| /** |
| ****************************************************************************** |
| * @file stm32f1xx_hal_spi.c |
| * @author MCD Application Team |
| * @brief SPI HAL module driver. |
| * This file provides firmware functions to manage the following |
| * functionalities of the Serial Peripheral Interface (SPI) peripheral: |
| * + Initialization and de-initialization functions |
| * + IO operation functions |
| * + Peripheral Control functions |
| * + Peripheral State functions |
| * |
| ****************************************************************************** |
| * @attention |
| * |
| * Copyright (c) 2016 STMicroelectronics. |
| * All rights reserved. |
| * |
| * This software is licensed under terms that can be found in the LICENSE file |
| * in the root directory of this software component. |
| * If no LICENSE file comes with this software, it is provided AS-IS. |
| * |
| ****************************************************************************** |
| @verbatim |
| ============================================================================== |
| ##### How to use this driver ##### |
| ============================================================================== |
| [..] |
| The SPI HAL driver can be used as follows: |
| |
| (#) Declare a SPI_HandleTypeDef handle structure, for example: |
| SPI_HandleTypeDef hspi; |
| |
| (#)Initialize the SPI low level resources by implementing the HAL_SPI_MspInit() API: |
| (##) Enable the SPIx interface clock |
| (##) SPI pins configuration |
| (+++) Enable the clock for the SPI GPIOs |
| (+++) Configure these SPI pins as alternate function push-pull |
| (##) NVIC configuration if you need to use interrupt process |
| (+++) Configure the SPIx interrupt priority |
| (+++) Enable the NVIC SPI IRQ handle |
| (##) DMA Configuration if you need to use DMA process |
| (+++) Declare a DMA_HandleTypeDef handle structure for the transmit or receive Stream/Channel |
| (+++) Enable the DMAx clock |
| (+++) Configure the DMA handle parameters |
| (+++) Configure the DMA Tx or Rx Stream/Channel |
| (+++) Associate the initialized hdma_tx(or _rx) handle to the hspi DMA Tx or Rx handle |
| (+++) Configure the priority and enable the NVIC for the transfer complete interrupt on the DMA Tx or Rx Stream/Channel |
| |
| (#) Program the Mode, BidirectionalMode , Data size, Baudrate Prescaler, NSS |
| management, Clock polarity and phase, FirstBit and CRC configuration in the hspi Init structure. |
| |
| (#) Initialize the SPI registers by calling the HAL_SPI_Init() API: |
| (++) This API configures also the low level Hardware GPIO, CLOCK, CORTEX...etc) |
| by calling the customized HAL_SPI_MspInit() API. |
| [..] |
| Circular mode restriction: |
| (#) The DMA circular mode cannot be used when the SPI is configured in these modes: |
| (##) Master 2Lines RxOnly |
| (##) Master 1Line Rx |
| (#) The CRC feature is not managed when the DMA circular mode is enabled |
| (#) When the SPI DMA Pause/Stop features are used, we must use the following APIs |
| the HAL_SPI_DMAPause()/ HAL_SPI_DMAStop() only under the SPI callbacks |
| [..] |
| Master Receive mode restriction: |
| (#) In Master unidirectional receive-only mode (MSTR =1, BIDIMODE=0, RXONLY=1) or |
| bidirectional receive mode (MSTR=1, BIDIMODE=1, BIDIOE=0), to ensure that the SPI |
| does not initiate a new transfer the following procedure has to be respected: |
| (##) HAL_SPI_DeInit() |
| (##) HAL_SPI_Init() |
| [..] |
| Callback registration: |
| |
| (#) The compilation flag USE_HAL_SPI_REGISTER_CALLBACKS when set to 1U |
| allows the user to configure dynamically the driver callbacks. |
| Use Functions HAL_SPI_RegisterCallback() to register an interrupt callback. |
| |
| Function HAL_SPI_RegisterCallback() allows to register following callbacks: |
| (++) TxCpltCallback : SPI Tx Completed callback |
| (++) RxCpltCallback : SPI Rx Completed callback |
| (++) TxRxCpltCallback : SPI TxRx Completed callback |
| (++) TxHalfCpltCallback : SPI Tx Half Completed callback |
| (++) RxHalfCpltCallback : SPI Rx Half Completed callback |
| (++) TxRxHalfCpltCallback : SPI TxRx Half Completed callback |
| (++) ErrorCallback : SPI Error callback |
| (++) AbortCpltCallback : SPI Abort callback |
| (++) MspInitCallback : SPI Msp Init callback |
| (++) MspDeInitCallback : SPI Msp DeInit callback |
| This function takes as parameters the HAL peripheral handle, the Callback ID |
| and a pointer to the user callback function. |
| |
| |
| (#) Use function HAL_SPI_UnRegisterCallback to reset a callback to the default |
| weak function. |
| HAL_SPI_UnRegisterCallback takes as parameters the HAL peripheral handle, |
| and the Callback ID. |
| This function allows to reset following callbacks: |
| (++) TxCpltCallback : SPI Tx Completed callback |
| (++) RxCpltCallback : SPI Rx Completed callback |
| (++) TxRxCpltCallback : SPI TxRx Completed callback |
| (++) TxHalfCpltCallback : SPI Tx Half Completed callback |
| (++) RxHalfCpltCallback : SPI Rx Half Completed callback |
| (++) TxRxHalfCpltCallback : SPI TxRx Half Completed callback |
| (++) ErrorCallback : SPI Error callback |
| (++) AbortCpltCallback : SPI Abort callback |
| (++) MspInitCallback : SPI Msp Init callback |
| (++) MspDeInitCallback : SPI Msp DeInit callback |
| |
| [..] |
| By default, after the HAL_SPI_Init() and when the state is HAL_SPI_STATE_RESET |
| all callbacks are set to the corresponding weak functions: |
| examples HAL_SPI_MasterTxCpltCallback(), HAL_SPI_MasterRxCpltCallback(). |
| Exception done for MspInit and MspDeInit functions that are |
| reset to the legacy weak functions in the HAL_SPI_Init()/ HAL_SPI_DeInit() only when |
| these callbacks are null (not registered beforehand). |
| If MspInit or MspDeInit are not null, the HAL_SPI_Init()/ HAL_SPI_DeInit() |
| keep and use the user MspInit/MspDeInit callbacks (registered beforehand) whatever the state. |
| |
| [..] |
| Callbacks can be registered/unregistered in HAL_SPI_STATE_READY state only. |
| Exception done MspInit/MspDeInit functions that can be registered/unregistered |
| in HAL_SPI_STATE_READY or HAL_SPI_STATE_RESET state, |
| thus registered (user) MspInit/DeInit callbacks can be used during the Init/DeInit. |
| Then, the user first registers the MspInit/MspDeInit user callbacks |
| using HAL_SPI_RegisterCallback() before calling HAL_SPI_DeInit() |
| or HAL_SPI_Init() function. |
| |
| [..] |
| When the compilation define USE_HAL_PPP_REGISTER_CALLBACKS is set to 0 or |
| not defined, the callback registering feature is not available |
| and weak (surcharged) callbacks are used. |
| |
| [..] |
| Using the HAL it is not possible to reach all supported SPI frequency with the different SPI Modes, |
| the following table resume the max SPI frequency reached with data size 8bits/16bits, |
| according to frequency of the APBx Peripheral Clock (fPCLK) used by the SPI instance. |
| |
| @endverbatim |
| |
| Additional table : |
| |
| DataSize = SPI_DATASIZE_8BIT: |
| +----------------------------------------------------------------------------------------------+ |
| | | | 2Lines Fullduplex | 2Lines RxOnly | 1Line | |
| | Process | Transfer mode |---------------------|----------------------|----------------------| |
| | | | Master | Slave | Master | Slave | Master | Slave | |
| |==============================================================================================| |
| | T | Polling | Fpclk/2 | Fpclk/2 | NA | NA | NA | NA | |
| | X |----------------|----------|----------|-----------|----------|-----------|----------| |
| | / | Interrupt | Fpclk/4 | Fpclk/8 | NA | NA | NA | NA | |
| | R |----------------|----------|----------|-----------|----------|-----------|----------| |
| | X | DMA | Fpclk/2 | Fpclk/2 | NA | NA | NA | NA | |
| |=========|================|==========|==========|===========|==========|===========|==========| |
| | | Polling | Fpclk/2 | Fpclk/2 | Fpclk/64 | Fpclk/2 | Fpclk/64 | Fpclk/2 | |
| | |----------------|----------|----------|-----------|----------|-----------|----------| |
| | R | Interrupt | Fpclk/8 | Fpclk/8 | Fpclk/64 | Fpclk/2 | Fpclk/64 | Fpclk/2 | |
| | X |----------------|----------|----------|-----------|----------|-----------|----------| |
| | | DMA | Fpclk/2 | Fpclk/2 | Fpclk/64 | Fpclk/2 | Fpclk/128 | Fpclk/2 | |
| |=========|================|==========|==========|===========|==========|===========|==========| |
| | | Polling | Fpclk/2 | Fpclk/4 | NA | NA | Fpclk/2 | Fpclk/64 | |
| | |----------------|----------|----------|-----------|----------|-----------|----------| |
| | T | Interrupt | Fpclk/2 | Fpclk/4 | NA | NA | Fpclk/2 | Fpclk/64 | |
| | X |----------------|----------|----------|-----------|----------|-----------|----------| |
| | | DMA | Fpclk/2 | Fpclk/2 | NA | NA | Fpclk/2 | Fpclk/128| |
| +----------------------------------------------------------------------------------------------+ |
| |
| DataSize = SPI_DATASIZE_16BIT: |
| +----------------------------------------------------------------------------------------------+ |
| | | | 2Lines Fullduplex | 2Lines RxOnly | 1Line | |
| | Process | Transfer mode |---------------------|----------------------|----------------------| |
| | | | Master | Slave | Master | Slave | Master | Slave | |
| |==============================================================================================| |
| | T | Polling | Fpclk/2 | Fpclk/2 | NA | NA | NA | NA | |
| | X |----------------|----------|----------|-----------|----------|-----------|----------| |
| | / | Interrupt | Fpclk/4 | Fpclk/4 | NA | NA | NA | NA | |
| | R |----------------|----------|----------|-----------|----------|-----------|----------| |
| | X | DMA | Fpclk/2 | Fpclk/2 | NA | NA | NA | NA | |
| |=========|================|==========|==========|===========|==========|===========|==========| |
| | | Polling | Fpclk/2 | Fpclk/2 | Fpclk/64 | Fpclk/2 | Fpclk/32 | Fpclk/2 | |
| | |----------------|----------|----------|-----------|----------|-----------|----------| |
| | R | Interrupt | Fpclk/4 | Fpclk/4 | Fpclk/64 | Fpclk/2 | Fpclk/64 | Fpclk/2 | |
| | X |----------------|----------|----------|-----------|----------|-----------|----------| |
| | | DMA | Fpclk/2 | Fpclk/2 | Fpclk/64 | Fpclk/2 | Fpclk/128 | Fpclk/2 | |
| |=========|================|==========|==========|===========|==========|===========|==========| |
| | | Polling | Fpclk/2 | Fpclk/2 | NA | NA | Fpclk/2 | Fpclk/32 | |
| | |----------------|----------|----------|-----------|----------|-----------|----------| |
