blob: d6a8ca33aebab3feadf4e9b64ef9c86dda4a6884 [file] [log] [blame]
/* ----------------------------------------------------------------------
* Project: CMSIS DSP Library
* Title: arm_fir_interpolate_q31.c
* Description: Q31 FIR interpolation
*
* $Date: 18. March 2019
* $Revision: V1.6.0
*
* Target Processor: Cortex-M cores
* -------------------------------------------------------------------- */
/*
* Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "arm_math.h"
/**
@ingroup groupFilters
*/
/**
@addtogroup FIR_Interpolate
@{
*/
/**
@brief Processing function for the Q31 FIR interpolator.
@param[in] S points to an instance of the Q31 FIR interpolator structure
@param[in] pSrc points to the block of input data
@param[out] pDst points to the block of output data
@param[in] blockSize number of samples to process
@return none
@par Scaling and Overflow Behavior
The function is implemented using an internal 64-bit accumulator.
The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit.
Thus, if the accumulator result overflows it wraps around rather than clip.
In order to avoid overflows completely the input signal must be scaled down by <code>1/(numTaps/L)</code>.
since <code>numTaps/L</code> additions occur per output sample.
After all multiply-accumulates are performed, the 2.62 accumulator is truncated to 1.32 format and then saturated to 1.31 format.
*/
void arm_fir_interpolate_q31(
const arm_fir_interpolate_instance_q31 * S,
const q31_t * pSrc,
q31_t * pDst,
uint32_t blockSize)
{
#if (1)
//#if !defined(ARM_MATH_CM0_FAMILY)
q31_t *pState = S->pState; /* State pointer */
const q31_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
q31_t *pStateCur; /* Points to the current sample of the state */
q31_t *ptr1; /* Temporary pointer for state buffer */
const q31_t *ptr2; /* Temporary pointer for coefficient buffer */
q63_t sum0; /* Accumulators */
uint32_t i, blkCnt, tapCnt; /* Loop counters */
uint32_t phaseLen = S->phaseLength; /* Length of each polyphase filter component */
uint32_t j;
#if defined (ARM_MATH_LOOPUNROLL)
q63_t acc0, acc1, acc2, acc3;
q31_t x0, x1, x2, x3;
q31_t c0, c1, c2, c3;
#endif
/* S->pState buffer contains previous frame (phaseLen - 1) samples */
/* pStateCur points to the location where the new input data should be written */
pStateCur = S->pState + (phaseLen - 1U);
#if defined (ARM_MATH_LOOPUNROLL)
/* Loop unrolling: Compute 4 outputs at a time */
blkCnt = blockSize >> 2U;
while (blkCnt > 0U)
{
/* Copy new input sample into the state buffer */
*pStateCur++ = *pSrc++;
*pStateCur++ = *pSrc++;
*pStateCur++ = *pSrc++;
*pStateCur++ = *pSrc++;
/* Address modifier index of coefficient buffer */
j = 1U;
/* Loop over the Interpolation factor. */
i = (S->L);
while (i > 0U)
{
/* Set accumulator to zero */
acc0 = 0;
acc1 = 0;
acc2 = 0;
acc3 = 0;
/* Initialize state pointer */
ptr1 = pState;
/* Initialize coefficient pointer */
ptr2 = pCoeffs + (S->L - j);
/* Loop over the polyPhase length. Unroll by a factor of 4.
Repeat until we've computed numTaps-(4*S->L) coefficients. */
tapCnt = phaseLen >> 2U;
x0 = *(ptr1++);
x1 = *(ptr1++);
x2 = *(ptr1++);
while (tapCnt > 0U)
{
/* Read the input sample */
x3 = *(ptr1++);
/* Read the coefficient */
c0 = *(ptr2);
/* Perform the multiply-accumulate */
acc0 += (q63_t) x0 * c0;
acc1 += (q63_t) x1 * c0;
acc2 += (q63_t) x2 * c0;
acc3 += (q63_t) x3 * c0;
/* Read the coefficient */
c1 = *(ptr2 + S->L);
/* Read the input sample */
x0 = *(ptr1++);
/* Perform the multiply-accumulate */
acc0 += (q63_t) x1 * c1;
acc1 += (q63_t) x2 * c1;
acc2 += (q63_t) x3 * c1;
acc3 += (q63_t) x0 * c1;
/* Read the coefficient */
c2 = *(ptr2 + S->L * 2);
/* Read the input sample */
x1 = *(ptr1++);
/* Perform the multiply-accumulate */
acc0 += (q63_t) x2 * c2;
acc1 += (q63_t) x3 * c2;
acc2 += (q63_t) x0 * c2;
acc3 += (q63_t) x1 * c2;
/* Read the coefficient */
c3 = *(ptr2 + S->L * 3);
/* Read the input sample */
x2 = *(ptr1++);
/* Perform the multiply-accumulate */
acc0 += (q63_t) x3 * c3;
acc1 += (q63_t) x0 * c3;
acc2 += (q63_t) x1 * c3;
acc3 += (q63_t) x2 * c3;
/* Upsampling is done by stuffing L-1 zeros between each sample.
