blob: 2b7f3def46866779c7301140c55449bb18585518 [file] [log] [blame]
#include "ref.h"
void ref_lms_f32(
const arm_lms_instance_f32 * S,
float32_t * pSrc,
float32_t * pRef,
float32_t * pOut,
float32_t * pErr,
uint32_t blockSize)
{
float32_t *pState = S->pState; /* State pointer */
float32_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
float32_t *pStateCurnt; /* Points to the current sample of the state */
float32_t mu = S->mu; /* Adaptive factor */
uint32_t numTaps = S->numTaps; /* Number of filter coefficients in the filter */
uint32_t i, blkCnt; /* Loop counters */
float32_t sum, e, d; /* accumulator, error, reference data sample */
float32_t w = 0.0f; /* weight factor */
e = 0.0f;
d = 0.0f;
/* S->pState points to state array which contains previous frame (numTaps - 1) samples */
/* pStateCurnt points to the location where the new input data should be written */
pStateCurnt = &(S->pState[numTaps - 1U]);
blkCnt = blockSize;
while (blkCnt > 0U)
{
/* Copy the new input sample into the state buffer */
*pStateCurnt++ = *pSrc++;
/* Set the accumulator to zero */
sum = 0.0f;
for(i=0;i<numTaps;i++)
{ /* Perform the multiply-accumulate */
sum += pState[i] * pCoeffs[i];
}
/* The result is stored in the destination buffer. */
*pOut++ = sum;
/* Compute and store error */
d = *pRef++;
e = d - sum;
*pErr++ = e;
/* Weighting factor for the LMS version */
w = e * mu;
for(i=0;i<numTaps;i++)
{ /* Perform the multiply-accumulate */
pCoeffs[i] += w * pState[i];
}
/* Advance state pointer by 1 for the next sample */
pState++;
/* Decrement the loop counter */
blkCnt--;
}
/* Processing is complete. Now copy the last numTaps - 1 samples to the
* start of the state buffer. This prepares the state buffer for the
* next function call. */
for(i=0;i<numTaps-1;i++)
{
S->pState[i] = pState[i];
}
}
void ref_lms_norm_f32(
arm_lms_norm_instance_f32 * S,
float32_t * pSrc,
float32_t * pRef,
float32_t * pOut,
float32_t * pErr,
uint32_t blockSize)
{
float32_t *pState = S->pState; /* State pointer */
float32_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
float32_t *pStateCurnt; /* Points to the current sample of the state */
float32_t mu = S->mu; /* Adaptive factor */
uint32_t numTaps = S->numTaps; /* Number of filter coefficients in the filter */
uint32_t i, blkCnt; /* Loop counters */
float32_t energy; /* Energy of the input */
float32_t sum, e, d; /* accumulator, error, reference data sample */
float32_t w, x0, in; /* weight factor, temporary variable to hold input sample and state */
/* Initializations of error, difference, Coefficient update */
e = 0.0f;
d = 0.0f;
w = 0.0f;
energy = S->energy;
x0 = S->x0;
/* S->pState points to buffer which contains previous frame (numTaps - 1) samples */
/* pStateCurnt points to the location where the new input data should be written */
pStateCurnt = &(S->pState[numTaps - 1U]);
for(blkCnt = blockSize; blkCnt > 0U; blkCnt--)
{
/* Copy the new input sample into the state buffer */
*pStateCurnt++ = *pSrc;
/* Read the sample from input buffer */
in = *pSrc++;
/* Update the energy calculation */
energy -= x0 * x0;
energy += in * in;
/* Set the accumulator to zero */
sum = 0.0f;
for(i=0;i<numTaps;i++)
{ /* Perform the multiply-accumulate */
sum += pState[i] * pCoeffs[i];
}
/* The result in the accumulator is stored in the destination buffer. */
*pOut++ = sum;
/* Compute and store error */
d = *pRef++;
e = d - sum;
*pErr++ = e;
/* Calculation of Weighting factor for updating filter coefficients */
/* epsilon value 0.000000119209289f */
