| /** |
| * @file |
| * |
| * 6LowPAN output for IPv6. Uses ND tables for link-layer addressing. Fragments packets to 6LowPAN units. |
| * |
| * This implementation aims to conform to IEEE 802.15.4(-2015), RFC 4944 and RFC 6282. |
| * @todo: RFC 6775. |
| */ |
| |
| /* |
| * Copyright (c) 2015 Inico Technologies Ltd. |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without modification, |
| * are permitted provided that the following conditions are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright notice, |
| * this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright notice, |
| * this list of conditions and the following disclaimer in the documentation |
| * and/or other materials provided with the distribution. |
| * 3. The name of the author may not be used to endorse or promote products |
| * derived from this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED |
| * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT |
| * SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT |
| * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING |
| * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY |
| * OF SUCH DAMAGE. |
| * |
| * This file is part of the lwIP TCP/IP stack. |
| * |
| * Author: Ivan Delamer <delamer@inicotech.com> |
| * |
| * |
| * Please coordinate changes and requests with Ivan Delamer |
| * <delamer@inicotech.com> |
| */ |
| |
| /** |
| * @defgroup sixlowpan 6LoWPAN (RFC4944) |
| * @ingroup netifs |
| * 6LowPAN netif implementation |
| */ |
| |
| #include "netif/lowpan6.h" |
| |
| #if LWIP_IPV6 |
| |
| #include "lwip/ip.h" |
| #include "lwip/pbuf.h" |
| #include "lwip/ip_addr.h" |
| #include "lwip/netif.h" |
| #include "lwip/nd6.h" |
| #include "lwip/mem.h" |
| #include "lwip/udp.h" |
| #include "lwip/tcpip.h" |
| #include "lwip/snmp.h" |
| #include "netif/ieee802154.h" |
| |
| #include <string.h> |
| |
| #if LWIP_6LOWPAN_802154_HW_CRC |
| #define LWIP_6LOWPAN_DO_CALC_CRC(buf, len) 0 |
| #else |
| #define LWIP_6LOWPAN_DO_CALC_CRC(buf, len) LWIP_6LOWPAN_CALC_CRC(buf, len) |
| #endif |
| |
| /** This is a helper struct for reassembly of fragments |
| * (IEEE 802.15.4 limits to 127 bytes) |
| */ |
| struct lowpan6_reass_helper { |
| struct lowpan6_reass_helper *next_packet; |
| struct pbuf *reass; |
| struct pbuf *frags; |
| u8_t timer; |
| struct lowpan6_link_addr sender_addr; |
| u16_t datagram_size; |
| u16_t datagram_tag; |
| }; |
| |
| /** This struct keeps track of per-netif state */ |
| struct lowpan6_ieee802154_data { |
| /** fragment reassembly list */ |
| struct lowpan6_reass_helper *reass_list; |
| #if LWIP_6LOWPAN_NUM_CONTEXTS > 0 |
| /** address context for compression */ |
| ip6_addr_t lowpan6_context[LWIP_6LOWPAN_NUM_CONTEXTS]; |
| #endif |
| /** Datagram Tag for fragmentation */ |
| u16_t tx_datagram_tag; |
| /** local PAN ID for IEEE 802.15.4 header */ |
| u16_t ieee_802154_pan_id; |
| /** Sequence Number for IEEE 802.15.4 transmission */ |
| u8_t tx_frame_seq_num; |
| }; |
| |
| /* Maximum frame size is 127 bytes minus CRC size */ |
| #define LOWPAN6_MAX_PAYLOAD (127 - 2) |
| |
| /** Currently, this state is global, since there's only one 6LoWPAN netif */ |
| static struct lowpan6_ieee802154_data lowpan6_data; |
| |
| #if LWIP_6LOWPAN_NUM_CONTEXTS > 0 |
| #define LWIP_6LOWPAN_CONTEXTS(netif) lowpan6_data.lowpan6_context |
| #else |
| #define LWIP_6LOWPAN_CONTEXTS(netif) NULL |
| #endif |
| |
| static const struct lowpan6_link_addr ieee_802154_broadcast = {2, {0xff, 0xff}}; |
| |
| #if LWIP_6LOWPAN_INFER_SHORT_ADDRESS |
| static struct lowpan6_link_addr short_mac_addr = {2, {0, 0}}; |
| #endif /* LWIP_6LOWPAN_INFER_SHORT_ADDRESS */ |
| |