| | T | Interrupt | Fpclk/2 | Fpclk/2 | NA | NA | Fpclk/2 | Fpclk/64 | |
| | X |----------------|----------|----------|-----------|----------|-----------|----------| |
| | | DMA | Fpclk/2 | Fpclk/2 | NA | NA | Fpclk/2 | Fpclk/128| |
| +----------------------------------------------------------------------------------------------+ |
| @note The max SPI frequency depend on SPI data size (8bits, 16bits), |
| SPI mode(2 Lines fullduplex, 2 lines RxOnly, 1 line TX/RX) and Process mode (Polling, IT, DMA). |
| @note |
| (#) TX/RX processes are HAL_SPI_TransmitReceive(), HAL_SPI_TransmitReceive_IT() and HAL_SPI_TransmitReceive_DMA() |
| (#) RX processes are HAL_SPI_Receive(), HAL_SPI_Receive_IT() and HAL_SPI_Receive_DMA() |
| (#) TX processes are HAL_SPI_Transmit(), HAL_SPI_Transmit_IT() and HAL_SPI_Transmit_DMA() |
| |
| ****************************************************************************** |
| */ |
| |
| /* Includes ------------------------------------------------------------------*/ |
| #include "stm32f1xx_hal.h" |
| |
| /** @addtogroup STM32F1xx_HAL_Driver |
| * @{ |
| */ |
| |
| /** @defgroup SPI SPI |
| * @brief SPI HAL module driver |
| * @{ |
| */ |
| #ifdef HAL_SPI_MODULE_ENABLED |
| |
| /* Private typedef -----------------------------------------------------------*/ |
| /* Private defines -----------------------------------------------------------*/ |
| #if (USE_SPI_CRC != 0U) && defined(SPI_CRC_ERROR_WORKAROUND_FEATURE) |
| /* CRC WORKAOUND FEATURE: Variable used to determine if device is impacted by implementation |
| * of workaround related to wrong CRC errors detection on SPI2. Conditions in which this workaround |
| * has to be applied, are: |
| * - STM32F101CDE/STM32F103CDE |
| * - Revision ID : Z |
| * - SPI2 |
| * - In receive only mode, with CRC calculation enabled, at the end of the CRC reception, |
| * the software needs to check the CRCERR flag. If it is found set, read back the SPI_RXCRC: |
| * + If the value is 0, the complete data transfer is successful. |
| * + Otherwise, one or more errors have been detected during the data transfer by CPU or DMA. |
| * If CRCERR is found reset, the complete data transfer is considered successful. |
| * |
| * Check RevisionID value for identifying if Device is Rev Z (0x0001) in order to enable workaround for |
| * CRC errors wrongly detected |
| */ |
| /* Pb is that ES_STM32F10xxCDE also identify an issue in Debug registers access while not in Debug mode |
| * Revision ID information is only available in Debug mode, so Workaround could not be implemented |
| * to distinguish Rev Z devices (issue present) from more recent version (issue fixed). |
| * So, in case of Revison Z F101 or F103 devices, below define should be assigned to 1. |
| */ |
| #define USE_SPI_CRC_ERROR_WORKAROUND 0U |
| #endif |
| /** @defgroup SPI_Private_Constants SPI Private Constants |
| * @{ |
| */ |
| #define SPI_DEFAULT_TIMEOUT 100U |
| /** |
| * @} |
| */ |
| |
| /* Private macros ------------------------------------------------------------*/ |
| /* Private variables ---------------------------------------------------------*/ |
| /* Private function prototypes -----------------------------------------------*/ |
| /** @defgroup SPI_Private_Functions SPI Private Functions |
| * @{ |
| */ |
| static void SPI_DMATransmitCplt(DMA_HandleTypeDef *hdma); |
| static void SPI_DMAReceiveCplt(DMA_HandleTypeDef *hdma); |
| static void SPI_DMATransmitReceiveCplt(DMA_HandleTypeDef *hdma); |
| static void SPI_DMAHalfTransmitCplt(DMA_HandleTypeDef *hdma); |
| static void SPI_DMAHalfReceiveCplt(DMA_HandleTypeDef *hdma); |
| static void SPI_DMAHalfTransmitReceiveCplt(DMA_HandleTypeDef *hdma); |
| static void SPI_DMAError(DMA_HandleTypeDef *hdma); |
| static void SPI_DMAAbortOnError(DMA_HandleTypeDef *hdma); |
| static void SPI_DMATxAbortCallback(DMA_HandleTypeDef *hdma); |
| static void SPI_DMARxAbortCallback(DMA_HandleTypeDef *hdma); |
| static HAL_StatusTypeDef SPI_WaitFlagStateUntilTimeout(SPI_HandleTypeDef *hspi, uint32_t Flag, FlagStatus State, |
| uint32_t Timeout, uint32_t Tickstart); |
| static void SPI_TxISR_8BIT(struct __SPI_HandleTypeDef *hspi); |
| static void SPI_TxISR_16BIT(struct __SPI_HandleTypeDef *hspi); |
| static void SPI_RxISR_8BIT(struct __SPI_HandleTypeDef *hspi); |
| static void SPI_RxISR_16BIT(struct __SPI_HandleTypeDef *hspi); |
| static void SPI_2linesRxISR_8BIT(struct __SPI_HandleTypeDef *hspi); |
| static void SPI_2linesTxISR_8BIT(struct __SPI_HandleTypeDef *hspi); |
| static void SPI_2linesTxISR_16BIT(struct __SPI_HandleTypeDef *hspi); |
| static void SPI_2linesRxISR_16BIT(struct __SPI_HandleTypeDef *hspi); |
| #if (USE_SPI_CRC != 0U) |
| static void SPI_RxISR_8BITCRC(struct __SPI_HandleTypeDef *hspi); |
| static void SPI_RxISR_16BITCRC(struct __SPI_HandleTypeDef *hspi); |
| static void SPI_2linesRxISR_8BITCRC(struct __SPI_HandleTypeDef *hspi); |
| static void SPI_2linesRxISR_16BITCRC(struct __SPI_HandleTypeDef *hspi); |
| #endif /* USE_SPI_CRC */ |
| static void SPI_AbortRx_ISR(SPI_HandleTypeDef *hspi); |
| static void SPI_AbortTx_ISR(SPI_HandleTypeDef *hspi); |
| static void SPI_CloseRxTx_ISR(SPI_HandleTypeDef *hspi); |
| static void SPI_CloseRx_ISR(SPI_HandleTypeDef *hspi); |
| static void SPI_CloseTx_ISR(SPI_HandleTypeDef *hspi); |
| static HAL_StatusTypeDef SPI_EndRxTransaction(SPI_HandleTypeDef *hspi, uint32_t Timeout, uint32_t Tickstart); |
| static HAL_StatusTypeDef SPI_EndRxTxTransaction(SPI_HandleTypeDef *hspi, uint32_t Timeout, uint32_t Tickstart); |
| /** |
| * @} |
| */ |
| |
| /* Exported functions --------------------------------------------------------*/ |
| /** @defgroup SPI_Exported_Functions SPI Exported Functions |
| * @{ |
| */ |
| |
| /** @defgroup SPI_Exported_Functions_Group1 Initialization and de-initialization functions |
| * @brief Initialization and Configuration functions |
| * |
| @verbatim |
| =============================================================================== |
| ##### Initialization and de-initialization functions ##### |
| =============================================================================== |
| [..] This subsection provides a set of functions allowing to initialize and |
| de-initialize the SPIx peripheral: |
| |
| (+) User must implement HAL_SPI_MspInit() function in which he configures |
| all related peripherals resources (CLOCK, GPIO, DMA, IT and NVIC ). |
| |
| (+) Call the function HAL_SPI_Init() to configure the selected device with |
| the selected configuration: |
| (++) Mode |
| (++) Direction |
| (++) Data Size |
| (++) Clock Polarity and Phase |
| (++) NSS Management |
| (++) BaudRate Prescaler |
| (++) FirstBit |
| (++) TIMode |
| (++) CRC Calculation |
| (++) CRC Polynomial if CRC enabled |
| |
| (+) Call the function HAL_SPI_DeInit() to restore the default configuration |
| of the selected SPIx peripheral. |
| |
| @endverbatim |
| * @{ |
| */ |
| |
| /** |
| * @brief Initialize the SPI according to the specified parameters |
| * in the SPI_InitTypeDef and initialize the associated handle. |
| * @param hspi pointer to a SPI_HandleTypeDef structure that contains |
| * the configuration information for SPI module. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_SPI_Init(SPI_HandleTypeDef *hspi) |
| { |
| /* Check the SPI handle allocation */ |
| if (hspi == NULL) |
| { |
| return HAL_ERROR; |
| } |
| |
| /* Check the parameters */ |
| assert_param(IS_SPI_ALL_INSTANCE(hspi->Instance)); |
| assert_param(IS_SPI_MODE(hspi->Init.Mode)); |
| assert_param(IS_SPI_DIRECTION(hspi->Init.Direction)); |
| assert_param(IS_SPI_DATASIZE(hspi->Init.DataSize)); |
| assert_param(IS_SPI_NSS(hspi->Init.NSS)); |
| assert_param(IS_SPI_BAUDRATE_PRESCALER(hspi->Init.BaudRatePrescaler)); |
| assert_param(IS_SPI_FIRST_BIT(hspi->Init.FirstBit)); |
| /* TI mode is not supported on this device. |
| TIMode parameter is mandatory equal to SPI_TIMODE_DISABLE */ |
| assert_param(IS_SPI_TIMODE(hspi->Init.TIMode)); |
| if (hspi->Init.TIMode == SPI_TIMODE_DISABLE) |
| { |
| assert_param(IS_SPI_CPOL(hspi->Init.CLKPolarity)); |
| assert_param(IS_SPI_CPHA(hspi->Init.CLKPhase)); |
| |
| if (hspi->Init.Mode == SPI_MODE_MASTER) |
| { |
| assert_param(IS_SPI_BAUDRATE_PRESCALER(hspi->Init.BaudRatePrescaler)); |
| } |
| else |
| { |
| /* Baudrate prescaler not use in Motoraola Slave mode. force to default value */ |
| hspi->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_2; |
| } |
| } |
| else |
| { |
| assert_param(IS_SPI_BAUDRATE_PRESCALER(hspi->Init.BaudRatePrescaler)); |
| |
| /* Force polarity and phase to TI protocaol requirements */ |
| hspi->Init.CLKPolarity = SPI_POLARITY_LOW; |
| hspi->Init.CLKPhase = SPI_PHASE_1EDGE; |
| } |
| #if (USE_SPI_CRC != 0U) |
| assert_param(IS_SPI_CRC_CALCULATION(hspi->Init.CRCCalculation)); |
| if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) |
| { |
| assert_param(IS_SPI_CRC_POLYNOMIAL(hspi->Init.CRCPolynomial)); |
| } |
| #else |
| hspi->Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE; |
| #endif /* USE_SPI_CRC */ |
| |
| if (hspi->State == HAL_SPI_STATE_RESET) |
| { |
| /* Allocate lock resource and initialize it */ |
| hspi->Lock = HAL_UNLOCKED; |
| |
| #if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U) |
| /* Init the SPI Callback settings */ |
| hspi->TxCpltCallback = HAL_SPI_TxCpltCallback; /* Legacy weak TxCpltCallback */ |
| hspi->RxCpltCallback = HAL_SPI_RxCpltCallback; /* Legacy weak RxCpltCallback */ |
| hspi->TxRxCpltCallback = HAL_SPI_TxRxCpltCallback; /* Legacy weak TxRxCpltCallback */ |
| hspi->TxHalfCpltCallback = HAL_SPI_TxHalfCpltCallback; /* Legacy weak TxHalfCpltCallback */ |
| hspi->RxHalfCpltCallback = HAL_SPI_RxHalfCpltCallback; /* Legacy weak RxHalfCpltCallback */ |
| hspi->TxRxHalfCpltCallback = HAL_SPI_TxRxHalfCpltCallback; /* Legacy weak TxRxHalfCpltCallback */ |
| hspi->ErrorCallback = HAL_SPI_ErrorCallback; /* Legacy weak ErrorCallback */ |
| hspi->AbortCpltCallback = HAL_SPI_AbortCpltCallback; /* Legacy weak AbortCpltCallback */ |
| |
| if (hspi->MspInitCallback == NULL) |
| { |
| hspi->MspInitCallback = HAL_SPI_MspInit; /* Legacy weak MspInit */ |
| } |
| |
| /* Init the low level hardware : GPIO, CLOCK, NVIC... */ |
| hspi->MspInitCallback(hspi); |
| #else |
| /* Init the low level hardware : GPIO, CLOCK, NVIC... */ |
| HAL_SPI_MspInit(hspi); |
| #endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ |
| } |
| |
| hspi->State = HAL_SPI_STATE_BUSY; |
| |
| /* Disable the selected SPI peripheral */ |
| __HAL_SPI_DISABLE(hspi); |
| |
