RTCTIM0_L);
tempCal.Minutes = HWREG8(baseAddress + OFS_RTCTIM0_H);
tempCal.Hours = HWREG8(baseAddress + OFS_RTCTIM1_L);
tempCal.DayOfWeek = HWREG8(baseAddress + OFS_RTCTIM1_H);
tempCal.DayOfMonth = HWREG8(baseAddress + OFS_RTCDATE_L);
tempCal.Month = HWREG8(baseAddress + OFS_RTCDATE_H);
tempCal.Year = HWREG16(baseAddress + OFS_RTCYEAR);
return (tempCal);
}
void RTC_C_configureCalendarAlarm(uint16_t baseAddress,
RTC_C_configureCalendarAlarmParam *param)
{
//Each of these is XORed with 0x80 to turn on if an integer is passed,
//or turn OFF if RTC_C_ALARM_OFF (0x80) is passed.
HWREG8(baseAddress + OFS_RTCAMINHR_L) = (param->minutesAlarm ^ 0x80);
HWREG8(baseAddress + OFS_RTCAMINHR_H) = (param->hoursAlarm ^ 0x80);
HWREG8(baseAddress + OFS_RTCADOWDAY_L) = (param->dayOfWeekAlarm ^ 0x80);
HWREG8(baseAddress + OFS_RTCADOWDAY_H) = (param->dayOfMonthAlarm ^ 0x80);
}
void RTC_C_setCalendarEvent(uint16_t baseAddress,
uint16_t eventSelect)
{
HWREG8(baseAddress + OFS_RTCCTL0_H) = RTCKEY_H;
HWREG8(baseAddress + OFS_RTCCTL13_L) &= ~(RTCTEV_3); //Reset bits
HWREG8(baseAddress + OFS_RTCCTL13_L) |= eventSelect;
HWREG8(baseAddress + OFS_RTCCTL0_H) = 0x00;
}
uint32_t RTC_C_getCounterValue(uint16_t baseAddress)
{
if((HWREG8(baseAddress + OFS_RTCCTL13) & RTCHOLD)
|| (HWREG8(baseAddress + OFS_RTCPS1CTL) & RT1PSHOLD))
{
return (0);
}
uint32_t counterValue_L = HWREG16(baseAddress + OFS_RTCTIM0);
uint32_t counterValue_H = HWREG16(baseAddress + OFS_RTCTIM1);
return ((counterValue_H << 16) + counterValue_L);
}
void RTC_C_setCounterValue(uint16_t baseAddress,
uint32_t counterValue)
{
uint16_t mode = HWREG16(baseAddress + OFS_RTCCTL13) & RTCTEV_3;
if(mode == RTC_C_COUNTERSIZE_8BIT && counterValue > 0xF)
{
counterValue = 0xF;
}
else if(mode == RTC_C_COUNTERSIZE_16BIT && counterValue > 0xFF)
{
counterValue = 0xFF;
}
else if(mode == RTC_C_COUNTERSIZE_24BIT && counterValue > 0xFFFFFF)
{
counterValue = 0xFFFFFF;
}
HWREG16(baseAddress + OFS_RTCTIM0) = counterValue;
HWREG16(baseAddress + OFS_RTCTIM1) = (counterValue >> 16);
}
void RTC_C_initCounterPrescale(uint16_t baseAddress,
uint8_t prescaleSelect,
uint16_t prescaleClockSelect,
uint16_t prescaleDivider)
{
//Reset bits and set clock select
HWREG16(baseAddress + OFS_RTCPS0CTL + prescaleSelect) =
prescaleClockSelect + prescaleDivider;
}
void RTC_C_holdCounterPrescale(uint16_t baseAddress,
uint8_t prescaleSelect)
{
HWREG8(baseAddress + OFS_RTCPS0CTL_H + prescaleSelect) |= RT0PSHOLD_H;
}
void RTC_C_startCounterPrescale(uint16_t baseAddress,
uint8_t prescaleSelect)
{
HWREG8(baseAddress + OFS_RTCPS0CTL_H + prescaleSelect) &= ~(RT0PSHOLD_H);
}
void RTC_C_definePrescaleEvent(uint16_t baseAddress,
uint8_t prescaleSelect,
uint8_t prescaleEventDivider)
{
HWREG8(baseAddress + OFS_RTCPS0CTL_L + prescaleSelect) &= ~(RT0IP_7);
HWREG8(baseAddress + OFS_RTCPS0CTL_L +
prescaleSelect) |= prescaleEventDivider;
}
uint8_t RTC_C_getPrescaleValue(uint16_t baseAddress,
uint8_t prescaleSelect)
{
if(RTC_C_PRESCALE_0 == prescaleSelect)
{
return (HWREG8(baseAddress + OFS_RTCPS_L));
}
else if(RTC_C_PRESCALE_1 == prescaleSelect)
{
return (HWREG8(baseAddress + OFS_RTCPS_H));
}
else
{
return (0);
}
}
void RTC_C_setPrescaleValue(uint16_t baseAddress,
uint8_t prescaleSelect,
uint8_t prescaleCounterValue)
{
HWREG8(baseAddress + OFS_RTCCTL0_H) = RTCKEY_H;