| /* IEEE 802.15.4 specific functions: */ |
| |
| /** Write the IEEE 802.15.4 header that encapsulates the 6LoWPAN frame. |
| * Src and dst PAN IDs are filled with the ID set by @ref lowpan6_set_pan_id. |
| * |
| * Since the length is variable: |
| * @returns the header length |
| */ |
| static u8_t |
| lowpan6_write_iee802154_header(struct ieee_802154_hdr *hdr, const struct lowpan6_link_addr *src, |
| const struct lowpan6_link_addr *dst) |
| { |
| u8_t ieee_header_len; |
| u8_t *buffer; |
| u8_t i; |
| u16_t fc; |
| |
| fc = IEEE_802154_FC_FT_DATA; /* send data packet (2003 frame version) */ |
| fc |= IEEE_802154_FC_PANID_COMPR; /* set PAN ID compression, for now src and dst PANs are equal */ |
| if (dst != &ieee_802154_broadcast) { |
| fc |= IEEE_802154_FC_ACK_REQ; /* data packet, no broadcast: ack required. */ |
| } |
| if (dst->addr_len == 2) { |
| fc |= IEEE_802154_FC_DST_ADDR_MODE_SHORT; |
| } else { |
| LWIP_ASSERT("invalid dst address length", dst->addr_len == 8); |
| fc |= IEEE_802154_FC_DST_ADDR_MODE_EXT; |
| } |
| if (src->addr_len == 2) { |
| fc |= IEEE_802154_FC_SRC_ADDR_MODE_SHORT; |
| } else { |
| LWIP_ASSERT("invalid src address length", src->addr_len == 8); |
| fc |= IEEE_802154_FC_SRC_ADDR_MODE_EXT; |
| } |
| hdr->frame_control = fc; |
| hdr->sequence_number = lowpan6_data.tx_frame_seq_num++; |
| hdr->destination_pan_id = lowpan6_data.ieee_802154_pan_id; /* pan id */ |
| |
| buffer = (u8_t *)hdr; |
| ieee_header_len = 5; |
| i = dst->addr_len; |
| /* reverse memcpy of dst addr */ |
| while (i-- > 0) { |
| buffer[ieee_header_len++] = dst->addr[i]; |
| } |
| /* Source PAN ID skipped due to PAN ID Compression */ |
| i = src->addr_len; |
| /* reverse memcpy of src addr */ |
| while (i-- > 0) { |
| buffer[ieee_header_len++] = src->addr[i]; |
| } |
| return ieee_header_len; |
| } |
| |
| /** Parse the IEEE 802.15.4 header from a pbuf. |
| * If successful, the header is hidden from the pbuf. |
| * |
| * PAN IDs and seuqence number are not checked |
| * |
| * @param p input pbuf, p->payload pointing at the IEEE 802.15.4 header |
| * @param src pointer to source address filled from the header |
| * @param dest pointer to destination address filled from the header |
| * @returns ERR_OK if successful |
| */ |
| static err_t |
| lowpan6_parse_iee802154_header(struct pbuf *p, struct lowpan6_link_addr *src, |
| struct lowpan6_link_addr *dest) |
| { |
| u8_t *puc; |
| s8_t i; |
| u16_t frame_control, addr_mode; |
| u16_t datagram_offset; |
| |
| /* Parse IEEE 802.15.4 header */ |
| puc = (u8_t *)p->payload; |
| frame_control = puc[0] | (puc[1] << 8); |
| datagram_offset = 2; |
| if (frame_control & IEEE_802154_FC_SEQNO_SUPPR) { |
| if (IEEE_802154_FC_FRAME_VERSION_GET(frame_control) <= 1) { |
| /* sequence number suppressed, this is not valid for versions 0/1 */ |
| return ERR_VAL; |
| } |
| } else { |
| datagram_offset++; |
| } |
| datagram_offset += 2; /* Skip destination PAN ID */ |
| addr_mode = frame_control & IEEE_802154_FC_DST_ADDR_MODE_MASK; |
| if (addr_mode == IEEE_802154_FC_DST_ADDR_MODE_EXT) { |
| /* extended address (64 bit) */ |
| dest->addr_len = 8; |
| /* reverse memcpy: */ |
| for (i = 0; i < 8; i++) { |
| dest->addr[i] = puc[datagram_offset + 7 - i]; |
| } |
| datagram_offset += 8; |
| } else if (addr_mode == IEEE_802154_FC_DST_ADDR_MODE_SHORT) { |
| /* short address (16 bit) */ |
| dest->addr_len = 2; |
| /* reverse memcpy: */ |
| dest->addr[0] = puc[datagram_offset + 1]; |
| dest->addr[1] = puc[datagram_offset]; |
| datagram_offset += 2; |
| } else { |
| /* unsupported address mode (do we need "no address"?) */ |
| return ERR_VAL; |
| } |
| |
| if (!(frame_control & IEEE_802154_FC_PANID_COMPR)) { |
