| /** |
| ****************************************************************************** |
| * @file stm32f1xx_hal_adc.c |
| * @author MCD Application Team |
| * @brief This file provides firmware functions to manage the following |
| * functionalities of the Analog to Digital Convertor (ADC) |
| * peripheral: |
| * + Initialization and de-initialization functions |
| * ++ Initialization and Configuration of ADC |
| * + Operation functions |
| * ++ Start, stop, get result of conversions of regular |
| * group, using 3 possible modes: polling, interruption or DMA. |
| * + Control functions |
| * ++ Channels configuration on regular group |
| * ++ Channels configuration on injected group |
| * ++ Analog Watchdog configuration |
| * + State functions |
| * ++ ADC state machine management |
| * ++ Interrupts and flags management |
| * Other functions (extended functions) are available in file |
| * "stm32f1xx_hal_adc_ex.c". |
| * |
| @verbatim |
| ============================================================================== |
| ##### ADC peripheral features ##### |
| ============================================================================== |
| [..] |
| (+) 12-bit resolution |
| |
| (+) Interrupt generation at the end of regular conversion, end of injected |
| conversion, and in case of analog watchdog or overrun events. |
| |
| (+) Single and continuous conversion modes. |
| |
| (+) Scan mode for conversion of several channels sequentially. |
| |
| (+) Data alignment with in-built data coherency. |
| |
| (+) Programmable sampling time (channel wise) |
| |
| (+) ADC conversion of regular group and injected group. |
| |
| (+) External trigger (timer or EXTI) |
| for both regular and injected groups. |
| |
| (+) DMA request generation for transfer of conversions data of regular group. |
| |
| (+) Multimode Dual mode (available on devices with 2 ADCs or more). |
| |
| (+) Configurable DMA data storage in Multimode Dual mode (available on devices |
| with 2 DCs or more). |
| |
| (+) Configurable delay between conversions in Dual interleaved mode (available |
| on devices with 2 DCs or more). |
| |
| (+) ADC calibration |
| |
| (+) ADC supply requirements: 2.4 V to 3.6 V at full speed and down to 1.8 V at |
| slower speed. |
| |
| (+) ADC input range: from Vref- (connected to Vssa) to Vref+ (connected to |
| Vdda or to an external voltage reference). |
| |
| |
| ##### How to use this driver ##### |
| ============================================================================== |
| [..] |
| |
| *** Configuration of top level parameters related to ADC *** |
| ============================================================ |
| [..] |
| |
| (#) Enable the ADC interface |
| (++) As prerequisite, ADC clock must be configured at RCC top level. |
| Caution: On STM32F1, ADC clock frequency max is 14MHz (refer |
| to device datasheet). |
| Therefore, ADC clock prescaler must be configured in |
| function of ADC clock source frequency to remain below |
| this maximum frequency. |
| (++) One clock setting is mandatory: |
| ADC clock (core clock, also possibly conversion clock). |
| (+++) Example: |
| Into HAL_ADC_MspInit() (recommended code location) or with |
| other device clock parameters configuration: |
| (+++) RCC_PeriphCLKInitTypeDef PeriphClkInit; |
| (+++) __ADC1_CLK_ENABLE(); |
| (+++) PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ADC; |
| (+++) PeriphClkInit.AdcClockSelection = RCC_ADCPCLK2_DIV2; |
| (+++) HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit); |
| |
| (#) ADC pins configuration |
| (++) Enable the clock for the ADC GPIOs |
| using macro __HAL_RCC_GPIOx_CLK_ENABLE() |
| (++) Configure these ADC pins in analog mode |
| using function HAL_GPIO_Init() |
| |
| (#) Optionally, in case of usage of ADC with interruptions: |
| (++) Configure the NVIC for ADC |
| using function HAL_NVIC_EnableIRQ(ADCx_IRQn) |
| (++) Insert the ADC interruption handler function HAL_ADC_IRQHandler() |
| into the function of corresponding ADC interruption vector |
| ADCx_IRQHandler(). |
| |
| (#) Optionally, in case of usage of DMA: |
| (++) Configure the DMA (DMA channel, mode normal or circular, ...) |
| using function HAL_DMA_Init(). |
| (++) Configure the NVIC for DMA |
| using function HAL_NVIC_EnableIRQ(DMAx_Channelx_IRQn) |
| (++) Insert the ADC interruption handler function HAL_ADC_IRQHandler() |
| into the function of corresponding DMA interruption vector |
| DMAx_Channelx_IRQHandler(). |
| |
| *** Configuration of ADC, groups regular/injected, channels parameters *** |
| ========================================================================== |
| [..] |
| |
| (#) Configure the ADC parameters (resolution, data alignment, ...) |
| and regular group parameters (conversion trigger, sequencer, ...) |
| using function HAL_ADC_Init(). |
| |
| (#) Configure the channels for regular group parameters (channel number, |
| channel rank into sequencer, ..., into regular group) |
| using function HAL_ADC_ConfigChannel(). |
| |
| (#) Optionally, configure the injected group parameters (conversion trigger, |
| sequencer, ..., of injected group) |
| and the channels for injected group parameters (channel number, |
| channel rank into sequencer, ..., into injected group) |
| using function HAL_ADCEx_InjectedConfigChannel(). |
| |
| (#) Optionally, configure the analog watchdog parameters (channels |
| monitored, thresholds, ...) |
| using function HAL_ADC_AnalogWDGConfig(). |
| |
| (#) Optionally, for devices with several ADC instances: configure the |
| multimode parameters |
| using function HAL_ADCEx_MultiModeConfigChannel(). |
| |
| *** Execution of ADC conversions *** |
| ==================================== |
| [..] |
| |
| (#) Optionally, perform an automatic ADC calibration to improve the |
| conversion accuracy |
| using function HAL_ADCEx_Calibration_Start(). |
| |
| (#) ADC driver can be used among three modes: polling, interruption, |
| transfer by DMA. |
| |
| (++) ADC conversion by polling: |
| (+++) Activate the ADC peripheral and start conversions |
| using function HAL_ADC_Start() |
| (+++) Wait for ADC conversion completion |
| using function HAL_ADC_PollForConversion() |
| (or for injected group: HAL_ADCEx_InjectedPollForConversion() ) |
| (+++) Retrieve conversion results |
| using function HAL_ADC_GetValue() |
| (or for injected group: HAL_ADCEx_InjectedGetValue() ) |
| (+++) Stop conversion and disable the ADC peripheral |
| using function HAL_ADC_Stop() |
| |
| (++) ADC conversion by interruption: |
| (+++) Activate the ADC peripheral and start conversions |
| using function HAL_ADC_Start_IT() |
| (+++) Wait for ADC conversion completion by call of function |
| HAL_ADC_ConvCpltCallback() |
| (this function must be implemented in user program) |
| (or for injected group: HAL_ADCEx_InjectedConvCpltCallback() ) |
| (+++) Retrieve conversion results |
| using function HAL_ADC_GetValue() |
| (or for injected group: HAL_ADCEx_InjectedGetValue() ) |
| (+++) Stop conversion and disable the ADC peripheral |
| using function HAL_ADC_Stop_IT() |
| |
| (++) ADC conversion with transfer by DMA: |
| (+++) Activate the ADC peripheral and start conversions |
| using function HAL_ADC_Start_DMA() |
| (+++) Wait for ADC conversion completion by call of function |
| HAL_ADC_ConvCpltCallback() or HAL_ADC_ConvHalfCpltCallback() |
| (these functions must be implemented in user program) |
| (+++) Conversion results are automatically transferred by DMA into |
| destination variable address. |
| (+++) Stop conversion and disable the ADC peripheral |
| using function HAL_ADC_Stop_DMA() |
| |
| (++) For devices with several ADCs: ADC multimode conversion |
| with transfer by DMA: |
| (+++) Activate the ADC peripheral (slave) and start conversions |
| using function HAL_ADC_Start() |
| (+++) Activate the ADC peripheral (master) and start conversions |
| using function HAL_ADCEx_MultiModeStart_DMA() |
| (+++) Wait for ADC conversion completion by call of function |
| HAL_ADC_ConvCpltCallback() or HAL_ADC_ConvHalfCpltCallback() |
| (these functions must be implemented in user program) |
| (+++) Conversion results are automatically transferred by DMA into |
| destination variable address. |
| (+++) Stop conversion and disable the ADC peripheral (master) |
| using function HAL_ADCEx_MultiModeStop_DMA() |
| (+++) Stop conversion and disable the ADC peripheral (slave) |
| using function HAL_ADC_Stop_IT() |
| |
| [..] |
| |
| (@) Callback functions must be implemented in user program: |
| (+@) HAL_ADC_ErrorCallback() |
| (+@) HAL_ADC_LevelOutOfWindowCallback() (callback of analog watchdog) |
| (+@) HAL_ADC_ConvCpltCallback() |
| (+@) HAL_ADC_ConvHalfCpltCallback |
| (+@) HAL_ADCEx_InjectedConvCpltCallback() |
| |
| *** Deinitialization of ADC *** |
| ============================================================ |
| [..] |
| |
| (#) Disable the ADC interface |
| (++) ADC clock can be hard reset and disabled at RCC top level. |
| (++) Hard reset of ADC peripherals |
| using macro __ADCx_FORCE_RESET(), __ADCx_RELEASE_RESET(). |
| (++) ADC clock disable |
| using the equivalent macro/functions as configuration step. |
| (+++) Example: |
| Into HAL_ADC_MspDeInit() (recommended code location) or with |
| other device clock parameters configuration: |
| (+++) PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ADC |
| (+++) PeriphClkInit.AdcClockSelection = RCC_ADCPLLCLK2_OFF |
| (+++) HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) |
| |
| (#) ADC pins configuration |
| (++) Disable the clock for the ADC GPIOs |
| using macro __HAL_RCC_GPIOx_CLK_DISABLE() |
| |
| (#) Optionally, in case of usage of ADC with interruptions: |
| (++) Disable the NVIC for ADC |
| using function HAL_NVIC_EnableIRQ(ADCx_IRQn) |
| |
| (#) Optionally, in case of usage of DMA: |
| (++) Deinitialize the DMA |
| using function HAL_DMA_Init(). |
| (++) Disable the NVIC for DMA |
| using function HAL_NVIC_EnableIRQ(DMAx_Channelx_IRQn) |
| |
| [..] |
| |
| *** Callback registration *** |
| ============================================= |
| [..] |
| |
| The compilation flag USE_HAL_ADC_REGISTER_CALLBACKS, when set to 1, |
| allows the user to configure dynamically the driver callbacks. |
| Use Functions @ref HAL_ADC_RegisterCallback() |
| to register an interrupt callback. |
| [..] |
| |
| Function @ref HAL_ADC_RegisterCallback() allows to register following callbacks: |
| (+) ConvCpltCallback : ADC conversion complete callback |