| /*----------------------- SPIx CR1 & CR2 Configuration ---------------------*/ |
| /* Configure : SPI Mode, Communication Mode, Data size, Clock polarity and phase, NSS management, |
| Communication speed, First bit and CRC calculation state */ |
| WRITE_REG(hspi->Instance->CR1, ((hspi->Init.Mode & (SPI_CR1_MSTR | SPI_CR1_SSI)) | |
| (hspi->Init.Direction & (SPI_CR1_RXONLY | SPI_CR1_BIDIMODE)) | |
| (hspi->Init.DataSize & SPI_CR1_DFF) | |
| (hspi->Init.CLKPolarity & SPI_CR1_CPOL) | |
| (hspi->Init.CLKPhase & SPI_CR1_CPHA) | |
| (hspi->Init.NSS & SPI_CR1_SSM) | |
| (hspi->Init.BaudRatePrescaler & SPI_CR1_BR_Msk) | |
| (hspi->Init.FirstBit & SPI_CR1_LSBFIRST) | |
| (hspi->Init.CRCCalculation & SPI_CR1_CRCEN))); |
| |
| /* Configure : NSS management */ |
| WRITE_REG(hspi->Instance->CR2, ((hspi->Init.NSS >> 16U) & SPI_CR2_SSOE)); |
| |
| #if (USE_SPI_CRC != 0U) |
| /*---------------------------- SPIx CRCPOLY Configuration ------------------*/ |
| /* Configure : CRC Polynomial */ |
| if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) |
| { |
| WRITE_REG(hspi->Instance->CRCPR, (hspi->Init.CRCPolynomial & SPI_CRCPR_CRCPOLY_Msk)); |
| } |
| #endif /* USE_SPI_CRC */ |
| |
| #if defined(SPI_I2SCFGR_I2SMOD) |
| /* Activate the SPI mode (Make sure that I2SMOD bit in I2SCFGR register is reset) */ |
| CLEAR_BIT(hspi->Instance->I2SCFGR, SPI_I2SCFGR_I2SMOD); |
| #endif /* SPI_I2SCFGR_I2SMOD */ |
| |
| hspi->ErrorCode = HAL_SPI_ERROR_NONE; |
| hspi->State = HAL_SPI_STATE_READY; |
| |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief De-Initialize the SPI peripheral. |
| * @param hspi pointer to a SPI_HandleTypeDef structure that contains |
| * the configuration information for SPI module. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_SPI_DeInit(SPI_HandleTypeDef *hspi) |
| { |
| /* Check the SPI handle allocation */ |
| if (hspi == NULL) |
| { |
| return HAL_ERROR; |
| } |
| |
| /* Check SPI Instance parameter */ |
| assert_param(IS_SPI_ALL_INSTANCE(hspi->Instance)); |
| |
| hspi->State = HAL_SPI_STATE_BUSY; |
| |
| /* Disable the SPI Peripheral Clock */ |
| __HAL_SPI_DISABLE(hspi); |
| |
| #if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U) |
| if (hspi->MspDeInitCallback == NULL) |
| { |
| hspi->MspDeInitCallback = HAL_SPI_MspDeInit; /* Legacy weak MspDeInit */ |
| } |
| |
| /* DeInit the low level hardware: GPIO, CLOCK, NVIC... */ |
| hspi->MspDeInitCallback(hspi); |
| #else |
| /* DeInit the low level hardware: GPIO, CLOCK, NVIC... */ |
| HAL_SPI_MspDeInit(hspi); |
| #endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ |
| |
| hspi->ErrorCode = HAL_SPI_ERROR_NONE; |
| hspi->State = HAL_SPI_STATE_RESET; |
| |
| /* Release Lock */ |
| __HAL_UNLOCK(hspi); |
| |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Initialize the SPI MSP. |
| * @param hspi pointer to a SPI_HandleTypeDef structure that contains |
| * the configuration information for SPI module. |
| * @retval None |
| */ |
| __weak void HAL_SPI_MspInit(SPI_HandleTypeDef *hspi) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(hspi); |
| |
| /* NOTE : This function should not be modified, when the callback is needed, |
| the HAL_SPI_MspInit should be implemented in the user file |
| */ |
| } |
| |
| /** |
| * @brief De-Initialize the SPI MSP. |
| * @param hspi pointer to a SPI_HandleTypeDef structure that contains |
| * the configuration information for SPI module. |
| * @retval None |
| */ |
| __weak void HAL_SPI_MspDeInit(SPI_HandleTypeDef *hspi) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(hspi); |
| |
| /* NOTE : This function should not be modified, when the callback is needed, |
| the HAL_SPI_MspDeInit should be implemented in the user file |
| */ |
| } |
| |
| #if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U) |
| /** |
| * @brief Register a User SPI Callback |
| * To be used instead of the weak predefined callback |
| * @param hspi Pointer to a SPI_HandleTypeDef structure that contains |
| * the configuration information for the specified SPI. |
| * @param CallbackID ID of the callback to be registered |
| * @param pCallback pointer to the Callback function |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_SPI_RegisterCallback(SPI_HandleTypeDef *hspi, HAL_SPI_CallbackIDTypeDef CallbackID, |
| pSPI_CallbackTypeDef pCallback) |
| { |
| HAL_StatusTypeDef status = HAL_OK; |
| |
| if (pCallback == NULL) |
| { |
| /* Update the error code */ |
| hspi->ErrorCode |= HAL_SPI_ERROR_INVALID_CALLBACK; |
| |
| return HAL_ERROR; |
| } |
| /* Process locked */ |
| __HAL_LOCK(hspi); |
| |
| if (HAL_SPI_STATE_READY == hspi->State) |
| { |
| switch (CallbackID) |
| { |
| case HAL_SPI_TX_COMPLETE_CB_ID : |
| hspi->TxCpltCallback = pCallback; |
| break; |
| |
| case HAL_SPI_RX_COMPLETE_CB_ID : |
| hspi->RxCpltCallback = pCallback; |
| break; |
| |
| case HAL_SPI_TX_RX_COMPLETE_CB_ID : |
| hspi->TxRxCpltCallback = pCallback; |
| break; |
| |
| case HAL_SPI_TX_HALF_COMPLETE_CB_ID : |
| hspi->TxHalfCpltCallback = pCallback; |
| break; |
| |
| case HAL_SPI_RX_HALF_COMPLETE_CB_ID : |
| hspi->RxHalfCpltCallback = pCallback; |
| break; |
| |
| case HAL_SPI_TX_RX_HALF_COMPLETE_CB_ID : |
| hspi->TxRxHalfCpltCallback = pCallback; |
| break; |
| |
| case HAL_SPI_ERROR_CB_ID : |
| hspi->ErrorCallback = pCallback; |
| break; |
| |
| case HAL_SPI_ABORT_CB_ID : |
| hspi->AbortCpltCallback = pCallback; |
| break; |
| |
| case HAL_SPI_MSPINIT_CB_ID : |
| hspi->MspInitCallback = pCallback; |
| break; |
| |
| case HAL_SPI_MSPDEINIT_CB_ID : |
| hspi->MspDeInitCallback = pCallback; |
| break; |
| |
| default : |
| /* Update the error code */ |
| SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_INVALID_CALLBACK); |
| |
| /* Return error status */ |
| status = HAL_ERROR; |
| break; |
| } |
| } |
| else if (HAL_SPI_STATE_RESET == hspi->State) |
| { |
| switch (CallbackID) |
| { |
| case HAL_SPI_MSPINIT_CB_ID : |
| hspi->MspInitCallback = pCallback; |
| break; |
| |
| case HAL_SPI_MSPDEINIT_CB_ID : |
| hspi->MspDeInitCallback = pCallback; |
| break; |
| |
| default : |
| /* Update the error code */ |
| SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_INVALID_CALLBACK); |
| |
| /* Return error status */ |
| status = HAL_ERROR; |
| break; |
| } |
| } |
| else |
| { |
| /* Update the error code */ |
| SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_INVALID_CALLBACK); |
| |
| /* Return error status */ |
| status = HAL_ERROR; |
| } |
| |
| /* Release Lock */ |
| __HAL_UNLOCK(hspi); |
| return status; |
| } |
| |
| /** |
| * @brief Unregister an SPI Callback |
| * SPI callback is redirected to the weak predefined callback |
| * @param hspi Pointer to a SPI_HandleTypeDef structure that contains |
| * the configuration information for the specified SPI. |
| * @param CallbackID ID of the callback to be unregistered |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_SPI_UnRegisterCallback(SPI_HandleTypeDef *hspi, HAL_SPI_CallbackIDTypeDef CallbackID) |
| { |
| HAL_StatusTypeDef status = HAL_OK; |
| |
| /* Process locked */ |
| __HAL_LOCK(hspi); |
| |
| if (HAL_SPI_STATE_READY == hspi->State) |
| { |
| switch (CallbackID) |
| { |
| case HAL_SPI_TX_COMPLETE_CB_ID : |
| hspi->TxCpltCallback = HAL_SPI_TxCpltCallback; /* Legacy weak TxCpltCallback */ |
| break; |
| |
| case HAL_SPI_RX_COMPLETE_CB_ID : |
| hspi->RxCpltCallback = HAL_SPI_RxCpltCallback; /* Legacy weak RxCpltCallback */ |
| break; |
| |
| case HAL_SPI_TX_RX_COMPLETE_CB_ID : |
| hspi->TxRxCpltCallback = HAL_SPI_TxRxCpltCallback; /* Legacy weak TxRxCpltCallback */ |
| break; |
| |
| case HAL_SPI_TX_HALF_COMPLETE_CB_ID : |
| hspi->TxHalfCpltCallback = HAL_SPI_TxHalfCpltCallback; /* Legacy weak TxHalfCpltCallback */ |
| break; |
| |
| case HAL_SPI_RX_HALF_COMPLETE_CB_ID : |
| hspi->RxHalfCpltCallback = HAL_SPI_RxHalfCpltCallback; /* Legacy weak RxHalfCpltCallback */ |
| break; |
| |
| case HAL_SPI_TX_RX_HALF_COMPLETE_CB_ID : |
| hspi->TxRxHalfCpltCallback = HAL_SPI_TxRxHalfCpltCallback; /* Legacy weak TxRxHalfCpltCallback */ |
| break; |
| |
| case HAL_SPI_ERROR_CB_ID : |
| hspi->ErrorCallback = HAL_SPI_ErrorCallback; /* Legacy weak ErrorCallback */ |
| break; |
| |
| case HAL_SPI_ABORT_CB_ID : |
| hspi->AbortCpltCallback = HAL_SPI_AbortCpltCallback; /* Legacy weak AbortCpltCallback */ |
| break; |
| |
| case HAL_SPI_MSPINIT_CB_ID : |
| hspi->MspInitCallback = HAL_SPI_MspInit; /* Legacy weak MspInit */ |
| break; |
| |
| case HAL_SPI_MSPDEINIT_CB_ID : |
| hspi->MspDeInitCallback = HAL_SPI_MspDeInit; /* Legacy weak MspDeInit */ |
| break; |
| |
| default : |
| /* Update the error code */ |
| SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_INVALID_CALLBACK); |
| |
| /* Return error status */ |
| status = HAL_ERROR; |
| break; |
| } |
| } |
| else if (HAL_SPI_STATE_RESET == hspi->State) |
| { |
| switch (CallbackID) |
| { |
| case HAL_SPI_MSPINIT_CB_ID : |
| hspi->MspInitCallback = HAL_SPI_MspInit; /* Legacy weak MspInit */ |
| break; |
| |
| case HAL_SPI_MSPDEINIT_CB_ID : |
| hspi->MspDeInitCallback = HAL_SPI_MspDeInit; /* Legacy weak MspDeInit */ |
| break; |
| |
| default : |
| /* Update the error code */ |
| SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_INVALID_CALLBACK); |
| |
| /* Return error status */ |
| status = HAL_ERROR; |
| break; |
| } |
| } |
| else |
| { |
| /* Update the error code */ |
| SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_INVALID_CALLBACK); |
| |
| /* Return error status */ |
| status = HAL_ERROR; |
| } |
| |
| /* Release Lock */ |
| __HAL_UNLOCK(hspi); |
| return status; |
| } |
| #endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ |
| /** |
| * @} |
| */ |
| |
| /** @defgroup SPI_Exported_Functions_Group2 IO operation functions |
| * @brief Data transfers functions |
| * |
| @verbatim |
| ============================================================================== |
| ##### IO operation functions ##### |
| =============================================================================== |
| [..] |
| This subsection provides a set of functions allowing to manage the SPI |
| data transfers. |
| |
| [..] The SPI supports master and slave mode : |
| |
| (#) There are two modes of transfer: |
| (++) Blocking mode: The communication is performed in polling mode. |
| The HAL status of all data processing is returned by the same function |
| after finishing transfer. |
| (++) No-Blocking mode: The communication is performed using Interrupts |
| or DMA, These APIs return the HAL status. |
| The end of the data processing will be indicated through the |
| dedicated SPI IRQ when using Interrupt mode or the DMA IRQ when |