| /* No PAN ID compression, skip source PAN ID */ |
| datagram_offset += 2; |
| } |
| |
| addr_mode = frame_control & IEEE_802154_FC_SRC_ADDR_MODE_MASK; |
| if (addr_mode == IEEE_802154_FC_SRC_ADDR_MODE_EXT) { |
| /* extended address (64 bit) */ |
| src->addr_len = 8; |
| /* reverse memcpy: */ |
| for (i = 0; i < 8; i++) { |
| src->addr[i] = puc[datagram_offset + 7 - i]; |
| } |
| datagram_offset += 8; |
| } else if (addr_mode == IEEE_802154_FC_DST_ADDR_MODE_SHORT) { |
| /* short address (16 bit) */ |
| src->addr_len = 2; |
| src->addr[0] = puc[datagram_offset + 1]; |
| src->addr[1] = puc[datagram_offset]; |
| datagram_offset += 2; |
| } else { |
| /* unsupported address mode (do we need "no address"?) */ |
| return ERR_VAL; |
| } |
| |
| /* hide IEEE802.15.4 header. */ |
| if (pbuf_remove_header(p, datagram_offset)) { |
| return ERR_VAL; |
| } |
| return ERR_OK; |
| } |
| |
| /** Calculate the 16-bit CRC as required by IEEE 802.15.4 */ |
| u16_t |
| lowpan6_calc_crc(const void* buf, u16_t len) |
| { |
| #define CCITT_POLY_16 0x8408U |
| u16_t i; |
| u8_t b; |
| u16_t crc = 0; |
| const u8_t* p = (const u8_t*)buf; |
| |
| for (i = 0; i < len; i++) { |
| u8_t data = *p; |
| for (b = 0U; b < 8U; b++) { |
| if (((data ^ crc) & 1) != 0) { |
| crc = (u16_t)((crc >> 1) ^ CCITT_POLY_16); |
| } else { |
| crc = (u16_t)(crc >> 1); |
| } |
| data = (u8_t)(data >> 1); |
| } |
| p++; |
| } |
| return crc; |
| } |
| |
| /* Fragmentation specific functions: */ |
| |
| static void |
| free_reass_datagram(struct lowpan6_reass_helper *lrh) |
| { |
| if (lrh->reass) { |
| pbuf_free(lrh->reass); |
| } |
| if (lrh->frags) { |
| pbuf_free(lrh->frags); |
| } |
| mem_free(lrh); |
| } |
| |
| /** |
| * Removes a datagram from the reassembly queue. |
| **/ |
| static void |
| dequeue_datagram(struct lowpan6_reass_helper *lrh, struct lowpan6_reass_helper *prev) |
| { |
| if (lowpan6_data.reass_list == lrh) { |
| lowpan6_data.reass_list = lowpan6_data.reass_list->next_packet; |
| } else { |
| /* it wasn't the first, so it must have a valid 'prev' */ |
| LWIP_ASSERT("sanity check linked list", prev != NULL); |
| prev->next_packet = lrh->next_packet; |
| } |
| } |
| |
| /** |
| * Periodic timer for 6LowPAN functions: |
| * |
| * - Remove incomplete/old packets |
| */ |
| void |
| lowpan6_tmr(void) |
| { |
| struct lowpan6_reass_helper *lrh, *lrh_next, *lrh_prev = NULL; |
| |
| lrh = lowpan6_data.reass_list; |
| while (lrh != NULL) { |
| lrh_next = lrh->next_packet; |
| if ((--lrh->timer) == 0) { |
| dequeue_datagram(lrh, lrh_prev); |
| free_reass_datagram(lrh); |
| } else { |
| lrh_prev = lrh; |
| } |
| lrh = lrh_next; |
| } |
| } |
| |
| /* |
| * Encapsulates data into IEEE 802.15.4 frames. |
| * Fragments an IPv6 datagram into 6LowPAN units, which fit into IEEE 802.15.4 frames. |
| * If configured, will compress IPv6 and or UDP headers. |
| * */ |
| static err_t |
| lowpan6_frag(struct netif *netif, struct pbuf *p, const struct lowpan6_link_addr *src, const struct lowpan6_link_addr *dst) |
| { |
| struct pbuf *p_frag; |
| u16_t frag_len, remaining_len, max_data_len; |
| u8_t *buffer; |
| u8_t ieee_header_len; |
| u8_t lowpan6_header_len; |
| u8_t hidden_header_len; |
| u16_t crc; |
| u16_t datagram_offset; |
| err_t err = ERR_IF; |
| |
| LWIP_ASSERT("lowpan6_frag: netif->linkoutput not set", netif->linkoutput != NULL); |
| |
| /* We'll use a dedicated pbuf for building 6LowPAN fragments. */ |
| p_frag = pbuf_alloc(PBUF_RAW, 127, PBUF_RAM); |
| if (p_frag == NULL) { |
| MIB2_STATS_NETIF_INC(netif, ifoutdiscards); |
| return ERR_MEM; |
| } |
| LWIP_ASSERT("this needs a pbuf in one piece", p_frag->len == p_frag->tot_len); |
| |
| /* Write IEEE 802.15.4 header. */ |
