blob: 78ce50534ace643a468b4fbbb7056887dfc3e6cb [file] [log] [blame]
/* ----------------------------------------------------------------------
* Project: CMSIS DSP Library
* Title: arm_cfft_q31.c
* Description: Combined Radix Decimation in Frequency CFFT fixed point processing function
*
* $Date: 23 April 2021
* $Revision: V1.9.0
*
* Target Processor: Cortex-M and Cortex-A cores
* -------------------------------------------------------------------- */
/*
* Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "dsp/transform_functions.h"
#if defined(ARM_MATH_MVEI) && !defined(ARM_MATH_AUTOVECTORIZE)
#include "arm_vec_fft.h"
static void _arm_radix4_butterfly_q31_mve(
const arm_cfft_instance_q31 * S,
q31_t *pSrc,
uint32_t fftLen)
{
q31x4_t vecTmp0, vecTmp1;
q31x4_t vecSum0, vecDiff0, vecSum1, vecDiff1;
q31x4_t vecA, vecB, vecC, vecD;
uint32_t blkCnt;
uint32_t n1, n2;
uint32_t stage = 0;
int32_t iter = 1;
static const int32_t strides[4] = {
(0 - 16) * (int32_t)sizeof(q31_t *), (1 - 16) * (int32_t)sizeof(q31_t *),
(8 - 16) * (int32_t)sizeof(q31_t *), (9 - 16) * (int32_t)sizeof(q31_t *)
};
/*
* Process first stages
* Each stage in middle stages provides two down scaling of the input
*/
n2 = fftLen;
n1 = n2;
n2 >>= 2u;
for (int k = fftLen / 4u; k > 1; k >>= 2u)
{
q31_t const *p_rearranged_twiddle_tab_stride2 =
&S->rearranged_twiddle_stride2[
S->rearranged_twiddle_tab_stride2_arr[stage]];
q31_t const *p_rearranged_twiddle_tab_stride3 = &S->rearranged_twiddle_stride3[
S->rearranged_twiddle_tab_stride3_arr[stage]];
q31_t const *p_rearranged_twiddle_tab_stride1 =
&S->rearranged_twiddle_stride1[
S->rearranged_twiddle_tab_stride1_arr[stage]];
q31_t * pBase = pSrc;
for (int i = 0; i < iter; i++)
{
q31_t *inA = pBase;
q31_t *inB = inA + n2 * CMPLX_DIM;
q31_t *inC = inB + n2 * CMPLX_DIM;
q31_t *inD = inC + n2 * CMPLX_DIM;
q31_t const *pW1 = p_rearranged_twiddle_tab_stride1;
q31_t const *pW2 = p_rearranged_twiddle_tab_stride2;
q31_t const *pW3 = p_rearranged_twiddle_tab_stride3;
q31x4_t vecW;
blkCnt = n2 / 2;
/*
* load 2 x q31 complex pair
*/
vecA = vldrwq_s32(inA);
vecC = vldrwq_s32(inC);
while (blkCnt > 0U)
{
vecB = vldrwq_s32(inB);
vecD = vldrwq_s32(inD);
vecSum0 = vhaddq(vecA, vecC);
vecDiff0 = vhsubq(vecA, vecC);
vecSum1 = vhaddq(vecB, vecD);
vecDiff1 = vhsubq(vecB, vecD);
/*
* [ 1 1 1 1 ] * [ A B C D ]' .* 1
*/
vecTmp0 = vhaddq(vecSum0, vecSum1);
vst1q(inA, vecTmp0);
inA += 4;
/*