| (+) ConvHalfCpltCallback : ADC conversion DMA half-transfer callback |
| (+) LevelOutOfWindowCallback : ADC analog watchdog 1 callback |
| (+) ErrorCallback : ADC error callback |
| (+) InjectedConvCpltCallback : ADC group injected conversion complete callback |
| (+) MspInitCallback : ADC Msp Init callback |
| (+) MspDeInitCallback : ADC Msp DeInit callback |
| This function takes as parameters the HAL peripheral handle, the Callback ID |
| and a pointer to the user callback function. |
| [..] |
| |
| Use function @ref HAL_ADC_UnRegisterCallback to reset a callback to the default |
| weak function. |
| [..] |
| |
| @ref HAL_ADC_UnRegisterCallback takes as parameters the HAL peripheral handle, |
| and the Callback ID. |
| This function allows to reset following callbacks: |
| (+) ConvCpltCallback : ADC conversion complete callback |
| (+) ConvHalfCpltCallback : ADC conversion DMA half-transfer callback |
| (+) LevelOutOfWindowCallback : ADC analog watchdog 1 callback |
| (+) ErrorCallback : ADC error callback |
| (+) InjectedConvCpltCallback : ADC group injected conversion complete callback |
| (+) MspInitCallback : ADC Msp Init callback |
| (+) MspDeInitCallback : ADC Msp DeInit callback |
| [..] |
| |
| By default, after the @ref HAL_ADC_Init() and when the state is @ref HAL_ADC_STATE_RESET |
| all callbacks are set to the corresponding weak functions: |
| examples @ref HAL_ADC_ConvCpltCallback(), @ref HAL_ADC_ErrorCallback(). |
| Exception done for MspInit and MspDeInit functions that are |
| reset to the legacy weak functions in the @ref HAL_ADC_Init()/ @ref HAL_ADC_DeInit() only when |
| these callbacks are null (not registered beforehand). |
| [..] |
| |
| If MspInit or MspDeInit are not null, the @ref HAL_ADC_Init()/ @ref HAL_ADC_DeInit() |
| keep and use the user MspInit/MspDeInit callbacks (registered beforehand) whatever the state. |
| [..] |
| |
| Callbacks can be registered/unregistered in @ref HAL_ADC_STATE_READY state only. |
| Exception done MspInit/MspDeInit functions that can be registered/unregistered |
| in @ref HAL_ADC_STATE_READY or @ref HAL_ADC_STATE_RESET state, |
| thus registered (user) MspInit/DeInit callbacks can be used during the Init/DeInit. |
| [..] |
| |
| Then, the user first registers the MspInit/MspDeInit user callbacks |
| using @ref HAL_ADC_RegisterCallback() before calling @ref HAL_ADC_DeInit() |
| or @ref HAL_ADC_Init() function. |
| [..] |
| |
| When the compilation flag USE_HAL_ADC_REGISTER_CALLBACKS is set to 0 or |
| not defined, the callback registration feature is not available and all callbacks |
| are set to the corresponding weak functions. |
| |
| @endverbatim |
| ****************************************************************************** |
| * @attention |
| * |
| * <h2><center>© Copyright (c) 2016 STMicroelectronics. |
| * All rights reserved.</center></h2> |
| * |
| * This software component is licensed by ST under BSD 3-Clause license, |
| * the "License"; You may not use this file except in compliance with the |
| * License. You may obtain a copy of the License at: |
| * opensource.org/licenses/BSD-3-Clause |
| * |
| ****************************************************************************** |
| */ |
| |
| /* Includes ------------------------------------------------------------------*/ |
| #include "stm32f1xx_hal.h" |
| |
| /** @addtogroup STM32F1xx_HAL_Driver |
| * @{ |
| */ |
| |
| /** @defgroup ADC ADC |
| * @brief ADC HAL module driver |
| * @{ |
| */ |
| |
| #ifdef HAL_ADC_MODULE_ENABLED |
| |
| /* Private typedef -----------------------------------------------------------*/ |
| /* Private define ------------------------------------------------------------*/ |
| /** @defgroup ADC_Private_Constants ADC Private Constants |
| * @{ |
| */ |
| |
| /* Timeout values for ADC enable and disable settling time. */ |
| /* Values defined to be higher than worst cases: low clocks freq, */ |
| /* maximum prescaler. */ |
| /* Ex of profile low frequency : Clock source at 0.1 MHz, ADC clock */ |
| /* prescaler 4, sampling time 12.5 ADC clock cycles, resolution 12 bits. */ |
| /* Unit: ms */ |
| #define ADC_ENABLE_TIMEOUT 2U |
| #define ADC_DISABLE_TIMEOUT 2U |
| |
| /* Delay for ADC stabilization time. */ |
| /* Maximum delay is 1us (refer to device datasheet, parameter tSTAB). */ |
| /* Unit: us */ |
| #define ADC_STAB_DELAY_US 1U |
| |
| /* Delay for temperature sensor stabilization time. */ |
| /* Maximum delay is 10us (refer to device datasheet, parameter tSTART). */ |
| /* Unit: us */ |
| #define ADC_TEMPSENSOR_DELAY_US 10U |
| |
| /** |
| * @} |
| */ |
| |
| /* Private macro -------------------------------------------------------------*/ |
| /* Private variables ---------------------------------------------------------*/ |
| /* Private function prototypes -----------------------------------------------*/ |
| /** @defgroup ADC_Private_Functions ADC Private Functions |
| * @{ |
| */ |
| /** |
| * @} |
| */ |
| |
| /* Exported functions --------------------------------------------------------*/ |
| |
| /** @defgroup ADC_Exported_Functions ADC Exported Functions |
| * @{ |
| */ |
| |
| /** @defgroup ADC_Exported_Functions_Group1 Initialization/de-initialization functions |
| * @brief Initialization and Configuration functions |
| * |
| @verbatim |
| =============================================================================== |
| ##### Initialization and de-initialization functions ##### |
| =============================================================================== |
| [..] This section provides functions allowing to: |
| (+) Initialize and configure the ADC. |
| (+) De-initialize the ADC. |
| |
| @endverbatim |
| * @{ |
| */ |
| |
| /** |
| * @brief Initializes the ADC peripheral and regular group according to |
| * parameters specified in structure "ADC_InitTypeDef". |
| * @note As prerequisite, ADC clock must be configured at RCC top level |
| * (clock source APB2). |
| * See commented example code below that can be copied and uncommented |
| * into HAL_ADC_MspInit(). |
| * @note Possibility to update parameters on the fly: |
| * This function initializes the ADC MSP (HAL_ADC_MspInit()) only when |
| * coming from ADC state reset. Following calls to this function can |
| * be used to reconfigure some parameters of ADC_InitTypeDef |
| * structure on the fly, without modifying MSP configuration. If ADC |
| * MSP has to be modified again, HAL_ADC_DeInit() must be called |
| * before HAL_ADC_Init(). |
| * The setting of these parameters is conditioned to ADC state. |
| * For parameters constraints, see comments of structure |
| * "ADC_InitTypeDef". |
| * @note This function configures the ADC within 2 scopes: scope of entire |
| * ADC and scope of regular group. For parameters details, see comments |
| * of structure "ADC_InitTypeDef". |
| * @param hadc: ADC handle |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_ADC_Init(ADC_HandleTypeDef* hadc) |
| { |
| HAL_StatusTypeDef tmp_hal_status = HAL_OK; |
| uint32_t tmp_cr1 = 0U; |
| uint32_t tmp_cr2 = 0U; |
| uint32_t tmp_sqr1 = 0U; |
| |
| /* Check ADC handle */ |
| if(hadc == NULL) |
| { |
| return HAL_ERROR; |
| } |
| |
| /* Check the parameters */ |
| assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); |
| assert_param(IS_ADC_DATA_ALIGN(hadc->Init.DataAlign)); |
| assert_param(IS_ADC_SCAN_MODE(hadc->Init.ScanConvMode)); |
| assert_param(IS_FUNCTIONAL_STATE(hadc->Init.ContinuousConvMode)); |
| assert_param(IS_ADC_EXTTRIG(hadc->Init.ExternalTrigConv)); |
| |
| if(hadc->Init.ScanConvMode != ADC_SCAN_DISABLE) |
| { |
| assert_param(IS_ADC_REGULAR_NB_CONV(hadc->Init.NbrOfConversion)); |
| assert_param(IS_FUNCTIONAL_STATE(hadc->Init.DiscontinuousConvMode)); |
| if(hadc->Init.DiscontinuousConvMode != DISABLE) |
| { |
| assert_param(IS_ADC_REGULAR_DISCONT_NUMBER(hadc->Init.NbrOfDiscConversion)); |
| } |
| } |
| |
| /* As prerequisite, into HAL_ADC_MspInit(), ADC clock must be configured */ |
| /* at RCC top level. */ |
| /* Refer to header of this file for more details on clock enabling */ |
| /* procedure. */ |
| |
| /* Actions performed only if ADC is coming from state reset: */ |
| /* - Initialization of ADC MSP */ |
| if (hadc->State == HAL_ADC_STATE_RESET) |
| { |
| /* Initialize ADC error code */ |
| ADC_CLEAR_ERRORCODE(hadc); |
| |
| /* Allocate lock resource and initialize it */ |
| hadc->Lock = HAL_UNLOCKED; |
| |
| #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) |
| /* Init the ADC Callback settings */ |
| hadc->ConvCpltCallback = HAL_ADC_ConvCpltCallback; /* Legacy weak callback */ |
| hadc->ConvHalfCpltCallback = HAL_ADC_ConvHalfCpltCallback; /* Legacy weak callback */ |
| hadc->LevelOutOfWindowCallback = HAL_ADC_LevelOutOfWindowCallback; /* Legacy weak callback */ |
| hadc->ErrorCallback = HAL_ADC_ErrorCallback; /* Legacy weak callback */ |
| hadc->InjectedConvCpltCallback = HAL_ADCEx_InjectedConvCpltCallback; /* Legacy weak callback */ |
| |
| if (hadc->MspInitCallback == NULL) |
| { |
| hadc->MspInitCallback = HAL_ADC_MspInit; /* Legacy weak MspInit */ |
| } |
| |
| /* Init the low level hardware */ |
| hadc->MspInitCallback(hadc); |
| #else |
| /* Init the low level hardware */ |
| HAL_ADC_MspInit(hadc); |
| #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ |
| } |
| |
| /* Stop potential conversion on going, on regular and injected groups */ |
| /* Disable ADC peripheral */ |
| /* Note: In case of ADC already enabled, precaution to not launch an */ |
| /* unwanted conversion while modifying register CR2 by writing 1 to */ |
| /* bit ADON. */ |
| tmp_hal_status = ADC_ConversionStop_Disable(hadc); |
| |
| |
| /* Configuration of ADC parameters if previous preliminary actions are */ |
| /* correctly completed. */ |
| if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL) && |
| (tmp_hal_status == HAL_OK) ) |
| { |
| /* Set ADC state */ |
| ADC_STATE_CLR_SET(hadc->State, |
| HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY, |
| HAL_ADC_STATE_BUSY_INTERNAL); |
| |
| /* Set ADC parameters */ |
| |
| /* Configuration of ADC: */ |
| /* - data alignment */ |
| /* - external trigger to start conversion */ |
| /* - external trigger polarity (always set to 1, because needed for all */ |
| /* triggers: external trigger of SW start) */ |
| /* - continuous conversion mode */ |
| /* Note: External trigger polarity (ADC_CR2_EXTTRIG) is set into */ |
| /* HAL_ADC_Start_xxx functions because if set in this function, */ |
| /* a conversion on injected group would start a conversion also on */ |