| using DMA mode. |
| The HAL_SPI_TxCpltCallback(), HAL_SPI_RxCpltCallback() and HAL_SPI_TxRxCpltCallback() user callbacks |
| will be executed respectively at the end of the transmit or Receive process |
| The HAL_SPI_ErrorCallback()user callback will be executed when a communication error is detected |
| |
| (#) APIs provided for these 2 transfer modes (Blocking mode or Non blocking mode using either Interrupt or DMA) |
| exist for 1Line (simplex) and 2Lines (full duplex) modes. |
| |
| @endverbatim |
| * @{ |
| */ |
| |
| /** |
| * @brief Transmit an amount of data in blocking mode. |
| * @param hspi pointer to a SPI_HandleTypeDef structure that contains |
| * the configuration information for SPI module. |
| * @param pData pointer to data buffer |
| * @param Size amount of data to be sent |
| * @param Timeout Timeout duration |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_SPI_Transmit(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size, uint32_t Timeout) |
| { |
| uint32_t tickstart; |
| HAL_StatusTypeDef errorcode = HAL_OK; |
| uint16_t initial_TxXferCount; |
| |
| /* Check Direction parameter */ |
| assert_param(IS_SPI_DIRECTION_2LINES_OR_1LINE(hspi->Init.Direction)); |
| |
| /* Process Locked */ |
| __HAL_LOCK(hspi); |
| |
| /* Init tickstart for timeout management*/ |
| tickstart = HAL_GetTick(); |
| initial_TxXferCount = Size; |
| |
| if (hspi->State != HAL_SPI_STATE_READY) |
| { |
| errorcode = HAL_BUSY; |
| goto error; |
| } |
| |
| if ((pData == NULL) || (Size == 0U)) |
| { |
| errorcode = HAL_ERROR; |
| goto error; |
| } |
| |
| /* Set the transaction information */ |
| hspi->State = HAL_SPI_STATE_BUSY_TX; |
| hspi->ErrorCode = HAL_SPI_ERROR_NONE; |
| hspi->pTxBuffPtr = (uint8_t *)pData; |
| hspi->TxXferSize = Size; |
| hspi->TxXferCount = Size; |
| |
| /*Init field not used in handle to zero */ |
| hspi->pRxBuffPtr = (uint8_t *)NULL; |
| hspi->RxXferSize = 0U; |
| hspi->RxXferCount = 0U; |
| hspi->TxISR = NULL; |
| hspi->RxISR = NULL; |
| |
| /* Configure communication direction : 1Line */ |
| if (hspi->Init.Direction == SPI_DIRECTION_1LINE) |
| { |
| /* Disable SPI Peripheral before set 1Line direction (BIDIOE bit) */ |
| __HAL_SPI_DISABLE(hspi); |
| SPI_1LINE_TX(hspi); |
| } |
| |
| #if (USE_SPI_CRC != 0U) |
| /* Reset CRC Calculation */ |
| if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) |
| { |
| SPI_RESET_CRC(hspi); |
| } |
| #endif /* USE_SPI_CRC */ |
| |
| /* Check if the SPI is already enabled */ |
| if ((hspi->Instance->CR1 & SPI_CR1_SPE) != SPI_CR1_SPE) |
| { |
| /* Enable SPI peripheral */ |
| __HAL_SPI_ENABLE(hspi); |
| } |
| |
| /* Transmit data in 16 Bit mode */ |
| if (hspi->Init.DataSize == SPI_DATASIZE_16BIT) |
| { |
| if ((hspi->Init.Mode == SPI_MODE_SLAVE) || (initial_TxXferCount == 0x01U)) |
| { |
| hspi->Instance->DR = *((uint16_t *)hspi->pTxBuffPtr); |
| hspi->pTxBuffPtr += sizeof(uint16_t); |
| hspi->TxXferCount--; |
| } |
| /* Transmit data in 16 Bit mode */ |
| while (hspi->TxXferCount > 0U) |
| { |
| /* Wait until TXE flag is set to send data */ |
| if (__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_TXE)) |
| { |
| hspi->Instance->DR = *((uint16_t *)hspi->pTxBuffPtr); |
| hspi->pTxBuffPtr += sizeof(uint16_t); |
| hspi->TxXferCount--; |
| } |
| else |
| { |
| /* Timeout management */ |
| if ((((HAL_GetTick() - tickstart) >= Timeout) && (Timeout != HAL_MAX_DELAY)) || (Timeout == 0U)) |
| { |
| errorcode = HAL_TIMEOUT; |
| goto error; |
| } |
| } |
| } |
| } |
| /* Transmit data in 8 Bit mode */ |
| else |
| { |
| if ((hspi->Init.Mode == SPI_MODE_SLAVE) || (initial_TxXferCount == 0x01U)) |
| { |
| *((__IO uint8_t *)&hspi->Instance->DR) = (*hspi->pTxBuffPtr); |
| hspi->pTxBuffPtr += sizeof(uint8_t); |
| hspi->TxXferCount--; |
| } |
| while (hspi->TxXferCount > 0U) |
| { |
| /* Wait until TXE flag is set to send data */ |
| if (__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_TXE)) |
| { |
| *((__IO uint8_t *)&hspi->Instance->DR) = (*hspi->pTxBuffPtr); |
| hspi->pTxBuffPtr += sizeof(uint8_t); |
| hspi->TxXferCount--; |
| } |
| else |
| { |
| /* Timeout management */ |
| if ((((HAL_GetTick() - tickstart) >= Timeout) && (Timeout != HAL_MAX_DELAY)) || (Timeout == 0U)) |
| { |
| errorcode = HAL_TIMEOUT; |
| goto error; |
| } |
| } |
| } |
| } |
| #if (USE_SPI_CRC != 0U) |
| /* Enable CRC Transmission */ |
| if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) |
| { |
| SET_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT); |
| } |
| #endif /* USE_SPI_CRC */ |
| |
| /* Check the end of the transaction */ |
| if (SPI_EndRxTxTransaction(hspi, Timeout, tickstart) != HAL_OK) |
| { |
| hspi->ErrorCode = HAL_SPI_ERROR_FLAG; |
| } |
| |
| /* Clear overrun flag in 2 Lines communication mode because received is not read */ |
| if (hspi->Init.Direction == SPI_DIRECTION_2LINES) |
| { |
| __HAL_SPI_CLEAR_OVRFLAG(hspi); |
| } |
| |
| if (hspi->ErrorCode != HAL_SPI_ERROR_NONE) |
| { |
| errorcode = HAL_ERROR; |
| } |
| |
| error: |
| hspi->State = HAL_SPI_STATE_READY; |
| /* Process Unlocked */ |
| __HAL_UNLOCK(hspi); |
| return errorcode; |
| } |
| |
| /** |
| * @brief Receive an amount of data in blocking mode. |
| * @param hspi pointer to a SPI_HandleTypeDef structure that contains |
| * the configuration information for SPI module. |
| * @param pData pointer to data buffer |
| * @param Size amount of data to be received |
| * @param Timeout Timeout duration |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_SPI_Receive(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size, uint32_t Timeout) |
| { |
| #if (USE_SPI_CRC != 0U) |
| __IO uint32_t tmpreg = 0U; |
| #endif /* USE_SPI_CRC */ |
| uint32_t tickstart; |
| HAL_StatusTypeDef errorcode = HAL_OK; |
| |
| if ((hspi->Init.Mode == SPI_MODE_MASTER) && (hspi->Init.Direction == SPI_DIRECTION_2LINES)) |
| { |
| hspi->State = HAL_SPI_STATE_BUSY_RX; |
| /* Call transmit-receive function to send Dummy data on Tx line and generate clock on CLK line */ |
| return HAL_SPI_TransmitReceive(hspi, pData, pData, Size, Timeout); |
| } |
| |
| /* Process Locked */ |
| __HAL_LOCK(hspi); |
| |
| /* Init tickstart for timeout management*/ |
| tickstart = HAL_GetTick(); |
| |
| if (hspi->State != HAL_SPI_STATE_READY) |
| { |
| errorcode = HAL_BUSY; |
| goto error; |
| } |
| |
| if ((pData == NULL) || (Size == 0U)) |
| { |
| errorcode = HAL_ERROR; |
| goto error; |
| } |
| |
| /* Set the transaction information */ |
| hspi->State = HAL_SPI_STATE_BUSY_RX; |
| hspi->ErrorCode = HAL_SPI_ERROR_NONE; |
| hspi->pRxBuffPtr = (uint8_t *)pData; |
| hspi->RxXferSize = Size; |
| hspi->RxXferCount = Size; |
| |
| /*Init field not used in handle to zero */ |
| hspi->pTxBuffPtr = (uint8_t *)NULL; |
| hspi->TxXferSize = 0U; |
| hspi->TxXferCount = 0U; |
| hspi->RxISR = NULL; |
| hspi->TxISR = NULL; |
| |
| #if (USE_SPI_CRC != 0U) |
| /* Reset CRC Calculation */ |
| if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) |
| { |
| SPI_RESET_CRC(hspi); |
| /* this is done to handle the CRCNEXT before the latest data */ |
| hspi->RxXferCount--; |
| } |
| #endif /* USE_SPI_CRC */ |
| |
| /* Configure communication direction: 1Line */ |
| if (hspi->Init.Direction == SPI_DIRECTION_1LINE) |
| { |
| /* Disable SPI Peripheral before set 1Line direction (BIDIOE bit) */ |
| __HAL_SPI_DISABLE(hspi); |
| SPI_1LINE_RX(hspi); |
| } |
| |
| /* Check if the SPI is already enabled */ |
| if ((hspi->Instance->CR1 & SPI_CR1_SPE) != SPI_CR1_SPE) |
| { |
| /* Enable SPI peripheral */ |
| __HAL_SPI_ENABLE(hspi); |
| } |
| |
| /* Receive data in 8 Bit mode */ |
| if (hspi->Init.DataSize == SPI_DATASIZE_8BIT) |
| { |
| /* Transfer loop */ |
| while (hspi->RxXferCount > 0U) |
| { |
| /* Check the RXNE flag */ |
| if (__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_RXNE)) |
| { |
| /* read the received data */ |
| (* (uint8_t *)hspi->pRxBuffPtr) = *(__IO uint8_t *)&hspi->Instance->DR; |
| hspi->pRxBuffPtr += sizeof(uint8_t); |
| hspi->RxXferCount--; |
| } |
| else |
| { |
| /* Timeout management */ |
| if ((((HAL_GetTick() - tickstart) >= Timeout) && (Timeout != HAL_MAX_DELAY)) || (Timeout == 0U)) |
| { |
| errorcode = HAL_TIMEOUT; |
| goto error; |
| } |
| } |
| } |
| } |
| else |
| { |
| /* Transfer loop */ |
| while (hspi->RxXferCount > 0U) |
| { |
| /* Check the RXNE flag */ |
| if (__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_RXNE)) |
| { |
| *((uint16_t *)hspi->pRxBuffPtr) = (uint16_t)hspi->Instance->DR; |
| hspi->pRxBuffPtr += sizeof(uint16_t); |
| hspi->RxXferCount--; |
| } |
| else |
| { |
| /* Timeout management */ |
| if ((((HAL_GetTick() - tickstart) >= Timeout) && (Timeout != HAL_MAX_DELAY)) || (Timeout == 0U)) |
| { |
| errorcode = HAL_TIMEOUT; |
| goto error; |
| } |
| } |
| } |
| } |
| |
| #if (USE_SPI_CRC != 0U) |
| /* Handle the CRC Transmission */ |
| if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) |
| { |
| /* freeze the CRC before the latest data */ |
| SET_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT); |
| |
| /* Check if CRCNEXT is well reseted by hardware */ |
| if (READ_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT)) |
| { |
| /* Workaround to force CRCNEXT bit to zero in case of CRCNEXT is not reset automatically by hardware */ |
| CLEAR_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT); |
| } |
| /* Read the latest data */ |
| if (SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_RXNE, SET, Timeout, tickstart) != HAL_OK) |
| { |
| /* the latest data has not been received */ |
| errorcode = HAL_TIMEOUT; |
| goto error; |
| } |
| |
| /* Receive last data in 16 Bit mode */ |
| if (hspi->Init.DataSize == SPI_DATASIZE_16BIT) |
| { |
| *((uint16_t *)hspi->pRxBuffPtr) = (uint16_t)hspi->Instance->DR; |
| } |
| /* Receive last data in 8 Bit mode */ |
| else |
| { |
| (*(uint8_t *)hspi->pRxBuffPtr) = *(__IO uint8_t *)&hspi->Instance->DR; |
| } |
| |
| /* Wait the CRC data */ |
| if (SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_RXNE, SET, Timeout, tickstart) != HAL_OK) |
| { |
| SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_CRC); |
| errorcode = HAL_TIMEOUT; |
| goto error; |
| } |
| |
| /* Read CRC to Flush DR and RXNE flag */ |
| tmpreg = READ_REG(hspi->Instance->DR); |
| /* To avoid GCC warning */ |
| UNUSED(tmpreg); |
| } |
| #endif /* USE_SPI_CRC */ |
| |
| /* Check the end of the transaction */ |
| if (SPI_EndRxTransaction(hspi, Timeout, tickstart) != HAL_OK) |
| { |
| hspi->ErrorCode = HAL_SPI_ERROR_FLAG; |
| } |
| |
| #if (USE_SPI_CRC != 0U) |