* [ 1 -1 1 -1 ] * [ A B C D ]'
*/
vecTmp0 = vhsubq(vecSum0, vecSum1);
/*
* [ 1 -1 1 -1 ] * [ A B C D ]'.* W2
*/
vecW = vld1q(pW2);
pW2 += 4;
vecTmp1 = MVE_CMPLX_MULT_FX_AxB(vecW, vecTmp0, q31x4_t);
vst1q(inB, vecTmp1);
inB += 4;
/*
* [ 1 -i -1 +i ] * [ A B C D ]'
*/
vecTmp0 = MVE_CMPLX_SUB_FX_A_ixB(vecDiff0, vecDiff1);
/*
* [ 1 -i -1 +i ] * [ A B C D ]'.* W1
*/
vecW = vld1q(pW1);
pW1 += 4;
vecTmp1 = MVE_CMPLX_MULT_FX_AxB(vecW, vecTmp0, q31x4_t);
vst1q(inC, vecTmp1);
inC += 4;
/*
* [ 1 +i -1 -i ] * [ A B C D ]'
*/
vecTmp0 = MVE_CMPLX_ADD_FX_A_ixB(vecDiff0, vecDiff1);
/*
* [ 1 +i -1 -i ] * [ A B C D ]'.* W3
*/
vecW = vld1q(pW3);
pW3 += 4;
vecTmp1 = MVE_CMPLX_MULT_FX_AxB(vecW, vecTmp0, q31x4_t);
vst1q(inD, vecTmp1);
inD += 4;
vecA = vldrwq_s32(inA);
vecC = vldrwq_s32(inC);
blkCnt--;
}
pBase += CMPLX_DIM * n1;
}
n1 = n2;
n2 >>= 2u;
iter = iter << 2;
stage++;
}
/*
* End of 1st stages process
* data is in 11.21(q21) format for the 1024 point as there are 3 middle stages
* data is in 9.23(q23) format for the 256 point as there are 2 middle stages
* data is in 7.25(q25) format for the 64 point as there are 1 middle stage
* data is in 5.27(q27) format for the 16 point as there are no middle stages
*/
/*
* start of Last stage process
*/
uint32x4_t vecScGathAddr = vld1q_u32((uint32_t*)strides);
vecScGathAddr = vecScGathAddr + (uint32_t) pSrc;
/*
* load scheduling
*/
vecA = vldrwq_gather_base_wb_s32(&vecScGathAddr, 64);
vecC = vldrwq_gather_base_s32(vecScGathAddr, 16);
blkCnt = (fftLen >> 3);
while (blkCnt > 0U)
{
vecSum0 = vhaddq(vecA, vecC);
vecDiff0 = vhsubq(vecA, vecC);
vecB = vldrwq_gather_base_s32(vecScGathAddr, 8);
vecD = vldrwq_gather_base_s32(vecScGathAddr, 24);
vecSum1 = vhaddq(vecB, vecD);
vecDiff1 = vhsubq(vecB, vecD);
/*
* pre-load for next iteration
*/
vecA = vldrwq_gather_base_wb_s32(&vecScGathAddr, 64);
vecC = vldrwq_gather_base_s32(vecScGathAddr, 16);
vecTmp0 = vhaddq(vecSum0, vecSum1);
vstrwq_scatter_base_s32(vecScGathAddr, -64, vecTmp0);
vecTmp0 = vhsubq(vecSum0, vecSum1);
vstrwq_scatter_base_s32(vecScGathAddr, -64 + 8, vecTmp0);
vecTmp0 = MVE_CMPLX_SUB_FX_A_ixB(vecDiff0, vecDiff1);
vstrwq_scatter_base_s32(vecScGathAddr, -64 + 16, vecTmp0);
vecTmp0 = MVE_CMPLX_ADD_FX_A_ixB(vecDiff0, vecDiff1);
vstrwq_scatter_base_s32(vecScGathAddr, -64 + 24, vecTmp0);
blkCnt--;
}
/*
* output is in 11.21(q21) format for the 1024 point
* output is in 9.23(q23) format for the 256 point
