| /** |
| ****************************************************************************** |
| * @file stm32f1xx_hal_rcc.c |
| * @author MCD Application Team |
| * @brief RCC HAL module driver. |
| * This file provides firmware functions to manage the following |
| * functionalities of the Reset and Clock Control (RCC) peripheral: |
| * + Initialization and de-initialization functions |
| * + Peripheral Control functions |
| * |
| @verbatim |
| ============================================================================== |
| ##### RCC specific features ##### |
| ============================================================================== |
| [..] |
| After reset the device is running from Internal High Speed oscillator |
| (HSI 8MHz) with Flash 0 wait state, Flash prefetch buffer is enabled, |
| and all peripherals are off except internal SRAM, Flash and JTAG. |
| (+) There is no prescaler on High speed (AHB) and Low speed (APB) buses; |
| all peripherals mapped on these buses are running at HSI speed. |
| (+) The clock for all peripherals is switched off, except the SRAM and FLASH. |
| (+) All GPIOs are in input floating state, except the JTAG pins which |
| are assigned to be used for debug purpose. |
| [..] Once the device started from reset, the user application has to: |
| (+) Configure the clock source to be used to drive the System clock |
| (if the application needs higher frequency/performance) |
| (+) Configure the System clock frequency and Flash settings |
| (+) Configure the AHB and APB buses prescalers |
| (+) Enable the clock for the peripheral(s) to be used |
| (+) Configure the clock source(s) for peripherals whose clocks are not |
| derived from the System clock (I2S, RTC, ADC, USB OTG FS) |
| |
| ##### RCC Limitations ##### |
| ============================================================================== |
| [..] |
| A delay between an RCC peripheral clock enable and the effective peripheral |
| enabling should be taken into account in order to manage the peripheral read/write |
| from/to registers. |
| (+) This delay depends on the peripheral mapping. |
| (++) AHB & APB peripherals, 1 dummy read is necessary |
| |
| [..] |
| Workarounds: |
| (#) For AHB & APB peripherals, a dummy read to the peripheral register has been |
| inserted in each __HAL_RCC_PPP_CLK_ENABLE() macro. |
| |
| @endverbatim |
| ****************************************************************************** |
| * @attention |
| * |
| * Copyright (c) 2016 STMicroelectronics. |
| * All rights reserved. |
| * |
| * This software is licensed under terms that can be found in the LICENSE file in |
| * the root directory of this software component. |
| * If no LICENSE file comes with this software, it is provided AS-IS. |
| ****************************************************************************** |
| */ |
| |
| /* Includes ------------------------------------------------------------------*/ |
| #include "stm32f1xx_hal.h" |
| |
| /** @addtogroup STM32F1xx_HAL_Driver |
| * @{ |
| */ |
| |
| /** @defgroup RCC RCC |
| * @brief RCC HAL module driver |
| * @{ |
| */ |
| |
| #ifdef HAL_RCC_MODULE_ENABLED |
| |
| /* Private typedef -----------------------------------------------------------*/ |
| /* Private define ------------------------------------------------------------*/ |
| /** @defgroup RCC_Private_Constants RCC Private Constants |
| * @{ |
| */ |
| /** |
| * @} |
| */ |
| /* Private macro -------------------------------------------------------------*/ |
| /** @defgroup RCC_Private_Macros RCC Private Macros |
| * @{ |
| */ |
| |
| #define MCO1_CLK_ENABLE() __HAL_RCC_GPIOA_CLK_ENABLE() |
| #define MCO1_GPIO_PORT GPIOA |
| #define MCO1_PIN GPIO_PIN_8 |
| |
| /** |
| * @} |
| */ |
| |
| /* Private variables ---------------------------------------------------------*/ |
| /** @defgroup RCC_Private_Variables RCC Private Variables |
| * @{ |
| */ |
| /** |
| * @} |
| */ |
| |
| /* Private function prototypes -----------------------------------------------*/ |
| static void RCC_Delay(uint32_t mdelay); |
| |
| /* Exported functions --------------------------------------------------------*/ |
| |
| /** @defgroup RCC_Exported_Functions RCC Exported Functions |
| * @{ |
| */ |
| |
| /** @defgroup RCC_Exported_Functions_Group1 Initialization and de-initialization functions |
| * @brief Initialization and Configuration functions |
| * |
| @verbatim |
| =============================================================================== |
| ##### Initialization and de-initialization functions ##### |
| =============================================================================== |
| [..] |
| This section provides functions allowing to configure the internal/external oscillators |
| (HSE, HSI, LSE, LSI, PLL, CSS and MCO) and the System buses clocks (SYSCLK, AHB, APB1 |
| and APB2). |
| |
| [..] Internal/external clock and PLL configuration |
| (#) HSI (high-speed internal), 8 MHz factory-trimmed RC used directly or through |
| the PLL as System clock source. |
| (#) LSI (low-speed internal), ~40 KHz low consumption RC used as IWDG and/or RTC |
| clock source. |
| |
| (#) HSE (high-speed external), 4 to 24 MHz (STM32F100xx) or 4 to 16 MHz (STM32F101x/STM32F102x/STM32F103x) or 3 to 25 MHz (STM32F105x/STM32F107x) crystal oscillator used directly or |
| through the PLL as System clock source. Can be used also as RTC clock source. |
| |
| (#) LSE (low-speed external), 32 KHz oscillator used as RTC clock source. |
| |
| (#) PLL (clocked by HSI or HSE), featuring different output clocks: |
| (++) The first output is used to generate the high speed system clock (up to 72 MHz for STM32F10xxx or up to 24 MHz for STM32F100xx) |
| (++) The second output is used to generate the clock for the USB OTG FS (48 MHz) |
| |
| (#) CSS (Clock security system), once enable using the macro __HAL_RCC_CSS_ENABLE() |
| and if a HSE clock failure occurs(HSE used directly or through PLL as System |
| clock source), the System clocks automatically switched to HSI and an interrupt |