| /* Check if CRC error occurred */ |
| if (__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_CRCERR) != RESET) |
| { |
| /* Check if CRC error is valid or not (workaround to be applied or not) */ |
| if (SPI_ISCRCErrorValid(hspi) == SPI_VALID_CRC_ERROR) |
| { |
| SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_CRC); |
| |
| /* Reset CRC Calculation */ |
| SPI_RESET_CRC(hspi); |
| } |
| else |
| { |
| __HAL_SPI_CLEAR_CRCERRFLAG(hspi); |
| } |
| } |
| #endif /* USE_SPI_CRC */ |
| |
| if (hspi->ErrorCode != HAL_SPI_ERROR_NONE) |
| { |
| errorcode = HAL_ERROR; |
| } |
| |
| error : |
| hspi->State = HAL_SPI_STATE_READY; |
| __HAL_UNLOCK(hspi); |
| return errorcode; |
| } |
| |
| /** |
| * @brief Transmit and Receive an amount of data in blocking mode. |
| * @param hspi pointer to a SPI_HandleTypeDef structure that contains |
| * the configuration information for SPI module. |
| * @param pTxData pointer to transmission data buffer |
| * @param pRxData pointer to reception data buffer |
| * @param Size amount of data to be sent and received |
| * @param Timeout Timeout duration |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_SPI_TransmitReceive(SPI_HandleTypeDef *hspi, uint8_t *pTxData, uint8_t *pRxData, uint16_t Size, |
| uint32_t Timeout) |
| { |
| uint16_t initial_TxXferCount; |
| uint32_t tmp_mode; |
| HAL_SPI_StateTypeDef tmp_state; |
| uint32_t tickstart; |
| #if (USE_SPI_CRC != 0U) |
| __IO uint32_t tmpreg = 0U; |
| #endif /* USE_SPI_CRC */ |
| |
| /* Variable used to alternate Rx and Tx during transfer */ |
| uint32_t txallowed = 1U; |
| HAL_StatusTypeDef errorcode = HAL_OK; |
| |
| /* Check Direction parameter */ |
| assert_param(IS_SPI_DIRECTION_2LINES(hspi->Init.Direction)); |
| |
| /* Process Locked */ |
| __HAL_LOCK(hspi); |
| |
| /* Init tickstart for timeout management*/ |
| tickstart = HAL_GetTick(); |
| |
| /* Init temporary variables */ |
| tmp_state = hspi->State; |
| tmp_mode = hspi->Init.Mode; |
| initial_TxXferCount = Size; |
| |
| if (!((tmp_state == HAL_SPI_STATE_READY) || \ |
| ((tmp_mode == SPI_MODE_MASTER) && (hspi->Init.Direction == SPI_DIRECTION_2LINES) && (tmp_state == HAL_SPI_STATE_BUSY_RX)))) |
| { |
| errorcode = HAL_BUSY; |
| goto error; |
| } |
| |
| if ((pTxData == NULL) || (pRxData == NULL) || (Size == 0U)) |
| { |
| errorcode = HAL_ERROR; |
| goto error; |
| } |
| |
| /* Don't overwrite in case of HAL_SPI_STATE_BUSY_RX */ |
| if (hspi->State != HAL_SPI_STATE_BUSY_RX) |
| { |
| hspi->State = HAL_SPI_STATE_BUSY_TX_RX; |
| } |
| |
| /* Set the transaction information */ |
| hspi->ErrorCode = HAL_SPI_ERROR_NONE; |
| hspi->pRxBuffPtr = (uint8_t *)pRxData; |
| hspi->RxXferCount = Size; |
| hspi->RxXferSize = Size; |
| hspi->pTxBuffPtr = (uint8_t *)pTxData; |
| hspi->TxXferCount = Size; |
| hspi->TxXferSize = Size; |
| |
| /*Init field not used in handle to zero */ |
| hspi->RxISR = NULL; |
| hspi->TxISR = NULL; |
| |
| #if (USE_SPI_CRC != 0U) |
| /* Reset CRC Calculation */ |
| if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) |
| { |
| SPI_RESET_CRC(hspi); |
| } |
| #endif /* USE_SPI_CRC */ |
| |
| /* Check if the SPI is already enabled */ |
| if ((hspi->Instance->CR1 & SPI_CR1_SPE) != SPI_CR1_SPE) |
| { |
| /* Enable SPI peripheral */ |
| __HAL_SPI_ENABLE(hspi); |
| } |
| |
| /* Transmit and Receive data in 16 Bit mode */ |
| if (hspi->Init.DataSize == SPI_DATASIZE_16BIT) |
| { |
| if ((hspi->Init.Mode == SPI_MODE_SLAVE) || (initial_TxXferCount == 0x01U)) |
| { |
| hspi->Instance->DR = *((uint16_t *)hspi->pTxBuffPtr); |
| hspi->pTxBuffPtr += sizeof(uint16_t); |
| hspi->TxXferCount--; |
| } |
| while ((hspi->TxXferCount > 0U) || (hspi->RxXferCount > 0U)) |
| { |
| /* Check TXE flag */ |
| if ((__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_TXE)) && (hspi->TxXferCount > 0U) && (txallowed == 1U)) |
| { |
| hspi->Instance->DR = *((uint16_t *)hspi->pTxBuffPtr); |
| hspi->pTxBuffPtr += sizeof(uint16_t); |
| hspi->TxXferCount--; |
| /* Next Data is a reception (Rx). Tx not allowed */ |
| txallowed = 0U; |
| |
| #if (USE_SPI_CRC != 0U) |
| /* Enable CRC Transmission */ |
| if ((hspi->TxXferCount == 0U) && (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)) |
| { |
| SET_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT); |
| } |
| #endif /* USE_SPI_CRC */ |
| } |
| |
| /* Check RXNE flag */ |
| if ((__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_RXNE)) && (hspi->RxXferCount > 0U)) |
| { |
| *((uint16_t *)hspi->pRxBuffPtr) = (uint16_t)hspi->Instance->DR; |
| hspi->pRxBuffPtr += sizeof(uint16_t); |
| hspi->RxXferCount--; |
| /* Next Data is a Transmission (Tx). Tx is allowed */ |
| txallowed = 1U; |
| } |
| if (((HAL_GetTick() - tickstart) >= Timeout) && (Timeout != HAL_MAX_DELAY)) |
| { |
| errorcode = HAL_TIMEOUT; |
| goto error; |
| } |
| } |
| } |
| /* Transmit and Receive data in 8 Bit mode */ |
| else |
| { |
| if ((hspi->Init.Mode == SPI_MODE_SLAVE) || (initial_TxXferCount == 0x01U)) |
| { |
| *((__IO uint8_t *)&hspi->Instance->DR) = (*hspi->pTxBuffPtr); |
| hspi->pTxBuffPtr += sizeof(uint8_t); |
| hspi->TxXferCount--; |
| } |
| while ((hspi->TxXferCount > 0U) || (hspi->RxXferCount > 0U)) |
| { |
| /* Check TXE flag */ |
| if ((__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_TXE)) && (hspi->TxXferCount > 0U) && (txallowed == 1U)) |
| { |
| *(__IO uint8_t *)&hspi->Instance->DR = (*hspi->pTxBuffPtr); |
| hspi->pTxBuffPtr++; |
| hspi->TxXferCount--; |
| /* Next Data is a reception (Rx). Tx not allowed */ |
| txallowed = 0U; |
| |
| #if (USE_SPI_CRC != 0U) |
| /* Enable CRC Transmission */ |
| if ((hspi->TxXferCount == 0U) && (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)) |
| { |
| SET_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT); |
| } |
| #endif /* USE_SPI_CRC */ |
| } |
| |
| /* Wait until RXNE flag is reset */ |
| if ((__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_RXNE)) && (hspi->RxXferCount > 0U)) |
| { |
| (*(uint8_t *)hspi->pRxBuffPtr) = hspi->Instance->DR; |
| hspi->pRxBuffPtr++; |
| hspi->RxXferCount--; |
| /* Next Data is a Transmission (Tx). Tx is allowed */ |
| txallowed = 1U; |
| } |
| if ((((HAL_GetTick() - tickstart) >= Timeout) && ((Timeout != HAL_MAX_DELAY))) || (Timeout == 0U)) |
| { |
| errorcode = HAL_TIMEOUT; |
| goto error; |
| } |
| } |
| } |
| |
| #if (USE_SPI_CRC != 0U) |
| /* Read CRC from DR to close CRC calculation process */ |
| if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) |
| { |
| /* Wait until TXE flag */ |
| if (SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_RXNE, SET, Timeout, tickstart) != HAL_OK) |
| { |
| /* Error on the CRC reception */ |
| SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_CRC); |
| errorcode = HAL_TIMEOUT; |
| goto error; |
| } |
| /* Read CRC */ |
| tmpreg = READ_REG(hspi->Instance->DR); |
| /* To avoid GCC warning */ |
| UNUSED(tmpreg); |
| } |
| |
| /* Check if CRC error occurred */ |
| if (__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_CRCERR) != RESET) |
| { |
| /* Check if CRC error is valid or not (workaround to be applied or not) */ |
| if (SPI_ISCRCErrorValid(hspi) == SPI_VALID_CRC_ERROR) |
| { |
| SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_CRC); |
| |
| /* Reset CRC Calculation */ |
| SPI_RESET_CRC(hspi); |
| |
| errorcode = HAL_ERROR; |
| } |
| else |
| { |
| __HAL_SPI_CLEAR_CRCERRFLAG(hspi); |
| } |
| } |
| #endif /* USE_SPI_CRC */ |
| |
| /* Check the end of the transaction */ |
| if (SPI_EndRxTxTransaction(hspi, Timeout, tickstart) != HAL_OK) |
| { |
| errorcode = HAL_ERROR; |
| hspi->ErrorCode = HAL_SPI_ERROR_FLAG; |
| goto error; |
| } |
| |
| /* Clear overrun flag in 2 Lines communication mode because received is not read */ |
| if (hspi->Init.Direction == SPI_DIRECTION_2LINES) |
| { |
| __HAL_SPI_CLEAR_OVRFLAG(hspi); |
| } |
| |
| error : |
| hspi->State = HAL_SPI_STATE_READY; |
| __HAL_UNLOCK(hspi); |
| return errorcode; |
| } |
| |
| /** |
| * @brief Transmit an amount of data in non-blocking mode with Interrupt. |
| * @param hspi pointer to a SPI_HandleTypeDef structure that contains |
| * the configuration information for SPI module. |
| * @param pData pointer to data buffer |
| * @param Size amount of data to be sent |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_SPI_Transmit_IT(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size) |
| { |
| HAL_StatusTypeDef errorcode = HAL_OK; |
| |
| /* Check Direction parameter */ |
| assert_param(IS_SPI_DIRECTION_2LINES_OR_1LINE(hspi->Init.Direction)); |
| |
| /* Process Locked */ |
| __HAL_LOCK(hspi); |
| |
| if ((pData == NULL) || (Size == 0U)) |
| { |
| errorcode = HAL_ERROR; |
| goto error; |
| } |
| |
| if (hspi->State != HAL_SPI_STATE_READY) |
| { |
| errorcode = HAL_BUSY; |
| goto error; |
| } |
| |
| /* Set the transaction information */ |
| hspi->State = HAL_SPI_STATE_BUSY_TX; |
| hspi->ErrorCode = HAL_SPI_ERROR_NONE; |
| hspi->pTxBuffPtr = (uint8_t *)pData; |
| hspi->TxXferSize = Size; |
| hspi->TxXferCount = Size; |
| |
| /* Init field not used in handle to zero */ |
| hspi->pRxBuffPtr = (uint8_t *)NULL; |
| hspi->RxXferSize = 0U; |
| hspi->RxXferCount = 0U; |
| hspi->RxISR = NULL; |
| |
| /* Set the function for IT treatment */ |
| if (hspi->Init.DataSize > SPI_DATASIZE_8BIT) |
| { |
| hspi->TxISR = SPI_TxISR_16BIT; |
| } |
| else |
| { |
| hspi->TxISR = SPI_TxISR_8BIT; |
| } |
| |
| /* Configure communication direction : 1Line */ |
| if (hspi->Init.Direction == SPI_DIRECTION_1LINE) |
| { |
| /* Disable SPI Peripheral before set 1Line direction (BIDIOE bit) */ |
| __HAL_SPI_DISABLE(hspi); |
| SPI_1LINE_TX(hspi); |
| } |
| |
| #if (USE_SPI_CRC != 0U) |
| /* Reset CRC Calculation */ |
| if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) |
| { |
| SPI_RESET_CRC(hspi); |
| } |
| #endif /* USE_SPI_CRC */ |
| |
| /* Enable TXE and ERR interrupt */ |
| __HAL_SPI_ENABLE_IT(hspi, (SPI_IT_TXE | SPI_IT_ERR)); |
| |
| |
| /* Check if the SPI is already enabled */ |
| if ((hspi->Instance->CR1 & SPI_CR1_SPE) != SPI_CR1_SPE) |
| { |
| /* Enable SPI peripheral */ |
| __HAL_SPI_ENABLE(hspi); |
| } |
| |
| error : |
| __HAL_UNLOCK(hspi); |
| return errorcode; |
| } |
| |
| /** |
| * @brief Receive an amount of data in non-blocking mode with Interrupt. |
| * @param hspi pointer to a SPI_HandleTypeDef structure that contains |
| * the configuration information for SPI module. |
| * @param pData pointer to data buffer |
| * @param Size amount of data to be sent |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_SPI_Receive_IT(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size) |