| /* regular group after ADC enabling. */ |
| tmp_cr2 |= (hadc->Init.DataAlign | |
| ADC_CFGR_EXTSEL(hadc, hadc->Init.ExternalTrigConv) | |
| ADC_CR2_CONTINUOUS((uint32_t)hadc->Init.ContinuousConvMode) ); |
| |
| /* Configuration of ADC: */ |
| /* - scan mode */ |
| /* - discontinuous mode disable/enable */ |
| /* - discontinuous mode number of conversions */ |
| tmp_cr1 |= (ADC_CR1_SCAN_SET(hadc->Init.ScanConvMode)); |
| |
| /* Enable discontinuous mode only if continuous mode is disabled */ |
| /* Note: If parameter "Init.ScanConvMode" is set to disable, parameter */ |
| /* discontinuous is set anyway, but will have no effect on ADC HW. */ |
| if (hadc->Init.DiscontinuousConvMode == ENABLE) |
| { |
| if (hadc->Init.ContinuousConvMode == DISABLE) |
| { |
| /* Enable the selected ADC regular discontinuous mode */ |
| /* Set the number of channels to be converted in discontinuous mode */ |
| SET_BIT(tmp_cr1, ADC_CR1_DISCEN | |
| ADC_CR1_DISCONTINUOUS_NUM(hadc->Init.NbrOfDiscConversion) ); |
| } |
| else |
| { |
| /* ADC regular group settings continuous and sequencer discontinuous*/ |
| /* cannot be enabled simultaneously. */ |
| |
| /* Update ADC state machine to error */ |
| SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG); |
| |
| /* Set ADC error code to ADC IP internal error */ |
| SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL); |
| } |
| } |
| |
| /* Update ADC configuration register CR1 with previous settings */ |
| MODIFY_REG(hadc->Instance->CR1, |
| ADC_CR1_SCAN | |
| ADC_CR1_DISCEN | |
| ADC_CR1_DISCNUM , |
| tmp_cr1 ); |
| |
| /* Update ADC configuration register CR2 with previous settings */ |
| MODIFY_REG(hadc->Instance->CR2, |
| ADC_CR2_ALIGN | |
| ADC_CR2_EXTSEL | |
| ADC_CR2_EXTTRIG | |
| ADC_CR2_CONT , |
| tmp_cr2 ); |
| |
| /* Configuration of regular group sequencer: */ |
| /* - if scan mode is disabled, regular channels sequence length is set to */ |
| /* 0x00: 1 channel converted (channel on regular rank 1) */ |
| /* Parameter "NbrOfConversion" is discarded. */ |
| /* Note: Scan mode is present by hardware on this device and, if */ |
| /* disabled, discards automatically nb of conversions. Anyway, nb of */ |
| /* conversions is forced to 0x00 for alignment over all STM32 devices. */ |
| /* - if scan mode is enabled, regular channels sequence length is set to */ |
| /* parameter "NbrOfConversion" */ |
| if (ADC_CR1_SCAN_SET(hadc->Init.ScanConvMode) == ADC_SCAN_ENABLE) |
| { |
| tmp_sqr1 = ADC_SQR1_L_SHIFT(hadc->Init.NbrOfConversion); |
| } |
| |
| MODIFY_REG(hadc->Instance->SQR1, |
| ADC_SQR1_L , |
| tmp_sqr1 ); |
| |
| /* Check back that ADC registers have effectively been configured to */ |
| /* ensure of no potential problem of ADC core IP clocking. */ |
| /* Check through register CR2 (excluding bits set in other functions: */ |
| /* execution control bits (ADON, JSWSTART, SWSTART), regular group bits */ |
| /* (DMA), injected group bits (JEXTTRIG and JEXTSEL), channel internal */ |
| /* measurement path bit (TSVREFE). */ |
| if (READ_BIT(hadc->Instance->CR2, ~(ADC_CR2_ADON | ADC_CR2_DMA | |
| ADC_CR2_SWSTART | ADC_CR2_JSWSTART | |
| ADC_CR2_JEXTTRIG | ADC_CR2_JEXTSEL | |
| ADC_CR2_TSVREFE )) |
| == tmp_cr2) |
| { |
| /* Set ADC error code to none */ |
| ADC_CLEAR_ERRORCODE(hadc); |
| |
| /* Set the ADC state */ |
| ADC_STATE_CLR_SET(hadc->State, |
| HAL_ADC_STATE_BUSY_INTERNAL, |
| HAL_ADC_STATE_READY); |
| } |
| else |
| { |
| /* Update ADC state machine to error */ |
| ADC_STATE_CLR_SET(hadc->State, |
| HAL_ADC_STATE_BUSY_INTERNAL, |
| HAL_ADC_STATE_ERROR_INTERNAL); |
| |
| /* Set ADC error code to ADC IP internal error */ |
| SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL); |
| |
| tmp_hal_status = HAL_ERROR; |
| } |
| |
| } |
| else |
| { |
| /* Update ADC state machine to error */ |
| SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL); |
| |
| tmp_hal_status = HAL_ERROR; |
| } |
| |
| /* Return function status */ |
| return tmp_hal_status; |
| } |
| |
| /** |
| * @brief Deinitialize the ADC peripheral registers to their default reset |
| * values, with deinitialization of the ADC MSP. |
| * If needed, the example code can be copied and uncommented into |
| * function HAL_ADC_MspDeInit(). |
| * @param hadc: ADC handle |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_ADC_DeInit(ADC_HandleTypeDef* hadc) |
| { |
| HAL_StatusTypeDef tmp_hal_status = HAL_OK; |
| |
| /* Check ADC handle */ |
| if(hadc == NULL) |
| { |
| return HAL_ERROR; |
| } |
| |
| /* Check the parameters */ |
| assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); |
| |
| /* Set ADC state */ |
| SET_BIT(hadc->State, HAL_ADC_STATE_BUSY_INTERNAL); |
| |
| /* Stop potential conversion on going, on regular and injected groups */ |
| /* Disable ADC peripheral */ |
| tmp_hal_status = ADC_ConversionStop_Disable(hadc); |
| |
| |
| /* Configuration of ADC parameters if previous preliminary actions are */ |
| /* correctly completed. */ |
| if (tmp_hal_status == HAL_OK) |
| { |
| /* ========== Reset ADC registers ========== */ |
| |
| |
| |
| |
| /* Reset register SR */ |
| __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_AWD | ADC_FLAG_JEOC | ADC_FLAG_EOC | |
| ADC_FLAG_JSTRT | ADC_FLAG_STRT)); |
| |
| /* Reset register CR1 */ |
| CLEAR_BIT(hadc->Instance->CR1, (ADC_CR1_AWDEN | ADC_CR1_JAWDEN | ADC_CR1_DISCNUM | |
| ADC_CR1_JDISCEN | ADC_CR1_DISCEN | ADC_CR1_JAUTO | |
| ADC_CR1_AWDSGL | ADC_CR1_SCAN | ADC_CR1_JEOCIE | |
| ADC_CR1_AWDIE | ADC_CR1_EOCIE | ADC_CR1_AWDCH )); |
| |
| /* Reset register CR2 */ |
| CLEAR_BIT(hadc->Instance->CR2, (ADC_CR2_TSVREFE | ADC_CR2_SWSTART | ADC_CR2_JSWSTART | |
| ADC_CR2_EXTTRIG | ADC_CR2_EXTSEL | ADC_CR2_JEXTTRIG | |
| ADC_CR2_JEXTSEL | ADC_CR2_ALIGN | ADC_CR2_DMA | |
| ADC_CR2_RSTCAL | ADC_CR2_CAL | ADC_CR2_CONT | |
| ADC_CR2_ADON )); |
| |
| /* Reset register SMPR1 */ |
| CLEAR_BIT(hadc->Instance->SMPR1, (ADC_SMPR1_SMP17 | ADC_SMPR1_SMP16 | ADC_SMPR1_SMP15 | |
| ADC_SMPR1_SMP14 | ADC_SMPR1_SMP13 | ADC_SMPR1_SMP12 | |
| ADC_SMPR1_SMP11 | ADC_SMPR1_SMP10 )); |
| |
| /* Reset register SMPR2 */ |
| CLEAR_BIT(hadc->Instance->SMPR2, (ADC_SMPR2_SMP9 | ADC_SMPR2_SMP8 | ADC_SMPR2_SMP7 | |
| ADC_SMPR2_SMP6 | ADC_SMPR2_SMP5 | ADC_SMPR2_SMP4 | |
| ADC_SMPR2_SMP3 | ADC_SMPR2_SMP2 | ADC_SMPR2_SMP1 | |
| ADC_SMPR2_SMP0 )); |
| |
| /* Reset register JOFR1 */ |
| CLEAR_BIT(hadc->Instance->JOFR1, ADC_JOFR1_JOFFSET1); |
| /* Reset register JOFR2 */ |
| CLEAR_BIT(hadc->Instance->JOFR2, ADC_JOFR2_JOFFSET2); |
| /* Reset register JOFR3 */ |
| CLEAR_BIT(hadc->Instance->JOFR3, ADC_JOFR3_JOFFSET3); |
| /* Reset register JOFR4 */ |
| CLEAR_BIT(hadc->Instance->JOFR4, ADC_JOFR4_JOFFSET4); |
| |
| /* Reset register HTR */ |
| CLEAR_BIT(hadc->Instance->HTR, ADC_HTR_HT); |
| /* Reset register LTR */ |
| CLEAR_BIT(hadc->Instance->LTR, ADC_LTR_LT); |
| |
| /* Reset register SQR1 */ |
| CLEAR_BIT(hadc->Instance->SQR1, ADC_SQR1_L | |
| ADC_SQR1_SQ16 | ADC_SQR1_SQ15 | |
| ADC_SQR1_SQ14 | ADC_SQR1_SQ13 ); |
| |
| /* Reset register SQR1 */ |
| CLEAR_BIT(hadc->Instance->SQR1, ADC_SQR1_L | |
| ADC_SQR1_SQ16 | ADC_SQR1_SQ15 | |
| ADC_SQR1_SQ14 | ADC_SQR1_SQ13 ); |
| |
| /* Reset register SQR2 */ |
| CLEAR_BIT(hadc->Instance->SQR2, ADC_SQR2_SQ12 | ADC_SQR2_SQ11 | ADC_SQR2_SQ10 | |
| ADC_SQR2_SQ9 | ADC_SQR2_SQ8 | ADC_SQR2_SQ7 ); |
| |
| /* Reset register SQR3 */ |
| CLEAR_BIT(hadc->Instance->SQR3, ADC_SQR3_SQ6 | ADC_SQR3_SQ5 | ADC_SQR3_SQ4 | |
| ADC_SQR3_SQ3 | ADC_SQR3_SQ2 | ADC_SQR3_SQ1 ); |
| |
| /* Reset register JSQR */ |
| CLEAR_BIT(hadc->Instance->JSQR, ADC_JSQR_JL | |
| ADC_JSQR_JSQ4 | ADC_JSQR_JSQ3 | |
| ADC_JSQR_JSQ2 | ADC_JSQR_JSQ1 ); |
| |
| /* Reset register JSQR */ |
| CLEAR_BIT(hadc->Instance->JSQR, ADC_JSQR_JL | |
| ADC_JSQR_JSQ4 | ADC_JSQR_JSQ3 | |
| ADC_JSQR_JSQ2 | ADC_JSQR_JSQ1 ); |
| |
| /* Reset register DR */ |
| /* bits in access mode read only, no direct reset applicable*/ |
| |
| /* Reset registers JDR1, JDR2, JDR3, JDR4 */ |
| /* bits in access mode read only, no direct reset applicable*/ |
| |
| /* ========== Hard reset ADC peripheral ========== */ |
| /* Performs a global reset of the entire ADC peripheral: ADC state is */ |
| /* forced to a similar state after device power-on. */ |
| /* If needed, copy-paste and uncomment the following reset code into */ |
| /* function "void HAL_ADC_MspInit(ADC_HandleTypeDef* hadc)": */ |
| /* */ |
| /* __HAL_RCC_ADC1_FORCE_RESET() */ |
| /* __HAL_RCC_ADC1_RELEASE_RESET() */ |
| |
| #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) |
| if (hadc->MspDeInitCallback == NULL) |
| { |
| hadc->MspDeInitCallback = HAL_ADC_MspDeInit; /* Legacy weak MspDeInit */ |
| } |
| |
| /* DeInit the low level hardware */ |
| hadc->MspDeInitCallback(hadc); |
| #else |
| /* DeInit the low level hardware */ |
| HAL_ADC_MspDeInit(hadc); |
| #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ |
| |
| /* Set ADC error code to none */ |
| ADC_CLEAR_ERRORCODE(hadc); |
| |
| /* Set ADC state */ |
| hadc->State = HAL_ADC_STATE_RESET; |
| |
| } |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hadc); |
| |
| /* Return function status */ |
| return tmp_hal_status; |
| } |
| |
| /** |
| * @brief Initializes the ADC MSP. |
| * @param hadc: ADC handle |
| * @retval None |
| */ |
| __weak void HAL_ADC_MspInit(ADC_HandleTypeDef* hadc) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(hadc); |
| /* NOTE : This function should not be modified. When the callback is needed, |
| function HAL_ADC_MspInit must be implemented in the user file. |
| */ |
| } |
| |
| /** |
| * @brief DeInitializes the ADC MSP. |
| * @param hadc: ADC handle |
| * @retval None |
| */ |
| __weak void HAL_ADC_MspDeInit(ADC_HandleTypeDef* hadc) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(hadc); |
| /* NOTE : This function should not be modified. When the callback is needed, |
| function HAL_ADC_MspDeInit must be implemented in the user file. |
| */ |
| } |
| |
| #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) |
| /** |
| * @brief Register a User ADC Callback |
| * To be used instead of the weak predefined callback |
| * @param hadc Pointer to a ADC_HandleTypeDef structure that contains |
| * the configuration information for the specified ADC. |
| * @param CallbackID ID of the callback to be registered |
| * This parameter can be one of the following values: |
| * @arg @ref HAL_ADC_CONVERSION_COMPLETE_CB_ID ADC conversion complete callback ID |
| * @arg @ref HAL_ADC_CONVERSION_HALF_CB_ID ADC conversion complete callback ID |