* So instead of multiplying zeros with coefficients,
* Increment the coefficient pointer by interpolation factor times. */
ptr2 += 4 * S->L;
/* Decrement loop counter */
tapCnt--;
}
/* If the polyPhase length is not a multiple of 4, compute the remaining filter taps */
tapCnt = phaseLen % 0x4U;
while (tapCnt > 0U)
{
/* Read the input sample */
x3 = *(ptr1++);
/* Read the coefficient */
c0 = *(ptr2);
/* Perform the multiply-accumulate */
acc0 += (q63_t) x0 * c0;
acc1 += (q63_t) x1 * c0;
acc2 += (q63_t) x2 * c0;
acc3 += (q63_t) x3 * c0;
/* Increment the coefficient pointer by interpolation factor times. */
ptr2 += S->L;
/* update states for next sample processing */
x0 = x1;
x1 = x2;
x2 = x3;
/* Decrement loop counter */
tapCnt--;
}
/* The result is in the accumulator, store in the destination buffer. */
*(pDst ) = (q31_t) (acc0 >> 31);
*(pDst + S->L) = (q31_t) (acc1 >> 31);
*(pDst + 2 * S->L) = (q31_t) (acc2 >> 31);
*(pDst + 3 * S->L) = (q31_t) (acc3 >> 31);
pDst++;
/* Increment the address modifier index of coefficient buffer */
j++;
/* Decrement loop counter */
i--;
}
/* Advance the state pointer by 1
* to process the next group of interpolation factor number samples */
pState = pState + 4;
pDst += S->L * 3;
/* Decrement loop counter */
blkCnt--;
}
/* Loop unrolling: Compute remaining outputs */
blkCnt = blockSize % 0x4U;
#else
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
#endif /* #if defined (ARM_MATH_LOOPUNROLL) */
while (blkCnt > 0U)
{
/* Copy new input sample into the state buffer */
*pStateCur++ = *pSrc++;
/* Address modifier index of coefficient buffer */
j = 1U;
/* Loop over the Interpolation factor. */
i = S->L;
while (i > 0U)
{
/* Set accumulator to zero */
sum0 = 0;
/* Initialize state pointer */
ptr1 = pState;
/* Initialize coefficient pointer */
ptr2 = pCoeffs + (S->L - j);
/* Loop over the polyPhase length.
Repeat until we've computed numTaps-(4*S->L) coefficients. */
#if defined (ARM_MATH_LOOPUNROLL)
/* Loop unrolling: Compute 4 outputs at a time */
tapCnt = phaseLen >> 2U;
while (tapCnt > 0U)
{
/* Perform the multiply-accumulate */
sum0 += (q63_t) *ptr1++ * *ptr2;
/* Upsampling is done by stuffing L-1 zeros between each sample.
* So instead of multiplying zeros with coefficients,
* Increment the coefficient pointer by interpolation factor times. */
ptr2 += S->L;
sum0 += (q63_t) *ptr1++ * *ptr2;
ptr2 += S->L;
sum0 += (q63_t) *ptr1++ * *ptr2;
ptr2 += S->L;
sum0 += (q63_t) *ptr1++ * *ptr2;
ptr2 += S->L;
/* Decrement loop counter */
tapCnt--;
}
/* Loop unrolling: Compute remaining outputs */
tapCnt = phaseLen % 0x4U;
#else
/* Initialize tapCnt with number of samples */
tapCnt = phaseLen;
#endif /* #if defined (ARM_MATH_LOOPUNROLL) */
while (tapCnt > 0U)
{
/* Perform the multiply-accumulate */
sum0 += (q63_t) *ptr1++ * *ptr2;
/* Upsampling is done by stuffing L-1 zeros between each sample.