| buffer = (u8_t *)p_frag->payload; |
| ieee_header_len = lowpan6_write_iee802154_header((struct ieee_802154_hdr *)buffer, src, dst); |
| LWIP_ASSERT("ieee_header_len < p_frag->len", ieee_header_len < p_frag->len); |
| |
| #if LWIP_6LOWPAN_IPHC |
| /* Perform 6LowPAN IPv6 header compression according to RFC 6282 */ |
| /* do the header compression (this does NOT copy any non-compressed data) */ |
| err = lowpan6_compress_headers(netif, (u8_t *)p->payload, p->len, |
| &buffer[ieee_header_len], p_frag->len - ieee_header_len, &lowpan6_header_len, |
| &hidden_header_len, LWIP_6LOWPAN_CONTEXTS(netif), src, dst); |
| if (err != ERR_OK) { |
| MIB2_STATS_NETIF_INC(netif, ifoutdiscards); |
| pbuf_free(p_frag); |
| return err; |
| } |
| pbuf_remove_header(p, hidden_header_len); |
| |
| #else /* LWIP_6LOWPAN_IPHC */ |
| /* Send uncompressed IPv6 header with appropriate dispatch byte. */ |
| lowpan6_header_len = 1; |
| buffer[ieee_header_len] = 0x41; /* IPv6 dispatch */ |
| #endif /* LWIP_6LOWPAN_IPHC */ |
| |
| /* Calculate remaining packet length */ |
| remaining_len = p->tot_len; |
| |
| if (remaining_len > 0x7FF) { |
| MIB2_STATS_NETIF_INC(netif, ifoutdiscards); |
| /* datagram_size must fit into 11 bit */ |
| pbuf_free(p_frag); |
| return ERR_VAL; |
| } |
| |
| /* Fragment, or 1 packet? */ |
| max_data_len = LOWPAN6_MAX_PAYLOAD - ieee_header_len - lowpan6_header_len; |
| if (remaining_len > max_data_len) { |
| u16_t data_len; |
| /* We must move the 6LowPAN header to make room for the FRAG header. */ |
| memmove(&buffer[ieee_header_len + 4], &buffer[ieee_header_len], lowpan6_header_len); |
| |
| /* Now we need to fragment the packet. FRAG1 header first */ |
| buffer[ieee_header_len] = 0xc0 | (((p->tot_len + hidden_header_len) >> 8) & 0x7); |
| buffer[ieee_header_len + 1] = (p->tot_len + hidden_header_len) & 0xff; |
| |
| lowpan6_data.tx_datagram_tag++; |
| buffer[ieee_header_len + 2] = (lowpan6_data.tx_datagram_tag >> 8) & 0xff; |
| buffer[ieee_header_len + 3] = lowpan6_data.tx_datagram_tag & 0xff; |
| |
| /* Fragment follows. */ |
| data_len = (max_data_len - 4) & 0xf8; |
| frag_len = data_len + lowpan6_header_len; |
| |
| pbuf_copy_partial(p, buffer + ieee_header_len + lowpan6_header_len + 4, frag_len - lowpan6_header_len, 0); |
| remaining_len -= frag_len - lowpan6_header_len; |
| /* datagram offset holds the offset before compression */ |
| datagram_offset = frag_len - lowpan6_header_len + hidden_header_len; |
| LWIP_ASSERT("datagram offset must be a multiple of 8", (datagram_offset & 7) == 0); |
| |
| /* Calculate frame length */ |
| p_frag->len = p_frag->tot_len = ieee_header_len + 4 + frag_len + 2; /* add 2 bytes for crc*/ |
| |
| /* 2 bytes CRC */ |
| crc = LWIP_6LOWPAN_DO_CALC_CRC(p_frag->payload, p_frag->len - 2); |
| pbuf_take_at(p_frag, &crc, 2, p_frag->len - 2); |
| |
| /* send the packet */ |
| MIB2_STATS_NETIF_ADD(netif, ifoutoctets, p_frag->tot_len); |
| LWIP_DEBUGF(LWIP_LOWPAN6_DEBUG | LWIP_DBG_TRACE, ("lowpan6_send: sending packet %p\n", (void *)p)); |
| err = netif->linkoutput(netif, p_frag); |
| |
| while ((remaining_len > 0) && (err == ERR_OK)) { |
| struct ieee_802154_hdr *hdr = (struct ieee_802154_hdr *)buffer; |
| /* new frame, new seq num for ACK */ |
| hdr->sequence_number = lowpan6_data.tx_frame_seq_num++; |
| |
| buffer[ieee_header_len] |= 0x20; /* Change FRAG1 to FRAGN */ |
| |
| LWIP_ASSERT("datagram offset must be a multiple of 8", (datagram_offset & 7) == 0); |
| buffer[ieee_header_len + 4] = (u8_t)(datagram_offset >> 3); /* datagram offset in FRAGN header (datagram_offset is max. 11 bit) */ |
| |
| frag_len = (127 - ieee_header_len - 5 - 2) & 0xf8; |
| if (frag_len > remaining_len) { |