w = e * mu / (energy + 0.000000119209289f);
for(i=0;i<numTaps;i++)
{
/* Perform the multiply-accumulate */
pCoeffs[i] += w * pState[i];
}
x0 = *pState;
/* Advance state pointer by 1 for the next sample */
pState++;
}
S->energy = energy;
S->x0 = x0;
/* Processing is complete. Now copy the last numTaps - 1 samples to the
* start of the state buffer. This prepares the state buffer for the
* next function call. */
for(i=0;i<numTaps-1;i++)
{
S->pState[i] = pState[i];
}
}
void ref_lms_q31(
const arm_lms_instance_q31 * S,
q31_t * pSrc,
q31_t * pRef,
q31_t * pOut,
q31_t * pErr,
uint32_t blockSize)
{
q31_t *pState = S->pState; /* State pointer */
uint32_t numTaps = S->numTaps; /* Number of filter coefficients in the filter */
q31_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
q31_t *pStateCurnt; /* Points to the current sample of the state */
q31_t mu = S->mu; /* Adaptive factor */
q31_t *px; /* Temporary pointer for state */
q31_t *pb; /* Temporary pointer for coefficient buffer */
uint32_t tapCnt, blkCnt; /* Loop counters */
q63_t acc; /* Accumulator */
q31_t e = 0; /* error of data sample */
q31_t alpha; /* Intermediate constant for taps update */
q31_t coef; /* Temporary variable for coef */
q31_t acc_l, acc_h; /* temporary input */
uint32_t uShift = (uint32_t)S->postShift + 1;
uint32_t lShift = 32U - uShift; /* Shift to be applied to the output */
/* S->pState points to buffer which contains previous frame (numTaps - 1) samples */
/* pStateCurnt points to the location where the new input data should be written */
pStateCurnt = &(S->pState[(numTaps - 1U)]);
for(blkCnt = blockSize; blkCnt > 0U; blkCnt--)
{
/* Copy the new input sample into the state buffer */
*pStateCurnt++ = *pSrc++;
/* Initialize pState pointer */
px = pState;
/* Initialize pCoeffs pointer */
pb = pCoeffs;
/* Set the accumulator to zero */
acc = 0;
/* Loop over numTaps number of values */
tapCnt = numTaps;
while (tapCnt > 0U)
{
/* Perform the multiply-accumulate */
acc += (q63_t)(*px++) * (*pb++);
/* Decrement the loop counter */
tapCnt--;
}
/* Converting the result to 1.31 format */
/* Store the result from accumulator into the destination buffer. */
/* Calc lower part of acc */
acc_l = acc & 0xffffffff;
/* Calc upper part of acc */
acc_h = (acc >> 32) & 0xffffffff;
acc = (uint32_t)acc_l >> lShift | acc_h << uShift;
*pOut++ = (q31_t)acc;
/* Compute and store error */
e = *pRef++ - (q31_t)acc;
*pErr++ = (q31_t)e;
/* Weighting factor for the LMS version */
alpha = (q31_t)(((q63_t)e * mu) >> 31);
/* Initialize pState pointer */
/* Advance state pointer by 1 for the next sample */
px = pState++;
/* Initialize pCoeffs pointer */
pb = pCoeffs;
/* Loop over numTaps number of values */
tapCnt = numTaps;
while (tapCnt > 0U)
{
/* Perform the multiply-accumulate */
coef = (q31_t)(((q63_t) alpha * (*px++)) >> 32);
*pb = ref_sat_q31((q63_t)*pb + (coef << 1));
pb++;
/* Decrement the loop counter */
tapCnt--;
}
}
/* Processing is complete. Now copy the last numTaps - 1 samples to the
start of the state buffer. This prepares the state buffer for the
next function call. */
/* Points to the start of the pState buffer */
pStateCurnt = S->pState;
/* Copy (numTaps - 1U) samples */
tapCnt = numTaps - 1;
/* Copy the data */
while (tapCnt > 0U)
{
*pStateCurnt++ = *pState++;
/* Decrement the loop counter */
tapCnt--;
}
}
void ref_lms_norm_q31(
arm_lms_norm_instance_q31 * S,
q31_t * pSrc,
q31_t * pRef,
q31_t * pOut,
q31_t * pErr,
uint32_t blockSize)
{
q31_t *pState = S->pState; /* State pointer */