* So instead of multiplying zeros with coefficients,
* Increment the coefficient pointer by interpolation factor times. */
ptr2 += S->L;
/* Decrement loop counter */
tapCnt--;
}
/* The result is in the accumulator, store in the destination buffer. */
*pDst++ = (q31_t) (sum0 >> 31);
/* Increment the address modifier index of coefficient buffer */
j++;
/* Decrement the loop counter */
i--;
}
/* Advance the state pointer by 1
* to process the next group of interpolation factor number samples */
pState = pState + 1;
/* Decrement the loop counter */
blkCnt--;
}
/* Processing is complete.
Now copy the last phaseLen - 1 samples to the satrt of the state buffer.
This prepares the state buffer for the next function call. */
/* Points to the start of the state buffer */
pStateCur = S->pState;
#if defined (ARM_MATH_LOOPUNROLL)
/* Loop unrolling: Compute 4 outputs at a time */
tapCnt = (phaseLen - 1U) >> 2U;
/* copy data */
while (tapCnt > 0U)
{
*pStateCur++ = *pState++;
*pStateCur++ = *pState++;
*pStateCur++ = *pState++;
*pStateCur++ = *pState++;
/* Decrement loop counter */
tapCnt--;
}
/* Loop unrolling: Compute remaining outputs */
tapCnt = (phaseLen - 1U) % 0x04U;
#else
/* Initialize tapCnt with number of samples */
tapCnt = (phaseLen - 1U);
#endif /* #if defined (ARM_MATH_LOOPUNROLL) */
/* Copy data */
while (tapCnt > 0U)
{
*pStateCur++ = *pState++;
/* Decrement loop counter */
tapCnt--;
}
#else
/* alternate version for CM0_FAMILY */
q31_t *pState = S->pState; /* State pointer */
const q31_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
q31_t *pStateCur; /* Points to the current sample of the state */
q31_t *ptr1; /* Temporary pointer for state buffer */
const q31_t *ptr2; /* Temporary pointer for coefficient buffer */
q63_t sum0; /* Accumulators */
uint32_t i, blkCnt, tapCnt; /* Loop counters */
uint32_t phaseLen = S->phaseLength; /* Length of each polyphase filter component */
/* S->pState buffer contains previous frame (phaseLen - 1) samples */
/* pStateCur points to the location where the new input data should be written */
pStateCur = S->pState + (phaseLen - 1U);
/* Total number of intput samples */
blkCnt = blockSize;
/* Loop over the blockSize. */
while (blkCnt > 0U)
{
/* Copy new input sample into the state buffer */
*pStateCur++ = *pSrc++;
/* Loop over the Interpolation factor. */
i = S->L;
while (i > 0U)
{
/* Set accumulator to zero */
sum0 = 0;
/* Initialize state pointer */
ptr1 = pState;
/* Initialize coefficient pointer */
ptr2 = pCoeffs + (i - 1U);
/* Loop over the polyPhase length */
tapCnt = phaseLen;
while (tapCnt > 0U)
{
/* Perform the multiply-accumulate */
sum0 += ((q63_t) *ptr1++ * *ptr2);
/* Increment the coefficient pointer by interpolation factor times. */
ptr2 += S->L;
/* Decrement the loop counter */
tapCnt--;
}
/* The result is in the accumulator, store in the destination buffer. */
*pDst++ = (q31_t) (sum0 >> 31);
/* Decrement loop counter */
i--;
}
/* Advance the state pointer by 1
* to process the next group of interpolation factor number samples */
pState = pState + 1;
/* Decrement loop counter */
blkCnt--;
}
/* Processing is complete.
** Now copy the last phaseLen - 1 samples to the start of the state buffer.
** This prepares the state buffer for the next function call. */
/* Points to the start of the state buffer */
pStateCur = S->pState;
tapCnt = phaseLen - 1U;
/* Copy data */
while (tapCnt > 0U)
{
*pStateCur++ = *pState++;
/* Decrement loop counter */
tapCnt--;
}
#endif /* #if !defined(ARM_MATH_CM0_FAMILY) */
}
/**
@} end of FIR_Interpolate group
*/