| frag_len = remaining_len; |
| } |
| |
| pbuf_copy_partial(p, buffer + ieee_header_len + 5, frag_len, p->tot_len - remaining_len); |
| remaining_len -= frag_len; |
| datagram_offset += frag_len; |
| |
| /* Calculate frame length */ |
| p_frag->len = p_frag->tot_len = frag_len + 5 + ieee_header_len + 2; |
| |
| /* 2 bytes CRC */ |
| crc = LWIP_6LOWPAN_DO_CALC_CRC(p_frag->payload, p_frag->len - 2); |
| pbuf_take_at(p_frag, &crc, 2, p_frag->len - 2); |
| |
| /* send the packet */ |
| MIB2_STATS_NETIF_ADD(netif, ifoutoctets, p_frag->tot_len); |
| LWIP_DEBUGF(LWIP_LOWPAN6_DEBUG | LWIP_DBG_TRACE, ("lowpan6_send: sending packet %p\n", (void *)p)); |
| err = netif->linkoutput(netif, p_frag); |
| } |
| } else { |
| /* It fits in one frame. */ |
| frag_len = remaining_len; |
| |
| /* Copy IPv6 packet */ |
| pbuf_copy_partial(p, buffer + ieee_header_len + lowpan6_header_len, frag_len, 0); |
| remaining_len = 0; |
| |
| /* Calculate frame length */ |
| p_frag->len = p_frag->tot_len = frag_len + lowpan6_header_len + ieee_header_len + 2; |
| LWIP_ASSERT("", p_frag->len <= 127); |
| |
| /* 2 bytes CRC */ |
| crc = LWIP_6LOWPAN_DO_CALC_CRC(p_frag->payload, p_frag->len - 2); |
| pbuf_take_at(p_frag, &crc, 2, p_frag->len - 2); |
| |
| /* send the packet */ |
| MIB2_STATS_NETIF_ADD(netif, ifoutoctets, p_frag->tot_len); |
| LWIP_DEBUGF(LWIP_LOWPAN6_DEBUG | LWIP_DBG_TRACE, ("lowpan6_send: sending packet %p\n", (void *)p)); |
| err = netif->linkoutput(netif, p_frag); |
| } |
| |
| pbuf_free(p_frag); |
| |
| return err; |
| } |
| |
| /** |
| * @ingroup sixlowpan |
| * Set context |
| */ |
| err_t |
| lowpan6_set_context(u8_t idx, const ip6_addr_t *context) |
| { |
| #if LWIP_6LOWPAN_NUM_CONTEXTS > 0 |
| if (idx >= LWIP_6LOWPAN_NUM_CONTEXTS) { |
| return ERR_ARG; |
| } |
| |
| IP6_ADDR_ZONECHECK(context); |
| |
| ip6_addr_set(&lowpan6_data.lowpan6_context[idx], context); |
| |
| return ERR_OK; |
| #else |
| LWIP_UNUSED_ARG(idx); |
| LWIP_UNUSED_ARG(context); |
| return ERR_ARG; |
| #endif |
| } |
| |
| #if LWIP_6LOWPAN_INFER_SHORT_ADDRESS |
| /** |
| * @ingroup sixlowpan |
| * Set short address |
| */ |
| err_t |
| lowpan6_set_short_addr(u8_t addr_high, u8_t addr_low) |
| { |
| short_mac_addr.addr[0] = addr_high; |
| short_mac_addr.addr[1] = addr_low; |
| |
| return ERR_OK; |
| } |
| #endif /* LWIP_6LOWPAN_INFER_SHORT_ADDRESS */ |
| |
| /* Create IEEE 802.15.4 address from netif address */ |
| static err_t |
| lowpan6_hwaddr_to_addr(struct netif *netif, struct lowpan6_link_addr *addr) |
| { |
| addr->addr_len = 8; |
| if (netif->hwaddr_len == 8) { |
| LWIP_ERROR("NETIF_MAX_HWADDR_LEN >= 8 required", sizeof(netif->hwaddr) >= 8, return ERR_VAL;); |
| SMEMCPY(addr->addr, netif->hwaddr, 8); |
| } else if (netif->hwaddr_len == 6) { |
| /* Copy from MAC-48 */ |
| SMEMCPY(addr->addr, netif->hwaddr, 3); |
| addr->addr[3] = addr->addr[4] = 0xff; |
| SMEMCPY(&addr->addr[5], &netif->hwaddr[3], 3); |
| } else { |
| /* Invalid address length, don't know how to convert this */ |
| return ERR_VAL; |
| } |
| return ERR_OK; |
| } |
| |
| /** |
| * @ingroup sixlowpan |
| * Resolve and fill-in IEEE 802.15.4 address header for outgoing IPv6 packet. |
| * |
| * Perform Header Compression and fragment if necessary. |
| * |
| * @param netif The lwIP network interface which the IP packet will be sent on. |
| * @param q The pbuf(s) containing the IP packet to be sent. |
| * @param ip6addr The IP address of the packet destination. |
| * |
| * @return err_t |
| */ |
| err_t |
| lowpan6_output(struct netif *netif, struct pbuf *q, const ip6_addr_t *ip6addr) |
| { |
| err_t result; |
| const u8_t *hwaddr; |
| struct lowpan6_link_addr src, dest; |
| #if LWIP_6LOWPAN_INFER_SHORT_ADDRESS |
