blob: 0f17fdd58d828f17e7b75027059f8fd7a406559a [file] [log] [blame]
/**
******************************************************************************
* @file system_stm32h7xx_dualcore_bootcm4_cm7gated.c
* @author MCD Application Team
* @brief CMSIS Cortex-Mx Device Peripheral Access Layer System Source File.
* This file provides system initialization template function is case of
* an application using a dual core STM32H7 device where :
* Cortex-M4 boot is enabled at the FLASH option bytes
* Cortex-M7 boot is disabled at the FLASH option bytes
* Cortex-M7 boot can be enabled by the the Cortex-M4 (when needed)
* using the appropriate HAL function "HAL_RCCEx_EnableBootCore"
*
* This file provides two functions and one global variable to be called from
* user application:
* - SystemInit(): This function is called at startup just after reset and
* before branch to main program. This call is made inside
* the "startup_stm32h7xx.s" file.
*
* - SystemCoreClock variable: Contains the core clock, it can be used
* by the user application to setup the SysTick
* timer or configure other parameters.
*
* - SystemCoreClockUpdate(): Updates the variable SystemCoreClock and must
* be called whenever the core clock is changed
* during program execution.
*
*
******************************************************************************
* @attention
*
* Copyright (c) 2017 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/** @addtogroup CMSIS
* @{
*/
/** @addtogroup stm32h7xx_system
* @{
*/
/** @addtogroup STM32H7xx_System_Private_Includes
* @{
*/
#include "stm32h7xx.h"
#include <math.h>
#if !defined (HSE_VALUE)
#define HSE_VALUE ((uint32_t)25000000) /*!< Value of the External oscillator in Hz */
#endif /* HSE_VALUE */
#if !defined (CSI_VALUE)
#define CSI_VALUE ((uint32_t)4000000) /*!< Value of the Internal oscillator in Hz*/
#endif /* CSI_VALUE */
#if !defined (HSI_VALUE)
#define HSI_VALUE ((uint32_t)64000000) /*!< Value of the Internal oscillator in Hz*/
#endif /* HSI_VALUE */
/**
* @}
*/
/** @addtogroup STM32H7xx_System_Private_TypesDefinitions
* @{
*/
/**
* @}
*/
/** @addtogroup STM32H7xx_System_Private_Defines
* @{
*/
/************************* Miscellaneous Configuration ************************/
/*!< Uncomment the following line if you need to relocate your vector Table in
Internal SRAM. */
/* #define VECT_TAB_SRAM */
#define VECT_TAB_OFFSET 0x00000000UL /*!< Vector Table base offset field.
This value must be a multiple of 0x300. */
/******************************************************************************/
/**
* @}
*/
/** @addtogroup STM32H7xx_System_Private_Macros
* @{
*/
/**
* @}
*/
/** @addtogroup STM32H7xx_System_Private_Variables
* @{
*/
/* This variable is updated in three ways:
1) by calling CMSIS function SystemCoreClockUpdate()
2) by calling HAL API function HAL_RCC_GetHCLKFreq()
3) each time HAL_RCC_ClockConfig() is called to configure the system clock frequency
Note: If you use this function to configure the system clock; then there
is no need to call the 2 first functions listed above, since SystemCoreClock
variable is updated automatically.
*/
uint32_t SystemCoreClock = 64000000;
uint32_t SystemD2Clock = 64000000;
const uint8_t D1CorePrescTable[16] = {0, 0, 0, 0, 1, 2, 3, 4, 1, 2, 3, 4, 6, 7, 8, 9};
/**
* @}
*/
/** @addtogroup STM32H7xx_System_Private_FunctionPrototypes
* @{
*/
/**
* @}
*/
/** @addtogroup STM32H7xx_System_Private_Functions
* @{
*/
/**
* @brief Setup the microcontroller system
* Initialize the FPU setting and vector table location
* configuration.