q31_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
q31_t *pStateCurnt; /* Points to the current sample of the state */
q31_t *px, *pb; /* Temporary pointers for state and coefficient buffers */
q31_t mu = S->mu; /* Adaptive factor */
uint32_t numTaps = S->numTaps; /* Number of filter coefficients in the filter */
uint32_t tapCnt, blkCnt; /* Loop counters */
q63_t energy; /* Energy of the input */
q63_t acc; /* Accumulator */
q31_t e = 0, d = 0; /* error, reference data sample */
q31_t w = 0, in; /* weight factor and state */
q31_t x0; /* temporary variable to hold input sample */
q63_t errorXmu; /* Temporary variables to store error and mu product and reciprocal of energy */
q31_t coef; /* Temporary variable for coef */
q31_t acc_l, acc_h; /* temporary input */
uint32_t uShift = ((uint32_t) S->postShift + 1U);
uint32_t lShift = 32U - uShift; /* Shift to be applied to the output */
energy = S->energy;
x0 = S->x0;
/* S->pState points to buffer which contains previous frame (numTaps - 1) samples */
/* pStateCurnt points to the location where the new input data should be written */
pStateCurnt = &(S->pState[(numTaps - 1U)]);
for(blkCnt = blockSize; blkCnt > 0U; blkCnt--)
{
/* Copy the new input sample into the state buffer */
*pStateCurnt++ = *pSrc;
/* Initialize pState pointer */
px = pState;
/* Initialize pCoeffs pointer */
pb = pCoeffs;
/* Read the sample from input buffer */
in = *pSrc++;
/* Update the energy calculation */
energy = (q31_t)((((q63_t)energy << 32) - (((q63_t)x0 * x0) << 1)) >> 32) & 0xffffffff;
energy = (q31_t)(((((q63_t)in * in) << 1) + ((q63_t)energy << 32)) >> 32) & 0xffffffff;
/* Set the accumulator to zero */
acc = 0;
/* Loop over numTaps number of values */
tapCnt = numTaps;
while (tapCnt > 0U)
{
/* Perform the multiply-accumulate */
acc += ((q63_t) (*px++)) * (*pb++);
/* Decrement the loop counter */
tapCnt--;
}
/* Converting the result to 1.31 format */
/* Calc lower part of acc */
acc_l = acc & 0xffffffff;
/* Calc upper part of acc */
acc_h = (acc >> 32) & 0xffffffff;
acc = (uint32_t)acc_l >> lShift | acc_h << uShift;
/* Store the result from accumulator into the destination buffer. */
*pOut++ = (q31_t)acc;
/* Compute and store error */
d = *pRef++;
e = d - (q31_t)acc;
*pErr++ = e;
/* Calculation of product of (e * mu) */
errorXmu = (q63_t)e * mu;
/* Weighting factor for the normalized version */
w = ref_sat_q31(errorXmu / (energy + DELTA_Q31));
/* Initialize pState pointer */
px = pState;
/* Initialize coeff pointer */
pb = pCoeffs;
/* Loop over numTaps number of values */
tapCnt = numTaps;
while (tapCnt > 0U)
{
/* Perform the multiply-accumulate */
/* coef is in 2.30 format */
coef = (q31_t)(((q63_t)w * (*px++)) >> 32);
/* get coef in 1.31 format by left shifting */
*pb = ref_sat_q31((q63_t)*pb + (coef << 1U));
/* update coefficient buffer to next coefficient */
pb++;
/* Decrement the loop counter */
tapCnt--;
}
/* Read the sample from state buffer */
x0 = *pState;
/* Advance state pointer by 1 for the next sample */
pState++;
}
/* Save energy and x0 values for the next frame */
S->energy = (q31_t)energy;
S->x0 = x0;
/* Processing is complete. Now copy the last numTaps - 1 samples to the
start of the state buffer. This prepares the state buffer for the
next function call. */
/* Points to the start of the pState buffer */
pStateCurnt = S->pState;
/* Loop for (numTaps - 1U) samples copy */
tapCnt = numTaps - 1;
/* Copy the remaining q31_t data */
while (tapCnt > 0U)
{
*pStateCurnt++ = *pState++;
/* Decrement the loop counter */
tapCnt--;