| { |
| HAL_StatusTypeDef errorcode = HAL_OK; |
| |
| if ((hspi->Init.Direction == SPI_DIRECTION_2LINES) && (hspi->Init.Mode == SPI_MODE_MASTER)) |
| { |
| hspi->State = HAL_SPI_STATE_BUSY_RX; |
| /* Call transmit-receive function to send Dummy data on Tx line and generate clock on CLK line */ |
| return HAL_SPI_TransmitReceive_IT(hspi, pData, pData, Size); |
| } |
| |
| /* Process Locked */ |
| __HAL_LOCK(hspi); |
| |
| if (hspi->State != HAL_SPI_STATE_READY) |
| { |
| errorcode = HAL_BUSY; |
| goto error; |
| } |
| |
| if ((pData == NULL) || (Size == 0U)) |
| { |
| errorcode = HAL_ERROR; |
| goto error; |
| } |
| |
| /* Set the transaction information */ |
| hspi->State = HAL_SPI_STATE_BUSY_RX; |
| hspi->ErrorCode = HAL_SPI_ERROR_NONE; |
| hspi->pRxBuffPtr = (uint8_t *)pData; |
| hspi->RxXferSize = Size; |
| hspi->RxXferCount = Size; |
| |
| /* Init field not used in handle to zero */ |
| hspi->pTxBuffPtr = (uint8_t *)NULL; |
| hspi->TxXferSize = 0U; |
| hspi->TxXferCount = 0U; |
| hspi->TxISR = NULL; |
| |
| /* Set the function for IT treatment */ |
| if (hspi->Init.DataSize > SPI_DATASIZE_8BIT) |
| { |
| hspi->RxISR = SPI_RxISR_16BIT; |
| } |
| else |
| { |
| hspi->RxISR = SPI_RxISR_8BIT; |
| } |
| |
| /* Configure communication direction : 1Line */ |
| if (hspi->Init.Direction == SPI_DIRECTION_1LINE) |
| { |
| /* Disable SPI Peripheral before set 1Line direction (BIDIOE bit) */ |
| __HAL_SPI_DISABLE(hspi); |
| SPI_1LINE_RX(hspi); |
| } |
| |
| #if (USE_SPI_CRC != 0U) |
| /* Reset CRC Calculation */ |
| if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) |
| { |
| SPI_RESET_CRC(hspi); |
| } |
| #endif /* USE_SPI_CRC */ |
| |
| /* Enable TXE and ERR interrupt */ |
| __HAL_SPI_ENABLE_IT(hspi, (SPI_IT_RXNE | SPI_IT_ERR)); |
| |
| /* Note : The SPI must be enabled after unlocking current process |
| to avoid the risk of SPI interrupt handle execution before current |
| process unlock */ |
| |
| /* Check if the SPI is already enabled */ |
| if ((hspi->Instance->CR1 & SPI_CR1_SPE) != SPI_CR1_SPE) |
| { |
| /* Enable SPI peripheral */ |
| __HAL_SPI_ENABLE(hspi); |
| } |
| |
| error : |
| /* Process Unlocked */ |
| __HAL_UNLOCK(hspi); |
| return errorcode; |
| } |
| |
| /** |
| * @brief Transmit and Receive an amount of data in non-blocking mode with Interrupt. |
| * @param hspi pointer to a SPI_HandleTypeDef structure that contains |
| * the configuration information for SPI module. |
| * @param pTxData pointer to transmission data buffer |
| * @param pRxData pointer to reception data buffer |
| * @param Size amount of data to be sent and received |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_SPI_TransmitReceive_IT(SPI_HandleTypeDef *hspi, uint8_t *pTxData, uint8_t *pRxData, uint16_t Size) |
| { |
| uint32_t tmp_mode; |
| HAL_SPI_StateTypeDef tmp_state; |
| HAL_StatusTypeDef errorcode = HAL_OK; |
| |
| /* Check Direction parameter */ |
| assert_param(IS_SPI_DIRECTION_2LINES(hspi->Init.Direction)); |
| |
| /* Process locked */ |
| __HAL_LOCK(hspi); |
| |
| /* Init temporary variables */ |
| tmp_state = hspi->State; |
| tmp_mode = hspi->Init.Mode; |
| |
| if (!((tmp_state == HAL_SPI_STATE_READY) || \ |
| ((tmp_mode == SPI_MODE_MASTER) && (hspi->Init.Direction == SPI_DIRECTION_2LINES) && (tmp_state == HAL_SPI_STATE_BUSY_RX)))) |
| { |
| errorcode = HAL_BUSY; |
| goto error; |
| } |
| |
| if ((pTxData == NULL) || (pRxData == NULL) || (Size == 0U)) |
| { |
| errorcode = HAL_ERROR; |
| goto error; |
| } |
| |
| /* Don't overwrite in case of HAL_SPI_STATE_BUSY_RX */ |
| if (hspi->State != HAL_SPI_STATE_BUSY_RX) |
| { |
| hspi->State = HAL_SPI_STATE_BUSY_TX_RX; |
| } |
| |
| /* Set the transaction information */ |
| hspi->ErrorCode = HAL_SPI_ERROR_NONE; |
| hspi->pTxBuffPtr = (uint8_t *)pTxData; |
| hspi->TxXferSize = Size; |
| hspi->TxXferCount = Size; |
| hspi->pRxBuffPtr = (uint8_t *)pRxData; |
| hspi->RxXferSize = Size; |
| hspi->RxXferCount = Size; |
| |
| /* Set the function for IT treatment */ |
| if (hspi->Init.DataSize > SPI_DATASIZE_8BIT) |
| { |
| hspi->RxISR = SPI_2linesRxISR_16BIT; |
| hspi->TxISR = SPI_2linesTxISR_16BIT; |
| } |
| else |
| { |
| hspi->RxISR = SPI_2linesRxISR_8BIT; |
| hspi->TxISR = SPI_2linesTxISR_8BIT; |
| } |
| |
| #if (USE_SPI_CRC != 0U) |
| /* Reset CRC Calculation */ |
| if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) |
| { |
| SPI_RESET_CRC(hspi); |
| } |
| #endif /* USE_SPI_CRC */ |
| |
| /* Enable TXE, RXNE and ERR interrupt */ |
| __HAL_SPI_ENABLE_IT(hspi, (SPI_IT_TXE | SPI_IT_RXNE | SPI_IT_ERR)); |
| |
| /* Check if the SPI is already enabled */ |
| if ((hspi->Instance->CR1 & SPI_CR1_SPE) != SPI_CR1_SPE) |
| { |
| /* Enable SPI peripheral */ |
| __HAL_SPI_ENABLE(hspi); |
| } |
| |
| error : |
| /* Process Unlocked */ |
| __HAL_UNLOCK(hspi); |
| return errorcode; |
| } |
| |
| /** |
| * @brief Transmit an amount of data in non-blocking mode with DMA. |
| * @param hspi pointer to a SPI_HandleTypeDef structure that contains |
| * the configuration information for SPI module. |
| * @param pData pointer to data buffer |
| * @param Size amount of data to be sent |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_SPI_Transmit_DMA(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size) |
| { |
| HAL_StatusTypeDef errorcode = HAL_OK; |
| |
| /* Check tx dma handle */ |
| assert_param(IS_SPI_DMA_HANDLE(hspi->hdmatx)); |
| |
| /* Check Direction parameter */ |
| assert_param(IS_SPI_DIRECTION_2LINES_OR_1LINE(hspi->Init.Direction)); |
| |
| /* Process Locked */ |
| __HAL_LOCK(hspi); |
| |
| if (hspi->State != HAL_SPI_STATE_READY) |
| { |
| errorcode = HAL_BUSY; |
| goto error; |
| } |
| |
| if ((pData == NULL) || (Size == 0U)) |
| { |
| errorcode = HAL_ERROR; |
| goto error; |
| } |
| |
| /* Set the transaction information */ |
| hspi->State = HAL_SPI_STATE_BUSY_TX; |
| hspi->ErrorCode = HAL_SPI_ERROR_NONE; |
| hspi->pTxBuffPtr = (uint8_t *)pData; |
| hspi->TxXferSize = Size; |
| hspi->TxXferCount = Size; |
| |
| /* Init field not used in handle to zero */ |
| hspi->pRxBuffPtr = (uint8_t *)NULL; |
| hspi->TxISR = NULL; |
| hspi->RxISR = NULL; |
| hspi->RxXferSize = 0U; |
| hspi->RxXferCount = 0U; |
| |
| /* Configure communication direction : 1Line */ |
| if (hspi->Init.Direction == SPI_DIRECTION_1LINE) |
| { |
| /* Disable SPI Peripheral before set 1Line direction (BIDIOE bit) */ |
| __HAL_SPI_DISABLE(hspi); |
| SPI_1LINE_TX(hspi); |
| } |
| |
| #if (USE_SPI_CRC != 0U) |
| /* Reset CRC Calculation */ |
| if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) |
| { |
| SPI_RESET_CRC(hspi); |
| } |
| #endif /* USE_SPI_CRC */ |
| |
| /* Set the SPI TxDMA Half transfer complete callback */ |
| hspi->hdmatx->XferHalfCpltCallback = SPI_DMAHalfTransmitCplt; |
| |
| /* Set the SPI TxDMA transfer complete callback */ |
| hspi->hdmatx->XferCpltCallback = SPI_DMATransmitCplt; |
| |
| /* Set the DMA error callback */ |
| hspi->hdmatx->XferErrorCallback = SPI_DMAError; |
| |
| /* Set the DMA AbortCpltCallback */ |
| hspi->hdmatx->XferAbortCallback = NULL; |
| |
| /* Enable the Tx DMA Stream/Channel */ |
| if (HAL_OK != HAL_DMA_Start_IT(hspi->hdmatx, (uint32_t)hspi->pTxBuffPtr, (uint32_t)&hspi->Instance->DR, |
| hspi->TxXferCount)) |
| { |
| /* Update SPI error code */ |
| SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_DMA); |
| errorcode = HAL_ERROR; |
| |
| hspi->State = HAL_SPI_STATE_READY; |
| goto error; |
| } |
| |
| /* Check if the SPI is already enabled */ |
| if ((hspi->Instance->CR1 & SPI_CR1_SPE) != SPI_CR1_SPE) |
| { |
| /* Enable SPI peripheral */ |
| __HAL_SPI_ENABLE(hspi); |
| } |
| |
| /* Enable the SPI Error Interrupt Bit */ |
| __HAL_SPI_ENABLE_IT(hspi, (SPI_IT_ERR)); |
| |
| /* Enable Tx DMA Request */ |
| SET_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN); |
| |
| error : |
| /* Process Unlocked */ |
| __HAL_UNLOCK(hspi); |
| return errorcode; |
| } |
| |
| /** |
| * @brief Receive an amount of data in non-blocking mode with DMA. |
| * @note In case of MASTER mode and SPI_DIRECTION_2LINES direction, hdmatx shall be defined. |
| * @param hspi pointer to a SPI_HandleTypeDef structure that contains |
| * the configuration information for SPI module. |
| * @param pData pointer to data buffer |
| * @note When the CRC feature is enabled the pData Length must be Size + 1. |
| * @param Size amount of data to be sent |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_SPI_Receive_DMA(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size) |
| { |
| HAL_StatusTypeDef errorcode = HAL_OK; |
| |
| /* Check rx dma handle */ |
| assert_param(IS_SPI_DMA_HANDLE(hspi->hdmarx)); |
| |
| if ((hspi->Init.Direction == SPI_DIRECTION_2LINES) && (hspi->Init.Mode == SPI_MODE_MASTER)) |
| { |
| hspi->State = HAL_SPI_STATE_BUSY_RX; |
| |
| /* Check tx dma handle */ |
| assert_param(IS_SPI_DMA_HANDLE(hspi->hdmatx)); |
| |
| /* Call transmit-receive function to send Dummy data on Tx line and generate clock on CLK line */ |
| return HAL_SPI_TransmitReceive_DMA(hspi, pData, pData, Size); |
| } |
| |
| /* Process Locked */ |
| __HAL_LOCK(hspi); |
| |
| if (hspi->State != HAL_SPI_STATE_READY) |
| { |
| errorcode = HAL_BUSY; |
| goto error; |
| } |
| |
| if ((pData == NULL) || (Size == 0U)) |
| { |
| errorcode = HAL_ERROR; |
| goto error; |
| } |
| |
| /* Set the transaction information */ |
| hspi->State = HAL_SPI_STATE_BUSY_RX; |
| hspi->ErrorCode = HAL_SPI_ERROR_NONE; |
| hspi->pRxBuffPtr = (uint8_t *)pData; |
| hspi->RxXferSize = Size; |
| hspi->RxXferCount = Size; |
| |
| /*Init field not used in handle to zero */ |
| hspi->RxISR = NULL; |
| hspi->TxISR = NULL; |
| hspi->TxXferSize = 0U; |
| hspi->TxXferCount = 0U; |
| |
| /* Configure communication direction : 1Line */ |
| if (hspi->Init.Direction == SPI_DIRECTION_1LINE) |
| { |
| /* Disable SPI Peripheral before set 1Line direction (BIDIOE bit) */ |
| __HAL_SPI_DISABLE(hspi); |
| SPI_1LINE_RX(hspi); |
| } |
| |
| #if (USE_SPI_CRC != 0U) |
| /* Reset CRC Calculation */ |
| if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) |
| { |
| SPI_RESET_CRC(hspi); |
| } |
| #endif /* USE_SPI_CRC */ |
| |
| /* Set the SPI RxDMA Half transfer complete callback */ |
| hspi->hdmarx->XferHalfCpltCallback = SPI_DMAHalfReceiveCplt; |
| |
| /* Set the SPI Rx DMA transfer complete callback */ |
| hspi->hdmarx->XferCpltCallback = SPI_DMAReceiveCplt; |
| |
| /* Set the DMA error callback */ |
| hspi->hdmarx->XferErrorCallback = SPI_DMAError; |
| |
| /* Set the DMA AbortCpltCallback */ |