| is generated if enabled. The interrupt is linked to the Cortex-M3 NMI |
| (Non-Maskable Interrupt) exception vector. |
| |
| (#) MCO1 (microcontroller clock output), used to output SYSCLK, HSI, |
| HSE or PLL clock (divided by 2) on PA8 pin + PLL2CLK, PLL3CLK/2, PLL3CLK and XTI for STM32F105x/STM32F107x |
| |
| [..] System, AHB and APB buses clocks configuration |
| (#) Several clock sources can be used to drive the System clock (SYSCLK): HSI, |
| HSE and PLL. |
| The AHB clock (HCLK) is derived from System clock through configurable |
| prescaler and used to clock the CPU, memory and peripherals mapped |
| on AHB bus (DMA, GPIO...). APB1 (PCLK1) and APB2 (PCLK2) clocks are derived |
| from AHB clock through configurable prescalers and used to clock |
| the peripherals mapped on these buses. You can use |
| "HAL_RCC_GetSysClockFreq()" function to retrieve the frequencies of these clocks. |
| |
| -@- All the peripheral clocks are derived from the System clock (SYSCLK) except: |
| (+@) RTC: RTC clock can be derived either from the LSI, LSE or HSE clock |
| divided by 128. |
| (+@) USB OTG FS and RTC: USB OTG FS require a frequency equal to 48 MHz |
| to work correctly. This clock is derived of the main PLL through PLL Multiplier. |
| (+@) I2S interface on STM32F105x/STM32F107x can be derived from PLL3CLK |
| (+@) IWDG clock which is always the LSI clock. |
| |
| (#) For STM32F10xxx, the maximum frequency of the SYSCLK and HCLK/PCLK2 is 72 MHz, PCLK1 36 MHz. |
| For STM32F100xx, the maximum frequency of the SYSCLK and HCLK/PCLK1/PCLK2 is 24 MHz. |
| Depending on the SYSCLK frequency, the flash latency should be adapted accordingly. |
| @endverbatim |
| * @{ |
| */ |
| |
| /* |
| Additional consideration on the SYSCLK based on Latency settings: |
| +-----------------------------------------------+ |
| | Latency | SYSCLK clock frequency (MHz) | |
| |---------------|-------------------------------| |
| |0WS(1CPU cycle)| 0 < SYSCLK <= 24 | |
| |---------------|-------------------------------| |
| |1WS(2CPU cycle)| 24 < SYSCLK <= 48 | |
| |---------------|-------------------------------| |
| |2WS(3CPU cycle)| 48 < SYSCLK <= 72 | |
| +-----------------------------------------------+ |
| */ |
| |
| /** |
| * @brief Resets the RCC clock configuration to the default reset state. |
| * @note The default reset state of the clock configuration is given below: |
| * - HSI ON and used as system clock source |
| * - HSE, PLL, PLL2 and PLL3 are OFF |
| * - AHB, APB1 and APB2 prescaler set to 1. |
| * - CSS and MCO1 OFF |
| * - All interrupts disabled |
| * - All flags are cleared |
| * @note This function does not modify the configuration of the |
| * - Peripheral clocks |
| * - LSI, LSE and RTC clocks |
| * @retval HAL_StatusTypeDef |
| */ |
| HAL_StatusTypeDef HAL_RCC_DeInit(void) |
| { |
| uint32_t tickstart; |
| |
| /* Get Start Tick */ |
| tickstart = HAL_GetTick(); |
| |
| /* Set HSION bit */ |
| SET_BIT(RCC->CR, RCC_CR_HSION); |
| |
| /* Wait till HSI is ready */ |
| while (READ_BIT(RCC->CR, RCC_CR_HSIRDY) == RESET) |
| { |
| if ((HAL_GetTick() - tickstart) > HSI_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| |
| /* Set HSITRIM bits to the reset value */ |
| MODIFY_REG(RCC->CR, RCC_CR_HSITRIM, (0x10U << RCC_CR_HSITRIM_Pos)); |
| |
| /* Get Start Tick */ |
| tickstart = HAL_GetTick(); |
| |
| /* Reset CFGR register */ |
| CLEAR_REG(RCC->CFGR); |
| |
| /* Wait till clock switch is ready */ |
| while (READ_BIT(RCC->CFGR, RCC_CFGR_SWS) != RESET) |
| { |
| if ((HAL_GetTick() - tickstart) > CLOCKSWITCH_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| |
| /* Update the SystemCoreClock global variable */ |
| SystemCoreClock = HSI_VALUE; |
| |
| /* Adapt Systick interrupt period */ |
| if (HAL_InitTick(uwTickPrio) != HAL_OK) |
| { |
| return HAL_ERROR; |
| } |
| |
| /* Get Start Tick */ |
| tickstart = HAL_GetTick(); |
| |
| /* Second step is to clear PLLON bit */ |
| CLEAR_BIT(RCC->CR, RCC_CR_PLLON); |
| |
| /* Wait till PLL is disabled */ |
| while (READ_BIT(RCC->CR, RCC_CR_PLLRDY) != RESET) |
| { |
| if ((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| |
| /* Ensure to reset PLLSRC and PLLMUL bits */ |
| CLEAR_REG(RCC->CFGR); |
| |
| /* Get Start Tick */ |
| tickstart = HAL_GetTick(); |
| |
| /* Reset HSEON & CSSON bits */ |
| CLEAR_BIT(RCC->CR, RCC_CR_HSEON | RCC_CR_CSSON); |
| |
| /* Wait till HSE is disabled */ |
| while (READ_BIT(RCC->CR, RCC_CR_HSERDY) != RESET) |
| { |
| if ((HAL_GetTick() - tickstart) > HSE_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| |
| /* Reset HSEBYP bit */ |
| CLEAR_BIT(RCC->CR, RCC_CR_HSEBYP); |
| |
| #if defined(RCC_PLL2_SUPPORT) |
| /* Get Start Tick */ |
| tickstart = HAL_GetTick(); |
| |
| /* Clear PLL2ON bit */ |
| CLEAR_BIT(RCC->CR, RCC_CR_PLL2ON); |
| |
| /* Wait till PLL2 is disabled */ |
| while (READ_BIT(RCC->CR, RCC_CR_PLL2RDY) != RESET) |
| { |
| if ((HAL_GetTick() - tickstart) > PLL2_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| #endif /* RCC_PLL2_SUPPORT */ |
| |
| #if defined(RCC_PLLI2S_SUPPORT) |
| /* Get Start Tick */ |
| tickstart = HAL_GetTick(); |
| |
| /* Clear PLL3ON bit */ |
| CLEAR_BIT(RCC->CR, RCC_CR_PLL3ON); |
| |
| /* Wait till PLL3 is disabled */ |
| while (READ_BIT(RCC->CR, RCC_CR_PLL3RDY) != RESET) |
| { |
| if ((HAL_GetTick() - tickstart) > PLLI2S_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| #endif /* RCC_PLLI2S_SUPPORT */ |
| |
| #if defined(RCC_CFGR2_PREDIV1) |
| /* Reset CFGR2 register */ |
| CLEAR_REG(RCC->CFGR2); |
| #endif /* RCC_CFGR2_PREDIV1 */ |
| |
| /* Reset all CSR flags */ |
| SET_BIT(RCC->CSR, RCC_CSR_RMVF); |
| |
| /* Disable all interrupts */ |
| CLEAR_REG(RCC->CIR); |
| |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Initializes the RCC Oscillators according to the specified parameters in the |
| * RCC_OscInitTypeDef. |
| * @param RCC_OscInitStruct pointer to an RCC_OscInitTypeDef structure that |
| * contains the configuration information for the RCC Oscillators. |