* @param None
* @retval None
*/
void SystemInit (void)
{
/* FPU settings ------------------------------------------------------------*/
#if (__FPU_PRESENT == 1) && (__FPU_USED == 1)
SCB->CPACR |= ((3UL << (10*2))|(3UL << (11*2))); /* set CP10 and CP11 Full Access */
#endif
#ifdef CORE_CM4
/* Reset the RCC clock configuration to the default reset state ------------*/
/* Increasing the CPU frequency */
if(FLASH_LATENCY_DEFAULT > (READ_BIT((FLASH->ACR), FLASH_ACR_LATENCY)))
{
/* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */
MODIFY_REG(FLASH->ACR, FLASH_ACR_LATENCY, (uint32_t)(FLASH_LATENCY_DEFAULT));
}
/* Set HSION bit */
RCC->CR |= RCC_CR_HSION;
/* Reset CFGR register */
RCC->CFGR = 0x00000000;
/* Reset HSEON, HSECSSON, CSION, HSI48ON, CSIKERON, PLL1ON, PLL2ON and PLL3ON bits */
RCC->CR &= 0xEAF6ED7FU;
/* Decreasing the number of wait states because of lower CPU frequency */
if(FLASH_LATENCY_DEFAULT < (READ_BIT((FLASH->ACR), FLASH_ACR_LATENCY)))
{
/* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */
MODIFY_REG(FLASH->ACR, FLASH_ACR_LATENCY, (uint32_t)(FLASH_LATENCY_DEFAULT));
}
/* Reset D1CFGR register */
RCC->D1CFGR = 0x00000000;
/* Reset D2CFGR register */
RCC->D2CFGR = 0x00000000;
/* Reset D3CFGR register */
RCC->D3CFGR = 0x00000000;
/* Reset PLLCKSELR register */
RCC->PLLCKSELR = 0x02020200;
/* Reset PLLCFGR register */
RCC->PLLCFGR = 0x01FF0000;
/* Reset PLL1DIVR register */
RCC->PLL1DIVR = 0x01010280;
/* Reset PLL1FRACR register */
RCC->PLL1FRACR = 0x00000000;
/* Reset PLL2DIVR register */
RCC->PLL2DIVR = 0x01010280;
/* Reset PLL2FRACR register */
RCC->PLL2FRACR = 0x00000000;
/* Reset PLL3DIVR register */
RCC->PLL3DIVR = 0x01010280;
/* Reset PLL3FRACR register */
RCC->PLL3FRACR = 0x00000000;
/* Reset HSEBYP bit */
RCC->CR &= 0xFFFBFFFFU;
/* Disable all interrupts */
RCC->CIER = 0x00000000;
#endif /* CORE_CM4*/
#ifdef CORE_CM4
/* Configure the Vector Table location add offset address ------------------*/
#ifdef VECT_TAB_SRAM
SCB->VTOR = D2_AXISRAM_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal SRAM */
#else
SCB->VTOR = FLASH_BANK2_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal FLASH */
#endif
#else
#ifdef CORE_CM7
/* dual core CM7 or single core line */
if((DBGMCU->IDCODE & 0xFFFF0000U) < 0x20000000U)
{
/* if stm32h7 revY*/
/* Change the switch matrix read issuing capability to 1 for the AXI SRAM target (Target 7) */
*((__IO uint32_t*)0x51008108) = 0x000000001U;
}
/*
* Disable the FMC bank1 (enabled after reset).
* This, prevents CPU speculation access on this bank which blocks the use of FMC during
* 24us. During this time the others FMC master (such as LTDC) cannot use it!
*/
FMC_Bank1_R->BTCR[0] = 0x000030D2;
/* Configure the Vector Table location add offset address ------------------*/
#ifdef VECT_TAB_SRAM
SCB->VTOR = D1_AXISRAM_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal SRAM */
#else
SCB->VTOR = FLASH_BANK1_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal FLASH */
#endif
#else
#error Please #define CORE_CM4 or CORE_CM7
#endif
#endif
}
/**
* @brief Update SystemCoreClock variable according to Clock Register Values.
* The SystemCoreClock variable contains the core clock , it can
* be used by the user application to setup the SysTick timer or configure
* other parameters.
*
* @note Each time the core clock changes, this function must be called
* to update SystemCoreClock variable value. Otherwise, any configuration
* based on this variable will be incorrect.
*
* @note - The system frequency computed by this function is not the real
* frequency in the chip. It is calculated based on the predefined
* constant and the selected clock source:
*
* - If SYSCLK source is CSI, SystemCoreClock will contain the CSI_VALUE(*)
* - If SYSCLK source is HSI, SystemCoreClock will contain the HSI_VALUE(**)
* - If SYSCLK source is HSE, SystemCoreClock will contain the HSE_VALUE(***)
* - If SYSCLK source is PLL, SystemCoreClock will contain the CSI_VALUE(*),
* HSI_VALUE(**) or HSE_VALUE(***) multiplied/divided by the PLL factors.
*
* (*) CSI_VALUE is a constant defined in stm32h7xx_hal.h file (default value
* 4 MHz) but the real value may vary depending on the variations
* in voltage and temperature.
* (**) HSI_VALUE is a constant defined in stm32h7xx_hal.h file (default value
* 64 MHz) but the real value may vary depending on the variations
* in voltage and temperature.
*
* (***)HSE_VALUE is a constant defined in stm32h7xx_hal.h file (default value
* 25 MHz), user has to ensure that HSE_VALUE is same as the real
* frequency of the crystal used. Otherwise, this function may
* have wrong result.