| hspi->hdmarx->XferAbortCallback = NULL; |
| |
| /* Enable the Rx DMA Stream/Channel */ |
| if (HAL_OK != HAL_DMA_Start_IT(hspi->hdmarx, (uint32_t)&hspi->Instance->DR, (uint32_t)hspi->pRxBuffPtr, |
| hspi->RxXferCount)) |
| { |
| /* Update SPI error code */ |
| SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_DMA); |
| errorcode = HAL_ERROR; |
| |
| hspi->State = HAL_SPI_STATE_READY; |
| goto error; |
| } |
| |
| /* Check if the SPI is already enabled */ |
| if ((hspi->Instance->CR1 & SPI_CR1_SPE) != SPI_CR1_SPE) |
| { |
| /* Enable SPI peripheral */ |
| __HAL_SPI_ENABLE(hspi); |
| } |
| |
| /* Enable the SPI Error Interrupt Bit */ |
| __HAL_SPI_ENABLE_IT(hspi, (SPI_IT_ERR)); |
| |
| /* Enable Rx DMA Request */ |
| SET_BIT(hspi->Instance->CR2, SPI_CR2_RXDMAEN); |
| |
| error: |
| /* Process Unlocked */ |
| __HAL_UNLOCK(hspi); |
| return errorcode; |
| } |
| |
| /** |
| * @brief Transmit and Receive an amount of data in non-blocking mode with DMA. |
| * @param hspi pointer to a SPI_HandleTypeDef structure that contains |
| * the configuration information for SPI module. |
| * @param pTxData pointer to transmission data buffer |
| * @param pRxData pointer to reception data buffer |
| * @note When the CRC feature is enabled the pRxData Length must be Size + 1 |
| * @param Size amount of data to be sent |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_SPI_TransmitReceive_DMA(SPI_HandleTypeDef *hspi, uint8_t *pTxData, uint8_t *pRxData, |
| uint16_t Size) |
| { |
| uint32_t tmp_mode; |
| HAL_SPI_StateTypeDef tmp_state; |
| HAL_StatusTypeDef errorcode = HAL_OK; |
| |
| /* Check rx & tx dma handles */ |
| assert_param(IS_SPI_DMA_HANDLE(hspi->hdmarx)); |
| assert_param(IS_SPI_DMA_HANDLE(hspi->hdmatx)); |
| |
| /* Check Direction parameter */ |
| assert_param(IS_SPI_DIRECTION_2LINES(hspi->Init.Direction)); |
| |
| /* Process locked */ |
| __HAL_LOCK(hspi); |
| |
| /* Init temporary variables */ |
| tmp_state = hspi->State; |
| tmp_mode = hspi->Init.Mode; |
| |
| if (!((tmp_state == HAL_SPI_STATE_READY) || |
| ((tmp_mode == SPI_MODE_MASTER) && (hspi->Init.Direction == SPI_DIRECTION_2LINES) && (tmp_state == HAL_SPI_STATE_BUSY_RX)))) |
| { |
| errorcode = HAL_BUSY; |
| goto error; |
| } |
| |
| if ((pTxData == NULL) || (pRxData == NULL) || (Size == 0U)) |
| { |
| errorcode = HAL_ERROR; |
| goto error; |
| } |
| |
| /* Don't overwrite in case of HAL_SPI_STATE_BUSY_RX */ |
| if (hspi->State != HAL_SPI_STATE_BUSY_RX) |
| { |
| hspi->State = HAL_SPI_STATE_BUSY_TX_RX; |
| } |
| |
| /* Set the transaction information */ |
| hspi->ErrorCode = HAL_SPI_ERROR_NONE; |
| hspi->pTxBuffPtr = (uint8_t *)pTxData; |
| hspi->TxXferSize = Size; |
| hspi->TxXferCount = Size; |
| hspi->pRxBuffPtr = (uint8_t *)pRxData; |
| hspi->RxXferSize = Size; |
| hspi->RxXferCount = Size; |
| |
| /* Init field not used in handle to zero */ |
| hspi->RxISR = NULL; |
| hspi->TxISR = NULL; |
| |
| #if (USE_SPI_CRC != 0U) |
| /* Reset CRC Calculation */ |
| if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) |
| { |
| SPI_RESET_CRC(hspi); |
| } |
| #endif /* USE_SPI_CRC */ |
| |
| /* Check if we are in Rx only or in Rx/Tx Mode and configure the DMA transfer complete callback */ |
| if (hspi->State == HAL_SPI_STATE_BUSY_RX) |
| { |
| /* Set the SPI Rx DMA Half transfer complete callback */ |
| hspi->hdmarx->XferHalfCpltCallback = SPI_DMAHalfReceiveCplt; |
| hspi->hdmarx->XferCpltCallback = SPI_DMAReceiveCplt; |
| } |
| else |
| { |
| /* Set the SPI Tx/Rx DMA Half transfer complete callback */ |
| hspi->hdmarx->XferHalfCpltCallback = SPI_DMAHalfTransmitReceiveCplt; |
| hspi->hdmarx->XferCpltCallback = SPI_DMATransmitReceiveCplt; |
| } |
| |
| /* Set the DMA error callback */ |
| hspi->hdmarx->XferErrorCallback = SPI_DMAError; |
| |
| /* Set the DMA AbortCpltCallback */ |
| hspi->hdmarx->XferAbortCallback = NULL; |
| |
| /* Enable the Rx DMA Stream/Channel */ |
| if (HAL_OK != HAL_DMA_Start_IT(hspi->hdmarx, (uint32_t)&hspi->Instance->DR, (uint32_t)hspi->pRxBuffPtr, |
| hspi->RxXferCount)) |
| { |
| /* Update SPI error code */ |
| SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_DMA); |
| errorcode = HAL_ERROR; |
| |
| hspi->State = HAL_SPI_STATE_READY; |
| goto error; |
| } |
| |
| /* Enable Rx DMA Request */ |
| SET_BIT(hspi->Instance->CR2, SPI_CR2_RXDMAEN); |
| |
| /* Set the SPI Tx DMA transfer complete callback as NULL because the communication closing |
| is performed in DMA reception complete callback */ |
| hspi->hdmatx->XferHalfCpltCallback = NULL; |
| hspi->hdmatx->XferCpltCallback = NULL; |
| hspi->hdmatx->XferErrorCallback = NULL; |
| hspi->hdmatx->XferAbortCallback = NULL; |
| |
| /* Enable the Tx DMA Stream/Channel */ |
| if (HAL_OK != HAL_DMA_Start_IT(hspi->hdmatx, (uint32_t)hspi->pTxBuffPtr, (uint32_t)&hspi->Instance->DR, |
| hspi->TxXferCount)) |
| { |
| /* Update SPI error code */ |
| SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_DMA); |
| errorcode = HAL_ERROR; |
| |
| hspi->State = HAL_SPI_STATE_READY; |
| goto error; |
| } |
| |
| /* Check if the SPI is already enabled */ |
| if ((hspi->Instance->CR1 & SPI_CR1_SPE) != SPI_CR1_SPE) |
| { |
| /* Enable SPI peripheral */ |
| __HAL_SPI_ENABLE(hspi); |
| } |
| /* Enable the SPI Error Interrupt Bit */ |
| __HAL_SPI_ENABLE_IT(hspi, (SPI_IT_ERR)); |
| |
| /* Enable Tx DMA Request */ |
| SET_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN); |
| |
| error : |
| /* Process Unlocked */ |
| __HAL_UNLOCK(hspi); |
| return errorcode; |
| } |
| |
| /** |
| * @brief Abort ongoing transfer (blocking mode). |
| * @param hspi SPI handle. |
| * @note This procedure could be used for aborting any ongoing transfer (Tx and Rx), |
| * started in Interrupt or DMA mode. |
| * This procedure performs following operations : |
| * - Disable SPI Interrupts (depending of transfer direction) |
| * - Disable the DMA transfer in the peripheral register (if enabled) |
| * - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode) |
| * - Set handle State to READY |
| * @note This procedure is executed in blocking mode : when exiting function, Abort is considered as completed. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_SPI_Abort(SPI_HandleTypeDef *hspi) |
| { |
| HAL_StatusTypeDef errorcode; |
| __IO uint32_t count; |
| __IO uint32_t resetcount; |
| |
| /* Initialized local variable */ |
| errorcode = HAL_OK; |
| resetcount = SPI_DEFAULT_TIMEOUT * (SystemCoreClock / 24U / 1000U); |
| count = resetcount; |
| |
| /* Clear ERRIE interrupt to avoid error interrupts generation during Abort procedure */ |
| CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_ERRIE); |
| |
| /* Disable TXEIE, RXNEIE and ERRIE(mode fault event, overrun error, TI frame error) interrupts */ |
| if (HAL_IS_BIT_SET(hspi->Instance->CR2, SPI_CR2_TXEIE)) |
| { |
| hspi->TxISR = SPI_AbortTx_ISR; |
| /* Wait HAL_SPI_STATE_ABORT state */ |
| do |
| { |
| if (count == 0U) |
| { |
| SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_ABORT); |
| break; |
| } |
| count--; |
| } while (hspi->State != HAL_SPI_STATE_ABORT); |
| /* Reset Timeout Counter */ |
| count = resetcount; |
| } |
| |
| if (HAL_IS_BIT_SET(hspi->Instance->CR2, SPI_CR2_RXNEIE)) |
| { |
| hspi->RxISR = SPI_AbortRx_ISR; |
| /* Wait HAL_SPI_STATE_ABORT state */ |
| do |
| { |
| if (count == 0U) |
| { |
| SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_ABORT); |
| break; |
| } |
| count--; |
| } while (hspi->State != HAL_SPI_STATE_ABORT); |
| /* Reset Timeout Counter */ |
| count = resetcount; |
| } |
| |
| /* Disable the SPI DMA Tx request if enabled */ |
| if (HAL_IS_BIT_SET(hspi->Instance->CR2, SPI_CR2_TXDMAEN)) |
| { |
| /* Abort the SPI DMA Tx Stream/Channel : use blocking DMA Abort API (no callback) */ |
| if (hspi->hdmatx != NULL) |
| { |
| /* Set the SPI DMA Abort callback : |
| will lead to call HAL_SPI_AbortCpltCallback() at end of DMA abort procedure */ |
| hspi->hdmatx->XferAbortCallback = NULL; |
| |
| /* Abort DMA Tx Handle linked to SPI Peripheral */ |
| if (HAL_DMA_Abort(hspi->hdmatx) != HAL_OK) |
| { |
| hspi->ErrorCode = HAL_SPI_ERROR_ABORT; |
| } |
| |
| /* Disable Tx DMA Request */ |
| CLEAR_BIT(hspi->Instance->CR2, (SPI_CR2_TXDMAEN)); |
| |
| /* Wait until TXE flag is set */ |
| do |
| { |
| if (count == 0U) |
| { |
| SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_ABORT); |
| break; |
| } |
| count--; |
| } while ((hspi->Instance->SR & SPI_FLAG_TXE) == RESET); |
| } |
| } |
| |
| /* Disable the SPI DMA Rx request if enabled */ |
| if (HAL_IS_BIT_SET(hspi->Instance->CR2, SPI_CR2_RXDMAEN)) |
| { |
| /* Abort the SPI DMA Rx Stream/Channel : use blocking DMA Abort API (no callback) */ |
| if (hspi->hdmarx != NULL) |
| { |
| /* Set the SPI DMA Abort callback : |
| will lead to call HAL_SPI_AbortCpltCallback() at end of DMA abort procedure */ |
| hspi->hdmarx->XferAbortCallback = NULL; |
| |
| /* Abort DMA Rx Handle linked to SPI Peripheral */ |
| if (HAL_DMA_Abort(hspi->hdmarx) != HAL_OK) |
| { |
| hspi->ErrorCode = HAL_SPI_ERROR_ABORT; |
| } |
| |
| /* Disable peripheral */ |
| __HAL_SPI_DISABLE(hspi); |
| |
| /* Disable Rx DMA Request */ |
| CLEAR_BIT(hspi->Instance->CR2, (SPI_CR2_RXDMAEN)); |
| } |
| } |
| /* Reset Tx and Rx transfer counters */ |
| hspi->RxXferCount = 0U; |
| hspi->TxXferCount = 0U; |
| |
| /* Check error during Abort procedure */ |
| if (hspi->ErrorCode == HAL_SPI_ERROR_ABORT) |
| { |
| /* return HAL_Error in case of error during Abort procedure */ |
| errorcode = HAL_ERROR; |
| } |
| else |
| { |
| /* Reset errorCode */ |
| hspi->ErrorCode = HAL_SPI_ERROR_NONE; |
| } |
| |
| /* Clear the Error flags in the SR register */ |
| __HAL_SPI_CLEAR_OVRFLAG(hspi); |
| |
| /* Restore hspi->state to ready */ |
| hspi->State = HAL_SPI_STATE_READY; |
| |
| return errorcode; |
| } |
| |
| /** |
| * @brief Abort ongoing transfer (Interrupt mode). |
| * @param hspi SPI handle. |
| * @note This procedure could be used for aborting any ongoing transfer (Tx and Rx), |
| * started in Interrupt or DMA mode. |
| * This procedure performs following operations : |
| * - Disable SPI Interrupts (depending of transfer direction) |
| * - Disable the DMA transfer in the peripheral register (if enabled) |
| * - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode) |
| * - Set handle State to READY |
| * - At abort completion, call user abort complete callback |
| * @note This procedure is executed in Interrupt mode, meaning that abort procedure could be |
| * considered as completed only when user abort complete callback is executed (not when exiting function). |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_SPI_Abort_IT(SPI_HandleTypeDef *hspi) |