| * @note The PLL is not disabled when used as system clock. |
| * @note The PLL is not disabled when USB OTG FS clock is enabled (specific to devices with USB FS) |
| * @note Transitions LSE Bypass to LSE On and LSE On to LSE Bypass are not |
| * supported by this macro. User should request a transition to LSE Off |
| * first and then LSE On or LSE Bypass. |
| * @note Transition HSE Bypass to HSE On and HSE On to HSE Bypass are not |
| * supported by this macro. User should request a transition to HSE Off |
| * first and then HSE On or HSE Bypass. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_RCC_OscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct) |
| { |
| uint32_t tickstart; |
| uint32_t pll_config; |
| |
| /* Check Null pointer */ |
| if (RCC_OscInitStruct == NULL) |
| { |
| return HAL_ERROR; |
| } |
| |
| /* Check the parameters */ |
| assert_param(IS_RCC_OSCILLATORTYPE(RCC_OscInitStruct->OscillatorType)); |
| |
| /*------------------------------- HSE Configuration ------------------------*/ |
| if (((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSE) == RCC_OSCILLATORTYPE_HSE) |
| { |
| /* Check the parameters */ |
| assert_param(IS_RCC_HSE(RCC_OscInitStruct->HSEState)); |
| |
| /* When the HSE is used as system clock or clock source for PLL in these cases it is not allowed to be disabled */ |
| if ((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_HSE) |
| || ((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && (__HAL_RCC_GET_PLL_OSCSOURCE() == RCC_PLLSOURCE_HSE))) |
| { |
| if ((__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) != RESET) && (RCC_OscInitStruct->HSEState == RCC_HSE_OFF)) |
| { |
| return HAL_ERROR; |
| } |
| } |
| else |
| { |
| /* Set the new HSE configuration ---------------------------------------*/ |
| __HAL_RCC_HSE_CONFIG(RCC_OscInitStruct->HSEState); |
| |
| |
| /* Check the HSE State */ |
| if (RCC_OscInitStruct->HSEState != RCC_HSE_OFF) |
| { |
| /* Get Start Tick */ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till HSE is ready */ |
| while (__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) == RESET) |
| { |
| if ((HAL_GetTick() - tickstart) > HSE_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| else |
| { |
| /* Get Start Tick */ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till HSE is disabled */ |
| while (__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) != RESET) |
| { |
| if ((HAL_GetTick() - tickstart) > HSE_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| } |
| } |
| /*----------------------------- HSI Configuration --------------------------*/ |
| if (((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSI) == RCC_OSCILLATORTYPE_HSI) |
| { |
| /* Check the parameters */ |
| assert_param(IS_RCC_HSI(RCC_OscInitStruct->HSIState)); |
| assert_param(IS_RCC_CALIBRATION_VALUE(RCC_OscInitStruct->HSICalibrationValue)); |
| |
| /* Check if HSI is used as system clock or as PLL source when PLL is selected as system clock */ |
| if ((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_HSI) |
| || ((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && (__HAL_RCC_GET_PLL_OSCSOURCE() == RCC_PLLSOURCE_HSI_DIV2))) |
| { |
| /* When HSI is used as system clock it will not disabled */ |
| if ((__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) != RESET) && (RCC_OscInitStruct->HSIState != RCC_HSI_ON)) |
| { |
| return HAL_ERROR; |
| } |
| /* Otherwise, just the calibration is allowed */ |
| else |
| { |
| /* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/ |
| __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue); |
| } |
| } |
| else |
| { |
| /* Check the HSI State */ |
| if (RCC_OscInitStruct->HSIState != RCC_HSI_OFF) |
| { |
| /* Enable the Internal High Speed oscillator (HSI). */ |
| __HAL_RCC_HSI_ENABLE(); |
| |
| /* Get Start Tick */ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till HSI is ready */ |
| while (__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) == RESET) |
| { |
| if ((HAL_GetTick() - tickstart) > HSI_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| |
| /* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/ |
| __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue); |
| } |
| else |
| { |
| /* Disable the Internal High Speed oscillator (HSI). */ |
| __HAL_RCC_HSI_DISABLE(); |
| |
| /* Get Start Tick */ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till HSI is disabled */ |
| while (__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) != RESET) |
| { |
| if ((HAL_GetTick() - tickstart) > HSI_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| } |
| } |
| /*------------------------------ LSI Configuration -------------------------*/ |
| if (((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSI) == RCC_OSCILLATORTYPE_LSI) |
| { |
| /* Check the parameters */ |
| assert_param(IS_RCC_LSI(RCC_OscInitStruct->LSIState)); |
| |
| /* Check the LSI State */ |
| if (RCC_OscInitStruct->LSIState != RCC_LSI_OFF) |
| { |
| /* Enable the Internal Low Speed oscillator (LSI). */ |
| __HAL_RCC_LSI_ENABLE(); |
| |
| /* Get Start Tick */ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till LSI is ready */ |
| while (__HAL_RCC_GET_FLAG(RCC_FLAG_LSIRDY) == RESET) |
| { |
| if ((HAL_GetTick() - tickstart) > LSI_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| /* To have a fully stabilized clock in the specified range, a software delay of 1ms |
| should be added.*/ |
| RCC_Delay(1); |
| } |
| else |
| { |
| /* Disable the Internal Low Speed oscillator (LSI). */ |
| __HAL_RCC_LSI_DISABLE(); |
| |
| /* Get Start Tick */ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till LSI is disabled */ |
| while (__HAL_RCC_GET_FLAG(RCC_FLAG_LSIRDY) != RESET) |
| { |
| if ((HAL_GetTick() - tickstart) > LSI_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| } |
| /*------------------------------ LSE Configuration -------------------------*/ |
| if (((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSE) == RCC_OSCILLATORTYPE_LSE) |
| { |