| * @arg @ref HAL_ADC_LEVEL_OUT_OF_WINDOW_1_CB_ID ADC analog watchdog 1 callback ID |
| * @arg @ref HAL_ADC_ERROR_CB_ID ADC error callback ID |
| * @arg @ref HAL_ADC_INJ_CONVERSION_COMPLETE_CB_ID ADC group injected conversion complete callback ID |
| * @arg @ref HAL_ADC_MSPINIT_CB_ID ADC Msp Init callback ID |
| * @arg @ref HAL_ADC_MSPDEINIT_CB_ID ADC Msp DeInit callback ID |
| * @arg @ref HAL_ADC_MSPINIT_CB_ID MspInit callback ID |
| * @arg @ref HAL_ADC_MSPDEINIT_CB_ID MspDeInit callback ID |
| * @param pCallback pointer to the Callback function |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_ADC_RegisterCallback(ADC_HandleTypeDef *hadc, HAL_ADC_CallbackIDTypeDef CallbackID, pADC_CallbackTypeDef pCallback) |
| { |
| HAL_StatusTypeDef status = HAL_OK; |
| |
| if (pCallback == NULL) |
| { |
| /* Update the error code */ |
| hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK; |
| |
| return HAL_ERROR; |
| } |
| |
| if ((hadc->State & HAL_ADC_STATE_READY) != 0) |
| { |
| switch (CallbackID) |
| { |
| case HAL_ADC_CONVERSION_COMPLETE_CB_ID : |
| hadc->ConvCpltCallback = pCallback; |
| break; |
| |
| case HAL_ADC_CONVERSION_HALF_CB_ID : |
| hadc->ConvHalfCpltCallback = pCallback; |
| break; |
| |
| case HAL_ADC_LEVEL_OUT_OF_WINDOW_1_CB_ID : |
| hadc->LevelOutOfWindowCallback = pCallback; |
| break; |
| |
| case HAL_ADC_ERROR_CB_ID : |
| hadc->ErrorCallback = pCallback; |
| break; |
| |
| case HAL_ADC_INJ_CONVERSION_COMPLETE_CB_ID : |
| hadc->InjectedConvCpltCallback = pCallback; |
| break; |
| |
| case HAL_ADC_MSPINIT_CB_ID : |
| hadc->MspInitCallback = pCallback; |
| break; |
| |
| case HAL_ADC_MSPDEINIT_CB_ID : |
| hadc->MspDeInitCallback = pCallback; |
| break; |
| |
| default : |
| /* Update the error code */ |
| hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK; |
| |
| /* Return error status */ |
| status = HAL_ERROR; |
| break; |
| } |
| } |
| else if (HAL_ADC_STATE_RESET == hadc->State) |
| { |
| switch (CallbackID) |
| { |
| case HAL_ADC_MSPINIT_CB_ID : |
| hadc->MspInitCallback = pCallback; |
| break; |
| |
| case HAL_ADC_MSPDEINIT_CB_ID : |
| hadc->MspDeInitCallback = pCallback; |
| break; |
| |
| default : |
| /* Update the error code */ |
| hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK; |
| |
| /* Return error status */ |
| status = HAL_ERROR; |
| break; |
| } |
| } |
| else |
| { |
| /* Update the error code */ |
| hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK; |
| |
| /* Return error status */ |
| status = HAL_ERROR; |
| } |
| |
| return status; |
| } |
| |
| /** |
| * @brief Unregister a ADC Callback |
| * ADC callback is redirected to the weak predefined callback |
| * @param hadc Pointer to a ADC_HandleTypeDef structure that contains |
| * the configuration information for the specified ADC. |
| * @param CallbackID ID of the callback to be unregistered |
| * This parameter can be one of the following values: |
| * @arg @ref HAL_ADC_CONVERSION_COMPLETE_CB_ID ADC conversion complete callback ID |
| * @arg @ref HAL_ADC_CONVERSION_HALF_CB_ID ADC conversion complete callback ID |
| * @arg @ref HAL_ADC_LEVEL_OUT_OF_WINDOW_1_CB_ID ADC analog watchdog 1 callback ID |
| * @arg @ref HAL_ADC_ERROR_CB_ID ADC error callback ID |
| * @arg @ref HAL_ADC_INJ_CONVERSION_COMPLETE_CB_ID ADC group injected conversion complete callback ID |
| * @arg @ref HAL_ADC_MSPINIT_CB_ID ADC Msp Init callback ID |
| * @arg @ref HAL_ADC_MSPDEINIT_CB_ID ADC Msp DeInit callback ID |
| * @arg @ref HAL_ADC_MSPINIT_CB_ID MspInit callback ID |
| * @arg @ref HAL_ADC_MSPDEINIT_CB_ID MspDeInit callback ID |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_ADC_UnRegisterCallback(ADC_HandleTypeDef *hadc, HAL_ADC_CallbackIDTypeDef CallbackID) |
| { |
| HAL_StatusTypeDef status = HAL_OK; |
| |
| if ((hadc->State & HAL_ADC_STATE_READY) != 0) |
| { |
| switch (CallbackID) |
| { |
| case HAL_ADC_CONVERSION_COMPLETE_CB_ID : |
| hadc->ConvCpltCallback = HAL_ADC_ConvCpltCallback; |
| break; |
| |
| case HAL_ADC_CONVERSION_HALF_CB_ID : |
| hadc->ConvHalfCpltCallback = HAL_ADC_ConvHalfCpltCallback; |
| break; |
| |
| case HAL_ADC_LEVEL_OUT_OF_WINDOW_1_CB_ID : |
| hadc->LevelOutOfWindowCallback = HAL_ADC_LevelOutOfWindowCallback; |
| break; |
| |
| case HAL_ADC_ERROR_CB_ID : |
| hadc->ErrorCallback = HAL_ADC_ErrorCallback; |
| break; |
| |
| case HAL_ADC_INJ_CONVERSION_COMPLETE_CB_ID : |
| hadc->InjectedConvCpltCallback = HAL_ADCEx_InjectedConvCpltCallback; |
| break; |
| |
| case HAL_ADC_MSPINIT_CB_ID : |
| hadc->MspInitCallback = HAL_ADC_MspInit; /* Legacy weak MspInit */ |
| break; |
| |
| case HAL_ADC_MSPDEINIT_CB_ID : |
| hadc->MspDeInitCallback = HAL_ADC_MspDeInit; /* Legacy weak MspDeInit */ |
| break; |
| |
| default : |
| /* Update the error code */ |
| hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK; |
| |
| /* Return error status */ |
| status = HAL_ERROR; |
| break; |
| } |
| } |
| else if (HAL_ADC_STATE_RESET == hadc->State) |
| { |
| switch (CallbackID) |
| { |
| case HAL_ADC_MSPINIT_CB_ID : |
| hadc->MspInitCallback = HAL_ADC_MspInit; /* Legacy weak MspInit */ |
| break; |
| |
| case HAL_ADC_MSPDEINIT_CB_ID : |
| hadc->MspDeInitCallback = HAL_ADC_MspDeInit; /* Legacy weak MspDeInit */ |
| break; |
| |
| default : |
| /* Update the error code */ |
| hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK; |
| |
| /* Return error status */ |
| status = HAL_ERROR; |
| break; |
| } |
| } |
| else |
| { |
| /* Update the error code */ |
| hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK; |
| |
| /* Return error status */ |
| status = HAL_ERROR; |
| } |
| |
| return status; |
| } |
| |
| #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ |
| |
| /** |
| * @} |
| */ |
| |
| /** @defgroup ADC_Exported_Functions_Group2 IO operation functions |
| * @brief Input and Output operation functions |
| * |
| @verbatim |
| =============================================================================== |
| ##### IO operation functions ##### |
| =============================================================================== |
| [..] This section provides functions allowing to: |
| (+) Start conversion of regular group. |
| (+) Stop conversion of regular group. |
| (+) Poll for conversion complete on regular group. |
| (+) Poll for conversion event. |
| (+) Get result of regular channel conversion. |
| (+) Start conversion of regular group and enable interruptions. |
| (+) Stop conversion of regular group and disable interruptions. |
| (+) Handle ADC interrupt request |
| (+) Start conversion of regular group and enable DMA transfer. |
| (+) Stop conversion of regular group and disable ADC DMA transfer. |
| @endverbatim |
| * @{ |
| */ |
| |
| /** |
| * @brief Enables ADC, starts conversion of regular group. |
| * Interruptions enabled in this function: None. |
| * @param hadc: ADC handle |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_ADC_Start(ADC_HandleTypeDef* hadc) |
| { |
| HAL_StatusTypeDef tmp_hal_status = HAL_OK; |
| |
| /* Check the parameters */ |
| assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); |
| |
| /* Process locked */ |
| __HAL_LOCK(hadc); |
| |
| /* Enable the ADC peripheral */ |
| tmp_hal_status = ADC_Enable(hadc); |
| |
| /* Start conversion if ADC is effectively enabled */ |
| if (tmp_hal_status == HAL_OK) |
| { |
| /* Set ADC state */ |
| /* - Clear state bitfield related to regular group conversion results */ |
| /* - Set state bitfield related to regular operation */ |
| ADC_STATE_CLR_SET(hadc->State, |
| HAL_ADC_STATE_READY | HAL_ADC_STATE_REG_EOC, |
| HAL_ADC_STATE_REG_BUSY); |
| |
| /* Set group injected state (from auto-injection) and multimode state */ |
| /* for all cases of multimode: independent mode, multimode ADC master */ |
| /* or multimode ADC slave (for devices with several ADCs): */ |
| if (ADC_NONMULTIMODE_OR_MULTIMODEMASTER(hadc)) |
| { |
| /* Set ADC state (ADC independent or master) */ |
| CLEAR_BIT(hadc->State, HAL_ADC_STATE_MULTIMODE_SLAVE); |
| |
| /* If conversions on group regular are also triggering group injected, */ |
| /* update ADC state. */ |
| if (READ_BIT(hadc->Instance->CR1, ADC_CR1_JAUTO) != RESET) |
| { |
| ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_INJ_EOC, HAL_ADC_STATE_INJ_BUSY); |
| } |
| } |
| else |
| { |
| /* Set ADC state (ADC slave) */ |
| SET_BIT(hadc->State, HAL_ADC_STATE_MULTIMODE_SLAVE); |
| |
| /* If conversions on group regular are also triggering group injected, */ |
| /* update ADC state. */ |
| if (ADC_MULTIMODE_AUTO_INJECTED(hadc)) |
| { |
| ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_INJ_EOC, HAL_ADC_STATE_INJ_BUSY); |
| } |
| } |
| |
| /* State machine update: Check if an injected conversion is ongoing */ |
| if (HAL_IS_BIT_SET(hadc->State, HAL_ADC_STATE_INJ_BUSY)) |
| { |
| /* Reset ADC error code fields related to conversions on group regular */ |
| CLEAR_BIT(hadc->ErrorCode, (HAL_ADC_ERROR_OVR | HAL_ADC_ERROR_DMA)); |
| } |
| else |
| { |
| /* Reset ADC all error code fields */ |
| ADC_CLEAR_ERRORCODE(hadc); |
| } |
| |
| /* Process unlocked */ |
| /* Unlock before starting ADC conversions: in case of potential */ |
| /* interruption, to let the process to ADC IRQ Handler. */ |
| __HAL_UNLOCK(hadc); |
| |
| /* Clear regular group conversion flag */ |
| /* (To ensure of no unknown state from potential previous ADC operations) */ |
| __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_EOC); |
| |
| /* Enable conversion of regular group. */ |
| /* If software start has been selected, conversion starts immediately. */ |
| /* If external trigger has been selected, conversion will start at next */ |
| /* trigger event. */ |
| /* Case of multimode enabled: */ |
| /* - if ADC is slave, ADC is enabled only (conversion is not started). */ |
| /* - if ADC is master, ADC is enabled and conversion is started. */ |
| /* If ADC is master, ADC is enabled and conversion is started. */ |
| /* Note: Alternate trigger for single conversion could be to force an */ |
| /* additional set of bit ADON "hadc->Instance->CR2 |= ADC_CR2_ADON;"*/ |
| if (ADC_IS_SOFTWARE_START_REGULAR(hadc) && |
| ADC_NONMULTIMODE_OR_MULTIMODEMASTER(hadc) ) |
| { |
| /* Start ADC conversion on regular group with SW start */ |
| SET_BIT(hadc->Instance->CR2, (ADC_CR2_SWSTART | ADC_CR2_EXTTRIG)); |
| } |
| else |
| { |
| /* Start ADC conversion on regular group with external trigger */ |
| SET_BIT(hadc->Instance->CR2, ADC_CR2_EXTTRIG); |
| } |
| } |
| else |
| { |
| /* Process unlocked */ |
| __HAL_UNLOCK(hadc); |
| } |
| |
| /* Return function status */ |