| ip6_addr_t ip6_src; |
| struct ip6_hdr *ip6_hdr; |
| #endif /* LWIP_6LOWPAN_INFER_SHORT_ADDRESS */ |
| |
| #if LWIP_6LOWPAN_INFER_SHORT_ADDRESS |
| /* Check if we can compress source address (use aligned copy) */ |
| ip6_hdr = (struct ip6_hdr *)q->payload; |
| ip6_addr_copy_from_packed(ip6_src, ip6_hdr->src); |
| ip6_addr_assign_zone(&ip6_src, IP6_UNICAST, netif); |
| if (lowpan6_get_address_mode(&ip6_src, &short_mac_addr) == 3) { |
| src.addr_len = 2; |
| src.addr[0] = short_mac_addr.addr[0]; |
| src.addr[1] = short_mac_addr.addr[1]; |
| } else |
| #endif /* LWIP_6LOWPAN_INFER_SHORT_ADDRESS */ |
| { |
| result = lowpan6_hwaddr_to_addr(netif, &src); |
| if (result != ERR_OK) { |
| MIB2_STATS_NETIF_INC(netif, ifoutdiscards); |
| return result; |
| } |
| } |
| |
| /* multicast destination IP address? */ |
| if (ip6_addr_ismulticast(ip6addr)) { |
| MIB2_STATS_NETIF_INC(netif, ifoutnucastpkts); |
| /* We need to send to the broadcast address.*/ |
| return lowpan6_frag(netif, q, &src, &ieee_802154_broadcast); |
| } |
| |
| /* We have a unicast destination IP address */ |
| /* @todo anycast? */ |
| |
| #if LWIP_6LOWPAN_INFER_SHORT_ADDRESS |
| if (src.addr_len == 2) { |
| /* If source address was compressable to short_mac_addr, and dest has same subnet and |
| * is also compressable to 2-bytes, assume we can infer dest as a short address too. */ |
| dest.addr_len = 2; |
| dest.addr[0] = ((u8_t *)q->payload)[38]; |
| dest.addr[1] = ((u8_t *)q->payload)[39]; |
| if ((src.addr_len == 2) && (ip6_addr_netcmp_zoneless(&ip6_hdr->src, &ip6_hdr->dest)) && |
| (lowpan6_get_address_mode(ip6addr, &dest) == 3)) { |
| MIB2_STATS_NETIF_INC(netif, ifoutucastpkts); |
| return lowpan6_frag(netif, q, &src, &dest); |
| } |
| } |
| #endif /* LWIP_6LOWPAN_INFER_SHORT_ADDRESS */ |
| |
| /* Ask ND6 what to do with the packet. */ |
| result = nd6_get_next_hop_addr_or_queue(netif, q, ip6addr, &hwaddr); |
| if (result != ERR_OK) { |
| MIB2_STATS_NETIF_INC(netif, ifoutdiscards); |
| return result; |
| } |
| |
| /* If no hardware address is returned, nd6 has queued the packet for later. */ |
| if (hwaddr == NULL) { |
| return ERR_OK; |
| } |
| |
| /* Send out the packet using the returned hardware address. */ |
| dest.addr_len = netif->hwaddr_len; |
| /* XXX: Inferring the length of the source address from the destination address |
| * is not correct for IEEE 802.15.4, but currently we don't get this information |
| * from the neighbor cache */ |
| SMEMCPY(dest.addr, hwaddr, netif->hwaddr_len); |
| MIB2_STATS_NETIF_INC(netif, ifoutucastpkts); |
| return lowpan6_frag(netif, q, &src, &dest); |
| } |
| /** |
| * @ingroup sixlowpan |
| * NETIF input function: don't free the input pbuf when returning != ERR_OK! |
| */ |
| err_t |
| lowpan6_input(struct pbuf *p, struct netif *netif) |
| { |
| u8_t *puc, b; |
| s8_t i; |
| struct lowpan6_link_addr src, dest; |
| u16_t datagram_size = 0; |
| u16_t datagram_offset, datagram_tag; |
| struct lowpan6_reass_helper *lrh, *lrh_next, *lrh_prev = NULL; |
| |
| if (p == NULL) { |
| return ERR_OK; |
| } |
| |
| MIB2_STATS_NETIF_ADD(netif, ifinoctets, p->tot_len); |
| |
| if (p->len != p->tot_len) { |
| /* for now, this needs a pbuf in one piece */ |
| goto lowpan6_input_discard; |
| } |
| |
| if (lowpan6_parse_iee802154_header(p, &src, &dest) != ERR_OK) { |
| goto lowpan6_input_discard; |
| } |
| |
| /* Check dispatch. */ |
| puc = (u8_t *)p->payload; |
| |
| b = *puc; |
| if ((b & 0xf8) == 0xc0) { |
| /* FRAG1 dispatch. add this packet to reassembly list. */ |
| datagram_size = ((u16_t)(puc[0] & 0x07) << 8) | (u16_t)puc[1]; |
| datagram_tag = ((u16_t)puc[2] << 8) | (u16_t)puc[3]; |
| |
| /* check for duplicate */ |
