blob: 4c4e849f7953afc4f72efddd5de621c28f66599a [file] [log] [blame]
/* ----------------------------------------------------------------------
* Project: CMSIS DSP Library
* Title: arm_fir_lattice_q15.c
* Description: Q15 FIR lattice filter processing function
*
* $Date: 27. January 2017
* $Revision: V.1.5.1
*
* Target Processor: Cortex-M cores
* -------------------------------------------------------------------- */
/*
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "arm_math.h"
/**
* @ingroup groupFilters
*/
/**
* @addtogroup FIR_Lattice
* @{
*/
/**
* @brief Processing function for the Q15 FIR lattice filter.
* @param[in] *S points to an instance of the Q15 FIR lattice structure.
* @param[in] *pSrc points to the block of input data.
* @param[out] *pDst points to the block of output data
* @param[in] blockSize number of samples to process.
* @return none.
*/
void arm_fir_lattice_q15(
const arm_fir_lattice_instance_q15 * S,
q15_t * pSrc,
q15_t * pDst,
uint32_t blockSize)
{
q15_t *pState; /* State pointer */
q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
q15_t *px; /* temporary state pointer */
q15_t *pk; /* temporary coefficient pointer */
#if defined (ARM_MATH_DSP)
/* Run the below code for Cortex-M4 and Cortex-M3 */
q31_t fcurnt1, fnext1, gcurnt1 = 0, gnext1; /* temporary variables for first sample in loop unrolling */
q31_t fcurnt2, fnext2, gnext2; /* temporary variables for second sample in loop unrolling */
q31_t fcurnt3, fnext3, gnext3; /* temporary variables for third sample in loop unrolling */
q31_t fcurnt4, fnext4, gnext4; /* temporary variables for fourth sample in loop unrolling */
uint32_t numStages = S->numStages; /* Number of stages in the filter */
uint32_t blkCnt, stageCnt; /* temporary variables for counts */
pState = &S->pState[0];
blkCnt = blockSize >> 2U;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while (blkCnt > 0U)
{
/* Read two samples from input buffer */
/* f0(n) = x(n) */
fcurnt1 = *pSrc++;
fcurnt2 = *pSrc++;
/* Initialize coeff pointer */
pk = (pCoeffs);
/* Initialize state pointer */
px = pState;
/* Read g0(n-1) from state */
gcurnt1 = *px;
/* Process first sample for first tap */
/* f1(n) = f0(n) + K1 * g0(n-1) */
fnext1 = (q31_t) ((gcurnt1 * (*pk)) >> 15U) + fcurnt1;
fnext1 = __SSAT(fnext1, 16);
/* g1(n) = f0(n) * K1 + g0(n-1) */
gnext1 = (q31_t) ((fcurnt1 * (*pk)) >> 15U) + gcurnt1;
gnext1 = __SSAT(gnext1, 16);
/* Process second sample for first tap */
/* for sample 2 processing */
fnext2 = (q31_t) ((fcurnt1 * (*pk)) >> 15U) + fcurnt2;
fnext2 = __SSAT(fnext2, 16);
gnext2 = (q31_t) ((fcurnt2 * (*pk)) >> 15U) + fcurnt1;
gnext2 = __SSAT(gnext2, 16);
/* Read next two samples from input buffer */
/* f0(n+2) = x(n+2) */
fcurnt3 = *pSrc++;
fcurnt4 = *pSrc++;
/* Copy only last input samples into the state buffer
which is used for next four samples processing */
*px++ = (q15_t) fcurnt4;
/* Process third sample for first tap */
fnext3 = (q31_t) ((fcurnt2 * (*pk)) >> 15U) + fcurnt3;
fnext3 = __SSAT(fnext3, 16);
gnext3 = (q31_t) ((fcurnt3 * (*pk)) >> 15U) + fcurnt2;
gnext3 = __SSAT(gnext3, 16);
/* Process fourth sample for first tap */
fnext4 = (q31_t) ((fcurnt3 * (*pk)) >> 15U) + fcurnt4;
fnext4 = __SSAT(fnext4, 16);
gnext4 = (q31_t) ((fcurnt4 * (*pk++)) >> 15U) + fcurnt3;
gnext4 = __SSAT(gnext4, 16);
/* Update of f values for next coefficient set processing */
fcurnt1 = fnext1;
fcurnt2 = fnext2;
fcurnt3 = fnext3;
fcurnt4 = fnext4;
/* Loop unrolling. Process 4 taps at a time . */
stageCnt = (numStages - 1U) >> 2;
/* Loop over the number of taps. Unroll by a factor of 4.