| return tmp_hal_status; |
| } |
| |
| /** |
| * @brief Stop ADC conversion of regular group (and injected channels in |
| * case of auto_injection mode), disable ADC peripheral. |
| * @note: ADC peripheral disable is forcing stop of potential |
| * conversion on injected group. If injected group is under use, it |
| * should be preliminarily stopped using HAL_ADCEx_InjectedStop function. |
| * @param hadc: ADC handle |
| * @retval HAL status. |
| */ |
| HAL_StatusTypeDef HAL_ADC_Stop(ADC_HandleTypeDef* hadc) |
| { |
| HAL_StatusTypeDef tmp_hal_status = HAL_OK; |
| |
| /* Check the parameters */ |
| assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); |
| |
| /* Process locked */ |
| __HAL_LOCK(hadc); |
| |
| /* Stop potential conversion on going, on regular and injected groups */ |
| /* Disable ADC peripheral */ |
| tmp_hal_status = ADC_ConversionStop_Disable(hadc); |
| |
| /* Check if ADC is effectively disabled */ |
| if (tmp_hal_status == HAL_OK) |
| { |
| /* Set ADC state */ |
| ADC_STATE_CLR_SET(hadc->State, |
| HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY, |
| HAL_ADC_STATE_READY); |
| } |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hadc); |
| |
| /* Return function status */ |
| return tmp_hal_status; |
| } |
| |
| /** |
| * @brief Wait for regular group conversion to be completed. |
| * @note This function cannot be used in a particular setup: ADC configured |
| * in DMA mode. |
| * In this case, DMA resets the flag EOC and polling cannot be |
| * performed on each conversion. |
| * @note On STM32F1 devices, limitation in case of sequencer enabled |
| * (several ranks selected): polling cannot be done on each |
| * conversion inside the sequence. In this case, polling is replaced by |
| * wait for maximum conversion time. |
| * @param hadc: ADC handle |
| * @param Timeout: Timeout value in millisecond. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_ADC_PollForConversion(ADC_HandleTypeDef* hadc, uint32_t Timeout) |
| { |
| uint32_t tickstart = 0U; |
| |
| /* Variables for polling in case of scan mode enabled and polling for each */ |
| /* conversion. */ |
| __IO uint32_t Conversion_Timeout_CPU_cycles = 0U; |
| uint32_t Conversion_Timeout_CPU_cycles_max = 0U; |
| |
| /* Check the parameters */ |
| assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); |
| |
| /* Get tick count */ |
| tickstart = HAL_GetTick(); |
| |
| /* Verification that ADC configuration is compliant with polling for */ |
| /* each conversion: */ |
| /* Particular case is ADC configured in DMA mode */ |
| if (HAL_IS_BIT_SET(hadc->Instance->CR2, ADC_CR2_DMA)) |
| { |
| /* Update ADC state machine to error */ |
| SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG); |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hadc); |
| |
| return HAL_ERROR; |
| } |
| |
| /* Polling for end of conversion: differentiation if single/sequence */ |
| /* conversion. */ |
| /* - If single conversion for regular group (Scan mode disabled or enabled */ |
| /* with NbrOfConversion =1), flag EOC is used to determine the */ |
| /* conversion completion. */ |
| /* - If sequence conversion for regular group (scan mode enabled and */ |
| /* NbrOfConversion >=2), flag EOC is set only at the end of the */ |
| /* sequence. */ |
| /* To poll for each conversion, the maximum conversion time is computed */ |
| /* from ADC conversion time (selected sampling time + conversion time of */ |
| /* 12.5 ADC clock cycles) and APB2/ADC clock prescalers (depending on */ |
| /* settings, conversion time range can be from 28 to 32256 CPU cycles). */ |
| /* As flag EOC is not set after each conversion, no timeout status can */ |
| /* be set. */ |
| if (HAL_IS_BIT_CLR(hadc->Instance->CR1, ADC_CR1_SCAN) && |
| HAL_IS_BIT_CLR(hadc->Instance->SQR1, ADC_SQR1_L) ) |
| { |
| /* Wait until End of Conversion flag is raised */ |
| while(HAL_IS_BIT_CLR(hadc->Instance->SR, ADC_FLAG_EOC)) |
| { |
| /* Check if timeout is disabled (set to infinite wait) */ |
| if(Timeout != HAL_MAX_DELAY) |
| { |
| if((Timeout == 0U) || ((HAL_GetTick() - tickstart ) > Timeout)) |
| { |
| /* Update ADC state machine to timeout */ |
| SET_BIT(hadc->State, HAL_ADC_STATE_TIMEOUT); |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hadc); |
| |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| } |
| else |
| { |
| /* Replace polling by wait for maximum conversion time */ |
| /* - Computation of CPU clock cycles corresponding to ADC clock cycles */ |
| /* and ADC maximum conversion cycles on all channels. */ |
| /* - Wait for the expected ADC clock cycles delay */ |
| Conversion_Timeout_CPU_cycles_max = ((SystemCoreClock |
| / HAL_RCCEx_GetPeriphCLKFreq(RCC_PERIPHCLK_ADC)) |
| * ADC_CONVCYCLES_MAX_RANGE(hadc) ); |
| |
| while(Conversion_Timeout_CPU_cycles < Conversion_Timeout_CPU_cycles_max) |
| { |
| /* Check if timeout is disabled (set to infinite wait) */ |
| if(Timeout != HAL_MAX_DELAY) |
| { |
| if((Timeout == 0U) || ((HAL_GetTick() - tickstart) > Timeout)) |
| { |
| /* Update ADC state machine to timeout */ |
| SET_BIT(hadc->State, HAL_ADC_STATE_TIMEOUT); |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hadc); |
| |
| return HAL_TIMEOUT; |
| } |
| } |
| Conversion_Timeout_CPU_cycles ++; |
| } |
| } |
| |
| /* Clear regular group conversion flag */ |
| __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_STRT | ADC_FLAG_EOC); |
| |
| /* Update ADC state machine */ |
| SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOC); |
| |
| /* Determine whether any further conversion upcoming on group regular */ |
| /* by external trigger, continuous mode or scan sequence on going. */ |
| /* Note: On STM32F1 devices, in case of sequencer enabled */ |
| /* (several ranks selected), end of conversion flag is raised */ |
| /* at the end of the sequence. */ |
| if(ADC_IS_SOFTWARE_START_REGULAR(hadc) && |
| (hadc->Init.ContinuousConvMode == DISABLE) ) |
| { |
| /* Set ADC state */ |
| CLEAR_BIT(hadc->State, HAL_ADC_STATE_REG_BUSY); |
| |
| if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_INJ_BUSY)) |
| { |
| SET_BIT(hadc->State, HAL_ADC_STATE_READY); |
| } |
| } |
| |
| /* Return ADC state */ |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Poll for conversion event. |
| * @param hadc: ADC handle |
| * @param EventType: the ADC event type. |
| * This parameter can be one of the following values: |
| * @arg ADC_AWD_EVENT: ADC Analog watchdog event. |
| * @param Timeout: Timeout value in millisecond. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_ADC_PollForEvent(ADC_HandleTypeDef* hadc, uint32_t EventType, uint32_t Timeout) |
| { |
| uint32_t tickstart = 0U; |
| |
| /* Check the parameters */ |
| assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); |
| assert_param(IS_ADC_EVENT_TYPE(EventType)); |
| |
| /* Get tick count */ |
| tickstart = HAL_GetTick(); |
| |
| /* Check selected event flag */ |
| while(__HAL_ADC_GET_FLAG(hadc, EventType) == RESET) |
| { |
| /* Check if timeout is disabled (set to infinite wait) */ |
| if(Timeout != HAL_MAX_DELAY) |
| { |
| if((Timeout == 0U) || ((HAL_GetTick() - tickstart ) > Timeout)) |
| { |
| /* Update ADC state machine to timeout */ |
| SET_BIT(hadc->State, HAL_ADC_STATE_TIMEOUT); |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hadc); |
| |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| |
| /* Analog watchdog (level out of window) event */ |
| /* Set ADC state */ |
| SET_BIT(hadc->State, HAL_ADC_STATE_AWD1); |
| |
| /* Clear ADC analog watchdog flag */ |
| __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD); |
| |
| /* Return ADC state */ |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Enables ADC, starts conversion of regular group with interruption. |
| * Interruptions enabled in this function: |
| * - EOC (end of conversion of regular group) |
| * Each of these interruptions has its dedicated callback function. |
| * @param hadc: ADC handle |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_ADC_Start_IT(ADC_HandleTypeDef* hadc) |
| { |
| HAL_StatusTypeDef tmp_hal_status = HAL_OK; |
| |
| /* Check the parameters */ |
| assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); |
| |
| /* Process locked */ |
| __HAL_LOCK(hadc); |
| |
| /* Enable the ADC peripheral */ |
| tmp_hal_status = ADC_Enable(hadc); |
| |
| /* Start conversion if ADC is effectively enabled */ |
| if (tmp_hal_status == HAL_OK) |
| { |
| /* Set ADC state */ |
| /* - Clear state bitfield related to regular group conversion results */ |
| /* - Set state bitfield related to regular operation */ |
| ADC_STATE_CLR_SET(hadc->State, |
| HAL_ADC_STATE_READY | HAL_ADC_STATE_REG_EOC | HAL_ADC_STATE_REG_OVR | HAL_ADC_STATE_REG_EOSMP, |
| HAL_ADC_STATE_REG_BUSY); |
| |
| /* Set group injected state (from auto-injection) and multimode state */ |
| /* for all cases of multimode: independent mode, multimode ADC master */ |
| /* or multimode ADC slave (for devices with several ADCs): */ |
| if (ADC_NONMULTIMODE_OR_MULTIMODEMASTER(hadc)) |
| { |
| /* Set ADC state (ADC independent or master) */ |
| CLEAR_BIT(hadc->State, HAL_ADC_STATE_MULTIMODE_SLAVE); |
| |
| /* If conversions on group regular are also triggering group injected, */ |
| /* update ADC state. */ |
| if (READ_BIT(hadc->Instance->CR1, ADC_CR1_JAUTO) != RESET) |
| { |
| ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_INJ_EOC, HAL_ADC_STATE_INJ_BUSY); |
| } |
| } |
| else |
| { |
| /* Set ADC state (ADC slave) */ |
| SET_BIT(hadc->State, HAL_ADC_STATE_MULTIMODE_SLAVE); |
| |
| /* If conversions on group regular are also triggering group injected, */ |
| /* update ADC state. */ |
| if (ADC_MULTIMODE_AUTO_INJECTED(hadc)) |
| { |
| ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_INJ_EOC, HAL_ADC_STATE_INJ_BUSY); |
| } |
| } |
| |
| /* State machine update: Check if an injected conversion is ongoing */ |
| if (HAL_IS_BIT_SET(hadc->State, HAL_ADC_STATE_INJ_BUSY)) |
| { |
| /* Reset ADC error code fields related to conversions on group regular */ |
| CLEAR_BIT(hadc->ErrorCode, (HAL_ADC_ERROR_OVR | HAL_ADC_ERROR_DMA)); |
| } |
| else |
| { |
| /* Reset ADC all error code fields */ |
| ADC_CLEAR_ERRORCODE(hadc); |
| } |
| |
| /* Process unlocked */ |
| /* Unlock before starting ADC conversions: in case of potential */ |
| /* interruption, to let the process to ADC IRQ Handler. */ |
| __HAL_UNLOCK(hadc); |
| |
| /* Clear regular group conversion flag and overrun flag */ |
| /* (To ensure of no unknown state from potential previous ADC operations) */ |