| lrh = lowpan6_data.reass_list; |
| while (lrh != NULL) { |
| uint8_t discard = 0; |
| lrh_next = lrh->next_packet; |
| if ((lrh->sender_addr.addr_len == src.addr_len) && |
| (memcmp(lrh->sender_addr.addr, src.addr, src.addr_len) == 0)) { |
| /* address match with packet in reassembly. */ |
| if ((datagram_tag == lrh->datagram_tag) && (datagram_size == lrh->datagram_size)) { |
| /* duplicate fragment. */ |
| goto lowpan6_input_discard; |
| } else { |
| /* We are receiving the start of a new datagram. Discard old one (incomplete). */ |
| discard = 1; |
| } |
| } |
| if (discard) { |
| dequeue_datagram(lrh, lrh_prev); |
| free_reass_datagram(lrh); |
| } else { |
| lrh_prev = lrh; |
| } |
| /* Check next datagram in queue. */ |
| lrh = lrh_next; |
| } |
| |
| pbuf_remove_header(p, 4); /* hide frag1 dispatch */ |
| |
| lrh = (struct lowpan6_reass_helper *) mem_malloc(sizeof(struct lowpan6_reass_helper)); |
| if (lrh == NULL) { |
| goto lowpan6_input_discard; |
| } |
| |
| lrh->sender_addr.addr_len = src.addr_len; |
| for (i = 0; i < src.addr_len; i++) { |
| lrh->sender_addr.addr[i] = src.addr[i]; |
| } |
| lrh->datagram_size = datagram_size; |
| lrh->datagram_tag = datagram_tag; |
| lrh->frags = NULL; |
| if (*(u8_t *)p->payload == 0x41) { |
| /* This is a complete IPv6 packet, just skip dispatch byte. */ |
| pbuf_remove_header(p, 1); /* hide dispatch byte. */ |
| lrh->reass = p; |
| } else if ((*(u8_t *)p->payload & 0xe0 ) == 0x60) { |
| lrh->reass = lowpan6_decompress(p, datagram_size, LWIP_6LOWPAN_CONTEXTS(netif), &src, &dest); |
| if (lrh->reass == NULL) { |
| /* decompression failed */ |
| mem_free(lrh); |
| goto lowpan6_input_discard; |
| } |
| } |
| /* TODO: handle the case where we already have FRAGN received */ |
| lrh->next_packet = lowpan6_data.reass_list; |
| lrh->timer = 2; |
| lowpan6_data.reass_list = lrh; |
| |
| return ERR_OK; |
| } else if ((b & 0xf8) == 0xe0) { |
| /* FRAGN dispatch, find packet being reassembled. */ |
| datagram_size = ((u16_t)(puc[0] & 0x07) << 8) | (u16_t)puc[1]; |
| datagram_tag = ((u16_t)puc[2] << 8) | (u16_t)puc[3]; |
| datagram_offset = (u16_t)puc[4] << 3; |
| pbuf_remove_header(p, 4); /* hide frag1 dispatch but keep datagram offset for reassembly */ |
| |
| for (lrh = lowpan6_data.reass_list; lrh != NULL; lrh_prev = lrh, lrh = lrh->next_packet) { |
| if ((lrh->sender_addr.addr_len == src.addr_len) && |
| (memcmp(lrh->sender_addr.addr, src.addr, src.addr_len) == 0) && |
| (datagram_tag == lrh->datagram_tag) && |
| (datagram_size == lrh->datagram_size)) { |
| break; |
| } |
| } |
| if (lrh == NULL) { |
| /* rogue fragment */ |
| goto lowpan6_input_discard; |
| } |
| /* Insert new pbuf into list of fragments. Each fragment is a pbuf, |
| this only works for unchained pbufs. */ |
| LWIP_ASSERT("p->next == NULL", p->next == NULL); |
| if (lrh->reass != NULL) { |
| /* FRAG1 already received, check this offset against first len */ |
| if (datagram_offset < lrh->reass->len) { |
| /* fragment overlap, discard old fragments */ |
| dequeue_datagram(lrh, lrh_prev); |
| free_reass_datagram(lrh); |
| goto lowpan6_input_discard; |
| } |
| } |
| if (lrh->frags == NULL) { |
| /* first FRAGN */ |
| lrh->frags = p; |
| } else { |
| /* find the correct place to insert */ |
| struct pbuf *q, *last; |
| u16_t new_frag_len = p->len - 1; /* p->len includes datagram_offset byte */ |
| for (q = lrh->frags, last = NULL; q != NULL; last = q, q = q->next) { |
| u16_t q_datagram_offset = ((u8_t *)q->payload)[0] << 3; |
| u16_t q_frag_len = q->len - 1; |
| if (datagram_offset < q_datagram_offset) { |
| if (datagram_offset + new_frag_len > q_datagram_offset) { |
| /* overlap, discard old fragments */ |