| FlagStatus pwrclkchanged = RESET; |
| |
| /* Check the parameters */ |
| assert_param(IS_RCC_LSE(RCC_OscInitStruct->LSEState)); |
| |
| /* Update LSE configuration in Backup Domain control register */ |
| /* Requires to enable write access to Backup Domain of necessary */ |
| if (__HAL_RCC_PWR_IS_CLK_DISABLED()) |
| { |
| __HAL_RCC_PWR_CLK_ENABLE(); |
| pwrclkchanged = SET; |
| } |
| |
| if (HAL_IS_BIT_CLR(PWR->CR, PWR_CR_DBP)) |
| { |
| /* Enable write access to Backup domain */ |
| SET_BIT(PWR->CR, PWR_CR_DBP); |
| |
| /* Wait for Backup domain Write protection disable */ |
| tickstart = HAL_GetTick(); |
| |
| while (HAL_IS_BIT_CLR(PWR->CR, PWR_CR_DBP)) |
| { |
| if ((HAL_GetTick() - tickstart) > RCC_DBP_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| |
| /* Set the new LSE configuration -----------------------------------------*/ |
| __HAL_RCC_LSE_CONFIG(RCC_OscInitStruct->LSEState); |
| /* Check the LSE State */ |
| if (RCC_OscInitStruct->LSEState != RCC_LSE_OFF) |
| { |
| /* Get Start Tick */ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till LSE is ready */ |
| while (__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) == RESET) |
| { |
| if ((HAL_GetTick() - tickstart) > RCC_LSE_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| else |
| { |
| /* Get Start Tick */ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till LSE is disabled */ |
| while (__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) != RESET) |
| { |
| if ((HAL_GetTick() - tickstart) > RCC_LSE_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| |
| /* Require to disable power clock if necessary */ |
| if (pwrclkchanged == SET) |
| { |
| __HAL_RCC_PWR_CLK_DISABLE(); |
| } |
| } |
| |
| #if defined(RCC_CR_PLL2ON) |
| /*-------------------------------- PLL2 Configuration -----------------------*/ |
| /* Check the parameters */ |
| assert_param(IS_RCC_PLL2(RCC_OscInitStruct->PLL2.PLL2State)); |
| if ((RCC_OscInitStruct->PLL2.PLL2State) != RCC_PLL2_NONE) |
| { |
| /* This bit can not be cleared if the PLL2 clock is used indirectly as system |
| clock (i.e. it is used as PLL clock entry that is used as system clock). */ |
| if ((__HAL_RCC_GET_PLL_OSCSOURCE() == RCC_PLLSOURCE_HSE) && \ |
| (__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && \ |
| ((READ_BIT(RCC->CFGR2, RCC_CFGR2_PREDIV1SRC)) == RCC_CFGR2_PREDIV1SRC_PLL2)) |
| { |
| return HAL_ERROR; |
| } |
| else |
| { |
| if ((RCC_OscInitStruct->PLL2.PLL2State) == RCC_PLL2_ON) |
| { |
| /* Check the parameters */ |
| assert_param(IS_RCC_PLL2_MUL(RCC_OscInitStruct->PLL2.PLL2MUL)); |
| assert_param(IS_RCC_HSE_PREDIV2(RCC_OscInitStruct->PLL2.HSEPrediv2Value)); |
| |
| /* Prediv2 can be written only when the PLLI2S is disabled. */ |
| /* Return an error only if new value is different from the programmed value */ |
| if (HAL_IS_BIT_SET(RCC->CR, RCC_CR_PLL3ON) && \ |
| (__HAL_RCC_HSE_GET_PREDIV2() != RCC_OscInitStruct->PLL2.HSEPrediv2Value)) |
| { |
| return HAL_ERROR; |
| } |
| |
| /* Disable the main PLL2. */ |
| __HAL_RCC_PLL2_DISABLE(); |
| |
| /* Get Start Tick */ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till PLL2 is disabled */ |
| while (__HAL_RCC_GET_FLAG(RCC_FLAG_PLL2RDY) != RESET) |
| { |
| if ((HAL_GetTick() - tickstart) > PLL2_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| |
| /* Configure the HSE prediv2 factor --------------------------------*/ |
| __HAL_RCC_HSE_PREDIV2_CONFIG(RCC_OscInitStruct->PLL2.HSEPrediv2Value); |
| |
| /* Configure the main PLL2 multiplication factors. */ |
| __HAL_RCC_PLL2_CONFIG(RCC_OscInitStruct->PLL2.PLL2MUL); |
| |
| /* Enable the main PLL2. */ |
| __HAL_RCC_PLL2_ENABLE(); |
| |
| /* Get Start Tick */ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till PLL2 is ready */ |
| while (__HAL_RCC_GET_FLAG(RCC_FLAG_PLL2RDY) == RESET) |
| { |
| if ((HAL_GetTick() - tickstart) > PLL2_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| else |
| { |
| /* Set PREDIV1 source to HSE */ |
| CLEAR_BIT(RCC->CFGR2, RCC_CFGR2_PREDIV1SRC); |
| |
| /* Disable the main PLL2. */ |
| __HAL_RCC_PLL2_DISABLE(); |
| |
| /* Get Start Tick */ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till PLL2 is disabled */ |
| while (__HAL_RCC_GET_FLAG(RCC_FLAG_PLL2RDY) != RESET) |
| { |
| if ((HAL_GetTick() - tickstart) > PLL2_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| } |
| } |
| |
| #endif /* RCC_CR_PLL2ON */ |
| /*-------------------------------- PLL Configuration -----------------------*/ |
| /* Check the parameters */ |
| assert_param(IS_RCC_PLL(RCC_OscInitStruct->PLL.PLLState)); |
| if ((RCC_OscInitStruct->PLL.PLLState) != RCC_PLL_NONE) |
| { |
| /* Check if the PLL is used as system clock or not */ |
| if (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_PLLCLK) |
| { |
| if ((RCC_OscInitStruct->PLL.PLLState) == RCC_PLL_ON) |
| { |
| /* Check the parameters */ |
| assert_param(IS_RCC_PLLSOURCE(RCC_OscInitStruct->PLL.PLLSource)); |
| assert_param(IS_RCC_PLL_MUL(RCC_OscInitStruct->PLL.PLLMUL)); |
| |
| /* Disable the main PLL. */ |
| __HAL_RCC_PLL_DISABLE(); |
| |
| /* Get Start Tick */ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till PLL is disabled */ |
| while (__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) != RESET) |
| { |
| if ((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| |
| /* Configure the HSE prediv factor --------------------------------*/ |
| /* It can be written only when the PLL is disabled. Not used in PLL source is different than HSE */ |
| if (RCC_OscInitStruct->PLL.PLLSource == RCC_PLLSOURCE_HSE) |
| { |
| /* Check the parameter */ |
| assert_param(IS_RCC_HSE_PREDIV(RCC_OscInitStruct->HSEPredivValue)); |
| #if defined(RCC_CFGR2_PREDIV1SRC) |
| assert_param(IS_RCC_PREDIV1_SOURCE(RCC_OscInitStruct->Prediv1Source)); |
| |
| /* Set PREDIV1 source */ |
| SET_BIT(RCC->CFGR2, RCC_OscInitStruct->Prediv1Source); |
| #endif /* RCC_CFGR2_PREDIV1SRC */ |
| |
| /* Set PREDIV1 Value */ |
| __HAL_RCC_HSE_PREDIV_CONFIG(RCC_OscInitStruct->HSEPredivValue); |