*
* - The result of this function could be not correct when using fractional
* value for HSE crystal.
* @param None
* @retval None
*/
void SystemCoreClockUpdate (void)
{
uint32_t pllp, pllsource, pllm, pllfracen, hsivalue, tmp;
uint32_t common_system_clock;
float_t fracn1, pllvco;
/* Get SYSCLK source -------------------------------------------------------*/
switch (RCC->CFGR & RCC_CFGR_SWS)
{
case RCC_CFGR_SWS_HSI: /* HSI used as system clock source */
common_system_clock = (uint32_t) (HSI_VALUE >> ((RCC->CR & RCC_CR_HSIDIV)>> 3));
break;
case RCC_CFGR_SWS_CSI: /* CSI used as system clock source */
common_system_clock = CSI_VALUE;
break;
case RCC_CFGR_SWS_HSE: /* HSE used as system clock source */
common_system_clock = HSE_VALUE;
break;
case RCC_CFGR_SWS_PLL1: /* PLL1 used as system clock source */
/* PLL_VCO = (HSE_VALUE or HSI_VALUE or CSI_VALUE/ PLLM) * PLLN
SYSCLK = PLL_VCO / PLLR
*/
pllsource = (RCC->PLLCKSELR & RCC_PLLCKSELR_PLLSRC);
pllm = ((RCC->PLLCKSELR & RCC_PLLCKSELR_DIVM1)>> 4) ;
pllfracen = ((RCC->PLLCFGR & RCC_PLLCFGR_PLL1FRACEN)>>RCC_PLLCFGR_PLL1FRACEN_Pos);
fracn1 = (float_t)(uint32_t)(pllfracen* ((RCC->PLL1FRACR & RCC_PLL1FRACR_FRACN1)>> 3));
if (pllm != 0U)
{
switch (pllsource)
{
case RCC_PLLCKSELR_PLLSRC_HSI: /* HSI used as PLL clock source */
hsivalue = (HSI_VALUE >> ((RCC->CR & RCC_CR_HSIDIV)>> 3)) ;
pllvco = ( (float_t)hsivalue / (float_t)pllm) * ((float_t)(uint32_t)(RCC->PLL1DIVR & RCC_PLL1DIVR_N1) + (fracn1/(float_t)0x2000) +(float_t)1 );
break;
case RCC_PLLCKSELR_PLLSRC_CSI: /* CSI used as PLL clock source */
pllvco = ((float_t)CSI_VALUE / (float_t)pllm) * ((float_t)(uint32_t)(RCC->PLL1DIVR & RCC_PLL1DIVR_N1) + (fracn1/(float_t)0x2000) +(float_t)1 );
break;
case RCC_PLLCKSELR_PLLSRC_HSE: /* HSE used as PLL clock source */
pllvco = ((float_t)HSE_VALUE / (float_t)pllm) * ((float_t)(uint32_t)(RCC->PLL1DIVR & RCC_PLL1DIVR_N1) + (fracn1/(float_t)0x2000) +(float_t)1 );
break;
default:
hsivalue = (HSI_VALUE >> ((RCC->CR & RCC_CR_HSIDIV)>> 3)) ;
pllvco = ((float_t)hsivalue / (float_t)pllm) * ((float_t)(uint32_t)(RCC->PLL1DIVR & RCC_PLL1DIVR_N1) + (fracn1/(float_t)0x2000) +(float_t)1 );
break;
}
pllp = (((RCC->PLL1DIVR & RCC_PLL1DIVR_P1) >>9) + 1U ) ;
common_system_clock = (uint32_t)(float_t)(pllvco/(float_t)pllp);
}
else
{
common_system_clock = 0U;
}
break;
default:
common_system_clock = (uint32_t) (HSI_VALUE >> ((RCC->CR & RCC_CR_HSIDIV)>> 3));
break;
}
/* Compute SystemClock frequency --------------------------------------------------*/
tmp = D1CorePrescTable[(RCC->D1CFGR & RCC_D1CFGR_D1CPRE)>> RCC_D1CFGR_D1CPRE_Pos];
/* common_system_clock frequency : CM7 CPU frequency */
common_system_clock >>= tmp;
/* SystemD2Clock frequency : CM4 CPU, AXI and AHBs Clock frequency */
SystemD2Clock = (common_system_clock >> ((D1CorePrescTable[(RCC->D1CFGR & RCC_D1CFGR_HPRE)>> RCC_D1CFGR_HPRE_Pos]) & 0x1FU));
#if defined(DUAL_CORE) && defined(CORE_CM4)
SystemCoreClock = SystemD2Clock;
#else
SystemCoreClock = common_system_clock;
#endif /* DUAL_CORE && CORE_CM4 */
}
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/