| __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_EOC); |
| |
| /* Enable end of conversion interrupt for regular group */ |
| __HAL_ADC_ENABLE_IT(hadc, ADC_IT_EOC); |
| |
| /* Enable conversion of regular group. */ |
| /* If software start has been selected, conversion starts immediately. */ |
| /* If external trigger has been selected, conversion will start at next */ |
| /* trigger event. */ |
| /* Case of multimode enabled: */ |
| /* - if ADC is slave, ADC is enabled only (conversion is not started). */ |
| /* - if ADC is master, ADC is enabled and conversion is started. */ |
| if (ADC_IS_SOFTWARE_START_REGULAR(hadc) && |
| ADC_NONMULTIMODE_OR_MULTIMODEMASTER(hadc) ) |
| { |
| /* Start ADC conversion on regular group with SW start */ |
| SET_BIT(hadc->Instance->CR2, (ADC_CR2_SWSTART | ADC_CR2_EXTTRIG)); |
| } |
| else |
| { |
| /* Start ADC conversion on regular group with external trigger */ |
| SET_BIT(hadc->Instance->CR2, ADC_CR2_EXTTRIG); |
| } |
| } |
| else |
| { |
| /* Process unlocked */ |
| __HAL_UNLOCK(hadc); |
| } |
| |
| /* Return function status */ |
| return tmp_hal_status; |
| } |
| |
| /** |
| * @brief Stop ADC conversion of regular group (and injected group in |
| * case of auto_injection mode), disable interrution of |
| * end-of-conversion, disable ADC peripheral. |
| * @param hadc: ADC handle |
| * @retval None |
| */ |
| HAL_StatusTypeDef HAL_ADC_Stop_IT(ADC_HandleTypeDef* hadc) |
| { |
| HAL_StatusTypeDef tmp_hal_status = HAL_OK; |
| |
| /* Check the parameters */ |
| assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); |
| |
| /* Process locked */ |
| __HAL_LOCK(hadc); |
| |
| /* Stop potential conversion on going, on regular and injected groups */ |
| /* Disable ADC peripheral */ |
| tmp_hal_status = ADC_ConversionStop_Disable(hadc); |
| |
| /* Check if ADC is effectively disabled */ |
| if (tmp_hal_status == HAL_OK) |
| { |
| /* Disable ADC end of conversion interrupt for regular group */ |
| __HAL_ADC_DISABLE_IT(hadc, ADC_IT_EOC); |
| |
| /* Set ADC state */ |
| ADC_STATE_CLR_SET(hadc->State, |
| HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY, |
| HAL_ADC_STATE_READY); |
| } |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hadc); |
| |
| /* Return function status */ |
| return tmp_hal_status; |
| } |
| |
| /** |
| * @brief Enables ADC, starts conversion of regular group and transfers result |
| * through DMA. |
| * Interruptions enabled in this function: |
| * - DMA transfer complete |
| * - DMA half transfer |
| * Each of these interruptions has its dedicated callback function. |
| * @note For devices with several ADCs: This function is for single-ADC mode |
| * only. For multimode, use the dedicated MultimodeStart function. |
| * @note On STM32F1 devices, only ADC1 and ADC3 (ADC availability depending |
| * on devices) have DMA capability. |
| * ADC2 converted data can be transferred in dual ADC mode using DMA |
| * of ADC1 (ADC master in multimode). |
| * In case of using ADC1 with DMA on a device featuring 2 ADC |
| * instances: ADC1 conversion register DR contains ADC1 conversion |
| * result (ADC1 register DR bits 0 to 11) and, additionally, ADC2 last |
| * conversion result (ADC1 register DR bits 16 to 27). Therefore, to |
| * have DMA transferring the conversion results of ADC1 only, DMA must |
| * be configured to transfer size: half word. |
| * @param hadc: ADC handle |
| * @param pData: The destination Buffer address. |
| * @param Length: The length of data to be transferred from ADC peripheral to memory. |
| * @retval None |
| */ |
| HAL_StatusTypeDef HAL_ADC_Start_DMA(ADC_HandleTypeDef* hadc, uint32_t* pData, uint32_t Length) |
| { |
| HAL_StatusTypeDef tmp_hal_status = HAL_OK; |
| |
| /* Check the parameters */ |
| assert_param(IS_ADC_DMA_CAPABILITY_INSTANCE(hadc->Instance)); |
| |
| /* Verification if multimode is disabled (for devices with several ADC) */ |
| /* If multimode is enabled, dedicated function multimode conversion */ |
| /* start DMA must be used. */ |
| if(ADC_MULTIMODE_IS_ENABLE(hadc) == RESET) |
| { |
| /* Process locked */ |
| __HAL_LOCK(hadc); |
| |
| /* Enable the ADC peripheral */ |
| tmp_hal_status = ADC_Enable(hadc); |
| |
| /* Start conversion if ADC is effectively enabled */ |
| if (tmp_hal_status == HAL_OK) |
| { |
| /* Set ADC state */ |
| /* - Clear state bitfield related to regular group conversion results */ |
| /* - Set state bitfield related to regular operation */ |
| ADC_STATE_CLR_SET(hadc->State, |
| HAL_ADC_STATE_READY | HAL_ADC_STATE_REG_EOC | HAL_ADC_STATE_REG_OVR | HAL_ADC_STATE_REG_EOSMP, |
| HAL_ADC_STATE_REG_BUSY); |
| |
| /* Set group injected state (from auto-injection) and multimode state */ |
| /* for all cases of multimode: independent mode, multimode ADC master */ |
| /* or multimode ADC slave (for devices with several ADCs): */ |
| if (ADC_NONMULTIMODE_OR_MULTIMODEMASTER(hadc)) |
| { |
| /* Set ADC state (ADC independent or master) */ |
| CLEAR_BIT(hadc->State, HAL_ADC_STATE_MULTIMODE_SLAVE); |
| |
| /* If conversions on group regular are also triggering group injected, */ |
| /* update ADC state. */ |
| if (READ_BIT(hadc->Instance->CR1, ADC_CR1_JAUTO) != RESET) |
| { |
| ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_INJ_EOC, HAL_ADC_STATE_INJ_BUSY); |
| } |
| } |
| else |
| { |
| /* Set ADC state (ADC slave) */ |
| SET_BIT(hadc->State, HAL_ADC_STATE_MULTIMODE_SLAVE); |
| |
| /* If conversions on group regular are also triggering group injected, */ |
| /* update ADC state. */ |
| if (ADC_MULTIMODE_AUTO_INJECTED(hadc)) |
| { |
| ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_INJ_EOC, HAL_ADC_STATE_INJ_BUSY); |
| } |
| } |
| |
| /* State machine update: Check if an injected conversion is ongoing */ |
| if (HAL_IS_BIT_SET(hadc->State, HAL_ADC_STATE_INJ_BUSY)) |
| { |
| /* Reset ADC error code fields related to conversions on group regular */ |
| CLEAR_BIT(hadc->ErrorCode, (HAL_ADC_ERROR_OVR | HAL_ADC_ERROR_DMA)); |
| } |
| else |
| { |
| /* Reset ADC all error code fields */ |
| ADC_CLEAR_ERRORCODE(hadc); |
| } |
| |
| /* Process unlocked */ |
| /* Unlock before starting ADC conversions: in case of potential */ |
| /* interruption, to let the process to ADC IRQ Handler. */ |
| __HAL_UNLOCK(hadc); |
| |
| /* Set the DMA transfer complete callback */ |
| hadc->DMA_Handle->XferCpltCallback = ADC_DMAConvCplt; |
| |
| /* Set the DMA half transfer complete callback */ |
| hadc->DMA_Handle->XferHalfCpltCallback = ADC_DMAHalfConvCplt; |
| |
| /* Set the DMA error callback */ |
| hadc->DMA_Handle->XferErrorCallback = ADC_DMAError; |
| |
| |
| /* Manage ADC and DMA start: ADC overrun interruption, DMA start, ADC */ |
| /* start (in case of SW start): */ |
| |
| /* Clear regular group conversion flag and overrun flag */ |
| /* (To ensure of no unknown state from potential previous ADC */ |
| /* operations) */ |
| __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_EOC); |
| |
| /* Enable ADC DMA mode */ |
| SET_BIT(hadc->Instance->CR2, ADC_CR2_DMA); |
| |
| /* Start the DMA channel */ |
| HAL_DMA_Start_IT(hadc->DMA_Handle, (uint32_t)&hadc->Instance->DR, (uint32_t)pData, Length); |
| |
| /* Enable conversion of regular group. */ |
| /* If software start has been selected, conversion starts immediately. */ |
| /* If external trigger has been selected, conversion will start at next */ |
| /* trigger event. */ |
| if (ADC_IS_SOFTWARE_START_REGULAR(hadc)) |
| { |
| /* Start ADC conversion on regular group with SW start */ |
| SET_BIT(hadc->Instance->CR2, (ADC_CR2_SWSTART | ADC_CR2_EXTTRIG)); |
| } |
| else |
| { |
| /* Start ADC conversion on regular group with external trigger */ |
| SET_BIT(hadc->Instance->CR2, ADC_CR2_EXTTRIG); |
| } |
| } |
| else |
| { |
| /* Process unlocked */ |
| __HAL_UNLOCK(hadc); |
| } |
| } |
| else |
| { |
| tmp_hal_status = HAL_ERROR; |
| } |
| |
| /* Return function status */ |
| return tmp_hal_status; |
| } |
| |
| /** |
| * @brief Stop ADC conversion of regular group (and injected group in |
| * case of auto_injection mode), disable ADC DMA transfer, disable |
| * ADC peripheral. |
| * @note: ADC peripheral disable is forcing stop of potential |
| * conversion on injected group. If injected group is under use, it |
| * should be preliminarily stopped using HAL_ADCEx_InjectedStop function. |
| * @note For devices with several ADCs: This function is for single-ADC mode |
| * only. For multimode, use the dedicated MultimodeStop function. |
| * @note On STM32F1 devices, only ADC1 and ADC3 (ADC availability depending |
| * on devices) have DMA capability. |
| * @param hadc: ADC handle |
| * @retval HAL status. |
| */ |
| HAL_StatusTypeDef HAL_ADC_Stop_DMA(ADC_HandleTypeDef* hadc) |
| { |
| HAL_StatusTypeDef tmp_hal_status = HAL_OK; |
| |
| /* Check the parameters */ |
| assert_param(IS_ADC_DMA_CAPABILITY_INSTANCE(hadc->Instance)); |
| |
| /* Process locked */ |
| __HAL_LOCK(hadc); |
| |
| /* Stop potential conversion on going, on regular and injected groups */ |
| /* Disable ADC peripheral */ |
| tmp_hal_status = ADC_ConversionStop_Disable(hadc); |
| |
| /* Check if ADC is effectively disabled */ |
| if (tmp_hal_status == HAL_OK) |
| { |
| /* Disable ADC DMA mode */ |
| CLEAR_BIT(hadc->Instance->CR2, ADC_CR2_DMA); |
| |
| /* Disable the DMA channel (in case of DMA in circular mode or stop while */ |
| /* DMA transfer is on going) */ |
| tmp_hal_status = HAL_DMA_Abort(hadc->DMA_Handle); |
| |
| /* Check if DMA channel effectively disabled */ |
| if (tmp_hal_status == HAL_OK) |
| { |
| /* Set ADC state */ |
| ADC_STATE_CLR_SET(hadc->State, |
| HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY, |
| HAL_ADC_STATE_READY); |
| } |
| else |
| { |
| /* Update ADC state machine to error */ |
| SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_DMA); |
| } |
| } |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hadc); |
| |
| /* Return function status */ |
| return tmp_hal_status; |
| } |
| |
| /** |
| * @brief Get ADC regular group conversion result. |
| * @note Reading register DR automatically clears ADC flag EOC |
| * (ADC group regular end of unitary conversion). |
| * @note This function does not clear ADC flag EOS |
| * (ADC group regular end of sequence conversion). |
| * Occurrence of flag EOS rising: |
| * - If sequencer is composed of 1 rank, flag EOS is equivalent |
| * to flag EOC. |
| * - If sequencer is composed of several ranks, during the scan |
| * sequence flag EOC only is raised, at the end of the scan sequence |