* output is in 7.25(q25) format for the 64 point
* output is in 5.27(q27) format for the 16 point
*/
}
static void arm_cfft_radix4by2_q31_mve(const arm_cfft_instance_q31 *S, q31_t *pSrc, uint32_t fftLen)
{
uint32_t n2;
q31_t *pIn0;
q31_t *pIn1;
const q31_t *pCoef = S->pTwiddle;
uint32_t blkCnt;
q31x4_t vecIn0, vecIn1, vecSum, vecDiff;
q31x4_t vecCmplxTmp, vecTw;
n2 = fftLen >> 1;
pIn0 = pSrc;
pIn1 = pSrc + fftLen;
blkCnt = n2 / 2;
while (blkCnt > 0U)
{
vecIn0 = vld1q_s32(pIn0);
vecIn1 = vld1q_s32(pIn1);
vecIn0 = vecIn0 >> 1;
vecIn1 = vecIn1 >> 1;
vecSum = vhaddq(vecIn0, vecIn1);
vst1q(pIn0, vecSum);
pIn0 += 4;
vecTw = vld1q_s32(pCoef);
pCoef += 4;
vecDiff = vhsubq(vecIn0, vecIn1);
vecCmplxTmp = MVE_CMPLX_MULT_FX_AxConjB(vecDiff, vecTw, q31x4_t);
vst1q(pIn1, vecCmplxTmp);
pIn1 += 4;
blkCnt--;
}
_arm_radix4_butterfly_q31_mve(S, pSrc, n2);
_arm_radix4_butterfly_q31_mve(S, pSrc + fftLen, n2);
pIn0 = pSrc;
blkCnt = (fftLen << 1) >> 2;
while (blkCnt > 0U)
{
vecIn0 = vld1q_s32(pIn0);
vecIn0 = vecIn0 << 1;
vst1q(pIn0, vecIn0);
pIn0 += 4;
blkCnt--;
}
/*
* tail
* (will be merged thru tail predication)
*/
blkCnt = (fftLen << 1) & 3;
if (blkCnt > 0U)
{
mve_pred16_t p0 = vctp32q(blkCnt);
vecIn0 = vld1q_s32(pIn0);
vecIn0 = vecIn0 << 1;
vstrwq_p(pIn0, vecIn0, p0);
}
}
static void _arm_radix4_butterfly_inverse_q31_mve(
const arm_cfft_instance_q31 *S,
q31_t *pSrc,
uint32_t fftLen)
{
q31x4_t vecTmp0, vecTmp1;
q31x4_t vecSum0, vecDiff0, vecSum1, vecDiff1;
q31x4_t vecA, vecB, vecC, vecD;
uint32_t blkCnt;
uint32_t n1, n2;
uint32_t stage = 0;
int32_t iter = 1;
static const int32_t strides[4] = {
(0 - 16) * (int32_t)sizeof(q31_t *), (1 - 16) * (int32_t)sizeof(q31_t *),
(8 - 16) * (int32_t)sizeof(q31_t *), (9 - 16) * (int32_t)sizeof(q31_t *)
};
/*
* Process first stages
* Each stage in middle stages provides two down scaling of the input
*/
n2 = fftLen;
n1 = n2;
n2 >>= 2u;
for (int k = fftLen / 4u; k > 1; k >>= 2u)
{
q31_t const *p_rearranged_twiddle_tab_stride2 =
&S->rearranged_twiddle_stride2[
S->rearranged_twiddle_tab_stride2_arr[stage]];
q31_t const *p_rearranged_twiddle_tab_stride3 = &S->rearranged_twiddle_stride3[
S->rearranged_twiddle_tab_stride3_arr[stage]];
q31_t const *p_rearranged_twiddle_tab_stride1 =
&S->rearranged_twiddle_stride1[
S->rearranged_twiddle_tab_stride1_arr[stage]];
q31_t * pBase = pSrc;
for (int i = 0; i < iter; i++)
{
q31_t *inA = pBase;
q31_t *inB = inA + n2 * CMPLX_DIM;