** Repeat until we've computed numStages-3 coefficients. */
/* Process 2nd, 3rd, 4th and 5th taps ... here */
while (stageCnt > 0U)
{
/* Read g1(n-1), g3(n-1) .... from state */
gcurnt1 = *px;
/* save g1(n) in state buffer */
*px++ = (q15_t) gnext4;
/* Process first sample for 2nd, 6th .. tap */
/* Sample processing for K2, K6.... */
/* f1(n) = f0(n) + K1 * g0(n-1) */
fnext1 = (q31_t) ((gcurnt1 * (*pk)) >> 15U) + fcurnt1;
fnext1 = __SSAT(fnext1, 16);
/* Process second sample for 2nd, 6th .. tap */
/* for sample 2 processing */
fnext2 = (q31_t) ((gnext1 * (*pk)) >> 15U) + fcurnt2;
fnext2 = __SSAT(fnext2, 16);
/* Process third sample for 2nd, 6th .. tap */
fnext3 = (q31_t) ((gnext2 * (*pk)) >> 15U) + fcurnt3;
fnext3 = __SSAT(fnext3, 16);
/* Process fourth sample for 2nd, 6th .. tap */
/* fnext4 = fcurnt4 + (*pk) * gnext3; */
fnext4 = (q31_t) ((gnext3 * (*pk)) >> 15U) + fcurnt4;
fnext4 = __SSAT(fnext4, 16);
/* g1(n) = f0(n) * K1 + g0(n-1) */
/* Calculation of state values for next stage */
gnext4 = (q31_t) ((fcurnt4 * (*pk)) >> 15U) + gnext3;
gnext4 = __SSAT(gnext4, 16);
gnext3 = (q31_t) ((fcurnt3 * (*pk)) >> 15U) + gnext2;
gnext3 = __SSAT(gnext3, 16);
gnext2 = (q31_t) ((fcurnt2 * (*pk)) >> 15U) + gnext1;
gnext2 = __SSAT(gnext2, 16);
gnext1 = (q31_t) ((fcurnt1 * (*pk++)) >> 15U) + gcurnt1;
gnext1 = __SSAT(gnext1, 16);
/* Read g2(n-1), g4(n-1) .... from state */
gcurnt1 = *px;
/* save g1(n) in state buffer */
*px++ = (q15_t) gnext4;
/* Sample processing for K3, K7.... */
/* Process first sample for 3rd, 7th .. tap */
/* f3(n) = f2(n) + K3 * g2(n-1) */
fcurnt1 = (q31_t) ((gcurnt1 * (*pk)) >> 15U) + fnext1;
fcurnt1 = __SSAT(fcurnt1, 16);
/* Process second sample for 3rd, 7th .. tap */
fcurnt2 = (q31_t) ((gnext1 * (*pk)) >> 15U) + fnext2;
fcurnt2 = __SSAT(fcurnt2, 16);
/* Process third sample for 3rd, 7th .. tap */
fcurnt3 = (q31_t) ((gnext2 * (*pk)) >> 15U) + fnext3;
fcurnt3 = __SSAT(fcurnt3, 16);
/* Process fourth sample for 3rd, 7th .. tap */
fcurnt4 = (q31_t) ((gnext3 * (*pk)) >> 15U) + fnext4;
fcurnt4 = __SSAT(fcurnt4, 16);
/* Calculation of state values for next stage */
/* g3(n) = f2(n) * K3 + g2(n-1) */
gnext4 = (q31_t) ((fnext4 * (*pk)) >> 15U) + gnext3;
gnext4 = __SSAT(gnext4, 16);
gnext3 = (q31_t) ((fnext3 * (*pk)) >> 15U) + gnext2;
gnext3 = __SSAT(gnext3, 16);
gnext2 = (q31_t) ((fnext2 * (*pk)) >> 15U) + gnext1;
gnext2 = __SSAT(gnext2, 16);
gnext1 = (q31_t) ((fnext1 * (*pk++)) >> 15U) + gcurnt1;
gnext1 = __SSAT(gnext1, 16);
/* Read g1(n-1), g3(n-1) .... from state */
gcurnt1 = *px;
/* save g1(n) in state buffer */
*px++ = (q15_t) gnext4;
/* Sample processing for K4, K8.... */
/* Process first sample for 4th, 8th .. tap */
/* f4(n) = f3(n) + K4 * g3(n-1) */
fnext1 = (q31_t) ((gcurnt1 * (*pk)) >> 15U) + fcurnt1;
fnext1 = __SSAT(fnext1, 16);
/* Process second sample for 4th, 8th .. tap */
/* for sample 2 processing */
fnext2 = (q31_t) ((gnext1 * (*pk)) >> 15U) + fcurnt2;
fnext2 = __SSAT(fnext2, 16);
/* Process third sample for 4th, 8th .. tap */