| * both flags EOC and EOS are raised. |
| * To clear this flag, either use function: |
| * in programming model IT: @ref HAL_ADC_IRQHandler(), in programming |
| * model polling: @ref HAL_ADC_PollForConversion() |
| * or @ref __HAL_ADC_CLEAR_FLAG(&hadc, ADC_FLAG_EOS). |
| * @param hadc: ADC handle |
| * @retval ADC group regular conversion data |
| */ |
| uint32_t HAL_ADC_GetValue(ADC_HandleTypeDef* hadc) |
| { |
| /* Check the parameters */ |
| assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); |
| |
| /* Note: EOC flag is not cleared here by software because automatically */ |
| /* cleared by hardware when reading register DR. */ |
| |
| /* Return ADC converted value */ |
| return hadc->Instance->DR; |
| } |
| |
| /** |
| * @brief Handles ADC interrupt request |
| * @param hadc: ADC handle |
| * @retval None |
| */ |
| void HAL_ADC_IRQHandler(ADC_HandleTypeDef* hadc) |
| { |
| /* Check the parameters */ |
| assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); |
| assert_param(IS_FUNCTIONAL_STATE(hadc->Init.ContinuousConvMode)); |
| assert_param(IS_ADC_REGULAR_NB_CONV(hadc->Init.NbrOfConversion)); |
| |
| |
| /* ========== Check End of Conversion flag for regular group ========== */ |
| if(__HAL_ADC_GET_IT_SOURCE(hadc, ADC_IT_EOC)) |
| { |
| if(__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_EOC) ) |
| { |
| /* Update state machine on conversion status if not in error state */ |
| if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL)) |
| { |
| /* Set ADC state */ |
| SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOC); |
| } |
| |
| /* Determine whether any further conversion upcoming on group regular */ |
| /* by external trigger, continuous mode or scan sequence on going. */ |
| /* Note: On STM32F1 devices, in case of sequencer enabled */ |
| /* (several ranks selected), end of conversion flag is raised */ |
| /* at the end of the sequence. */ |
| if(ADC_IS_SOFTWARE_START_REGULAR(hadc) && |
| (hadc->Init.ContinuousConvMode == DISABLE) ) |
| { |
| /* Disable ADC end of conversion interrupt on group regular */ |
| __HAL_ADC_DISABLE_IT(hadc, ADC_IT_EOC); |
| |
| /* Set ADC state */ |
| CLEAR_BIT(hadc->State, HAL_ADC_STATE_REG_BUSY); |
| |
| if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_INJ_BUSY)) |
| { |
| SET_BIT(hadc->State, HAL_ADC_STATE_READY); |
| } |
| } |
| |
| /* Conversion complete callback */ |
| #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) |
| hadc->ConvCpltCallback(hadc); |
| #else |
| HAL_ADC_ConvCpltCallback(hadc); |
| #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ |
| |
| /* Clear regular group conversion flag */ |
| __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_STRT | ADC_FLAG_EOC); |
| } |
| } |
| |
| /* ========== Check End of Conversion flag for injected group ========== */ |
| if(__HAL_ADC_GET_IT_SOURCE(hadc, ADC_IT_JEOC)) |
| { |
| if(__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_JEOC)) |
| { |
| /* Update state machine on conversion status if not in error state */ |
| if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL)) |
| { |
| /* Set ADC state */ |
| SET_BIT(hadc->State, HAL_ADC_STATE_INJ_EOC); |
| } |
| |
| /* Determine whether any further conversion upcoming on group injected */ |
| /* by external trigger, scan sequence on going or by automatic injected */ |
| /* conversion from group regular (same conditions as group regular */ |
| /* interruption disabling above). */ |
| /* Note: On STM32F1 devices, in case of sequencer enabled */ |
| /* (several ranks selected), end of conversion flag is raised */ |
| /* at the end of the sequence. */ |
| if(ADC_IS_SOFTWARE_START_INJECTED(hadc) || |
| (HAL_IS_BIT_CLR(hadc->Instance->CR1, ADC_CR1_JAUTO) && |
| (ADC_IS_SOFTWARE_START_REGULAR(hadc) && |
| (hadc->Init.ContinuousConvMode == DISABLE) ) ) ) |
| { |
| /* Disable ADC end of conversion interrupt on group injected */ |
| __HAL_ADC_DISABLE_IT(hadc, ADC_IT_JEOC); |
| |
| /* Set ADC state */ |
| CLEAR_BIT(hadc->State, HAL_ADC_STATE_INJ_BUSY); |
| |
| if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_REG_BUSY)) |
| { |
| SET_BIT(hadc->State, HAL_ADC_STATE_READY); |
| } |
| } |
| |
| /* Conversion complete callback */ |
| #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) |
| hadc->InjectedConvCpltCallback(hadc); |
| #else |
| HAL_ADCEx_InjectedConvCpltCallback(hadc); |
| #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ |
| |
| /* Clear injected group conversion flag */ |
| __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_JSTRT | ADC_FLAG_JEOC)); |
| } |
| } |
| |
| /* ========== Check Analog watchdog flags ========== */ |
| if(__HAL_ADC_GET_IT_SOURCE(hadc, ADC_IT_AWD)) |
| { |
| if(__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_AWD)) |
| { |
| /* Set ADC state */ |
| SET_BIT(hadc->State, HAL_ADC_STATE_AWD1); |
| |
| /* Level out of window callback */ |
| #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) |
| hadc->LevelOutOfWindowCallback(hadc); |
| #else |
| HAL_ADC_LevelOutOfWindowCallback(hadc); |
| #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ |
| |
| /* Clear the ADC analog watchdog flag */ |
| __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD); |
| } |
| } |
| |
| } |
| |
| /** |
| * @brief Conversion complete callback in non blocking mode |
| * @param hadc: ADC handle |
| * @retval None |
| */ |
| __weak void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef* hadc) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(hadc); |
| /* NOTE : This function should not be modified. When the callback is needed, |
| function HAL_ADC_ConvCpltCallback must be implemented in the user file. |
| */ |
| } |
| |
| /** |
| * @brief Conversion DMA half-transfer callback in non blocking mode |
| * @param hadc: ADC handle |
| * @retval None |
| */ |
| __weak void HAL_ADC_ConvHalfCpltCallback(ADC_HandleTypeDef* hadc) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(hadc); |
| /* NOTE : This function should not be modified. When the callback is needed, |
| function HAL_ADC_ConvHalfCpltCallback must be implemented in the user file. |
| */ |
| } |
| |
| /** |
| * @brief Analog watchdog callback in non blocking mode. |
| * @param hadc: ADC handle |
| * @retval None |
| */ |
| __weak void HAL_ADC_LevelOutOfWindowCallback(ADC_HandleTypeDef* hadc) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(hadc); |
| /* NOTE : This function should not be modified. When the callback is needed, |
| function HAL_ADC_LevelOutOfWindowCallback must be implemented in the user file. |
| */ |
| } |
| |
| /** |
| * @brief ADC error callback in non blocking mode |
| * (ADC conversion with interruption or transfer by DMA) |
| * @param hadc: ADC handle |
| * @retval None |
| */ |
| __weak void HAL_ADC_ErrorCallback(ADC_HandleTypeDef *hadc) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(hadc); |
| /* NOTE : This function should not be modified. When the callback is needed, |
| function HAL_ADC_ErrorCallback must be implemented in the user file. |
| */ |
| } |
| |
| |
| /** |
| * @} |
| */ |
| |
| /** @defgroup ADC_Exported_Functions_Group3 Peripheral Control functions |
| * @brief Peripheral Control functions |
| * |
| @verbatim |
| =============================================================================== |
| ##### Peripheral Control functions ##### |
| =============================================================================== |
| [..] This section provides functions allowing to: |
| (+) Configure channels on regular group |
| (+) Configure the analog watchdog |
| |
| @endverbatim |
| * @{ |
| */ |
| |
| /** |
| * @brief Configures the the selected channel to be linked to the regular |
| * group. |
| * @note In case of usage of internal measurement channels: |
| * Vbat/VrefInt/TempSensor. |
| * These internal paths can be be disabled using function |
| * HAL_ADC_DeInit(). |
| * @note Possibility to update parameters on the fly: |
| * This function initializes channel into regular group, following |
| * calls to this function can be used to reconfigure some parameters |
| * of structure "ADC_ChannelConfTypeDef" on the fly, without reseting |
| * the ADC. |
| * The setting of these parameters is conditioned to ADC state. |
| * For parameters constraints, see comments of structure |
| * "ADC_ChannelConfTypeDef". |
| * @param hadc: ADC handle |
| * @param sConfig: Structure of ADC channel for regular group. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_ADC_ConfigChannel(ADC_HandleTypeDef* hadc, ADC_ChannelConfTypeDef* sConfig) |
| { |
| HAL_StatusTypeDef tmp_hal_status = HAL_OK; |
| __IO uint32_t wait_loop_index = 0U; |
| |
| /* Check the parameters */ |
| assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); |
| assert_param(IS_ADC_CHANNEL(sConfig->Channel)); |
| assert_param(IS_ADC_REGULAR_RANK(sConfig->Rank)); |
| assert_param(IS_ADC_SAMPLE_TIME(sConfig->SamplingTime)); |
| |
| /* Process locked */ |
| __HAL_LOCK(hadc); |
| |
| |
| /* Regular sequence configuration */ |
| /* For Rank 1 to 6 */ |
| if (sConfig->Rank < 7U) |
| { |
| MODIFY_REG(hadc->Instance->SQR3 , |
| ADC_SQR3_RK(ADC_SQR3_SQ1, sConfig->Rank) , |
| ADC_SQR3_RK(sConfig->Channel, sConfig->Rank) ); |
| } |
| /* For Rank 7 to 12 */ |
| else if (sConfig->Rank < 13U) |
| { |
| MODIFY_REG(hadc->Instance->SQR2 , |
| ADC_SQR2_RK(ADC_SQR2_SQ7, sConfig->Rank) , |
| ADC_SQR2_RK(sConfig->Channel, sConfig->Rank) ); |
| } |
| /* For Rank 13 to 16 */ |
| else |
| { |
| MODIFY_REG(hadc->Instance->SQR1 , |
| ADC_SQR1_RK(ADC_SQR1_SQ13, sConfig->Rank) , |
| ADC_SQR1_RK(sConfig->Channel, sConfig->Rank) ); |
| } |
| |
| |
| /* Channel sampling time configuration */ |
| /* For channels 10 to 17 */ |
| if (sConfig->Channel >= ADC_CHANNEL_10) |
| { |
| MODIFY_REG(hadc->Instance->SMPR1 , |
| ADC_SMPR1(ADC_SMPR1_SMP10, sConfig->Channel) , |
| ADC_SMPR1(sConfig->SamplingTime, sConfig->Channel) ); |
| } |
| else /* For channels 0 to 9 */ |
| { |
| MODIFY_REG(hadc->Instance->SMPR2 , |
| ADC_SMPR2(ADC_SMPR2_SMP0, sConfig->Channel) , |
| ADC_SMPR2(sConfig->SamplingTime, sConfig->Channel) ); |
| } |
| |
| /* If ADC1 Channel_16 or Channel_17 is selected, enable Temperature sensor */ |
| /* and VREFINT measurement path. */ |
| if ((sConfig->Channel == ADC_CHANNEL_TEMPSENSOR) || |
| (sConfig->Channel == ADC_CHANNEL_VREFINT) ) |
| { |
| /* For STM32F1 devices with several ADC: Only ADC1 can access internal */ |
| /* measurement channels (VrefInt/TempSensor). If these channels are */ |
| /* intended to be set on other ADC instances, an error is reported. */ |