q31_t *inC = inB + n2 * CMPLX_DIM;
q31_t *inD = inC + n2 * CMPLX_DIM;
q31_t const *pW1 = p_rearranged_twiddle_tab_stride1;
q31_t const *pW2 = p_rearranged_twiddle_tab_stride2;
q31_t const *pW3 = p_rearranged_twiddle_tab_stride3;
q31x4_t vecW;
blkCnt = n2 / 2;
/*
* load 2 x q31 complex pair
*/
vecA = vldrwq_s32(inA);
vecC = vldrwq_s32(inC);
while (blkCnt > 0U)
{
vecB = vldrwq_s32(inB);
vecD = vldrwq_s32(inD);
vecSum0 = vhaddq(vecA, vecC);
vecDiff0 = vhsubq(vecA, vecC);
vecSum1 = vhaddq(vecB, vecD);
vecDiff1 = vhsubq(vecB, vecD);
/*
* [ 1 1 1 1 ] * [ A B C D ]' .* 1
*/
vecTmp0 = vhaddq(vecSum0, vecSum1);
vst1q(inA, vecTmp0);
inA += 4;
/*
* [ 1 -1 1 -1 ] * [ A B C D ]'
*/
vecTmp0 = vhsubq(vecSum0, vecSum1);
/*
* [ 1 -1 1 -1 ] * [ A B C D ]'.* W2
*/
vecW = vld1q(pW2);
pW2 += 4;
vecTmp1 = MVE_CMPLX_MULT_FX_AxConjB(vecTmp0, vecW, q31x4_t);
vst1q(inB, vecTmp1);
inB += 4;
/*
* [ 1 -i -1 +i ] * [ A B C D ]'
*/
vecTmp0 = MVE_CMPLX_ADD_FX_A_ixB(vecDiff0, vecDiff1);
/*
* [ 1 -i -1 +i ] * [ A B C D ]'.* W1
*/
vecW = vld1q(pW1);
pW1 += 4;
vecTmp1 = MVE_CMPLX_MULT_FX_AxConjB(vecTmp0, vecW, q31x4_t);
vst1q(inC, vecTmp1);
inC += 4;
/*
* [ 1 +i -1 -i ] * [ A B C D ]'
*/
vecTmp0 = MVE_CMPLX_SUB_FX_A_ixB(vecDiff0, vecDiff1);
/*
* [ 1 +i -1 -i ] * [ A B C D ]'.* W3
*/
vecW = vld1q(pW3);
pW3 += 4;
vecTmp1 = MVE_CMPLX_MULT_FX_AxConjB(vecTmp0, vecW, q31x4_t);
vst1q(inD, vecTmp1);
inD += 4;
vecA = vldrwq_s32(inA);
vecC = vldrwq_s32(inC);
blkCnt--;
}
pBase += CMPLX_DIM * n1;
}
n1 = n2;
n2 >>= 2u;
iter = iter << 2;
stage++;
}
/*
* End of 1st stages process
* data is in 11.21(q21) format for the 1024 point as there are 3 middle stages
* data is in 9.23(q23) format for the 256 point as there are 2 middle stages
* data is in 7.25(q25) format for the 64 point as there are 1 middle stage
* data is in 5.27(q27) format for the 16 point as there are no middle stages
*/
/*
* start of Last stage process
*/
uint32x4_t vecScGathAddr = vld1q_u32((uint32_t*)strides);
vecScGathAddr = vecScGathAddr + (uint32_t) pSrc;
/*
* load scheduling
*/
vecA = vldrwq_gather_base_wb_s32(&vecScGathAddr, 64);
vecC = vldrwq_gather_base_s32(vecScGathAddr, 16);
blkCnt = (fftLen >> 3);
while (blkCnt > 0U)
{
vecSum0 = vhaddq(vecA, vecC);
vecDiff0 = vhsubq(vecA, vecC);
vecB = vldrwq_gather_base_s32(vecScGathAddr, 8);
vecD = vldrwq_gather_base_s32(vecScGathAddr, 24);
vecSum1 = vhaddq(vecB, vecD);
vecDiff1 = vhsubq(vecB, vecD);
