| /** |
| ****************************************************************************** |
| * @file stm32f0xx_hal_rcc.c |
| * @author MCD Application Team |
| * @brief RCC HAL module driver. |
| * This file provides firmware functions to manage the following |
| * functionalities of the Reset and Clock Control (RCC) peripheral: |
| * + Initialization and de-initialization functions |
| * + Peripheral Control functions |
| * |
| ****************************************************************************** |
| * @attention |
| * |
| * Copyright (c) 2016 STMicroelectronics. |
| * All rights reserved. |
| * |
| * This software is licensed under terms that can be found in the LICENSE file |
| * in the root directory of this software component. |
| * If no LICENSE file comes with this software, it is provided AS-IS. |
| * |
| ****************************************************************************** |
| @verbatim |
| ============================================================================== |
| ##### RCC specific features ##### |
| ============================================================================== |
| [..] |
| After reset the device is running from Internal High Speed oscillator |
| (HSI 8MHz) with Flash 0 wait state, Flash prefetch buffer is disabled, |
| and all peripherals are off except internal SRAM, Flash and JTAG. |
| (+) There is no prescaler on High speed (AHB) and Low speed (APB) buses; |
| all peripherals mapped on these buses are running at HSI speed. |
| (+) The clock for all peripherals is switched off, except the SRAM and FLASH. |
| (+) All GPIOs are in input floating state, except the JTAG pins which |
| are assigned to be used for debug purpose. |
| [..] Once the device started from reset, the user application has to: |
| (+) Configure the clock source to be used to drive the System clock |
| (if the application needs higher frequency/performance) |
| (+) Configure the System clock frequency and Flash settings |
| (+) Configure the AHB and APB buses prescalers |
| (+) Enable the clock for the peripheral(s) to be used |
| (+) Configure the clock source(s) for peripherals whose clocks are not |
| derived from the System clock (RTC, ADC, I2C, USART, TIM, USB FS, etc..) |
| |
| ##### RCC Limitations ##### |
| ============================================================================== |
| [..] |
| A delay between an RCC peripheral clock enable and the effective peripheral |
| enabling should be taken into account in order to manage the peripheral read/write |
| from/to registers. |
| (+) This delay depends on the peripheral mapping. |
| (++) AHB & APB peripherals, 1 dummy read is necessary |
| |
| [..] |
| Workarounds: |
| (#) For AHB & APB peripherals, a dummy read to the peripheral register has been |
| inserted in each __HAL_RCC_PPP_CLK_ENABLE() macro. |
| |
| @endverbatim |
| ****************************************************************************** |
| */ |
| |
| /* Includes ------------------------------------------------------------------*/ |
| #include "stm32f0xx_hal.h" |
| |
| /** @addtogroup STM32F0xx_HAL_Driver |
| * @{ |
| */ |
| |
| /** @defgroup RCC RCC |
| * @brief RCC HAL module driver |
| * @{ |
| */ |
| |
| #ifdef HAL_RCC_MODULE_ENABLED |
| |
| /* Private typedef -----------------------------------------------------------*/ |
| /* Private define ------------------------------------------------------------*/ |
| /** @defgroup RCC_Private_Constants RCC Private Constants |
| * @{ |
| */ |
| /** |
| * @} |
| */ |
| /* Private macro -------------------------------------------------------------*/ |
| /** @defgroup RCC_Private_Macros RCC Private Macros |
| * @{ |
| */ |
| |
| #define MCO1_CLK_ENABLE() __HAL_RCC_GPIOA_CLK_ENABLE() |
| #define MCO1_GPIO_PORT GPIOA |
| #define MCO1_PIN GPIO_PIN_8 |
| |
| /** |
| * @} |
| */ |
| |
| /* Private variables ---------------------------------------------------------*/ |
| /** @defgroup RCC_Private_Variables RCC Private Variables |
| * @{ |
| */ |
| /** |
| * @} |
| */ |
| |
| /* Private function prototypes -----------------------------------------------*/ |
| /* Exported functions ---------------------------------------------------------*/ |
| |
| /** @defgroup RCC_Exported_Functions RCC Exported Functions |
| * @{ |
| */ |
| |
| /** @defgroup RCC_Exported_Functions_Group1 Initialization and de-initialization functions |
| * @brief Initialization and Configuration functions |
| * |
| @verbatim |
| =============================================================================== |
| ##### Initialization and de-initialization functions ##### |
| =============================================================================== |
| [..] |
| This section provides functions allowing to configure the internal/external oscillators |
| (HSE, HSI, HSI14, HSI48, LSE, LSI, PLL, CSS and MCO) and the System buses clocks (SYSCLK, |
| AHB and APB1). |
| |
| [..] Internal/external clock and PLL configuration |
| (#) HSI (high-speed internal), 8 MHz factory-trimmed RC used directly or through |
| the PLL as System clock source. |
| The HSI clock can be used also to clock the USART and I2C peripherals. |
| |
| (#) HSI14 (high-speed internal), 14 MHz factory-trimmed RC used directly to clock |
| the ADC peripheral. |
| |
| (#) LSI (low-speed internal), ~40 KHz low consumption RC used as IWDG and/or RTC |
| clock source. |
| |
| (#) HSE (high-speed external), 4 to 32 MHz crystal oscillator used directly or |
| through the PLL as System clock source. Can be used also as RTC clock source. |
| |
| (#) LSE (low-speed external), 32 KHz oscillator used as RTC clock source. |
| |
| (#) PLL (clocked by HSI, HSI48 or HSE), featuring different output clocks: |
| (++) The first output is used to generate the high speed system clock (up to 48 MHz) |
| (++) The second output is used to generate the clock for the USB FS (48 MHz) |
| (++) The third output may be used to generate the clock for the TIM, I2C and USART |
| peripherals (up to 48 MHz) |
| |
| (#) CSS (Clock security system), once enable using the macro __HAL_RCC_CSS_ENABLE() |
| and if a HSE clock failure occurs(HSE used directly or through PLL as System |
| clock source), the System clocks automatically switched to HSI and an interrupt |
| is generated if enabled. The interrupt is linked to the Cortex-M0 NMI |
| (Non-Maskable Interrupt) exception vector. |
| |
| (#) MCO (microcontroller clock output), used to output SYSCLK, HSI, HSE, LSI, LSE or PLL |
| clock (divided by 2) output on pin (such as PA8 pin). |
| |
| [..] System, AHB and APB buses clocks configuration |
| (#) Several clock sources can be used to drive the System clock (SYSCLK): HSI, |
| HSE and PLL. |
| The AHB clock (HCLK) is derived from System clock through configurable |
| prescaler and used to clock the CPU, memory and peripherals mapped |
| on AHB bus (DMA, GPIO...). APB1 (PCLK1) clock is derived |
| from AHB clock through configurable prescalers and used to clock |
| the peripherals mapped on these buses. You can use |
| "HAL_RCC_GetSysClockFreq()" function to retrieve the frequencies of these clocks. |
| |
| (#) All the peripheral clocks are derived from the System clock (SYSCLK) except: |
| (++) The FLASH program/erase clock which is always HSI 8MHz clock. |
| (++) The USB 48 MHz clock which is derived from the PLL VCO clock. |
| (++) The USART clock which can be derived as well from HSI 8MHz, LSI or LSE. |
| (++) The I2C clock which can be derived as well from HSI 8MHz clock. |
| (++) The ADC clock which is derived from PLL output. |
| (++) The RTC clock which is derived from the LSE, LSI or 1 MHz HSE_RTC |
| (HSE divided by a programmable prescaler). The System clock (SYSCLK) |
| frequency must be higher or equal to the RTC clock frequency. |
| (++) IWDG clock which is always the LSI clock. |
| |
| (#) For the STM32F0xx devices, the maximum frequency of the SYSCLK, HCLK and PCLK1 is 48 MHz, |
| Depending on the SYSCLK frequency, the flash latency should be adapted accordingly. |
| |
| (#) After reset, the System clock source is the HSI (8 MHz) with 0 WS and |
| prefetch is disabled. |
| @endverbatim |
| * @{ |
| */ |
| |
| /* |
| Additional consideration on the SYSCLK based on Latency settings: |
| +-----------------------------------------------+ |
| | Latency | SYSCLK clock frequency (MHz) | |
| |---------------|-------------------------------| |
| |0WS(1CPU cycle)| 0 < SYSCLK <= 24 | |
| |---------------|-------------------------------| |
| |1WS(2CPU cycle)| 24 < SYSCLK <= 48 | |
| +-----------------------------------------------+ |
| */ |
| |
| /** |
| * @brief Resets the RCC clock configuration to the default reset state. |
| * @note The default reset state of the clock configuration is given below: |
| * - HSI ON and used as system clock source |
| * - HSE and PLL OFF |
| * - AHB, APB1 prescaler set to 1. |
| * - CSS and MCO1 OFF |
| * - All interrupts disabled |
| * - All interrupt and reset flags cleared |
| * @note This function does not modify the configuration of the |
| * - Peripheral clocks |
| * - LSI, LSE and RTC clocks |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_RCC_DeInit(void) |
| { |
| uint32_t tickstart; |
| |
| /* Get Start Tick*/ |
| tickstart = HAL_GetTick(); |
| |
| /* Set HSION bit, HSITRIM[4:0] bits to the reset value*/ |
| SET_BIT(RCC->CR, RCC_CR_HSION | RCC_CR_HSITRIM_4); |
| |
| /* Wait till HSI is ready */ |
| while (READ_BIT(RCC->CR, RCC_CR_HSIRDY) == RESET) |
| { |
| if ((HAL_GetTick() - tickstart) > HSI_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| |
| /* Reset SW[1:0], HPRE[3:0], PPRE[2:0] and MCOSEL[2:0] bits */ |
| CLEAR_BIT(RCC->CFGR, RCC_CFGR_SW | RCC_CFGR_HPRE | RCC_CFGR_PPRE | RCC_CFGR_MCO); |
| |
| /* Wait till HSI as SYSCLK status is enabled */ |
| while (READ_BIT(RCC->CFGR, RCC_CFGR_SWS) != RESET) |
| { |
| if ((HAL_GetTick() - tickstart) > CLOCKSWITCH_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| |
| /* Update the SystemCoreClock global variable for HSI as system clock source */ |
| SystemCoreClock = HSI_VALUE; |
| |
| /* Adapt Systick interrupt period */ |
| if (HAL_InitTick(uwTickPrio) != HAL_OK) |
| { |
| return HAL_ERROR; |
| } |
| |
| /* Reset HSEON, CSSON, PLLON bits */ |
| CLEAR_BIT(RCC->CR, RCC_CR_PLLON | RCC_CR_CSSON | RCC_CR_HSEON); |
| |
| /* Reset HSEBYP bit */ |
| CLEAR_BIT(RCC->CR, RCC_CR_HSEBYP); |
| |
| /* Get start tick */ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till PLLRDY is cleared */ |
| while(READ_BIT(RCC->CR, RCC_CR_PLLRDY) != RESET) |
| { |
| if((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| |
| /* Reset CFGR register */ |
| CLEAR_REG(RCC->CFGR); |
| |
| /* Reset CFGR2 register */ |
| CLEAR_REG(RCC->CFGR2); |
| |
| /* Reset CFGR3 register */ |
| CLEAR_REG(RCC->CFGR3); |
| |
| /* Disable all interrupts */ |
| CLEAR_REG(RCC->CIR); |
| |
| /* Clear all reset flags */ |
| __HAL_RCC_CLEAR_RESET_FLAGS(); |
| |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Initializes the RCC Oscillators according to the specified parameters in the |
| * RCC_OscInitTypeDef. |
| * @param RCC_OscInitStruct pointer to an RCC_OscInitTypeDef structure that |
| * contains the configuration information for the RCC Oscillators. |
| * @note The PLL is not disabled when used as system clock. |
| * @note Transitions LSE Bypass to LSE On and LSE On to LSE Bypass are not |
| * supported by this macro. User should request a transition to LSE Off |
| * first and then LSE On or LSE Bypass. |
| * @note Transition HSE Bypass to HSE On and HSE On to HSE Bypass are not |
| * supported by this macro. User should request a transition to HSE Off |
| * first and then HSE On or HSE Bypass. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_RCC_OscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct) |
| { |
| uint32_t tickstart; |
| uint32_t pll_config; |
| uint32_t pll_config2; |
| |
| /* Check Null pointer */ |
| if(RCC_OscInitStruct == NULL) |
| { |
| return HAL_ERROR; |
| } |
| |
| /* Check the parameters */ |
| assert_param(IS_RCC_OSCILLATORTYPE(RCC_OscInitStruct->OscillatorType)); |
| |
| /*------------------------------- HSE Configuration ------------------------*/ |
| if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSE) == RCC_OSCILLATORTYPE_HSE) |
| { |
| /* Check the parameters */ |
| assert_param(IS_RCC_HSE(RCC_OscInitStruct->HSEState)); |
| |
| /* When the HSE is used as system clock or clock source for PLL in these cases it is not allowed to be disabled */ |
| if((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_HSE) |
| || ((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && (__HAL_RCC_GET_PLL_OSCSOURCE() == RCC_PLLSOURCE_HSE))) |
| { |
| if((__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) != RESET) && (RCC_OscInitStruct->HSEState == RCC_HSE_OFF)) |
| { |
| return HAL_ERROR; |
| } |
| } |
| else |
| { |
| /* Set the new HSE configuration ---------------------------------------*/ |
| __HAL_RCC_HSE_CONFIG(RCC_OscInitStruct->HSEState); |
| |
| |
| /* Check the HSE State */ |
| if(RCC_OscInitStruct->HSEState != RCC_HSE_OFF) |
| { |
| /* Get Start Tick */ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till HSE is ready */ |
| while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) == RESET) |
| { |
| if((HAL_GetTick() - tickstart ) > HSE_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| else |
| { |
| /* Get Start Tick */ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till HSE is disabled */ |
| while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) != RESET) |
| { |
| if((HAL_GetTick() - tickstart ) > HSE_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| } |
| } |
| /*----------------------------- HSI Configuration --------------------------*/ |
| if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSI) == RCC_OSCILLATORTYPE_HSI) |
| { |
| /* Check the parameters */ |
| assert_param(IS_RCC_HSI(RCC_OscInitStruct->HSIState)); |
| assert_param(IS_RCC_CALIBRATION_VALUE(RCC_OscInitStruct->HSICalibrationValue)); |
| |
| /* Check if HSI is used as system clock or as PLL source when PLL is selected as system clock */ |
| if((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_HSI) |
| || ((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && (__HAL_RCC_GET_PLL_OSCSOURCE() == RCC_PLLSOURCE_HSI))) |
| { |
| /* When HSI is used as system clock it will not disabled */ |
| if((__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) != RESET) && (RCC_OscInitStruct->HSIState != RCC_HSI_ON)) |
| { |
| return HAL_ERROR; |
| } |
| /* Otherwise, just the calibration is allowed */ |
| else |
| { |
| /* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/ |
| __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue); |
| } |
| } |
| else |
| { |
| /* Check the HSI State */ |
| if(RCC_OscInitStruct->HSIState != RCC_HSI_OFF) |
| { |
| /* Enable the Internal High Speed oscillator (HSI). */ |
| __HAL_RCC_HSI_ENABLE(); |
| |
| /* Get Start Tick */ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till HSI is ready */ |
| while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) == RESET) |
| { |
| if((HAL_GetTick() - tickstart ) > HSI_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| |
| /* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/ |
| __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue); |
| } |
| else |
| { |
| /* Disable the Internal High Speed oscillator (HSI). */ |
| __HAL_RCC_HSI_DISABLE(); |
| |
| /* Get Start Tick */ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till HSI is disabled */ |
| while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) != RESET) |
| { |
| if((HAL_GetTick() - tickstart ) > HSI_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| } |
| } |
| /*------------------------------ LSI Configuration -------------------------*/ |
| if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSI) == RCC_OSCILLATORTYPE_LSI) |
| { |
| /* Check the parameters */ |
| assert_param(IS_RCC_LSI(RCC_OscInitStruct->LSIState)); |
| |
| /* Check the LSI State */ |
| if(RCC_OscInitStruct->LSIState != RCC_LSI_OFF) |
| { |
| /* Enable the Internal Low Speed oscillator (LSI). */ |
| __HAL_RCC_LSI_ENABLE(); |
| |
| /* Get Start Tick */ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till LSI is ready */ |
| while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSIRDY) == RESET) |
| { |
| if((HAL_GetTick() - tickstart ) > LSI_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| else |
| { |
| /* Disable the Internal Low Speed oscillator (LSI). */ |
| __HAL_RCC_LSI_DISABLE(); |
| |
| /* Get Start Tick */ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till LSI is disabled */ |
| while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSIRDY) != RESET) |
| { |
| if((HAL_GetTick() - tickstart ) > LSI_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| } |
| /*------------------------------ LSE Configuration -------------------------*/ |
| if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSE) == RCC_OSCILLATORTYPE_LSE) |
| { |
| FlagStatus pwrclkchanged = RESET; |
| |
| /* Check the parameters */ |
| assert_param(IS_RCC_LSE(RCC_OscInitStruct->LSEState)); |
| |
| /* Update LSE configuration in Backup Domain control register */ |
| /* Requires to enable write access to Backup Domain of necessary */ |
| if(__HAL_RCC_PWR_IS_CLK_DISABLED()) |
| { |
| __HAL_RCC_PWR_CLK_ENABLE(); |
| pwrclkchanged = SET; |
| } |
| |
| if(HAL_IS_BIT_CLR(PWR->CR, PWR_CR_DBP)) |
| { |
| /* Enable write access to Backup domain */ |
| SET_BIT(PWR->CR, PWR_CR_DBP); |
| |
| /* Wait for Backup domain Write protection disable */ |
| tickstart = HAL_GetTick(); |
| |
| while(HAL_IS_BIT_CLR(PWR->CR, PWR_CR_DBP)) |
| { |
| if((HAL_GetTick() - tickstart) > RCC_DBP_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| |
| /* Set the new LSE configuration -----------------------------------------*/ |
| __HAL_RCC_LSE_CONFIG(RCC_OscInitStruct->LSEState); |
| /* Check the LSE State */ |
| if(RCC_OscInitStruct->LSEState != RCC_LSE_OFF) |
| { |
| /* Get Start Tick */ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till LSE is ready */ |
| while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) == RESET) |
| { |
| if((HAL_GetTick() - tickstart ) > RCC_LSE_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| else |
| { |
| /* Get Start Tick */ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till LSE is disabled */ |
| while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) != RESET) |
| { |
| if((HAL_GetTick() - tickstart ) > RCC_LSE_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| |
| /* Require to disable power clock if necessary */ |
| if(pwrclkchanged == SET) |
| { |
| __HAL_RCC_PWR_CLK_DISABLE(); |
| } |
| } |
| |
| /*----------------------------- HSI14 Configuration --------------------------*/ |
| if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSI14) == RCC_OSCILLATORTYPE_HSI14) |
| { |
| /* Check the parameters */ |
| assert_param(IS_RCC_HSI14(RCC_OscInitStruct->HSI14State)); |
| assert_param(IS_RCC_CALIBRATION_VALUE(RCC_OscInitStruct->HSI14CalibrationValue)); |
| |
| /* Check the HSI14 State */ |
| if(RCC_OscInitStruct->HSI14State == RCC_HSI14_ON) |
| { |
| /* Disable ADC control of the Internal High Speed oscillator HSI14 */ |
| __HAL_RCC_HSI14ADC_DISABLE(); |
| |
| /* Enable the Internal High Speed oscillator (HSI). */ |
| __HAL_RCC_HSI14_ENABLE(); |
| |
| /* Get Start Tick */ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till HSI is ready */ |
| while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSI14RDY) == RESET) |
| { |
| if((HAL_GetTick() - tickstart) > HSI14_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| |
| /* Adjusts the Internal High Speed oscillator 14Mhz (HSI14) calibration value. */ |
| __HAL_RCC_HSI14_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSI14CalibrationValue); |
| } |
| else if(RCC_OscInitStruct->HSI14State == RCC_HSI14_ADC_CONTROL) |
| { |
| /* Enable ADC control of the Internal High Speed oscillator HSI14 */ |
| __HAL_RCC_HSI14ADC_ENABLE(); |
| |
| /* Adjusts the Internal High Speed oscillator 14Mhz (HSI14) calibration value. */ |
| __HAL_RCC_HSI14_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSI14CalibrationValue); |
| } |
| else |
| { |
| /* Disable ADC control of the Internal High Speed oscillator HSI14 */ |
| __HAL_RCC_HSI14ADC_DISABLE(); |
| |
| /* Disable the Internal High Speed oscillator (HSI). */ |
| __HAL_RCC_HSI14_DISABLE(); |
| |
| /* Get Start Tick */ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till HSI is ready */ |
| while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSI14RDY) != RESET) |
| { |
| if((HAL_GetTick() - tickstart) > HSI14_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| } |
| |
| #if defined(RCC_HSI48_SUPPORT) |
| /*----------------------------- HSI48 Configuration --------------------------*/ |
| if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSI48) == RCC_OSCILLATORTYPE_HSI48) |
| { |
| /* Check the parameters */ |
| assert_param(IS_RCC_HSI48(RCC_OscInitStruct->HSI48State)); |
| |
| /* When the HSI48 is used as system clock it is not allowed to be disabled */ |
| if((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_HSI48) || |
| ((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && (__HAL_RCC_GET_PLL_OSCSOURCE() == RCC_PLLSOURCE_HSI48))) |
| { |
| if((__HAL_RCC_GET_FLAG(RCC_FLAG_HSI48RDY) != RESET) && (RCC_OscInitStruct->HSI48State != RCC_HSI48_ON)) |
| { |
| return HAL_ERROR; |
| } |
| } |
| else |
| { |
| /* Check the HSI48 State */ |
| if(RCC_OscInitStruct->HSI48State != RCC_HSI48_OFF) |
| { |
| /* Enable the Internal High Speed oscillator (HSI48). */ |
| __HAL_RCC_HSI48_ENABLE(); |
| |
| /* Get Start Tick */ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till HSI48 is ready */ |
| while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSI48RDY) == RESET) |
| { |
| if((HAL_GetTick() - tickstart) > HSI48_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| else |
| { |
| /* Disable the Internal High Speed oscillator (HSI48). */ |
| __HAL_RCC_HSI48_DISABLE(); |
| |
| /* Get Start Tick */ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till HSI48 is ready */ |
| while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSI48RDY) != RESET) |
| { |
| if((HAL_GetTick() - tickstart) > HSI48_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| } |
| } |
| #endif /* RCC_HSI48_SUPPORT */ |
| |
| /*-------------------------------- PLL Configuration -----------------------*/ |
| /* Check the parameters */ |
| assert_param(IS_RCC_PLL(RCC_OscInitStruct->PLL.PLLState)); |
| if ((RCC_OscInitStruct->PLL.PLLState) != RCC_PLL_NONE) |
| { |
| /* Check if the PLL is used as system clock or not */ |
| if(__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_PLLCLK) |
| { |
| if((RCC_OscInitStruct->PLL.PLLState) == RCC_PLL_ON) |
| { |
| /* Check the parameters */ |
| assert_param(IS_RCC_PLLSOURCE(RCC_OscInitStruct->PLL.PLLSource)); |
| assert_param(IS_RCC_PLL_MUL(RCC_OscInitStruct->PLL.PLLMUL)); |
| assert_param(IS_RCC_PREDIV(RCC_OscInitStruct->PLL.PREDIV)); |
| |
| /* Disable the main PLL. */ |
| __HAL_RCC_PLL_DISABLE(); |
| |
| /* Get Start Tick */ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till PLL is disabled */ |
| while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) != RESET) |
| { |
| if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| |
| /* Configure the main PLL clock source, predivider and multiplication factor. */ |
| __HAL_RCC_PLL_CONFIG(RCC_OscInitStruct->PLL.PLLSource, |
| RCC_OscInitStruct->PLL.PREDIV, |
| RCC_OscInitStruct->PLL.PLLMUL); |
| /* Enable the main PLL. */ |
| __HAL_RCC_PLL_ENABLE(); |
| |
| /* Get Start Tick */ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till PLL is ready */ |
| while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) == RESET) |
| { |
| if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| else |
| { |
| /* Disable the main PLL. */ |
| __HAL_RCC_PLL_DISABLE(); |
| |
| /* Get Start Tick */ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till PLL is disabled */ |
| while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) != RESET) |
| { |
| if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| } |
| else |
| { |
| /* Check if there is a request to disable the PLL used as System clock source */ |
| if((RCC_OscInitStruct->PLL.PLLState) == RCC_PLL_OFF) |
| { |
| return HAL_ERROR; |
| } |
| else |
| { |
| /* Do not return HAL_ERROR if request repeats the current configuration */ |
| pll_config = RCC->CFGR; |
| pll_config2 = RCC->CFGR2; |
| if((READ_BIT(pll_config, RCC_CFGR_PLLSRC) != RCC_OscInitStruct->PLL.PLLSource) || |
| (READ_BIT(pll_config2, RCC_CFGR2_PREDIV) != RCC_OscInitStruct->PLL.PREDIV) || |
| (READ_BIT(pll_config, RCC_CFGR_PLLMUL) != RCC_OscInitStruct->PLL.PLLMUL)) |
| { |
| return HAL_ERROR; |
| } |
| } |
| } |
| } |
| |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Initializes the CPU, AHB and APB buses clocks according to the specified |
| * parameters in the RCC_ClkInitStruct. |
| * @param RCC_ClkInitStruct pointer to an RCC_OscInitTypeDef structure that |
| * contains the configuration information for the RCC peripheral. |
| * @param FLatency FLASH Latency |
| * The value of this parameter depend on device used within the same series |
| * @note The SystemCoreClock CMSIS variable is used to store System Clock Frequency |
| * and updated by @ref HAL_RCC_GetHCLKFreq() function called within this function |
| * |
| * @note The HSI is used (enabled by hardware) as system clock source after |
| * start-up from Reset, wake-up from STOP and STANDBY mode, or in case |
| * of failure of the HSE used directly or indirectly as system clock |
| * (if the Clock Security System CSS is enabled). |
| * |
| * @note A switch from one clock source to another occurs only if the target |
| * clock source is ready (clock stable after start-up delay or PLL locked). |
| * If a clock source which is not yet ready is selected, the switch will |
| * occur when the clock source will be ready. |
| * You can use @ref HAL_RCC_GetClockConfig() function to know which clock is |
| * currently used as system clock source. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_RCC_ClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t FLatency) |
| { |
| uint32_t tickstart; |
| |
| /* Check Null pointer */ |
| if(RCC_ClkInitStruct == NULL) |
| { |
| return HAL_ERROR; |
| } |
| |
| /* Check the parameters */ |
| assert_param(IS_RCC_CLOCKTYPE(RCC_ClkInitStruct->ClockType)); |
| assert_param(IS_FLASH_LATENCY(FLatency)); |
| |
| /* To correctly read data from FLASH memory, the number of wait states (LATENCY) |
| must be correctly programmed according to the frequency of the CPU clock |
| (HCLK) of the device. */ |
| |
| /* Increasing the number of wait states because of higher CPU frequency */ |
| if(FLatency > __HAL_FLASH_GET_LATENCY()) |
| { |
| /* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */ |
| __HAL_FLASH_SET_LATENCY(FLatency); |
| |
| /* Check that the new number of wait states is taken into account to access the Flash |
| memory by reading the FLASH_ACR register */ |
| if(__HAL_FLASH_GET_LATENCY() != FLatency) |
| { |
| return HAL_ERROR; |
| } |
| } |
| |
| /*-------------------------- HCLK Configuration --------------------------*/ |
| if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_HCLK) == RCC_CLOCKTYPE_HCLK) |
| { |
| /* Set the highest APB divider in order to ensure that we do not go through |
| a non-spec phase whatever we decrease or increase HCLK. */ |
| if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK1) == RCC_CLOCKTYPE_PCLK1) |
| { |
| MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE, RCC_HCLK_DIV16); |
| } |
| |
| /* Set the new HCLK clock divider */ |
| assert_param(IS_RCC_HCLK(RCC_ClkInitStruct->AHBCLKDivider)); |
| MODIFY_REG(RCC->CFGR, RCC_CFGR_HPRE, RCC_ClkInitStruct->AHBCLKDivider); |
| } |
| |
| /*------------------------- SYSCLK Configuration ---------------------------*/ |
| if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_SYSCLK) == RCC_CLOCKTYPE_SYSCLK) |
| { |
| assert_param(IS_RCC_SYSCLKSOURCE(RCC_ClkInitStruct->SYSCLKSource)); |
| |
| /* HSE is selected as System Clock Source */ |
| if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSE) |
| { |
| /* Check the HSE ready flag */ |
| if(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) == RESET) |
| { |
| return HAL_ERROR; |
| } |
| } |
| /* PLL is selected as System Clock Source */ |
| else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_PLLCLK) |
| { |
| /* Check the PLL ready flag */ |
| if(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) == RESET) |
| { |
| return HAL_ERROR; |
| } |
| } |
| #if defined(RCC_CFGR_SWS_HSI48) |
| /* HSI48 is selected as System Clock Source */ |
| else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSI48) |
| { |
| /* Check the HSI48 ready flag */ |
| if(__HAL_RCC_GET_FLAG(RCC_FLAG_HSI48RDY) == RESET) |
| { |
| return HAL_ERROR; |
| } |
| } |
| #endif /* RCC_CFGR_SWS_HSI48 */ |
| /* HSI is selected as System Clock Source */ |
| else |
| { |
| /* Check the HSI ready flag */ |
| if(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) == RESET) |
| { |
| return HAL_ERROR; |
| } |
| } |
| __HAL_RCC_SYSCLK_CONFIG(RCC_ClkInitStruct->SYSCLKSource); |
| |
| /* Get Start Tick */ |
| tickstart = HAL_GetTick(); |
| |
| while (__HAL_RCC_GET_SYSCLK_SOURCE() != (RCC_ClkInitStruct->SYSCLKSource << RCC_CFGR_SWS_Pos)) |
| { |
| if((HAL_GetTick() - tickstart ) > CLOCKSWITCH_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| |
| /* Decreasing the number of wait states because of lower CPU frequency */ |
| if(FLatency < __HAL_FLASH_GET_LATENCY()) |
| { |
| /* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */ |
| __HAL_FLASH_SET_LATENCY(FLatency); |
| |
| /* Check that the new number of wait states is taken into account to access the Flash |
| memory by reading the FLASH_ACR register */ |
| if(__HAL_FLASH_GET_LATENCY() != FLatency) |
| { |
| return HAL_ERROR; |
| } |
| } |
| |
| /*-------------------------- PCLK1 Configuration ---------------------------*/ |
| if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK1) == RCC_CLOCKTYPE_PCLK1) |
| { |
| assert_param(IS_RCC_PCLK(RCC_ClkInitStruct->APB1CLKDivider)); |
| MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE, RCC_ClkInitStruct->APB1CLKDivider); |
| } |
| |
| /* Update the SystemCoreClock global variable */ |
| SystemCoreClock = HAL_RCC_GetSysClockFreq() >> AHBPrescTable[(RCC->CFGR & RCC_CFGR_HPRE)>> RCC_CFGR_HPRE_BITNUMBER]; |
| |
| /* Configure the source of time base considering new system clocks settings*/ |
| HAL_InitTick (TICK_INT_PRIORITY); |
| |
| return HAL_OK; |
| } |
| |
| /** |
| * @} |
| */ |
| |
| /** @defgroup RCC_Exported_Functions_Group2 Peripheral Control functions |
| * @brief RCC clocks control functions |
| * |
| @verbatim |
| =============================================================================== |
| ##### Peripheral Control functions ##### |
| =============================================================================== |
| [..] |
| This subsection provides a set of functions allowing to control the RCC Clocks |
| frequencies. |
| |
| @endverbatim |
| * @{ |
| */ |
| |
| #if defined(RCC_CFGR_MCOPRE) |
| /** |
| * @brief Selects the clock source to output on MCO pin. |
| * @note MCO pin should be configured in alternate function mode. |
| * @param RCC_MCOx specifies the output direction for the clock source. |
| * This parameter can be one of the following values: |
| * @arg @ref RCC_MCO1 Clock source to output on MCO1 pin(PA8). |
| * @param RCC_MCOSource specifies the clock source to output. |
| * This parameter can be one of the following values: |
| * @arg @ref RCC_MCO1SOURCE_NOCLOCK No clock selected |
| * @arg @ref RCC_MCO1SOURCE_SYSCLK System Clock selected as MCO clock |
| * @arg @ref RCC_MCO1SOURCE_HSI HSI selected as MCO clock |
| * @arg @ref RCC_MCO1SOURCE_HSE HSE selected as MCO clock |
| * @arg @ref RCC_MCO1SOURCE_LSI LSI selected as MCO clock |
| * @arg @ref RCC_MCO1SOURCE_LSE LSE selected as MCO clock |
| * @arg @ref RCC_MCO1SOURCE_HSI14 HSI14 selected as MCO clock |
| @if STM32F042x6 |
| * @arg @ref RCC_MCO1SOURCE_HSI48 HSI48 selected as MCO clock |
| * @arg @ref RCC_MCO1SOURCE_PLLCLK PLLCLK selected as MCO clock |
| @elseif STM32F048xx |
| * @arg @ref RCC_MCO1SOURCE_HSI48 HSI48 selected as MCO clock |
| * @arg @ref RCC_MCO1SOURCE_PLLCLK PLLCLK selected as MCO clock |
| @elseif STM32F071xB |
| * @arg @ref RCC_MCO1SOURCE_HSI48 HSI48 selected as MCO clock |
| * @arg @ref RCC_MCO1SOURCE_PLLCLK PLLCLK selected as MCO clock |
| @elseif STM32F072xB |
| * @arg @ref RCC_MCO1SOURCE_HSI48 HSI48 selected as MCO clock |
| * @arg @ref RCC_MCO1SOURCE_PLLCLK PLLCLK selected as MCO clock |
| @elseif STM32F078xx |
| * @arg @ref RCC_MCO1SOURCE_HSI48 HSI48 selected as MCO clock |
| * @arg @ref RCC_MCO1SOURCE_PLLCLK PLLCLK selected as MCO clock |
| @elseif STM32F091xC |
| * @arg @ref RCC_MCO1SOURCE_HSI48 HSI48 selected as MCO clock |
| * @arg @ref RCC_MCO1SOURCE_PLLCLK PLLCLK selected as MCO clock |
| @elseif STM32F098xx |
| * @arg @ref RCC_MCO1SOURCE_HSI48 HSI48 selected as MCO clock |
| * @arg @ref RCC_MCO1SOURCE_PLLCLK PLLCLK selected as MCO clock |
| @elif STM32F030x6 |
| * @arg @ref RCC_MCO1SOURCE_PLLCLK PLLCLK selected as MCO clock |
| @elif STM32F030xC |
| * @arg @ref RCC_MCO1SOURCE_PLLCLK PLLCLK selected as MCO clock |
| @elif STM32F031x6 |
| * @arg @ref RCC_MCO1SOURCE_PLLCLK PLLCLK selected as MCO clock |
| @elif STM32F038xx |
| * @arg @ref RCC_MCO1SOURCE_PLLCLK PLLCLK selected as MCO clock |
| @elif STM32F070x6 |
| * @arg @ref RCC_MCO1SOURCE_PLLCLK PLLCLK selected as MCO clock |
| @elif STM32F070xB |
| * @arg @ref RCC_MCO1SOURCE_PLLCLK PLLCLK selected as MCO clock |
| @endif |
| * @arg @ref RCC_MCO1SOURCE_PLLCLK_DIV2 PLLCLK Divided by 2 selected as MCO clock |
| * @param RCC_MCODiv specifies the MCO DIV. |
| * This parameter can be one of the following values: |
| * @arg @ref RCC_MCODIV_1 no division applied to MCO clock |
| * @arg @ref RCC_MCODIV_2 division by 2 applied to MCO clock |
| * @arg @ref RCC_MCODIV_4 division by 4 applied to MCO clock |
| * @arg @ref RCC_MCODIV_8 division by 8 applied to MCO clock |
| * @arg @ref RCC_MCODIV_16 division by 16 applied to MCO clock |
| * @arg @ref RCC_MCODIV_32 division by 32 applied to MCO clock |
| * @arg @ref RCC_MCODIV_64 division by 64 applied to MCO clock |
| * @arg @ref RCC_MCODIV_128 division by 128 applied to MCO clock |
| * @retval None |
| */ |
| #else |
| /** |
| * @brief Selects the clock source to output on MCO pin. |
| * @note MCO pin should be configured in alternate function mode. |
| * @param RCC_MCOx specifies the output direction for the clock source. |
| * This parameter can be one of the following values: |
| * @arg @ref RCC_MCO1 Clock source to output on MCO1 pin(PA8). |
| * @param RCC_MCOSource specifies the clock source to output. |
| * This parameter can be one of the following values: |
| * @arg @ref RCC_MCO1SOURCE_NOCLOCK No clock selected as MCO clock |
| * @arg @ref RCC_MCO1SOURCE_SYSCLK System clock selected as MCO clock |
| * @arg @ref RCC_MCO1SOURCE_HSI HSI selected as MCO clock |
| * @arg @ref RCC_MCO1SOURCE_HSE HSE selected as MCO clock |
| * @arg @ref RCC_MCO1SOURCE_LSI LSI selected as MCO clock |
| * @arg @ref RCC_MCO1SOURCE_LSE LSE selected as MCO clock |
| * @arg @ref RCC_MCO1SOURCE_HSI14 HSI14 selected as MCO clock |
| * @arg @ref RCC_MCO1SOURCE_PLLCLK_DIV2 PLLCLK Divided by 2 selected as MCO clock |
| * @param RCC_MCODiv specifies the MCO DIV. |
| * This parameter can be one of the following values: |
| * @arg @ref RCC_MCODIV_1 no division applied to MCO clock |
| * @retval None |
| */ |
| #endif |
| void HAL_RCC_MCOConfig(uint32_t RCC_MCOx, uint32_t RCC_MCOSource, uint32_t RCC_MCODiv) |
| { |
| GPIO_InitTypeDef gpio; |
| |
| /* Check the parameters */ |
| assert_param(IS_RCC_MCO(RCC_MCOx)); |
| assert_param(IS_RCC_MCODIV(RCC_MCODiv)); |