| if (hadc->Instance == ADC1) |
| { |
| if (READ_BIT(hadc->Instance->CR2, ADC_CR2_TSVREFE) == RESET) |
| { |
| SET_BIT(hadc->Instance->CR2, ADC_CR2_TSVREFE); |
| |
| if ((sConfig->Channel == ADC_CHANNEL_TEMPSENSOR)) |
| { |
| /* Delay for temperature sensor stabilization time */ |
| /* Compute number of CPU cycles to wait for */ |
| wait_loop_index = (ADC_TEMPSENSOR_DELAY_US * (SystemCoreClock / 1000000U)); |
| while(wait_loop_index != 0U) |
| { |
| wait_loop_index--; |
| } |
| } |
| } |
| } |
| else |
| { |
| /* Update ADC state machine to error */ |
| SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG); |
| |
| tmp_hal_status = HAL_ERROR; |
| } |
| } |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hadc); |
| |
| /* Return function status */ |
| return tmp_hal_status; |
| } |
| |
| /** |
| * @brief Configures the analog watchdog. |
| * @note Analog watchdog thresholds can be modified while ADC conversion |
| * is on going. |
| * In this case, some constraints must be taken into account: |
| * the programmed threshold values are effective from the next |
| * ADC EOC (end of unitary conversion). |
| * Considering that registers write delay may happen due to |
| * bus activity, this might cause an uncertainty on the |
| * effective timing of the new programmed threshold values. |
| * @param hadc: ADC handle |
| * @param AnalogWDGConfig: Structure of ADC analog watchdog configuration |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_ADC_AnalogWDGConfig(ADC_HandleTypeDef* hadc, ADC_AnalogWDGConfTypeDef* AnalogWDGConfig) |
| { |
| /* Check the parameters */ |
| assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); |
| assert_param(IS_ADC_ANALOG_WATCHDOG_MODE(AnalogWDGConfig->WatchdogMode)); |
| assert_param(IS_FUNCTIONAL_STATE(AnalogWDGConfig->ITMode)); |
| assert_param(IS_ADC_RANGE(AnalogWDGConfig->HighThreshold)); |
| assert_param(IS_ADC_RANGE(AnalogWDGConfig->LowThreshold)); |
| |
| if((AnalogWDGConfig->WatchdogMode == ADC_ANALOGWATCHDOG_SINGLE_REG) || |
| (AnalogWDGConfig->WatchdogMode == ADC_ANALOGWATCHDOG_SINGLE_INJEC) || |
| (AnalogWDGConfig->WatchdogMode == ADC_ANALOGWATCHDOG_SINGLE_REGINJEC) ) |
| { |
| assert_param(IS_ADC_CHANNEL(AnalogWDGConfig->Channel)); |
| } |
| |
| /* Process locked */ |
| __HAL_LOCK(hadc); |
| |
| /* Analog watchdog configuration */ |
| |
| /* Configure ADC Analog watchdog interrupt */ |
| if(AnalogWDGConfig->ITMode == ENABLE) |
| { |
| /* Enable the ADC Analog watchdog interrupt */ |
| __HAL_ADC_ENABLE_IT(hadc, ADC_IT_AWD); |
| } |
| else |
| { |
| /* Disable the ADC Analog watchdog interrupt */ |
| __HAL_ADC_DISABLE_IT(hadc, ADC_IT_AWD); |
| } |
| |
| /* Configuration of analog watchdog: */ |
| /* - Set the analog watchdog enable mode: regular and/or injected groups, */ |
| /* one or all channels. */ |
| /* - Set the Analog watchdog channel (is not used if watchdog */ |
| /* mode "all channels": ADC_CFGR_AWD1SGL=0). */ |
| MODIFY_REG(hadc->Instance->CR1 , |
| ADC_CR1_AWDSGL | |
| ADC_CR1_JAWDEN | |
| ADC_CR1_AWDEN | |
| ADC_CR1_AWDCH , |
| AnalogWDGConfig->WatchdogMode | |
| AnalogWDGConfig->Channel ); |
| |
| /* Set the high threshold */ |
| WRITE_REG(hadc->Instance->HTR, AnalogWDGConfig->HighThreshold); |
| |
| /* Set the low threshold */ |
| WRITE_REG(hadc->Instance->LTR, AnalogWDGConfig->LowThreshold); |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hadc); |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| |
| |
| /** |
| * @} |
| */ |
| |
| |
| /** @defgroup ADC_Exported_Functions_Group4 Peripheral State functions |
| * @brief Peripheral State functions |
| * |
| @verbatim |
| =============================================================================== |
| ##### Peripheral State and Errors functions ##### |
| =============================================================================== |
| [..] |
| This subsection provides functions to get in run-time the status of the |
| peripheral. |
| (+) Check the ADC state |
| (+) Check the ADC error code |
| |
| @endverbatim |
| * @{ |
| */ |
| |
| /** |
| * @brief return the ADC state |
| * @param hadc: ADC handle |
| * @retval HAL state |
| */ |
| uint32_t HAL_ADC_GetState(ADC_HandleTypeDef* hadc) |
| { |
| /* Return ADC state */ |
| return hadc->State; |
| } |
| |
| /** |
| * @brief Return the ADC error code |
| * @param hadc: ADC handle |
| * @retval ADC Error Code |
| */ |
| uint32_t HAL_ADC_GetError(ADC_HandleTypeDef *hadc) |
| { |
| return hadc->ErrorCode; |
| } |
| |
| /** |
| * @} |
| */ |
| |
| /** |
| * @} |
| */ |
| |
| /** @defgroup ADC_Private_Functions ADC Private Functions |
| * @{ |
| */ |
| |
| /** |
| * @brief Enable the selected ADC. |
| * @note Prerequisite condition to use this function: ADC must be disabled |
| * and voltage regulator must be enabled (done into HAL_ADC_Init()). |
| * @param hadc: ADC handle |
| * @retval HAL status. |
| */ |
| HAL_StatusTypeDef ADC_Enable(ADC_HandleTypeDef* hadc) |
| { |
| uint32_t tickstart = 0U; |
| __IO uint32_t wait_loop_index = 0U; |
| |
| /* ADC enable and wait for ADC ready (in case of ADC is disabled or */ |
| /* enabling phase not yet completed: flag ADC ready not yet set). */ |
| /* Timeout implemented to not be stuck if ADC cannot be enabled (possible */ |
| /* causes: ADC clock not running, ...). */ |
| if (ADC_IS_ENABLE(hadc) == RESET) |
| { |
| /* Enable the Peripheral */ |
| __HAL_ADC_ENABLE(hadc); |
| |
| /* Delay for ADC stabilization time */ |
| /* Compute number of CPU cycles to wait for */ |
| wait_loop_index = (ADC_STAB_DELAY_US * (SystemCoreClock / 1000000U)); |
| while(wait_loop_index != 0U) |
| { |
| wait_loop_index--; |
| } |
| |
| /* Get tick count */ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait for ADC effectively enabled */ |
| while(ADC_IS_ENABLE(hadc) == RESET) |
| { |
| if((HAL_GetTick() - tickstart) > ADC_ENABLE_TIMEOUT) |
| { |
| /* Update ADC state machine to error */ |
| SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL); |
| |
| /* Set ADC error code to ADC IP internal error */ |
| SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL); |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hadc); |
| |
| return HAL_ERROR; |
| } |
| } |
| } |
| |
| /* Return HAL status */ |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Stop ADC conversion and disable the selected ADC |
| * @note Prerequisite condition to use this function: ADC conversions must be |
| * stopped to disable the ADC. |
| * @param hadc: ADC handle |
| * @retval HAL status. |
| */ |
| HAL_StatusTypeDef ADC_ConversionStop_Disable(ADC_HandleTypeDef* hadc) |
| { |
| uint32_t tickstart = 0U; |
| |
| /* Verification if ADC is not already disabled */ |
| if (ADC_IS_ENABLE(hadc) != RESET) |
| { |
| /* Disable the ADC peripheral */ |
| __HAL_ADC_DISABLE(hadc); |
| |
| /* Get tick count */ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait for ADC effectively disabled */ |
| while(ADC_IS_ENABLE(hadc) != RESET) |
| { |
| if((HAL_GetTick() - tickstart) > ADC_DISABLE_TIMEOUT) |
| { |
| /* Update ADC state machine to error */ |
| SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL); |
| |
| /* Set ADC error code to ADC IP internal error */ |
| SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL); |
| |
| return HAL_ERROR; |
| } |
| } |
| } |
| |
| /* Return HAL status */ |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief DMA transfer complete callback. |
| * @param hdma: pointer to DMA handle. |
| * @retval None |
| */ |
| void ADC_DMAConvCplt(DMA_HandleTypeDef *hdma) |
| { |
| /* Retrieve ADC handle corresponding to current DMA handle */ |
| ADC_HandleTypeDef* hadc = ( ADC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; |
| |
| /* Update state machine on conversion status if not in error state */ |
| if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL | HAL_ADC_STATE_ERROR_DMA)) |
| { |
| /* Update ADC state machine */ |
| SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOC); |
| |
| /* Determine whether any further conversion upcoming on group regular */ |
| /* by external trigger, continuous mode or scan sequence on going. */ |
| /* Note: On STM32F1 devices, in case of sequencer enabled */ |
| /* (several ranks selected), end of conversion flag is raised */ |
| /* at the end of the sequence. */ |
| if(ADC_IS_SOFTWARE_START_REGULAR(hadc) && |
| (hadc->Init.ContinuousConvMode == DISABLE) ) |
| { |
| /* Set ADC state */ |
| CLEAR_BIT(hadc->State, HAL_ADC_STATE_REG_BUSY); |
| |
| if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_INJ_BUSY)) |
| { |
| SET_BIT(hadc->State, HAL_ADC_STATE_READY); |
| } |
| } |
| |
| /* Conversion complete callback */ |
| #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) |
| hadc->ConvCpltCallback(hadc); |
| #else |
| HAL_ADC_ConvCpltCallback(hadc); |
| #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ |
| } |
| else |
| { |
| /* Call DMA error callback */ |
| hadc->DMA_Handle->XferErrorCallback(hdma); |
| } |
| } |
| |
| /** |
| * @brief DMA half transfer complete callback. |
| * @param hdma: pointer to DMA handle. |
| * @retval None |
| */ |
| void ADC_DMAHalfConvCplt(DMA_HandleTypeDef *hdma) |
| { |
| /* Retrieve ADC handle corresponding to current DMA handle */ |
| ADC_HandleTypeDef* hadc = ( ADC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; |
| |
| /* Half conversion callback */ |
| #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) |
| hadc->ConvHalfCpltCallback(hadc); |
| #else |
| HAL_ADC_ConvHalfCpltCallback(hadc); |
| #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ |
| } |
| |
| /** |
| * @brief DMA error callback |
| * @param hdma: pointer to DMA handle. |
| * @retval None |
| */ |
| void ADC_DMAError(DMA_HandleTypeDef *hdma) |
| { |
| /* Retrieve ADC handle corresponding to current DMA handle */ |
| ADC_HandleTypeDef* hadc = ( ADC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; |
| |
| /* Set ADC state */ |
| SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_DMA); |
| |
| /* Set ADC error code to DMA error */ |
| SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_DMA); |
| |
| /* Error callback */ |
| #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) |
| hadc->ErrorCallback(hadc); |
| #else |
| HAL_ADC_ErrorCallback(hadc); |
| #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ |
| } |
| |
| /** |
| * @} |
| */ |
| |
| #endif /* HAL_ADC_MODULE_ENABLED */ |
| /** |
| * @} |
| */ |
| |
| /** |
| * @} |
| */ |
| |
| /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ |