blob: a3edd40e1387bc6d5f2993abc63dd626ad284f57 [file] [log] [blame]
/*
* Copyright (C) 2010-2021 Arm Limited or its affiliates.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* ----------------------------------------------------------------------
* Project: CMSIS NN Library
* Title: arm_convolve_1_x_n_s8.c
* Description: s8 version of 1xN convolution using symmetric quantization.
*
* $Date: December 14, 2021
* $Revision: V.2.1.0
*
* Target Processor: Cortex-M cores
*
* -------------------------------------------------------------------- */
#include "arm_nnfunctions.h"
#include "arm_nnsupportfunctions.h"
/**
* @ingroup groupNN
*/
/**
* @addtogroup NNConv
* @{
*/
/*
* 1xN s8 convolution function.
*
* Refer header file for details.
*
*/
arm_status arm_convolve_1_x_n_s8(const cmsis_nn_context *ctx,
const cmsis_nn_conv_params *conv_params,
const cmsis_nn_per_channel_quant_params *quant_params,
const cmsis_nn_dims *input_dims,
const q7_t *input_data,
const cmsis_nn_dims *filter_dims,
const q7_t *filter_data,
const cmsis_nn_dims *bias_dims,
const int32_t *bias_data,
const cmsis_nn_dims *output_dims,
q7_t *output_data)
{
(void)bias_dims;
arm_status status = ARM_MATH_SUCCESS;
if (output_dims->w % 4 != 0)
{
status = ARM_MATH_SIZE_MISMATCH;
goto out;
}
#if defined(ARM_MATH_MVEI)
(void)ctx;
const uint16_t input_x = input_dims->w;
const uint16_t kernel_x = filter_dims->w;
const uint16_t output_x = output_dims->w;
const uint16_t output_ch = output_dims->c;
const uint16_t input_ch = input_dims->c;
const uint16_t pad_x = conv_params->padding.w;
const uint16_t stride_x = conv_params->stride.w;
const int32_t input_offset = conv_params->input_offset;
const int32_t out_offset = conv_params->output_offset;
const int32_t out_activation_min = conv_params->activation.min;
const int32_t out_activation_max = conv_params->activation.max;
int32_t *output_mult = quant_params->multiplier;
int32_t *output_shift = quant_params->shift;
for (int i_out_x = 0; i_out_x <= (output_x - 4); i_out_x += 4)
{
int32_t input_begin_idx[4];
int32_t ker_begin_idx[4];
int32_t ker_end_idx[4];
for (int i = 0; i < 4; i++)
{
const int32_t est_input_x_idx = stride_x * (i_out_x + i) - pad_x;
input_begin_idx[i] = MAX(0, est_input_x_idx);
ker_begin_idx[i] = MAX(0, -est_input_x_idx);
ker_end_idx[i] = MIN(kernel_x, input_x - est_input_x_idx);
}
if ((ker_begin_idx[0] != 0) || (ker_end_idx[3] != kernel_x))
{
for (int i_out_ch = 0; i_out_ch < output_ch; i_out_ch++)
{
int32x4_t s_offset;
int32_t acc[4];
{
int32_t sum_row[4];
(void)arm_nn_mat_mul_core_1x_s8((ker_end_idx[0] - ker_begin_idx[0]) * input_ch,
input_data + input_begin_idx[0] * input_ch,
filter_data + (input_ch * kernel_x * i_out_ch) +
(ker_begin_idx[0] * input_ch),
&sum_row[0],
&acc[0]);
(void)arm_nn_mat_mul_core_1x_s8((ker_end_idx[1] - ker_begin_idx[1]) * input_ch,
input_data + input_begin_idx[1] * input_ch,
filter_data + (input_ch * kernel_x * i_out_ch) +
(ker_begin_idx[1] * input_ch),
&sum_row[1],
&acc[1]);
(void)arm_nn_mat_mul_core_1x_s8((ker_end_idx[2] - ker_begin_idx[2]) * input_ch,
input_data + input_begin_idx[2] * input_ch,
filter_data + (input_ch * kernel_x * i_out_ch) +
(ker_begin_idx[2] * input_ch),
&sum_row[2],
&acc[2]);
(void)arm_nn_mat_mul_core_1x_s8((ker_end_idx[3] - ker_begin_idx[3]) * input_ch,
input_data + input_begin_idx[3] * input_ch,
filter_data + (input_ch * kernel_x * i_out_ch) +
(ker_begin_idx[3] * input_ch),
&sum_row[3],
&acc[3]);
s_offset = vldrwq_s32(sum_row);
}
int32x4_t res = vldrwq_s32(acc);
s_offset = vmulq_n_s32(s_offset, input_offset);
res = vaddq_s32(res, s_offset);
if (bias_data)
{
res = vaddq_n_s32(res, bias_data[i_out_ch]);
}
res = arm_requantize_mve(res, output_mult[i_out_ch], output_shift[i_out_ch]);
res = vaddq_n_s32(res, out_offset);
res = vmaxq_s32(res, vdupq_n_s32(out_activation_min));
res = vminq_s32(res, vdupq_n_s32(out_activation_max));
const uint32x4_t scatter_offset = {0, output_ch, output_ch * 2, output_ch * 3};
vstrbq_scatter_offset_s32(output_data, scatter_offset, res);
output_data++;
}
output_data += (3 * output_ch);
}
else
{
output_data = arm_nn_mat_mul_core_4x_s8(kernel_x * input_ch,
stride_x * input_ch,
input_data + input_begin_idx[0] * input_ch,
filter_data,
output_ch,
conv_params,
quant_params,
bias_data,
output_data);
}
}
#else
status = arm_convolve_s8(ctx,
conv_params,
quant_params,
input_dims,
input_data,
filter_dims,
filter_data,
bias_dims,
bias_data,
output_dims,
output_data);
#endif
out:
/* Return to application */
return status;
}
int32_t arm_convolve_1_x_n_s8_get_buffer_size(const cmsis_nn_dims *input_dims, const cmsis_nn_dims *filter_dims)
{
#if !defined(ARM_MATH_MVEI)
return (2 * input_dims->c * filter_dims->w * filter_dims->h) * sizeof(int16_t);
#else
(void)input_dims;
(void)filter_dims;
return 0;
#endif
}
/**
* @} end of NNConv group
*/