| dequeue_datagram(lrh, lrh_prev); |
| free_reass_datagram(lrh); |
| goto lowpan6_input_discard; |
| } |
| /* insert here */ |
| break; |
| } else if (datagram_offset == q_datagram_offset) { |
| if (q_frag_len != new_frag_len) { |
| /* fragment mismatch, discard old fragments */ |
| dequeue_datagram(lrh, lrh_prev); |
| free_reass_datagram(lrh); |
| goto lowpan6_input_discard; |
| } |
| /* duplicate, ignore */ |
| pbuf_free(p); |
| return ERR_OK; |
| } |
| } |
| /* insert fragment */ |
| if (last == NULL) { |
| lrh->frags = p; |
| } else { |
| last->next = p; |
| p->next = q; |
| } |
| } |
| /* check if all fragments were received */ |
| if (lrh->reass) { |
| u16_t offset = lrh->reass->len; |
| struct pbuf *q; |
| for (q = lrh->frags; q != NULL; q = q->next) { |
| u16_t q_datagram_offset = ((u8_t *)q->payload)[0] << 3; |
| if (q_datagram_offset != offset) { |
| /* not complete, wait for more fragments */ |
| return ERR_OK; |
| } |
| offset += q->len - 1; |
| } |
| if (offset == datagram_size) { |
| /* all fragments received, combine pbufs */ |
| u16_t datagram_left = datagram_size - lrh->reass->len; |
| for (q = lrh->frags; q != NULL; q = q->next) { |
| /* hide datagram_offset byte now */ |
| pbuf_remove_header(q, 1); |
| q->tot_len = datagram_left; |
| datagram_left -= q->len; |
| } |
| LWIP_ASSERT("datagram_left == 0", datagram_left == 0); |
| q = lrh->reass; |
| q->tot_len = datagram_size; |
| q->next = lrh->frags; |
| lrh->frags = NULL; |
| lrh->reass = NULL; |
| dequeue_datagram(lrh, lrh_prev); |
| mem_free(lrh); |
| |
| /* @todo: distinguish unicast/multicast */ |
| MIB2_STATS_NETIF_INC(netif, ifinucastpkts); |
| return ip6_input(q, netif); |
| } |
| } |
| /* pbuf enqueued, waiting for more fragments */ |
| return ERR_OK; |
| } else { |
| if (b == 0x41) { |
| /* This is a complete IPv6 packet, just skip dispatch byte. */ |
| pbuf_remove_header(p, 1); /* hide dispatch byte. */ |
| } else if ((b & 0xe0 ) == 0x60) { |
| /* IPv6 headers are compressed using IPHC. */ |
| p = lowpan6_decompress(p, datagram_size, LWIP_6LOWPAN_CONTEXTS(netif), &src, &dest); |
| if (p == NULL) { |
| MIB2_STATS_NETIF_INC(netif, ifindiscards); |
| return ERR_OK; |
| } |
| } else { |
| goto lowpan6_input_discard; |
| } |
| |
| /* @todo: distinguish unicast/multicast */ |
| MIB2_STATS_NETIF_INC(netif, ifinucastpkts); |
| |
| return ip6_input(p, netif); |
| } |
| lowpan6_input_discard: |
| MIB2_STATS_NETIF_INC(netif, ifindiscards); |
| pbuf_free(p); |
| /* always return ERR_OK here to prevent the caller freeing the pbuf */ |
| return ERR_OK; |
| } |
| |
| /** |
| * @ingroup sixlowpan |
| */ |
| err_t |
| lowpan6_if_init(struct netif *netif) |
| { |
| netif->name[0] = 'L'; |
| netif->name[1] = '6'; |
| netif->output_ip6 = lowpan6_output; |
| |
| MIB2_INIT_NETIF(netif, snmp_ifType_other, 0); |
| |
| /* maximum transfer unit */ |
| netif->mtu = IP6_MIN_MTU_LENGTH; |
| |
| /* broadcast capability */ |
| netif->flags = NETIF_FLAG_BROADCAST /* | NETIF_FLAG_LOWPAN6 */; |
| |
| return ERR_OK; |
| } |
| |
| /** |
| * @ingroup sixlowpan |
| * Set PAN ID |
| */ |
| err_t |
| lowpan6_set_pan_id(u16_t pan_id) |
| { |
| lowpan6_data.ieee_802154_pan_id = pan_id; |
| |
| return ERR_OK; |
| } |
| |
| #if !NO_SYS |
| /** |
| * @ingroup sixlowpan |
| * Pass a received packet to tcpip_thread for input processing |
| * |
| * @param p the received packet, p->payload pointing to the |
| * IEEE 802.15.4 header. |
| * @param inp the network interface on which the packet was received |
| */ |
| err_t |
| tcpip_6lowpan_input(struct pbuf *p, struct netif *inp) |
| { |
| return tcpip_inpkt(p, inp, lowpan6_input); |
| } |
| #endif /* !NO_SYS */ |
| |
| #endif /* LWIP_IPV6 */ |