/*
* pre-load for next iteration
*/
vecA = vldrwq_gather_base_wb_s32(&vecScGathAddr, 64);
vecC = vldrwq_gather_base_s32(vecScGathAddr, 16);
vecTmp0 = vhaddq(vecSum0, vecSum1);
vstrwq_scatter_base_s32(vecScGathAddr, -64, vecTmp0);
vecTmp0 = vhsubq(vecSum0, vecSum1);
vstrwq_scatter_base_s32(vecScGathAddr, -64 + 8, vecTmp0);
vecTmp0 = MVE_CMPLX_ADD_FX_A_ixB(vecDiff0, vecDiff1);
vstrwq_scatter_base_s32(vecScGathAddr, -64 + 16, vecTmp0);
vecTmp0 = MVE_CMPLX_SUB_FX_A_ixB(vecDiff0, vecDiff1);
vstrwq_scatter_base_s32(vecScGathAddr, -64 + 24, vecTmp0);
blkCnt--;
}
/*
* output is in 11.21(q21) format for the 1024 point
* output is in 9.23(q23) format for the 256 point
* output is in 7.25(q25) format for the 64 point
* output is in 5.27(q27) format for the 16 point
*/
}
static void arm_cfft_radix4by2_inverse_q31_mve(const arm_cfft_instance_q31 *S, q31_t *pSrc, uint32_t fftLen)
{
uint32_t n2;
q31_t *pIn0;
q31_t *pIn1;
const q31_t *pCoef = S->pTwiddle;
//uint16_t twidCoefModifier = arm_cfft_radix2_twiddle_factor(S->fftLen);
//q31_t twidIncr = (2 * twidCoefModifier * sizeof(q31_t));
uint32_t blkCnt;
//uint64x2_t vecOffs;
q31x4_t vecIn0, vecIn1, vecSum, vecDiff;
q31x4_t vecCmplxTmp, vecTw;
n2 = fftLen >> 1;
pIn0 = pSrc;
pIn1 = pSrc + fftLen;
//vecOffs[0] = 0;
//vecOffs[1] = (uint64_t) twidIncr;
blkCnt = n2 / 2;
while (blkCnt > 0U)
{
vecIn0 = vld1q_s32(pIn0);
vecIn1 = vld1q_s32(pIn1);
vecIn0 = vecIn0 >> 1;
vecIn1 = vecIn1 >> 1;
vecSum = vhaddq(vecIn0, vecIn1);
vst1q(pIn0, vecSum);
pIn0 += 4;
//vecTw = (q31x4_t) vldrdq_gather_offset_s64(pCoef, vecOffs);
vecTw = vld1q_s32(pCoef);
pCoef += 4;
vecDiff = vhsubq(vecIn0, vecIn1);
vecCmplxTmp = MVE_CMPLX_MULT_FX_AxB(vecDiff, vecTw, q31x4_t);
vst1q(pIn1, vecCmplxTmp);
pIn1 += 4;
//vecOffs = vaddq((q31x4_t) vecOffs, 2 * twidIncr);
blkCnt--;
}
_arm_radix4_butterfly_inverse_q31_mve(S, pSrc, n2);
_arm_radix4_butterfly_inverse_q31_mve(S, pSrc + fftLen, n2);
pIn0 = pSrc;
blkCnt = (fftLen << 1) >> 2;
while (blkCnt > 0U)
{
vecIn0 = vld1q_s32(pIn0);
vecIn0 = vecIn0 << 1;
vst1q(pIn0, vecIn0);
pIn0 += 4;
blkCnt--;
}
/*
* tail
* (will be merged thru tail predication)
*/
blkCnt = (fftLen << 1) & 3;
if (blkCnt > 0U)
{
mve_pred16_t p0 = vctp32q(blkCnt);
vecIn0 = vld1q_s32(pIn0);
vecIn0 = vecIn0 << 1;
vstrwq_p(pIn0, vecIn0, p0);
}
}
/**
@ingroup groupTransforms
*/
/**
@addtogroup ComplexFFT
@{
*/
/**
@brief Processing function for the Q31 complex FFT.
@param[in] S points to an instance of the fixed-point CFFT structure
@param[in,out] p1 points to the complex data buffer of size <code>2*fftLen</code>. Processing occurs in-place
@param[in] ifftFlag flag that selects transform direction
- value = 0: forward transform
- value = 1: inverse transform
@param[in] bitReverseFlag flag that enables / disables bit reversal of output
- value = 0: disables bit reversal of output
- value = 1: enables bit reversal of output
@return none
*/
void arm_cfft_q31(
const arm_cfft_instance_q31 * S,
q31_t * pSrc,
uint8_t ifftFlag,
uint8_t bitReverseFlag)
{
uint32_t fftLen = S->fftLen;
if (ifftFlag == 1U) {
switch (fftLen) {
case 16:
case 64:
case 256:
case 1024:
case 4096:
_arm_radix4_butterfly_inverse_q31_mve(S, pSrc, fftLen);
break;
case 32:
case 128:
case 512:
case 2048:
arm_cfft_radix4by2_inverse_q31_mve(S, pSrc, fftLen);
break;
}
} else {
switch (fftLen) {
case 16:
case 64:
case 256:
case 1024:
case 4096:
_arm_radix4_butterfly_q31_mve(S, pSrc, fftLen);
break;
case 32:
case 128:
case 512:
case 2048:
arm_cfft_radix4by2_q31_mve(S, pSrc, fftLen);
break;
}
}
if (bitReverseFlag)
{
arm_bitreversal_32_inpl_mve((uint32_t*)pSrc, S->bitRevLength, S->pBitRevTable);
}
}
#else
extern void arm_radix4_butterfly_q31(
q31_t * pSrc,
uint32_t fftLen,
const q31_t * pCoef,
uint32_t twidCoefModifier);
extern void arm_radix4_butterfly_inverse_q31(
q31_t * pSrc,
uint32_t fftLen,
const q31_t * pCoef,
uint32_t twidCoefModifier);
extern void arm_bitreversal_32(
uint32_t * pSrc,
const uint16_t bitRevLen,
const uint16_t * pBitRevTable);
void arm_cfft_radix4by2_q31(
q31_t * pSrc,
uint32_t fftLen,
const q31_t * pCoef);
void arm_cfft_radix4by2_inverse_q31(
q31_t * pSrc,
uint32_t fftLen,
const q31_t * pCoef);
/**
@ingroup groupTransforms
*/
/**
@addtogroup ComplexFFT
@{
*/
/**
@brief Processing function for the Q31 complex FFT.
@param[in] S points to an instance of the fixed-point CFFT structure
@param[in,out] p1 points to the complex data buffer of size <code>2*fftLen</code>. Processing occurs in-place
@param[in] ifftFlag flag that selects transform direction
- value = 0: forward transform
- value = 1: inverse transform
@param[in] bitReverseFlag flag that enables / disables bit reversal of output
- value = 0: disables bit reversal of output
- value = 1: enables bit reversal of output
@return none
*/
void arm_cfft_q31(
const arm_cfft_instance_q31 * S,
q31_t * p1,
uint8_t ifftFlag,
uint8_t bitReverseFlag)
{
uint32_t L = S->fftLen;
if (ifftFlag == 1U)
{
switch (L)
{
case 16:
case 64:
case 256:
case 1024:
case 4096:
arm_radix4_butterfly_inverse_q31 ( p1, L, (q31_t*)S->pTwiddle, 1 );
break;
case 32:
case 128:
case 512:
case 2048:
arm_cfft_radix4by2_inverse_q31 ( p1, L, S->pTwiddle );
break;
}
}
else
{
switch (L)
{
case 16:
case 64:
case 256:
case 1024:
case 4096:
arm_radix4_butterfly_q31 ( p1, L, (q31_t*)S->pTwiddle, 1 );
break;
case 32:
case 128:
case 512:
case 2048:
arm_cfft_radix4by2_q31 ( p1, L, S->pTwiddle );
break;
}
}
if ( bitReverseFlag )
arm_bitreversal_32 ((uint32_t*) p1, S->bitRevLength, S->pBitRevTable);
}
/**
@} end of ComplexFFT group
*/
void arm_cfft_radix4by2_q31(
q31_t * pSrc,
uint32_t fftLen,
const q31_t * pCoef)
{
uint32_t i, l;
uint32_t n2;
q31_t xt, yt, cosVal, sinVal;
q31_t p0, p1;
n2 = fftLen >> 1U;
for (i = 0; i < n2; i++)
{
cosVal = pCoef[2 * i];
sinVal = pCoef[2 * i + 1];
l = i + n2;
xt = (pSrc[2 * i] >> 2U) - (pSrc[2 * l] >> 2U);
pSrc[2 * i] = (pSrc[2 * i] >> 2U) + (pSrc[2 * l] >> 2U);
yt = (pSrc[2 * i + 1] >> 2U) - (pSrc[2 * l + 1] >> 2U);
pSrc[2 * i + 1] = (pSrc[2 * l + 1] >> 2U) + (pSrc[2 * i + 1] >> 2U);
mult_32x32_keep32_R(p0, xt, cosVal);
mult_32x32_keep32_R(p1, yt, cosVal);
multAcc_32x32_keep32_R(p0, yt, sinVal);
multSub_32x32_keep32_R(p1, xt, sinVal);
pSrc[2 * l] = p0 << 1;
pSrc[2 * l + 1] = p1 << 1;
}
/* first col */
arm_radix4_butterfly_q31 (pSrc, n2, (q31_t*)pCoef, 2U);
/* second col */
arm_radix4_butterfly_q31 (pSrc + fftLen, n2, (q31_t*)pCoef, 2U);
n2 = fftLen >> 1U;
for (i = 0; i < n2; i++)
{
p0 = pSrc[4 * i + 0];
p1 = pSrc[4 * i + 1];
xt = pSrc[4 * i + 2];
yt = pSrc[4 * i + 3];
p0 <<= 1U;
p1 <<= 1U;
xt <<= 1U;
yt <<= 1U;
pSrc[4 * i + 0] = p0;
pSrc[4 * i + 1] = p1;
pSrc[4 * i + 2] = xt;
pSrc[4 * i + 3] = yt;
}
}
void arm_cfft_radix4by2_inverse_q31(
q31_t * pSrc,
uint32_t fftLen,
const q31_t * pCoef)
{
uint32_t i, l;
uint32_t n2;
q31_t xt, yt, cosVal, sinVal;
q31_t p0, p1;
n2 = fftLen >> 1U;
for (i = 0; i < n2; i++)
{
cosVal = pCoef[2 * i];
sinVal = pCoef[2 * i + 1];
l = i + n2;
xt = (pSrc[2 * i] >> 2U) - (pSrc[2 * l] >> 2U);
pSrc[2 * i] = (pSrc[2 * i] >> 2U) + (pSrc[2 * l] >> 2U);
yt = (pSrc[2 * i + 1] >> 2U) - (pSrc[2 * l + 1] >> 2U);
pSrc[2 * i + 1] = (pSrc[2 * l + 1] >> 2U) + (pSrc[2 * i + 1] >> 2U);
mult_32x32_keep32_R(p0, xt, cosVal);
mult_32x32_keep32_R(p1, yt, cosVal);
multSub_32x32_keep32_R(p0, yt, sinVal);
multAcc_32x32_keep32_R(p1, xt, sinVal);
pSrc[2 * l] = p0 << 1U;
pSrc[2 * l + 1] = p1 << 1U;
}
/* first col */
arm_radix4_butterfly_inverse_q31( pSrc, n2, (q31_t*)pCoef, 2U);
/* second col */
arm_radix4_butterfly_inverse_q31( pSrc + fftLen, n2, (q31_t*)pCoef, 2U);
n2 = fftLen >> 1U;
for (i = 0; i < n2; i++)
{
p0 = pSrc[4 * i + 0];
p1 = pSrc[4 * i + 1];
xt = pSrc[4 * i + 2];
yt = pSrc[4 * i + 3];
p0 <<= 1U;
p1 <<= 1U;
xt <<= 1U;
yt <<= 1U;
pSrc[4 * i + 0] = p0;
pSrc[4 * i + 1] = p1;
pSrc[4 * i + 2] = xt;
pSrc[4 * i + 3] = yt;
}
}
#endif /* defined(ARM_MATH_MVEI) */