| } |
| |
| /* Configure the main PLL clock source and multiplication factors. */ |
| __HAL_RCC_PLL_CONFIG(RCC_OscInitStruct->PLL.PLLSource, |
| RCC_OscInitStruct->PLL.PLLMUL); |
| /* Enable the main PLL. */ |
| __HAL_RCC_PLL_ENABLE(); |
| |
| /* Get Start Tick */ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till PLL is ready */ |
| while (__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) == RESET) |
| { |
| if ((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| else |
| { |
| /* Disable the main PLL. */ |
| __HAL_RCC_PLL_DISABLE(); |
| |
| /* Get Start Tick */ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till PLL is disabled */ |
| while (__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) != RESET) |
| { |
| if ((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| } |
| else |
| { |
| /* Check if there is a request to disable the PLL used as System clock source */ |
| if ((RCC_OscInitStruct->PLL.PLLState) == RCC_PLL_OFF) |
| { |
| return HAL_ERROR; |
| } |
| else |
| { |
| /* Do not return HAL_ERROR if request repeats the current configuration */ |
| pll_config = RCC->CFGR; |
| if ((READ_BIT(pll_config, RCC_CFGR_PLLSRC) != RCC_OscInitStruct->PLL.PLLSource) || |
| (READ_BIT(pll_config, RCC_CFGR_PLLMULL) != RCC_OscInitStruct->PLL.PLLMUL)) |
| { |
| return HAL_ERROR; |
| } |
| } |
| } |
| } |
| |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Initializes the CPU, AHB and APB buses clocks according to the specified |
| * parameters in the RCC_ClkInitStruct. |
| * @param RCC_ClkInitStruct pointer to an RCC_OscInitTypeDef structure that |
| * contains the configuration information for the RCC peripheral. |
| * @param FLatency FLASH Latency |
| * The value of this parameter depend on device used within the same series |
| * @note The SystemCoreClock CMSIS variable is used to store System Clock Frequency |
| * and updated by @ref HAL_RCC_GetHCLKFreq() function called within this function |
| * |
| * @note The HSI is used (enabled by hardware) as system clock source after |
| * start-up from Reset, wake-up from STOP and STANDBY mode, or in case |
| * of failure of the HSE used directly or indirectly as system clock |
| * (if the Clock Security System CSS is enabled). |
| * |
| * @note A switch from one clock source to another occurs only if the target |
| * clock source is ready (clock stable after start-up delay or PLL locked). |
| * If a clock source which is not yet ready is selected, the switch will |
| * occur when the clock source will be ready. |
| * You can use @ref HAL_RCC_GetClockConfig() function to know which clock is |
| * currently used as system clock source. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_RCC_ClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t FLatency) |
| { |
| uint32_t tickstart; |
| |
| /* Check Null pointer */ |
| if (RCC_ClkInitStruct == NULL) |
| { |
| return HAL_ERROR; |
| } |
| |
| /* Check the parameters */ |
| assert_param(IS_RCC_CLOCKTYPE(RCC_ClkInitStruct->ClockType)); |
| assert_param(IS_FLASH_LATENCY(FLatency)); |
| |
| /* To correctly read data from FLASH memory, the number of wait states (LATENCY) |
| must be correctly programmed according to the frequency of the CPU clock |
| (HCLK) of the device. */ |
| |
| #if defined(FLASH_ACR_LATENCY) |
| /* Increasing the number of wait states because of higher CPU frequency */ |
| if (FLatency > __HAL_FLASH_GET_LATENCY()) |
| { |
| /* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */ |
| __HAL_FLASH_SET_LATENCY(FLatency); |
| |
| /* Check that the new number of wait states is taken into account to access the Flash |
| memory by reading the FLASH_ACR register */ |
| if (__HAL_FLASH_GET_LATENCY() != FLatency) |
| { |
| return HAL_ERROR; |
| } |
| } |
| |
| #endif /* FLASH_ACR_LATENCY */ |
| /*-------------------------- HCLK Configuration --------------------------*/ |
| if (((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_HCLK) == RCC_CLOCKTYPE_HCLK) |
| { |
| /* Set the highest APBx dividers in order to ensure that we do not go through |
| a non-spec phase whatever we decrease or increase HCLK. */ |
| if (((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK1) == RCC_CLOCKTYPE_PCLK1) |
| { |
| MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE1, RCC_HCLK_DIV16); |
| } |
| |
| if (((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK2) == RCC_CLOCKTYPE_PCLK2) |
| { |
| MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE2, (RCC_HCLK_DIV16 << 3)); |
| } |
| |
| /* Set the new HCLK clock divider */ |
| assert_param(IS_RCC_HCLK(RCC_ClkInitStruct->AHBCLKDivider)); |
| MODIFY_REG(RCC->CFGR, RCC_CFGR_HPRE, RCC_ClkInitStruct->AHBCLKDivider); |
| } |
| |
| /*------------------------- SYSCLK Configuration ---------------------------*/ |
| if (((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_SYSCLK) == RCC_CLOCKTYPE_SYSCLK) |
| { |
| assert_param(IS_RCC_SYSCLKSOURCE(RCC_ClkInitStruct->SYSCLKSource)); |
| |
| /* HSE is selected as System Clock Source */ |
| if (RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSE) |
| { |
| /* Check the HSE ready flag */ |
| if (__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) == RESET) |
| { |
| return HAL_ERROR; |
| } |
| } |
| /* PLL is selected as System Clock Source */ |
| else if (RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_PLLCLK) |
| { |
| /* Check the PLL ready flag */ |
| if (__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) == RESET) |
| { |
| return HAL_ERROR; |
| } |
| } |
| /* HSI is selected as System Clock Source */ |
| else |
| { |
| /* Check the HSI ready flag */ |
| if (__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) == RESET) |
| { |
| return HAL_ERROR; |
| } |
| } |
| __HAL_RCC_SYSCLK_CONFIG(RCC_ClkInitStruct->SYSCLKSource); |
| |
| /* Get Start Tick */ |
| tickstart = HAL_GetTick(); |
| |
| while (__HAL_RCC_GET_SYSCLK_SOURCE() != (RCC_ClkInitStruct->SYSCLKSource << RCC_CFGR_SWS_Pos)) |
| { |
| if ((HAL_GetTick() - tickstart) > CLOCKSWITCH_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| |