fnext3 = (q31_t) ((gnext2 * (*pk)) >> 15U) + fcurnt3;
fnext3 = __SSAT(fnext3, 16);
/* Process fourth sample for 4th, 8th .. tap */
fnext4 = (q31_t) ((gnext3 * (*pk)) >> 15U) + fcurnt4;
fnext4 = __SSAT(fnext4, 16);
/* g4(n) = f3(n) * K4 + g3(n-1) */
/* Calculation of state values for next stage */
gnext4 = (q31_t) ((fcurnt4 * (*pk)) >> 15U) + gnext3;
gnext4 = __SSAT(gnext4, 16);
gnext3 = (q31_t) ((fcurnt3 * (*pk)) >> 15U) + gnext2;
gnext3 = __SSAT(gnext3, 16);
gnext2 = (q31_t) ((fcurnt2 * (*pk)) >> 15U) + gnext1;
gnext2 = __SSAT(gnext2, 16);
gnext1 = (q31_t) ((fcurnt1 * (*pk++)) >> 15U) + gcurnt1;
gnext1 = __SSAT(gnext1, 16);
/* Read g2(n-1), g4(n-1) .... from state */
gcurnt1 = *px;
/* save g4(n) in state buffer */
*px++ = (q15_t) gnext4;
/* Sample processing for K5, K9.... */
/* Process first sample for 5th, 9th .. tap */
/* f5(n) = f4(n) + K5 * g4(n-1) */
fcurnt1 = (q31_t) ((gcurnt1 * (*pk)) >> 15U) + fnext1;
fcurnt1 = __SSAT(fcurnt1, 16);
/* Process second sample for 5th, 9th .. tap */
fcurnt2 = (q31_t) ((gnext1 * (*pk)) >> 15U) + fnext2;
fcurnt2 = __SSAT(fcurnt2, 16);
/* Process third sample for 5th, 9th .. tap */
fcurnt3 = (q31_t) ((gnext2 * (*pk)) >> 15U) + fnext3;
fcurnt3 = __SSAT(fcurnt3, 16);
/* Process fourth sample for 5th, 9th .. tap */
fcurnt4 = (q31_t) ((gnext3 * (*pk)) >> 15U) + fnext4;
fcurnt4 = __SSAT(fcurnt4, 16);
/* Calculation of state values for next stage */
/* g5(n) = f4(n) * K5 + g4(n-1) */
gnext4 = (q31_t) ((fnext4 * (*pk)) >> 15U) + gnext3;
gnext4 = __SSAT(gnext4, 16);
gnext3 = (q31_t) ((fnext3 * (*pk)) >> 15U) + gnext2;
gnext3 = __SSAT(gnext3, 16);
gnext2 = (q31_t) ((fnext2 * (*pk)) >> 15U) + gnext1;
gnext2 = __SSAT(gnext2, 16);
gnext1 = (q31_t) ((fnext1 * (*pk++)) >> 15U) + gcurnt1;
gnext1 = __SSAT(gnext1, 16);
stageCnt--;
}
/* If the (filter length -1) is not a multiple of 4, compute the remaining filter taps */
stageCnt = (numStages - 1U) % 0x4U;
while (stageCnt > 0U)
{
gcurnt1 = *px;
/* save g value in state buffer */
*px++ = (q15_t) gnext4;
/* Process four samples for last three taps here */
fnext1 = (q31_t) ((gcurnt1 * (*pk)) >> 15U) + fcurnt1;
fnext1 = __SSAT(fnext1, 16);
fnext2 = (q31_t) ((gnext1 * (*pk)) >> 15U) + fcurnt2;
fnext2 = __SSAT(fnext2, 16);
fnext3 = (q31_t) ((gnext2 * (*pk)) >> 15U) + fcurnt3;
fnext3 = __SSAT(fnext3, 16);
fnext4 = (q31_t) ((gnext3 * (*pk)) >> 15U) + fcurnt4;
fnext4 = __SSAT(fnext4, 16);
/* g1(n) = f0(n) * K1 + g0(n-1) */
gnext4 = (q31_t) ((fcurnt4 * (*pk)) >> 15U) + gnext3;
gnext4 = __SSAT(gnext4, 16);
gnext3 = (q31_t) ((fcurnt3 * (*pk)) >> 15U) + gnext2;
gnext3 = __SSAT(gnext3, 16);
gnext2 = (q31_t) ((fcurnt2 * (*pk)) >> 15U) + gnext1;
gnext2 = __SSAT(gnext2, 16);
gnext1 = (q31_t) ((fcurnt1 * (*pk++)) >> 15U) + gcurnt1;
gnext1 = __SSAT(gnext1, 16);
/* Update of f values for next coefficient set processing */
fcurnt1 = fnext1;
fcurnt2 = fnext2;
fcurnt3 = fnext3;
fcurnt4 = fnext4;
stageCnt--;
}
/* The results in the 4 accumulators, store in the destination buffer. */
/* y(n) = fN(n) */