| assert_param(IS_RCC_MCO1SOURCE(RCC_MCOSource)); |
| |
| /* Configure the MCO1 pin in alternate function mode */ |
| gpio.Mode = GPIO_MODE_AF_PP; |
| gpio.Speed = GPIO_SPEED_FREQ_HIGH; |
| gpio.Pull = GPIO_NOPULL; |
| gpio.Pin = MCO1_PIN; |
| gpio.Alternate = GPIO_AF0_MCO; |
| |
| /* MCO1 Clock Enable */ |
| MCO1_CLK_ENABLE(); |
| |
| HAL_GPIO_Init(MCO1_GPIO_PORT, &gpio); |
| |
| /* Configure the MCO clock source */ |
| __HAL_RCC_MCO1_CONFIG(RCC_MCOSource, RCC_MCODiv); |
| } |
| |
| /** |
| * @brief Enables the Clock Security System. |
| * @note If a failure is detected on the HSE oscillator clock, this oscillator |
| * is automatically disabled and an interrupt is generated to inform the |
| * software about the failure (Clock Security System Interrupt, CSSI), |
| * allowing the MCU to perform rescue operations. The CSSI is linked to |
| * the Cortex-M0 NMI (Non-Maskable Interrupt) exception vector. |
| * @retval None |
| */ |
| void HAL_RCC_EnableCSS(void) |
| { |
| SET_BIT(RCC->CR, RCC_CR_CSSON) ; |
| } |
| |
| /** |
| * @brief Disables the Clock Security System. |
| * @retval None |
| */ |
| void HAL_RCC_DisableCSS(void) |
| { |
| CLEAR_BIT(RCC->CR, RCC_CR_CSSON) ; |
| } |
| |
| /** |
| * @brief Returns the SYSCLK frequency |
| * @note The system frequency computed by this function is not the real |
| * frequency in the chip. It is calculated based on the predefined |
| * constant and the selected clock source: |
| * @note If SYSCLK source is HSI, function returns values based on HSI_VALUE(*) |
| * @note If SYSCLK source is HSE, function returns a value based on HSE_VALUE |
| * divided by PREDIV factor(**) |
| * @note If SYSCLK source is PLL, function returns a value based on HSE_VALUE |
| * divided by PREDIV factor(**) or depending on STM32F0xxxx devices either a value based |
| * on HSI_VALUE divided by 2 or HSI_VALUE divided by PREDIV factor(*) multiplied by the |
| * PLL factor. |
| * @note (*) HSI_VALUE is a constant defined in stm32f0xx_hal_conf.h file (default value |
| * 8 MHz) but the real value may vary depending on the variations |
| * in voltage and temperature. |
| * @note (**) HSE_VALUE is a constant defined in stm32f0xx_hal_conf.h file (default value |
| * 8 MHz), user has to ensure that HSE_VALUE is same as the real |
| * frequency of the crystal used. Otherwise, this function may |
| * have wrong result. |
| * |
| * @note The result of this function could be not correct when using fractional |
| * value for HSE crystal. |
| * |
| * @note This function can be used by the user application to compute the |
| * baud-rate for the communication peripherals or configure other parameters. |
| * |
| * @note Each time SYSCLK changes, this function must be called to update the |
| * right SYSCLK value. Otherwise, any configuration based on this function will be incorrect. |
| * |
| * @retval SYSCLK frequency |
| */ |
| uint32_t HAL_RCC_GetSysClockFreq(void) |
| { |
| static const uint8_t aPLLMULFactorTable[16U] = { 2U, 3U, 4U, 5U, 6U, 7U, 8U, 9U, |
| 10U, 11U, 12U, 13U, 14U, 15U, 16U, 16U}; |
| static const uint8_t aPredivFactorTable[16U] = { 1U, 2U, 3U, 4U, 5U, 6U, 7U, 8U, |
| 9U,10U, 11U, 12U, 13U, 14U, 15U, 16U}; |
| |
| uint32_t tmpreg = 0U, prediv = 0U, pllclk = 0U, pllmul = 0U; |
| uint32_t sysclockfreq = 0U; |
| |
| tmpreg = RCC->CFGR; |
| |
| /* Get SYSCLK source -------------------------------------------------------*/ |
| switch (tmpreg & RCC_CFGR_SWS) |
| { |
| case RCC_SYSCLKSOURCE_STATUS_HSE: /* HSE used as system clock */ |
| { |
| sysclockfreq = HSE_VALUE; |
| break; |
| } |
| case RCC_SYSCLKSOURCE_STATUS_PLLCLK: /* PLL used as system clock */ |
| { |
| pllmul = aPLLMULFactorTable[(uint32_t)(tmpreg & RCC_CFGR_PLLMUL) >> RCC_CFGR_PLLMUL_BITNUMBER]; |
| prediv = aPredivFactorTable[(uint32_t)(RCC->CFGR2 & RCC_CFGR2_PREDIV) >> RCC_CFGR2_PREDIV_BITNUMBER]; |
| if ((tmpreg & RCC_CFGR_PLLSRC) == RCC_PLLSOURCE_HSE) |
| { |
| /* HSE used as PLL clock source : PLLCLK = HSE/PREDIV * PLLMUL */ |
| pllclk = (uint32_t)((uint64_t) HSE_VALUE / (uint64_t) (prediv)) * ((uint64_t) pllmul); |
| } |
| #if defined(RCC_CFGR_PLLSRC_HSI48_PREDIV) |
| else if ((tmpreg & RCC_CFGR_PLLSRC) == RCC_PLLSOURCE_HSI48) |
| { |
| /* HSI48 used as PLL clock source : PLLCLK = HSI48/PREDIV * PLLMUL */ |
| pllclk = (uint32_t)((uint64_t) HSI48_VALUE / (uint64_t) (prediv)) * ((uint64_t) pllmul); |
| } |
| #endif /* RCC_CFGR_PLLSRC_HSI48_PREDIV */ |
| else |
| { |
| #if (defined(STM32F042x6) || defined(STM32F048xx) || defined(STM32F070x6) || defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || defined(STM32F070xB) || defined(STM32F091xC) || defined(STM32F098xx) || defined(STM32F030xC)) |
| /* HSI used as PLL clock source : PLLCLK = HSI/PREDIV * PLLMUL */ |
| pllclk = (uint32_t)((uint64_t) HSI_VALUE / (uint64_t) (prediv)) * ((uint64_t) pllmul); |
| #else |
| /* HSI used as PLL clock source : PLLCLK = HSI/2 * PLLMUL */ |
| pllclk = (uint32_t)((uint64_t) (HSI_VALUE >> 1U) * ((uint64_t) pllmul)); |
| #endif |
| } |
| sysclockfreq = pllclk; |
| break; |
| } |
| #if defined(RCC_CFGR_SWS_HSI48) |
| case RCC_SYSCLKSOURCE_STATUS_HSI48: /* HSI48 used as system clock source */ |
| { |
| sysclockfreq = HSI48_VALUE; |
| break; |
| } |
| #endif /* RCC_CFGR_SWS_HSI48 */ |
| case RCC_SYSCLKSOURCE_STATUS_HSI: /* HSI used as system clock source */ |
| default: /* HSI used as system clock */ |
| { |
| sysclockfreq = HSI_VALUE; |
| break; |
| } |
| } |
| return sysclockfreq; |
| } |
| |
| /** |
| * @brief Returns the HCLK frequency |
| * @note Each time HCLK changes, this function must be called to update the |
| * right HCLK value. Otherwise, any configuration based on this function will be incorrect. |
| * |
| * @note The SystemCoreClock CMSIS variable is used to store System Clock Frequency |
| * and updated within this function |
| * @retval HCLK frequency |
| */ |
| uint32_t HAL_RCC_GetHCLKFreq(void) |
| { |
| return SystemCoreClock; |
| } |
| |
| /** |
| * @brief Returns the PCLK1 frequency |
| * @note Each time PCLK1 changes, this function must be called to update the |
| * right PCLK1 value. Otherwise, any configuration based on this function will be incorrect. |
| * @retval PCLK1 frequency |
| */ |
| uint32_t HAL_RCC_GetPCLK1Freq(void) |
| { |
| /* Get HCLK source and Compute PCLK1 frequency ---------------------------*/ |
| return (HAL_RCC_GetHCLKFreq() >> APBPrescTable[(RCC->CFGR & RCC_CFGR_PPRE) >> RCC_CFGR_PPRE_BITNUMBER]); |
| } |
| |
| /** |
| * @brief Configures the RCC_OscInitStruct according to the internal |
| * RCC configuration registers. |
| * @param RCC_OscInitStruct pointer to an RCC_OscInitTypeDef structure that |
| * will be configured. |
| * @retval None |
| */ |
| void HAL_RCC_GetOscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct) |
| { |
| /* Check the parameters */ |
| assert_param(RCC_OscInitStruct != NULL); |
| |
| /* Set all possible values for the Oscillator type parameter ---------------*/ |
| RCC_OscInitStruct->OscillatorType = RCC_OSCILLATORTYPE_HSE | RCC_OSCILLATORTYPE_HSI \ |
| | RCC_OSCILLATORTYPE_LSE | RCC_OSCILLATORTYPE_LSI | RCC_OSCILLATORTYPE_HSI14; |
| #if defined(RCC_HSI48_SUPPORT) |
| RCC_OscInitStruct->OscillatorType |= RCC_OSCILLATORTYPE_HSI48; |
| #endif /* RCC_HSI48_SUPPORT */ |
| |
| |
| /* Get the HSE configuration -----------------------------------------------*/ |
| if((RCC->CR &RCC_CR_HSEBYP) == RCC_CR_HSEBYP) |
| { |
| RCC_OscInitStruct->HSEState = RCC_HSE_BYPASS; |
| } |
| else if((RCC->CR &RCC_CR_HSEON) == RCC_CR_HSEON) |
| { |
| RCC_OscInitStruct->HSEState = RCC_HSE_ON; |
| } |
| else |
| { |
| RCC_OscInitStruct->HSEState = RCC_HSE_OFF; |
| } |
| |
| /* Get the HSI configuration -----------------------------------------------*/ |
| if((RCC->CR &RCC_CR_HSION) == RCC_CR_HSION) |
| { |
| RCC_OscInitStruct->HSIState = RCC_HSI_ON; |
| } |
| else |
| { |
| RCC_OscInitStruct->HSIState = RCC_HSI_OFF; |
| } |
| |
| RCC_OscInitStruct->HSICalibrationValue = (uint32_t)((RCC->CR &RCC_CR_HSITRIM) >> RCC_CR_HSITRIM_BitNumber); |
| |
| /* Get the LSE configuration -----------------------------------------------*/ |
| if((RCC->BDCR &RCC_BDCR_LSEBYP) == RCC_BDCR_LSEBYP) |
| { |
| RCC_OscInitStruct->LSEState = RCC_LSE_BYPASS; |
| } |
| else if((RCC->BDCR &RCC_BDCR_LSEON) == RCC_BDCR_LSEON) |
| { |
| RCC_OscInitStruct->LSEState = RCC_LSE_ON; |
| } |
| else |
| { |
| RCC_OscInitStruct->LSEState = RCC_LSE_OFF; |
| } |
| |
| /* Get the LSI configuration -----------------------------------------------*/ |
| if((RCC->CSR &RCC_CSR_LSION) == RCC_CSR_LSION) |
| { |
| RCC_OscInitStruct->LSIState = RCC_LSI_ON; |
| } |
| else |
| { |
| RCC_OscInitStruct->LSIState = RCC_LSI_OFF; |
| } |
| |
| /* Get the HSI14 configuration -----------------------------------------------*/ |
| if((RCC->CR2 & RCC_CR2_HSI14ON) == RCC_CR2_HSI14ON) |
| { |
| RCC_OscInitStruct->HSI14State = RCC_HSI_ON; |
| } |
| else |
| { |
| RCC_OscInitStruct->HSI14State = RCC_HSI_OFF; |
| } |
| |
| RCC_OscInitStruct->HSI14CalibrationValue = (uint32_t)((RCC->CR2 & RCC_CR2_HSI14TRIM) >> RCC_HSI14TRIM_BIT_NUMBER); |
| |
| #if defined(RCC_HSI48_SUPPORT) |
| /* Get the HSI48 configuration if any-----------------------------------------*/ |
| RCC_OscInitStruct->HSI48State = __HAL_RCC_GET_HSI48_STATE(); |
| #endif /* RCC_HSI48_SUPPORT */ |
| |
| /* Get the PLL configuration -----------------------------------------------*/ |
| if((RCC->CR &RCC_CR_PLLON) == RCC_CR_PLLON) |
| { |
| RCC_OscInitStruct->PLL.PLLState = RCC_PLL_ON; |
| } |
| else |
| { |
| RCC_OscInitStruct->PLL.PLLState = RCC_PLL_OFF; |
| } |
| RCC_OscInitStruct->PLL.PLLSource = (uint32_t)(RCC->CFGR & RCC_CFGR_PLLSRC); |
| RCC_OscInitStruct->PLL.PLLMUL = (uint32_t)(RCC->CFGR & RCC_CFGR_PLLMUL); |
| RCC_OscInitStruct->PLL.PREDIV = (uint32_t)(RCC->CFGR2 & RCC_CFGR2_PREDIV); |
| } |
| |
| /** |
| * @brief Get the RCC_ClkInitStruct according to the internal |
| * RCC configuration registers. |
| * @param RCC_ClkInitStruct pointer to an RCC_ClkInitTypeDef structure that |
| * contains the current clock configuration. |
| * @param pFLatency Pointer on the Flash Latency. |
| * @retval None |
| */ |
| void HAL_RCC_GetClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t *pFLatency) |
| { |
| /* Check the parameters */ |
| assert_param(RCC_ClkInitStruct != NULL); |
| assert_param(pFLatency != NULL); |
| |
| /* Set all possible values for the Clock type parameter --------------------*/ |
| RCC_ClkInitStruct->ClockType = RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1; |
| |
| /* Get the SYSCLK configuration --------------------------------------------*/ |
| RCC_ClkInitStruct->SYSCLKSource = (uint32_t)(RCC->CFGR & RCC_CFGR_SW); |
| |
| /* Get the HCLK configuration ----------------------------------------------*/ |
| RCC_ClkInitStruct->AHBCLKDivider = (uint32_t)(RCC->CFGR & RCC_CFGR_HPRE); |
| |
| /* Get the APB1 configuration ----------------------------------------------*/ |
| RCC_ClkInitStruct->APB1CLKDivider = (uint32_t)(RCC->CFGR & RCC_CFGR_PPRE); |
| /* Get the Flash Wait State (Latency) configuration ------------------------*/ |
| *pFLatency = __HAL_FLASH_GET_LATENCY(); |
| } |
| |
| /** |
| * @brief This function handles the RCC CSS interrupt request. |
| * @note This API should be called under the NMI_Handler(). |
| * @retval None |
| */ |
| void HAL_RCC_NMI_IRQHandler(void) |
| { |
| /* Check RCC CSSF flag */ |
| if(__HAL_RCC_GET_IT(RCC_IT_CSS)) |
| { |
| /* RCC Clock Security System interrupt user callback */ |
| HAL_RCC_CSSCallback(); |
| |
| /* Clear RCC CSS pending bit */ |
| __HAL_RCC_CLEAR_IT(RCC_IT_CSS); |
| } |
| } |
| |
| /** |
| * @brief RCC Clock Security System interrupt callback |
| * @retval none |
| */ |
| __weak void HAL_RCC_CSSCallback(void) |
| { |
| /* NOTE : This function Should not be modified, when the callback is needed, |
| the HAL_RCC_CSSCallback could be implemented in the user file |
| */ |
| } |
| |
| /** |
| * @} |
| */ |
| |
| /** |
| * @} |
| */ |
| |
| #endif /* HAL_RCC_MODULE_ENABLED */ |
| /** |
| * @} |
| */ |
| |
| /** |
| * @} |
| */ |