| #if defined(FLASH_ACR_LATENCY) |
| /* Decreasing the number of wait states because of lower CPU frequency */ |
| if (FLatency < __HAL_FLASH_GET_LATENCY()) |
| { |
| /* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */ |
| __HAL_FLASH_SET_LATENCY(FLatency); |
| |
| /* Check that the new number of wait states is taken into account to access the Flash |
| memory by reading the FLASH_ACR register */ |
| if (__HAL_FLASH_GET_LATENCY() != FLatency) |
| { |
| return HAL_ERROR; |
| } |
| } |
| #endif /* FLASH_ACR_LATENCY */ |
| |
| /*-------------------------- PCLK1 Configuration ---------------------------*/ |
| if (((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK1) == RCC_CLOCKTYPE_PCLK1) |
| { |
| assert_param(IS_RCC_PCLK(RCC_ClkInitStruct->APB1CLKDivider)); |
| MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE1, RCC_ClkInitStruct->APB1CLKDivider); |
| } |
| |
| /*-------------------------- PCLK2 Configuration ---------------------------*/ |
| if (((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK2) == RCC_CLOCKTYPE_PCLK2) |
| { |
| assert_param(IS_RCC_PCLK(RCC_ClkInitStruct->APB2CLKDivider)); |
| MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE2, ((RCC_ClkInitStruct->APB2CLKDivider) << 3)); |
| } |
| |
| /* Update the SystemCoreClock global variable */ |
| SystemCoreClock = HAL_RCC_GetSysClockFreq() >> AHBPrescTable[(RCC->CFGR & RCC_CFGR_HPRE) >> RCC_CFGR_HPRE_Pos]; |
| |
| /* Configure the source of time base considering new system clocks settings*/ |
| HAL_InitTick(uwTickPrio); |
| |
| return HAL_OK; |
| } |
| |
| /** |
| * @} |
| */ |
| |
| /** @defgroup RCC_Exported_Functions_Group2 Peripheral Control functions |
| * @brief RCC clocks control functions |
| * |
| @verbatim |
| =============================================================================== |
| ##### Peripheral Control functions ##### |
| =============================================================================== |
| [..] |
| This subsection provides a set of functions allowing to control the RCC Clocks |
| frequencies. |
| |
| @endverbatim |
| * @{ |
| */ |
| |
| /** |
| * @brief Selects the clock source to output on MCO pin. |
| * @note MCO pin should be configured in alternate function mode. |
| * @param RCC_MCOx specifies the output direction for the clock source. |
| * This parameter can be one of the following values: |
| * @arg @ref RCC_MCO1 Clock source to output on MCO1 pin(PA8). |
| * @param RCC_MCOSource specifies the clock source to output. |
| * This parameter can be one of the following values: |
| * @arg @ref RCC_MCO1SOURCE_NOCLOCK No clock selected as MCO clock |
| * @arg @ref RCC_MCO1SOURCE_SYSCLK System clock selected as MCO clock |
| * @arg @ref RCC_MCO1SOURCE_HSI HSI selected as MCO clock |
| * @arg @ref RCC_MCO1SOURCE_HSE HSE selected as MCO clock |
| @if STM32F105xC |
| * @arg @ref RCC_MCO1SOURCE_PLLCLK PLL clock divided by 2 selected as MCO source |
| * @arg @ref RCC_MCO1SOURCE_PLL2CLK PLL2 clock selected as MCO source |
| * @arg @ref RCC_MCO1SOURCE_PLL3CLK_DIV2 PLL3 clock divided by 2 selected as MCO source |
| * @arg @ref RCC_MCO1SOURCE_EXT_HSE XT1 external 3-25 MHz oscillator clock selected as MCO source |
| * @arg @ref RCC_MCO1SOURCE_PLL3CLK PLL3 clock selected as MCO source |
| @endif |
| @if STM32F107xC |
| * @arg @ref RCC_MCO1SOURCE_PLLCLK PLL clock divided by 2 selected as MCO source |
| * @arg @ref RCC_MCO1SOURCE_PLL2CLK PLL2 clock selected as MCO source |
| * @arg @ref RCC_MCO1SOURCE_PLL3CLK_DIV2 PLL3 clock divided by 2 selected as MCO source |
| * @arg @ref RCC_MCO1SOURCE_EXT_HSE XT1 external 3-25 MHz oscillator clock selected as MCO source |
| * @arg @ref RCC_MCO1SOURCE_PLL3CLK PLL3 clock selected as MCO source |
| @endif |
| * @param RCC_MCODiv specifies the MCO DIV. |
| * This parameter can be one of the following values: |
| * @arg @ref RCC_MCODIV_1 no division applied to MCO clock |
| * @retval None |
| */ |
| void HAL_RCC_MCOConfig(uint32_t RCC_MCOx, uint32_t RCC_MCOSource, uint32_t RCC_MCODiv) |
| { |
| GPIO_InitTypeDef gpio = {0U}; |
| |
| /* Check the parameters */ |
| assert_param(IS_RCC_MCO(RCC_MCOx)); |
| assert_param(IS_RCC_MCODIV(RCC_MCODiv)); |
| assert_param(IS_RCC_MCO1SOURCE(RCC_MCOSource)); |
| |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(RCC_MCOx); |
| UNUSED(RCC_MCODiv); |
| |
| /* Configure the MCO1 pin in alternate function mode */ |
| gpio.Mode = GPIO_MODE_AF_PP; |
| gpio.Speed = GPIO_SPEED_FREQ_HIGH; |
| gpio.Pull = GPIO_NOPULL; |
| gpio.Pin = MCO1_PIN; |
| |
| /* MCO1 Clock Enable */ |
| MCO1_CLK_ENABLE(); |
| |
| HAL_GPIO_Init(MCO1_GPIO_PORT, &gpio); |
| |
| /* Configure the MCO clock source */ |
| __HAL_RCC_MCO1_CONFIG(RCC_MCOSource, RCC_MCODiv); |
| } |
| |
| /** |
| * @brief Enables the Clock Security System. |
| * @note If a failure is detected on the HSE oscillator clock, this oscillator |
| * is automatically disabled and an interrupt is generated to inform the |
| * software about the failure (Clock Security System Interrupt, CSSI), |
| * allowing the MCU to perform rescue operations. The CSSI is linked to |
| * the Cortex-M3 NMI (Non-Maskable Interrupt) exception vector. |
| * @retval None |
| */ |
| void HAL_RCC_EnableCSS(void) |
| { |
| *(__IO uint32_t *) RCC_CR_CSSON_BB = (uint32_t)ENABLE; |
| } |
| |
| /** |
| * @brief Disables the Clock Security System. |
| * @retval None |
| */ |
| void HAL_RCC_DisableCSS(void) |
| { |
| *(__IO uint32_t *) RCC_CR_CSSON_BB = (uint32_t)DISABLE; |
| } |
| |
| /** |
| * @brief Returns the SYSCLK frequency |
| * @note The system frequency computed by this function is not the real |
| * frequency in the chip. It is calculated based on the predefined |
| * constant and the selected clock source: |
| * @note If SYSCLK source is HSI, function returns values based on HSI_VALUE(*) |
| * @note If SYSCLK source is HSE, function returns a value based on HSE_VALUE |
| * divided by PREDIV factor(**) |
| * @note If SYSCLK source is PLL, function returns a value based on HSE_VALUE |
