blob: f58dfbd9f601fe63a66e8cf7ba9507620340eb3a [file] [log] [blame]
/* ----------------------------------------------------------------------
* Project: CMSIS DSP Library
* Title: arm_mat_solve_upper_triangular_f32.c
* Description: Solve linear system UT X = A with UT upper triangular matrix
*
* $Date: 23 April 2021
* $Revision: V1.9.0
*
* Target Processor: Cortex-M and Cortex-A cores
* -------------------------------------------------------------------- */
/*
* Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "dsp/matrix_functions.h"
/**
@ingroup groupMatrix
*/
/**
@addtogroup MatrixInv
@{
*/
/**
* @brief Solve UT . X = A where UT is an upper triangular matrix
* @param[in] ut The upper triangular matrix
* @param[in] a The matrix a
* @param[out] dst The solution X of UT . X = A
* @return The function returns ARM_MATH_SINGULAR, if the system can't be solved.
*/
#if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE)
#include "arm_helium_utils.h"
arm_status arm_mat_solve_upper_triangular_f32(
const arm_matrix_instance_f32 * ut,
const arm_matrix_instance_f32 * a,
arm_matrix_instance_f32 * dst)
{
arm_status status; /* status of matrix inverse */
#ifdef ARM_MATH_MATRIX_CHECK
/* Check for matrix mismatch condition */
if ((ut->numRows != ut->numCols) ||
(ut->numRows != a->numRows) )
{
/* Set status as ARM_MATH_SIZE_MISMATCH */
status = ARM_MATH_SIZE_MISMATCH;
}
else
#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
{
int i,j,k,n,cols;
n = dst->numRows;
cols = dst->numCols;
float32_t *pX = dst->pData;
float32_t *pUT = ut->pData;
float32_t *pA = a->pData;
float32_t *ut_row;
float32_t *a_col;
float32_t invUT;
f32x4_t vecA;
f32x4_t vecX;
for(i=n-1; i >= 0 ; i--)
{
for(j=0; j+3 < cols; j +=4)
{
vecA = vld1q_f32(&pA[i * cols + j]);
for(k=n-1; k > i; k--)
{
vecX = vld1q_f32(&pX[cols*k+j]);
vecA = vfmsq(vecA,vdupq_n_f32(pUT[n*i + k]),vecX);
}
if (pUT[n*i + i]==0.0f)
{
return(ARM_MATH_SINGULAR);
}
invUT = 1.0f / pUT[n*i + i];
vecA = vmulq(vecA,vdupq_n_f32(invUT));
vst1q(&pX[i*cols+j],vecA);
}
for(; j < cols; j ++)
{
a_col = &pA[j];
ut_row = &pUT[n*i];
float32_t tmp=a_col[i * cols];
for(k=n-1; k > i; k--)
{
tmp -= ut_row[k] * pX[cols*k+j];
}
if (ut_row[i]==0.0f)
{
return(ARM_MATH_SINGULAR);
}
tmp = tmp / ut_row[i];
pX[i*cols+j] = tmp;
}
}
status = ARM_MATH_SUCCESS;
}
/* Return to application */
return (status);
}
#else
#if defined(ARM_MATH_NEON) && !defined(ARM_MATH_AUTOVECTORIZE)
arm_status arm_mat_solve_upper_triangular_f32(
const arm_matrix_instance_f32 * ut,
const arm_matrix_instance_f32 * a,
arm_matrix_instance_f32 * dst)
{
arm_status status; /* status of matrix inverse */
#ifdef ARM_MATH_MATRIX_CHECK
/* Check for matrix mismatch condition */
if ((ut->numRows != ut->numCols) ||
(ut->numRows != a->numRows) )
{
/* Set status as ARM_MATH_SIZE_MISMATCH */
status = ARM_MATH_SIZE_MISMATCH;
}
else
#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
{
int i,j,k,n,cols;
n = dst->numRows;
cols = dst->numCols;
float32_t *pX = dst->pData;
float32_t *pUT = ut->pData;
float32_t *pA = a->pData;
float32_t *ut_row;
float32_t *a_col;
float32_t invUT;
f32x4_t vecA;
f32x4_t vecX;
for(i=n-1; i >= 0 ; i--)
{
for(j=0; j+3 < cols; j +=4)
{
vecA = vld1q_f32(&pA[i * cols + j]);
for(k=n-1; k > i; k--)
{
vecX = vld1q_f32(&pX[cols*k+j]);
vecA = vfmsq_f32(vecA,vdupq_n_f32(pUT[n*i + k]),vecX);
}
if (pUT[n*i + i]==0.0f)
{
return(ARM_MATH_SINGULAR);
}
invUT = 1.0f / pUT[n*i + i];
vecA = vmulq_f32(vecA,vdupq_n_f32(invUT));
vst1q_f32(&pX[i*cols+j],vecA);
}
for(; j < cols; j ++)
{
a_col = &pA[j];
ut_row = &pUT[n*i];
float32_t tmp=a_col[i * cols];
for(k=n-1; k > i; k--)
{
tmp -= ut_row[k] * pX[cols*k+j];
}
if (ut_row[i]==0.0f)
{
return(ARM_MATH_SINGULAR);
}
tmp = tmp / ut_row[i];
pX[i*cols+j] = tmp;
}
}
status = ARM_MATH_SUCCESS;
}
/* Return to application */
return (status);
}
#else
arm_status arm_mat_solve_upper_triangular_f32(
const arm_matrix_instance_f32 * ut,
const arm_matrix_instance_f32 * a,
arm_matrix_instance_f32 * dst)
{
arm_status status; /* status of matrix inverse */
#ifdef ARM_MATH_MATRIX_CHECK
/* Check for matrix mismatch condition */
if ((ut->numRows != ut->numCols) ||
(ut->numRows != a->numRows) )
{
/* Set status as ARM_MATH_SIZE_MISMATCH */
status = ARM_MATH_SIZE_MISMATCH;
}
else
#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
{
int i,j,k,n,cols;
float32_t *pX = dst->pData;
float32_t *pUT = ut->pData;
float32_t *pA = a->pData;
float32_t *ut_row;
float32_t *a_col;
n = dst->numRows;
cols = dst->numCols;
for(j=0; j < cols; j ++)
{
a_col = &pA[j];
for(i=n-1; i >= 0 ; i--)
{
float32_t tmp=a_col[i * cols];
ut_row = &pUT[n*i];
for(k=n-1; k > i; k--)
{
tmp -= ut_row[k] * pX[cols*k+j];
}
if (ut_row[i]==0.0f)
{
return(ARM_MATH_SINGULAR);
}
tmp = tmp / ut_row[i];
pX[i*cols+j] = tmp;
}
}
status = ARM_MATH_SUCCESS;
}
/* Return to application */
return (status);
}
#endif /* #if defined(ARM_MATH_NEON) */
#endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */
/**
@} end of MatrixInv group
*/