}
}
void ref_lms_q15(
const arm_lms_instance_q15 * S,
q15_t * pSrc,
q15_t * pRef,
q15_t * pOut,
q15_t * pErr,
uint32_t blockSize)
{
q15_t *pState = S->pState; /* State pointer */
uint32_t numTaps = S->numTaps; /* Number of filter coefficients in the filter */
q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
q15_t *pStateCurnt; /* Points to the current sample of the state */
q15_t mu = S->mu; /* Adaptive factor */
q15_t *px; /* Temporary pointer for state */
q15_t *pb; /* Temporary pointer for coefficient buffer */
uint32_t tapCnt, blkCnt; /* Loop counters */
q63_t acc; /* Accumulator */
q15_t e = 0; /* error of data sample */
q15_t alpha; /* Intermediate constant for taps update */
q31_t coef; /* Teporary variable for coefficient */
q31_t acc_l, acc_h;
int32_t lShift = 15 - (int32_t)S->postShift; /* Post shift */
int32_t uShift = 32 - lShift;
/* S->pState points to buffer which contains previous frame (numTaps - 1) samples */
/* pStateCurnt points to the location where the new input data should be written */
pStateCurnt = &(S->pState[(numTaps - 1U)]);
for(blkCnt = blockSize; blkCnt > 0U; blkCnt--)
{
/* Copy the new input sample into the state buffer */
*pStateCurnt++ = *pSrc++;
/* Initialize pState pointer */
px = pState;
/* Initialize pCoeffs pointer */
pb = pCoeffs;
/* Set the accumulator to zero */
acc = 0;
/* Loop over numTaps number of values */
tapCnt = numTaps;
while (tapCnt > 0U)
{
/* Perform the multiply-accumulate */
acc += (q63_t)((q31_t)(*px++) * (*pb++));
/* Decrement the loop counter */
tapCnt--;
}
/* Calc lower part of acc */
acc_l = acc & 0xffffffff;
/* Calc upper part of acc */
acc_h = (acc >> 32) & 0xffffffff;
/* Apply shift for lower part of acc and upper part of acc */
acc = (uint32_t)acc_l >> lShift | acc_h << uShift;
/* Converting the result to 1.15 format and saturate the output */
acc = ref_sat_q15(acc);
/* Store the result from accumulator into the destination buffer. */
*pOut++ = (q15_t)acc;
/* Compute and store error */
e = *pRef++ - (q15_t)acc;
*pErr++ = (q15_t)e;
/* Compute alpha i.e. intermediate constant for taps update */
alpha = (q15_t)(((q31_t)e * mu) >> 15);
/* Initialize pState pointer */
/* Advance state pointer by 1 for the next sample */
px = pState++;
/* Initialize pCoeffs pointer */
pb = pCoeffs;
/* Loop over numTaps number of values */
tapCnt = numTaps;
while (tapCnt > 0U)
{
/* Perform the multiply-accumulate */
coef = (q31_t) * pb + (((q31_t) alpha * (*px++)) >> 15);
*pb++ = (q15_t) ref_sat_q15(coef);
/* Decrement the loop counter */
tapCnt--;
}
}
/* Processing is complete. Now copy the last numTaps - 1 samples to the
start of the state buffer. This prepares the state buffer for the
next function call. */
/* Points to the start of the pState buffer */
pStateCurnt = S->pState;
/* Copy (numTaps - 1U) samples */
tapCnt = numTaps - 1;
/* Copy the data */
while (tapCnt > 0U)
{
*pStateCurnt++ = *pState++;
/* Decrement the loop counter */
tapCnt--;
}
}
void ref_lms_norm_q15(
arm_lms_norm_instance_q15 * S,
q15_t * pSrc,
q15_t * pRef,
q15_t * pOut,
q15_t * pErr,
uint32_t blockSize)
{
q15_t *pState = S->pState; /* State pointer */
q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
q15_t *pStateCurnt; /* Points to the current sample of the state */
q15_t *px, *pb; /* Temporary pointers for state and coefficient buffers */
q15_t mu = S->mu; /* Adaptive factor */
uint32_t numTaps = S->numTaps; /* Number of filter coefficients in the filter */
uint32_t tapCnt, blkCnt; /* Loop counters */
q31_t energy; /* Energy of the input */
q63_t acc; /* Accumulator */
q15_t e = 0, d = 0; /* error, reference data sample */
q15_t w = 0, in; /* weight factor and state */
q15_t x0; /* temporary variable to hold input sample */
q15_t errorXmu, oneByEnergy; /* Temporary variables to store error and mu product and reciprocal of energy */
//q31_t errorXmu; /* Temporary variables to store error and mu product and reciprocal of energy */
q15_t postShift; /* Post shift to be applied to weight after reciprocal calculation */
q31_t coef; /* Teporary variable for coefficient */
q31_t acc_l, acc_h;
int32_t lShift = 15 - (int32_t)S->postShift; /* Post shift */
int32_t uShift = 32 - lShift;
energy = S->energy;
x0 = S->x0;
/* S->pState points to buffer which contains previous frame (numTaps - 1) samples */
/* pStateCurnt points to the location where the new input data should be written */
pStateCurnt = &(S->pState[(numTaps - 1U)]);
for(blkCnt = blockSize; blkCnt > 0U; blkCnt--)
{
/* Copy the new input sample into the state buffer */
*pStateCurnt++ = *pSrc;
/* Initialize pState pointer */
px = pState;
/* Initialize pCoeffs pointer */
pb = pCoeffs;
/* Read the sample from input buffer */
in = *pSrc++;
/* Update the energy calculation */
energy -= (((q31_t)x0 * x0) >> 15) & 0xffff;
energy += (((q31_t)in * in) >> 15) & 0xffff;
/* Set the accumulator to zero */
acc = 0;
/* Loop over numTaps number of values */
tapCnt = numTaps;
while (tapCnt > 0U)
{
/* Perform the multiply-accumulate */
acc += (q31_t)*px++ * (*pb++);
/* Decrement the loop counter */
tapCnt--;
}
/* Calc lower part of acc */
acc_l = acc & 0xffffffff;
/* Calc upper part of acc */
acc_h = (acc >> 32) & 0xffffffff;
/* Apply shift for lower part of acc and upper part of acc */
acc = (uint32_t) acc_l >> lShift | acc_h << uShift;
/* Converting the result to 1.15 format and saturate the output */
acc = ref_sat_q15(acc);
/* Store the result from accumulator into the destination buffer. */
*pOut++ = (q15_t) acc;
/* Compute and store error */
d = *pRef++;
e = d - (q15_t) acc;
*pErr++ = e;
#if 0
/* Calculation of e * mu value */
errorXmu = (q31_t) e * mu;
/* Calculation of (e * mu) /energy value */
acc = errorXmu / (energy + DELTA_Q15);
#endif
/* Calculation of 1/energy */
postShift = arm_recip_q15((q15_t) energy + DELTA_Q15,
&oneByEnergy, S->recipTable);
/* Calculation of e * mu value */
errorXmu = (q15_t) (((q31_t) e * mu) >> 15);
/* Calculation of (e * mu) * (1/energy) value */
acc = (((q31_t) errorXmu * oneByEnergy) >> (15 - postShift));
/* Weighting factor for the normalized version */
w = ref_sat_q15((q31_t)acc);
/* Initialize pState pointer */
px = pState;
/* Initialize coeff pointer */
pb = pCoeffs;
/* Loop over numTaps number of values */
tapCnt = numTaps;
while (tapCnt > 0U)
{
/* Perform the multiply-accumulate */
coef = *pb + (((q31_t)w * (*px++)) >> 15);
*pb++ = ref_sat_q15(coef);
/* Decrement the loop counter */
tapCnt--;
}
/* Read the sample from state buffer */
x0 = *pState;
/* Advance state pointer by 1 for the next sample */
pState = pState + 1U;
}
/* Save energy and x0 values for the next frame */
S->energy = (q15_t)energy;
S->x0 = x0;
/* Processing is complete. Now copy the last numTaps - 1 samples to the
satrt of the state buffer. This prepares the state buffer for the
next function call. */
/* Points to the start of the pState buffer */
pStateCurnt = S->pState;
/* copy (numTaps - 1U) data */
tapCnt = numTaps - 1;
/* copy data */
while (tapCnt > 0U)
{
*pStateCurnt++ = *pState++;
/* Decrement the loop counter */
tapCnt--;
}
}