| * divided by PREDIV factor(**) or HSI_VALUE(*) multiplied by the PLL factor. |
| * @note (*) HSI_VALUE is a constant defined in stm32f1xx_hal_conf.h file (default value |
| * 8 MHz) but the real value may vary depending on the variations |
| * in voltage and temperature. |
| * @note (**) HSE_VALUE is a constant defined in stm32f1xx_hal_conf.h file (default value |
| * 8 MHz), user has to ensure that HSE_VALUE is same as the real |
| * frequency of the crystal used. Otherwise, this function may |
| * have wrong result. |
| * |
| * @note The result of this function could be not correct when using fractional |
| * value for HSE crystal. |
| * |
| * @note This function can be used by the user application to compute the |
| * baud-rate for the communication peripherals or configure other parameters. |
| * |
| * @note Each time SYSCLK changes, this function must be called to update the |
| * right SYSCLK value. Otherwise, any configuration based on this function will be incorrect. |
| * |
| * @retval SYSCLK frequency |
| */ |
| uint32_t HAL_RCC_GetSysClockFreq(void) |
| { |
| #if defined(RCC_CFGR2_PREDIV1SRC) |
| static const uint8_t aPLLMULFactorTable[14U] = {0, 0, 4, 5, 6, 7, 8, 9, 0, 0, 0, 0, 0, 13}; |
| static const uint8_t aPredivFactorTable[16U] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}; |
| #else |
| static const uint8_t aPLLMULFactorTable[16U] = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 16}; |
| #if defined(RCC_CFGR2_PREDIV1) |
| static const uint8_t aPredivFactorTable[16U] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}; |
| #else |
| static const uint8_t aPredivFactorTable[2U] = {1, 2}; |
| #endif /*RCC_CFGR2_PREDIV1*/ |
| |
| #endif |
| uint32_t tmpreg = 0U, prediv = 0U, pllclk = 0U, pllmul = 0U; |
| uint32_t sysclockfreq = 0U; |
| #if defined(RCC_CFGR2_PREDIV1SRC) |
| uint32_t prediv2 = 0U, pll2mul = 0U; |
| #endif /*RCC_CFGR2_PREDIV1SRC*/ |
| |
| tmpreg = RCC->CFGR; |
| |
| /* Get SYSCLK source -------------------------------------------------------*/ |
| switch (tmpreg & RCC_CFGR_SWS) |
| { |
| case RCC_SYSCLKSOURCE_STATUS_HSE: /* HSE used as system clock */ |
| { |
| sysclockfreq = HSE_VALUE; |
| break; |
| } |
| case RCC_SYSCLKSOURCE_STATUS_PLLCLK: /* PLL used as system clock */ |
| { |
| pllmul = aPLLMULFactorTable[(uint32_t)(tmpreg & RCC_CFGR_PLLMULL) >> RCC_CFGR_PLLMULL_Pos]; |
| if ((tmpreg & RCC_CFGR_PLLSRC) != RCC_PLLSOURCE_HSI_DIV2) |
| { |
| #if defined(RCC_CFGR2_PREDIV1) |
| prediv = aPredivFactorTable[(uint32_t)(RCC->CFGR2 & RCC_CFGR2_PREDIV1) >> RCC_CFGR2_PREDIV1_Pos]; |
| #else |
| prediv = aPredivFactorTable[(uint32_t)(RCC->CFGR & RCC_CFGR_PLLXTPRE) >> RCC_CFGR_PLLXTPRE_Pos]; |
| #endif /*RCC_CFGR2_PREDIV1*/ |
| #if defined(RCC_CFGR2_PREDIV1SRC) |
| |
| if (HAL_IS_BIT_SET(RCC->CFGR2, RCC_CFGR2_PREDIV1SRC)) |
| { |
| /* PLL2 selected as Prediv1 source */ |
| /* PLLCLK = PLL2CLK / PREDIV1 * PLLMUL with PLL2CLK = HSE/PREDIV2 * PLL2MUL */ |
| prediv2 = ((RCC->CFGR2 & RCC_CFGR2_PREDIV2) >> RCC_CFGR2_PREDIV2_Pos) + 1; |
| pll2mul = ((RCC->CFGR2 & RCC_CFGR2_PLL2MUL) >> RCC_CFGR2_PLL2MUL_Pos) + 2; |
| pllclk = (uint32_t)(((uint64_t)HSE_VALUE * (uint64_t)pll2mul * (uint64_t)pllmul) / ((uint64_t)prediv2 * (uint64_t)prediv)); |
| } |
| else |
| { |
| /* HSE used as PLL clock source : PLLCLK = HSE/PREDIV1 * PLLMUL */ |
| pllclk = (uint32_t)((HSE_VALUE * pllmul) / prediv); |
| } |
| |
| /* If PLLMUL was set to 13 means that it was to cover the case PLLMUL 6.5 (avoid using float) */ |
| /* In this case need to divide pllclk by 2 */ |
| if (pllmul == aPLLMULFactorTable[(uint32_t)(RCC_CFGR_PLLMULL6_5) >> RCC_CFGR_PLLMULL_Pos]) |
| { |
| pllclk = pllclk / 2; |
| } |
| #else |
| /* HSE used as PLL clock source : PLLCLK = HSE/PREDIV1 * PLLMUL */ |
| pllclk = (uint32_t)((HSE_VALUE * pllmul) / prediv); |
| #endif /*RCC_CFGR2_PREDIV1SRC*/ |
| } |
| else |
| { |
| /* HSI used as PLL clock source : PLLCLK = HSI/2 * PLLMUL */ |
| pllclk = (uint32_t)((HSI_VALUE >> 1) * pllmul); |
| } |
| sysclockfreq = pllclk; |
| break; |
| } |
| case RCC_SYSCLKSOURCE_STATUS_HSI: /* HSI used as system clock source */ |
| default: /* HSI used as system clock */ |
| { |
| sysclockfreq = HSI_VALUE; |
| break; |
| } |
| } |
| return sysclockfreq; |
| } |
| |
| /** |
| * @brief Returns the HCLK frequency |
| * @note Each time HCLK changes, this function must be called to update the |
| * right HCLK value. Otherwise, any configuration based on this function will be incorrect. |
| * |
| * @note The SystemCoreClock CMSIS variable is used to store System Clock Frequency |
| * and updated within this function |
| * @retval HCLK frequency |
| */ |
| uint32_t HAL_RCC_GetHCLKFreq(void) |
| { |
| return SystemCoreClock; |
| } |
| |
| /** |
| * @brief Returns the PCLK1 frequency |
| * @note Each time PCLK1 changes, this function must be called to update the |
| * right PCLK1 value. Otherwise, any configuration based on this function will be incorrect. |
| * @retval PCLK1 frequency |
| */ |
| uint32_t HAL_RCC_GetPCLK1Freq(void) |
| { |
| /* Get HCLK source and Compute PCLK1 frequency ---------------------------*/ |
| return (HAL_RCC_GetHCLKFreq() >> APBPrescTable[(RCC->CFGR & RCC_CFGR_PPRE1) >> RCC_CFGR_PPRE1_Pos]); |
| } |
| |
| /** |
| * @brief Returns the PCLK2 frequency |
| * @note Each time PCLK2 changes, this function must be called to update the |
| * right PCLK2 value. Otherwise, any configuration based on this function will be incorrect. |
| * @retval PCLK2 frequency |
| */ |
| uint32_t HAL_RCC_GetPCLK2Freq(void) |
| { |
| /* Get HCLK source and Compute PCLK2 frequency ---------------------------*/ |
| return (HAL_RCC_GetHCLKFreq() >> APBPrescTable[(RCC->CFGR & RCC_CFGR_PPRE2) >> RCC_CFGR_PPRE2_Pos]); |
| } |
| |
| /** |
| * @brief Configures the RCC_OscInitStruct according to the internal |
| * RCC configuration registers. |
| * @param RCC_OscInitStruct pointer to an RCC_OscInitTypeDef structure that |
| * will be configured. |
| * @retval None |
| */ |