#ifndef ARM_MATH_BIG_ENDIAN
*__SIMD32(pDst)++ = __PKHBT(fcurnt1, fcurnt2, 16);
*__SIMD32(pDst)++ = __PKHBT(fcurnt3, fcurnt4, 16);
#else
*__SIMD32(pDst)++ = __PKHBT(fcurnt2, fcurnt1, 16);
*__SIMD32(pDst)++ = __PKHBT(fcurnt4, fcurnt3, 16);
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4U;
while (blkCnt > 0U)
{
/* f0(n) = x(n) */
fcurnt1 = *pSrc++;
/* Initialize coeff pointer */
pk = (pCoeffs);
/* Initialize state pointer */
px = pState;
/* read g2(n) from state buffer */
gcurnt1 = *px;
/* for sample 1 processing */
/* f1(n) = f0(n) + K1 * g0(n-1) */
fnext1 = (((q31_t) gcurnt1 * (*pk)) >> 15U) + fcurnt1;
fnext1 = __SSAT(fnext1, 16);
/* g1(n) = f0(n) * K1 + g0(n-1) */
gnext1 = (((q31_t) fcurnt1 * (*pk++)) >> 15U) + gcurnt1;
gnext1 = __SSAT(gnext1, 16);
/* save g1(n) in state buffer */
*px++ = (q15_t) fcurnt1;
/* f1(n) is saved in fcurnt1
for next stage processing */
fcurnt1 = fnext1;
stageCnt = (numStages - 1U);
/* stage loop */
while (stageCnt > 0U)
{
/* read g2(n) from state buffer */
gcurnt1 = *px;
/* save g1(n) in state buffer */
*px++ = (q15_t) gnext1;
/* Sample processing for K2, K3.... */
/* f2(n) = f1(n) + K2 * g1(n-1) */
fnext1 = (((q31_t) gcurnt1 * (*pk)) >> 15U) + fcurnt1;
fnext1 = __SSAT(fnext1, 16);
/* g2(n) = f1(n) * K2 + g1(n-1) */
gnext1 = (((q31_t) fcurnt1 * (*pk++)) >> 15U) + gcurnt1;
gnext1 = __SSAT(gnext1, 16);
/* f1(n) is saved in fcurnt1
for next stage processing */
fcurnt1 = fnext1;
stageCnt--;
}
/* y(n) = fN(n) */
*pDst++ = __SSAT(fcurnt1, 16);
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
q31_t fcurnt, fnext, gcurnt, gnext; /* temporary variables */
uint32_t numStages = S->numStages; /* Length of the filter */
uint32_t blkCnt, stageCnt; /* temporary variables for counts */
pState = &S->pState[0];
blkCnt = blockSize;
while (blkCnt > 0U)
{
/* f0(n) = x(n) */
fcurnt = *pSrc++;
/* Initialize coeff pointer */
pk = (pCoeffs);
/* Initialize state pointer */
px = pState;
/* read g0(n-1) from state buffer */
gcurnt = *px;
/* for sample 1 processing */
/* f1(n) = f0(n) + K1 * g0(n-1) */
fnext = ((gcurnt * (*pk)) >> 15U) + fcurnt;
fnext = __SSAT(fnext, 16);
/* g1(n) = f0(n) * K1 + g0(n-1) */
gnext = ((fcurnt * (*pk++)) >> 15U) + gcurnt;
gnext = __SSAT(gnext, 16);
/* save f0(n) in state buffer */
*px++ = (q15_t) fcurnt;
/* f1(n) is saved in fcurnt
for next stage processing */
fcurnt = fnext;
stageCnt = (numStages - 1U);
/* stage loop */
while (stageCnt > 0U)
{
/* read g1(n-1) from state buffer */
gcurnt = *px;
/* save g0(n-1) in state buffer */
*px++ = (q15_t) gnext;
/* Sample processing for K2, K3.... */
/* f2(n) = f1(n) + K2 * g1(n-1) */
fnext = ((gcurnt * (*pk)) >> 15U) + fcurnt;
fnext = __SSAT(fnext, 16);
/* g2(n) = f1(n) * K2 + g1(n-1) */
gnext = ((fcurnt * (*pk++)) >> 15U) + gcurnt;
gnext = __SSAT(gnext, 16);
/* f1(n) is saved in fcurnt
for next stage processing */
fcurnt = fnext;
stageCnt--;
}
/* y(n) = fN(n) */
*pDst++ = __SSAT(fcurnt, 16);
blkCnt--;
}
#endif /* #if defined (ARM_MATH_DSP) */
}
/**
* @} end of FIR_Lattice group
*/