if(RTC_C_PRESCALE_0 == prescaleSelect)
{
HWREG8(baseAddress + OFS_RTCPS_L) = prescaleCounterValue;
}
else if(RTC_C_PRESCALE_1 == prescaleSelect)
{
HWREG8(baseAddress + OFS_RTCPS_H) = prescaleCounterValue;
}
HWREG8(baseAddress + OFS_RTCCTL0_H) = 0x00;
}
void RTC_C_enableInterrupt(uint16_t baseAddress,
uint8_t interruptMask)
{
if(interruptMask & (RTCOFIE + RTCTEVIE + RTCAIE + RTCRDYIE))
{
HWREG8(baseAddress + OFS_RTCCTL0_H) = RTCKEY_H;
HWREG8(baseAddress + OFS_RTCCTL0_L) |=
(interruptMask & (RTCOFIE + RTCTEVIE + RTCAIE + RTCRDYIE));
HWREG8(baseAddress + OFS_RTCCTL0_H) = 0x00;
}
if(interruptMask & RTC_C_PRESCALE_TIMER0_INTERRUPT)
{
HWREG8(baseAddress + OFS_RTCPS0CTL_L) |= RT0PSIE;
}
if(interruptMask & RTC_C_PRESCALE_TIMER1_INTERRUPT)
{
HWREG8(baseAddress + OFS_RTCPS1CTL_L) |= RT1PSIE;
}
}
void RTC_C_disableInterrupt(uint16_t baseAddress,
uint8_t interruptMask)
{
if(interruptMask & (RTCOFIE + RTCTEVIE + RTCAIE + RTCRDYIE))
{
HWREG8(baseAddress + OFS_RTCCTL0_H) = RTCKEY_H;
HWREG8(baseAddress + OFS_RTCCTL0_L) &=
~(interruptMask & (RTCOFIE + RTCTEVIE + RTCAIE + RTCRDYIE));
HWREG8(baseAddress + OFS_RTCCTL0_H) = 0x00;
}
if(interruptMask & RTC_C_PRESCALE_TIMER0_INTERRUPT)
{
HWREG8(baseAddress + OFS_RTCPS0CTL_L) &= ~(RT0PSIE);
}
if(interruptMask & RTC_C_PRESCALE_TIMER1_INTERRUPT)
{
HWREG8(baseAddress + OFS_RTCPS1CTL_L) &= ~(RT1PSIE);
}
}
uint8_t RTC_C_getInterruptStatus(uint16_t baseAddress,
uint8_t interruptFlagMask)
{
uint8_t tempInterruptFlagMask = 0x0000;
tempInterruptFlagMask |= (HWREG8(baseAddress + OFS_RTCCTL0_L)
& ((interruptFlagMask >> 4)
& (RTCOFIFG +
RTCTEVIFG +
RTCAIFG +
RTCRDYIFG)));
tempInterruptFlagMask = tempInterruptFlagMask << 4;
if(interruptFlagMask & RTC_C_PRESCALE_TIMER0_INTERRUPT)
{
if(HWREG8(baseAddress + OFS_RTCPS0CTL_L) & RT0PSIFG)
{
tempInterruptFlagMask |= RTC_C_PRESCALE_TIMER0_INTERRUPT;
}
}
if(interruptFlagMask & RTC_C_PRESCALE_TIMER1_INTERRUPT)
{
if(HWREG8(baseAddress + OFS_RTCPS1CTL_L) & RT1PSIFG)
{
tempInterruptFlagMask |= RTC_C_PRESCALE_TIMER1_INTERRUPT;
}
}
return (tempInterruptFlagMask);
}
void RTC_C_clearInterrupt(uint16_t baseAddress,
uint8_t interruptFlagMask)
{
if(interruptFlagMask & (RTC_C_TIME_EVENT_INTERRUPT +
RTC_C_CLOCK_ALARM_INTERRUPT +
RTC_C_CLOCK_READ_READY_INTERRUPT +
RTC_C_OSCILLATOR_FAULT_INTERRUPT))
{
HWREG8(baseAddress + OFS_RTCCTL0_H) = RTCKEY_H;
HWREG8(baseAddress + OFS_RTCCTL0_L) &=
~((interruptFlagMask >> 4) & (RTCOFIFG +
RTCTEVIFG +
RTCAIFG +
RTCRDYIFG));
HWREG8(baseAddress + OFS_RTCCTL0_H) = 0x00;
}
if(interruptFlagMask & RTC_C_PRESCALE_TIMER0_INTERRUPT)
{
HWREG8(baseAddress + OFS_RTCPS0CTL_L) &= ~(RT0PSIFG);
}
if(interruptFlagMask & RTC_C_PRESCALE_TIMER1_INTERRUPT)
{
HWREG8(baseAddress + OFS_RTCPS1CTL_L) &= ~(RT1PSIFG);
}
}
uint16_t RTC_C_convertBCDToBinary(uint16_t baseAddress,
uint16_t valueToConvert)
{
HWREG16(baseAddress + OFS_BCD2BIN) = valueToConvert;
return (HWREG16(baseAddress + OFS_BCD2BIN));
}
uint16_t RTC_C_convertBinaryToBCD(uint16_t baseAddress,
uint16_t valueToConvert)
{
HWREG16(baseAddress + OFS_BIN2BCD) = valueToConvert;
return (HWREG16(baseAddress + OFS_BIN2BCD));
}
#endif
//*****************************************************************************
//
//! Close the doxygen group for rtc_c_api
//! @}
//
//*****************************************************************************