| void HAL_RCC_GetOscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct) |
| { |
| /* Check the parameters */ |
| assert_param(RCC_OscInitStruct != NULL); |
| |
| /* Set all possible values for the Oscillator type parameter ---------------*/ |
| RCC_OscInitStruct->OscillatorType = RCC_OSCILLATORTYPE_HSE | RCC_OSCILLATORTYPE_HSI \ |
| | RCC_OSCILLATORTYPE_LSE | RCC_OSCILLATORTYPE_LSI; |
| |
| #if defined(RCC_CFGR2_PREDIV1SRC) |
| /* Get the Prediv1 source --------------------------------------------------*/ |
| RCC_OscInitStruct->Prediv1Source = READ_BIT(RCC->CFGR2, RCC_CFGR2_PREDIV1SRC); |
| #endif /* RCC_CFGR2_PREDIV1SRC */ |
| |
| /* Get the HSE configuration -----------------------------------------------*/ |
| if ((RCC->CR & RCC_CR_HSEBYP) == RCC_CR_HSEBYP) |
| { |
| RCC_OscInitStruct->HSEState = RCC_HSE_BYPASS; |
| } |
| else if ((RCC->CR & RCC_CR_HSEON) == RCC_CR_HSEON) |
| { |
| RCC_OscInitStruct->HSEState = RCC_HSE_ON; |
| } |
| else |
| { |
| RCC_OscInitStruct->HSEState = RCC_HSE_OFF; |
| } |
| RCC_OscInitStruct->HSEPredivValue = __HAL_RCC_HSE_GET_PREDIV(); |
| |
| /* Get the HSI configuration -----------------------------------------------*/ |
| if ((RCC->CR & RCC_CR_HSION) == RCC_CR_HSION) |
| { |
| RCC_OscInitStruct->HSIState = RCC_HSI_ON; |
| } |
| else |
| { |
| RCC_OscInitStruct->HSIState = RCC_HSI_OFF; |
| } |
| |
| RCC_OscInitStruct->HSICalibrationValue = (uint32_t)((RCC->CR & RCC_CR_HSITRIM) >> RCC_CR_HSITRIM_Pos); |
| |
| /* Get the LSE configuration -----------------------------------------------*/ |
| if ((RCC->BDCR & RCC_BDCR_LSEBYP) == RCC_BDCR_LSEBYP) |
| { |
| RCC_OscInitStruct->LSEState = RCC_LSE_BYPASS; |
| } |
| else if ((RCC->BDCR & RCC_BDCR_LSEON) == RCC_BDCR_LSEON) |
| { |
| RCC_OscInitStruct->LSEState = RCC_LSE_ON; |
| } |
| else |
| { |
| RCC_OscInitStruct->LSEState = RCC_LSE_OFF; |
| } |
| |
| /* Get the LSI configuration -----------------------------------------------*/ |
| if ((RCC->CSR & RCC_CSR_LSION) == RCC_CSR_LSION) |
| { |
| RCC_OscInitStruct->LSIState = RCC_LSI_ON; |
| } |
| else |
| { |
| RCC_OscInitStruct->LSIState = RCC_LSI_OFF; |
| } |
| |
| |
| /* Get the PLL configuration -----------------------------------------------*/ |
| if ((RCC->CR & RCC_CR_PLLON) == RCC_CR_PLLON) |
| { |
| RCC_OscInitStruct->PLL.PLLState = RCC_PLL_ON; |
| } |
| else |
| { |
| RCC_OscInitStruct->PLL.PLLState = RCC_PLL_OFF; |
| } |
| RCC_OscInitStruct->PLL.PLLSource = (uint32_t)(RCC->CFGR & RCC_CFGR_PLLSRC); |
| RCC_OscInitStruct->PLL.PLLMUL = (uint32_t)(RCC->CFGR & RCC_CFGR_PLLMULL); |
| #if defined(RCC_CR_PLL2ON) |
| /* Get the PLL2 configuration -----------------------------------------------*/ |
| if ((RCC->CR & RCC_CR_PLL2ON) == RCC_CR_PLL2ON) |
| { |
| RCC_OscInitStruct->PLL2.PLL2State = RCC_PLL2_ON; |
| } |
| else |
| { |
| RCC_OscInitStruct->PLL2.PLL2State = RCC_PLL2_OFF; |
| } |
| RCC_OscInitStruct->PLL2.HSEPrediv2Value = __HAL_RCC_HSE_GET_PREDIV2(); |
| RCC_OscInitStruct->PLL2.PLL2MUL = (uint32_t)(RCC->CFGR2 & RCC_CFGR2_PLL2MUL); |
| #endif /* RCC_CR_PLL2ON */ |
| } |
| |
| /** |
| * @brief Get the RCC_ClkInitStruct according to the internal |
| * RCC configuration registers. |
| * @param RCC_ClkInitStruct pointer to an RCC_ClkInitTypeDef structure that |
| * contains the current clock configuration. |
| * @param pFLatency Pointer on the Flash Latency. |
| * @retval None |
| */ |
| void HAL_RCC_GetClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t *pFLatency) |
| { |
| /* Check the parameters */ |
| assert_param(RCC_ClkInitStruct != NULL); |
| assert_param(pFLatency != NULL); |
| |
| /* Set all possible values for the Clock type parameter --------------------*/ |
| RCC_ClkInitStruct->ClockType = RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2; |
| |
| /* Get the SYSCLK configuration --------------------------------------------*/ |
| RCC_ClkInitStruct->SYSCLKSource = (uint32_t)(RCC->CFGR & RCC_CFGR_SW); |
| |
| /* Get the HCLK configuration ----------------------------------------------*/ |
| RCC_ClkInitStruct->AHBCLKDivider = (uint32_t)(RCC->CFGR & RCC_CFGR_HPRE); |
| |
| /* Get the APB1 configuration ----------------------------------------------*/ |
| RCC_ClkInitStruct->APB1CLKDivider = (uint32_t)(RCC->CFGR & RCC_CFGR_PPRE1); |
| |
| /* Get the APB2 configuration ----------------------------------------------*/ |
| RCC_ClkInitStruct->APB2CLKDivider = (uint32_t)((RCC->CFGR & RCC_CFGR_PPRE2) >> 3); |
| |
| #if defined(FLASH_ACR_LATENCY) |
| /* Get the Flash Wait State (Latency) configuration ------------------------*/ |
| *pFLatency = (uint32_t)(FLASH->ACR & FLASH_ACR_LATENCY); |
| #else |
| /* For VALUE lines devices, only LATENCY_0 can be set*/ |
| *pFLatency = (uint32_t)FLASH_LATENCY_0; |
| #endif |
| } |
| |
| /** |
| * @brief This function handles the RCC CSS interrupt request. |
| * @note This API should be called under the NMI_Handler(). |
| * @retval None |
| */ |
| void HAL_RCC_NMI_IRQHandler(void) |
| { |
| /* Check RCC CSSF flag */ |
| if (__HAL_RCC_GET_IT(RCC_IT_CSS)) |
| { |
| /* RCC Clock Security System interrupt user callback */ |
| HAL_RCC_CSSCallback(); |
| |
| /* Clear RCC CSS pending bit */ |
| __HAL_RCC_CLEAR_IT(RCC_IT_CSS); |
| } |
| } |
| |
| /** |
| * @brief This function provides delay (in milliseconds) based on CPU cycles method. |
| * @param mdelay: specifies the delay time length, in milliseconds. |
| * @retval None |
| */ |
| static void RCC_Delay(uint32_t mdelay) |
| { |
| __IO uint32_t Delay = mdelay * (SystemCoreClock / 8U / 1000U); |
| do |
| { |
| __NOP(); |
| } |
| while (Delay --); |
| } |
| |
| /** |
| * @brief RCC Clock Security System interrupt callback |
| * @retval none |
| */ |
| __weak void HAL_RCC_CSSCallback(void) |
| { |
| /* NOTE : This function Should not be modified, when the callback is needed, |
| the HAL_RCC_CSSCallback could be implemented in the user file |
| */ |
| } |
| |
| /** |
| * @} |
| */ |
| |
| /** |
| * @} |
| */ |
| |
| #endif /* HAL_RCC_MODULE_ENABLED */ |
| /** |
| * @} |
| */ |
| |
| /** |
| * @} |
| */ |
| |