| { |
| HAL_StatusTypeDef errorcode; |
| uint32_t abortcplt ; |
| __IO uint32_t count; |
| __IO uint32_t resetcount; |
| |
| /* Initialized local variable */ |
| errorcode = HAL_OK; |
| abortcplt = 1U; |
| resetcount = SPI_DEFAULT_TIMEOUT * (SystemCoreClock / 24U / 1000U); |
| count = resetcount; |
| |
| /* Clear ERRIE interrupt to avoid error interrupts generation during Abort procedure */ |
| CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_ERRIE); |
| |
| /* Change Rx and Tx Irq Handler to Disable TXEIE, RXNEIE and ERRIE interrupts */ |
| if (HAL_IS_BIT_SET(hspi->Instance->CR2, SPI_CR2_TXEIE)) |
| { |
| hspi->TxISR = SPI_AbortTx_ISR; |
| /* Wait HAL_SPI_STATE_ABORT state */ |
| do |
| { |
| if (count == 0U) |
| { |
| SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_ABORT); |
| break; |
| } |
| count--; |
| } while (hspi->State != HAL_SPI_STATE_ABORT); |
| /* Reset Timeout Counter */ |
| count = resetcount; |
| } |
| |
| if (HAL_IS_BIT_SET(hspi->Instance->CR2, SPI_CR2_RXNEIE)) |
| { |
| hspi->RxISR = SPI_AbortRx_ISR; |
| /* Wait HAL_SPI_STATE_ABORT state */ |
| do |
| { |
| if (count == 0U) |
| { |
| SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_ABORT); |
| break; |
| } |
| count--; |
| } while (hspi->State != HAL_SPI_STATE_ABORT); |
| /* Reset Timeout Counter */ |
| count = resetcount; |
| } |
| |
| /* If DMA Tx and/or DMA Rx Handles are associated to SPI Handle, DMA Abort complete callbacks should be initialised |
| before any call to DMA Abort functions */ |
| /* DMA Tx Handle is valid */ |
| if (hspi->hdmatx != NULL) |
| { |
| /* Set DMA Abort Complete callback if UART DMA Tx request if enabled. |
| Otherwise, set it to NULL */ |
| if (HAL_IS_BIT_SET(hspi->Instance->CR2, SPI_CR2_TXDMAEN)) |
| { |
| hspi->hdmatx->XferAbortCallback = SPI_DMATxAbortCallback; |
| } |
| else |
| { |
| hspi->hdmatx->XferAbortCallback = NULL; |
| } |
| } |
| /* DMA Rx Handle is valid */ |
| if (hspi->hdmarx != NULL) |
| { |
| /* Set DMA Abort Complete callback if UART DMA Rx request if enabled. |
| Otherwise, set it to NULL */ |
| if (HAL_IS_BIT_SET(hspi->Instance->CR2, SPI_CR2_RXDMAEN)) |
| { |
| hspi->hdmarx->XferAbortCallback = SPI_DMARxAbortCallback; |
| } |
| else |
| { |
| hspi->hdmarx->XferAbortCallback = NULL; |
| } |
| } |
| |
| /* Disable the SPI DMA Tx request if enabled */ |
| if (HAL_IS_BIT_SET(hspi->Instance->CR2, SPI_CR2_TXDMAEN)) |
| { |
| /* Abort the SPI DMA Tx Stream/Channel */ |
| if (hspi->hdmatx != NULL) |
| { |
| /* Abort DMA Tx Handle linked to SPI Peripheral */ |
| if (HAL_DMA_Abort_IT(hspi->hdmatx) != HAL_OK) |
| { |
| hspi->hdmatx->XferAbortCallback = NULL; |
| hspi->ErrorCode = HAL_SPI_ERROR_ABORT; |
| } |
| else |
| { |
| abortcplt = 0U; |
| } |
| } |
| } |
| /* Disable the SPI DMA Rx request if enabled */ |
| if (HAL_IS_BIT_SET(hspi->Instance->CR2, SPI_CR2_RXDMAEN)) |
| { |
| /* Abort the SPI DMA Rx Stream/Channel */ |
| if (hspi->hdmarx != NULL) |
| { |
| /* Abort DMA Rx Handle linked to SPI Peripheral */ |
| if (HAL_DMA_Abort_IT(hspi->hdmarx) != HAL_OK) |
| { |
| hspi->hdmarx->XferAbortCallback = NULL; |
| hspi->ErrorCode = HAL_SPI_ERROR_ABORT; |
| } |
| else |
| { |
| abortcplt = 0U; |
| } |
| } |
| } |
| |
| if (abortcplt == 1U) |
| { |
| /* Reset Tx and Rx transfer counters */ |
| hspi->RxXferCount = 0U; |
| hspi->TxXferCount = 0U; |
| |
| /* Check error during Abort procedure */ |
| if (hspi->ErrorCode == HAL_SPI_ERROR_ABORT) |
| { |
| /* return HAL_Error in case of error during Abort procedure */ |
| errorcode = HAL_ERROR; |
| } |
| else |
| { |
| /* Reset errorCode */ |
| hspi->ErrorCode = HAL_SPI_ERROR_NONE; |
| } |
| |
| /* Clear the Error flags in the SR register */ |
| __HAL_SPI_CLEAR_OVRFLAG(hspi); |
| |
| /* Restore hspi->State to Ready */ |
| hspi->State = HAL_SPI_STATE_READY; |
| |
| /* As no DMA to be aborted, call directly user Abort complete callback */ |
| #if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U) |
| hspi->AbortCpltCallback(hspi); |
| #else |
| HAL_SPI_AbortCpltCallback(hspi); |
| #endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ |
| } |
| |
| return errorcode; |
| } |
| |
| /** |
| * @brief Pause the DMA Transfer. |
| * @param hspi pointer to a SPI_HandleTypeDef structure that contains |
| * the configuration information for the specified SPI module. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_SPI_DMAPause(SPI_HandleTypeDef *hspi) |
| { |
| /* Process Locked */ |
| __HAL_LOCK(hspi); |
| |
| /* Disable the SPI DMA Tx & Rx requests */ |
| CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN | SPI_CR2_RXDMAEN); |
| |
| /* Process Unlocked */ |
| __HAL_UNLOCK(hspi); |
| |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Resume the DMA Transfer. |
| * @param hspi pointer to a SPI_HandleTypeDef structure that contains |
| * the configuration information for the specified SPI module. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_SPI_DMAResume(SPI_HandleTypeDef *hspi) |
| { |
| /* Process Locked */ |
| __HAL_LOCK(hspi); |
| |
| /* Enable the SPI DMA Tx & Rx requests */ |
| SET_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN | SPI_CR2_RXDMAEN); |
| |
| /* Process Unlocked */ |
| __HAL_UNLOCK(hspi); |
| |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Stop the DMA Transfer. |
| * @param hspi pointer to a SPI_HandleTypeDef structure that contains |
| * the configuration information for the specified SPI module. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_SPI_DMAStop(SPI_HandleTypeDef *hspi) |
| { |
| HAL_StatusTypeDef errorcode = HAL_OK; |
| /* The Lock is not implemented on this API to allow the user application |
| to call the HAL SPI API under callbacks HAL_SPI_TxCpltCallback() or HAL_SPI_RxCpltCallback() or HAL_SPI_TxRxCpltCallback(): |
| when calling HAL_DMA_Abort() API the DMA TX/RX Transfer complete interrupt is generated |
| and the correspond call back is executed HAL_SPI_TxCpltCallback() or HAL_SPI_RxCpltCallback() or HAL_SPI_TxRxCpltCallback() |
| */ |
| |
| /* Abort the SPI DMA tx Stream/Channel */ |
| if (hspi->hdmatx != NULL) |
| { |
| if (HAL_OK != HAL_DMA_Abort(hspi->hdmatx)) |
| { |
| SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_DMA); |
| errorcode = HAL_ERROR; |
| } |
| } |
| /* Abort the SPI DMA rx Stream/Channel */ |
| if (hspi->hdmarx != NULL) |
| { |
| if (HAL_OK != HAL_DMA_Abort(hspi->hdmarx)) |
| { |
| SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_DMA); |
| errorcode = HAL_ERROR; |
| } |
| } |
| |
| /* Disable the SPI DMA Tx & Rx requests */ |
| CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN | SPI_CR2_RXDMAEN); |
| hspi->State = HAL_SPI_STATE_READY; |
| return errorcode; |
| } |
| |
| /** |
| * @brief Handle SPI interrupt request. |
| * @param hspi pointer to a SPI_HandleTypeDef structure that contains |
| * the configuration information for the specified SPI module. |
| * @retval None |
| */ |
| void HAL_SPI_IRQHandler(SPI_HandleTypeDef *hspi) |
| { |
| uint32_t itsource = hspi->Instance->CR2; |
| uint32_t itflag = hspi->Instance->SR; |
| |
| /* SPI in mode Receiver ----------------------------------------------------*/ |
| if ((SPI_CHECK_FLAG(itflag, SPI_FLAG_OVR) == RESET) && |
| (SPI_CHECK_FLAG(itflag, SPI_FLAG_RXNE) != RESET) && (SPI_CHECK_IT_SOURCE(itsource, SPI_IT_RXNE) != RESET)) |
| { |
| hspi->RxISR(hspi); |
| return; |
| } |
| |
| /* SPI in mode Transmitter -------------------------------------------------*/ |
| if ((SPI_CHECK_FLAG(itflag, SPI_FLAG_TXE) != RESET) && (SPI_CHECK_IT_SOURCE(itsource, SPI_IT_TXE) != RESET)) |
| { |
| hspi->TxISR(hspi); |
| return; |
| } |
| |
| /* SPI in Error Treatment --------------------------------------------------*/ |
| if (((SPI_CHECK_FLAG(itflag, SPI_FLAG_MODF) != RESET) || (SPI_CHECK_FLAG(itflag, SPI_FLAG_OVR) != RESET)) |
| && (SPI_CHECK_IT_SOURCE(itsource, SPI_IT_ERR) != RESET)) |
| { |
| /* SPI Overrun error interrupt occurred ----------------------------------*/ |
| if (SPI_CHECK_FLAG(itflag, SPI_FLAG_OVR) != RESET) |
| { |
| if (hspi->State != HAL_SPI_STATE_BUSY_TX) |
| { |
| SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_OVR); |
| __HAL_SPI_CLEAR_OVRFLAG(hspi); |
| } |
| else |
| { |
| __HAL_SPI_CLEAR_OVRFLAG(hspi); |
| return; |
| } |
| } |
| |
| /* SPI Mode Fault error interrupt occurred -------------------------------*/ |
| if (SPI_CHECK_FLAG(itflag, SPI_FLAG_MODF) != RESET) |
| { |
| SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_MODF); |
| __HAL_SPI_CLEAR_MODFFLAG(hspi); |
| } |
| |
| /* SPI Frame error interrupt occurred ------------------------------------*/ |
| |
| if (hspi->ErrorCode != HAL_SPI_ERROR_NONE) |
| { |
| /* Disable all interrupts */ |
| __HAL_SPI_DISABLE_IT(hspi, SPI_IT_RXNE | SPI_IT_TXE | SPI_IT_ERR); |
| |
| hspi->State = HAL_SPI_STATE_READY; |
| /* Disable the SPI DMA requests if enabled */ |
| if ((HAL_IS_BIT_SET(itsource, SPI_CR2_TXDMAEN)) || (HAL_IS_BIT_SET(itsource, SPI_CR2_RXDMAEN))) |
| { |
| CLEAR_BIT(hspi->Instance->CR2, (SPI_CR2_TXDMAEN | SPI_CR2_RXDMAEN)); |
| |
| /* Abort the SPI DMA Rx channel */ |
| if (hspi->hdmarx != NULL) |
| { |
| /* Set the SPI DMA Abort callback : |
| will lead to call HAL_SPI_ErrorCallback() at end of DMA abort procedure */ |
| hspi->hdmarx->XferAbortCallback = SPI_DMAAbortOnError; |
| if (HAL_OK != HAL_DMA_Abort_IT(hspi->hdmarx)) |
| { |
| SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_ABORT); |
| } |
| } |
| /* Abort the SPI DMA Tx channel */ |
| if (hspi->hdmatx != NULL) |
| { |
| /* Set the SPI DMA Abort callback : |
| will lead to call HAL_SPI_ErrorCallback() at end of DMA abort procedure */ |
| hspi->hdmatx->XferAbortCallback = SPI_DMAAbortOnError; |
| if (HAL_OK != HAL_DMA_Abort_IT(hspi->hdmatx)) |
| { |
| SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_ABORT); |
| } |
| } |
| } |
| else |
| { |
| /* Call user error callback */ |
| #if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U) |
| hspi->ErrorCallback(hspi); |
| #else |
| HAL_SPI_ErrorCallback(hspi); |
| #endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ |
| } |
| } |
| return; |
| } |
| } |
| |
| /** |
| * @brief Tx Transfer completed callback. |
| * @param hspi pointer to a SPI_HandleTypeDef structure that contains |
| * the configuration information for SPI module. |
| * @retval None |
| */ |
| __weak void HAL_SPI_TxCpltCallback(SPI_HandleTypeDef *hspi) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(hspi); |
| |
| /* NOTE : This function should not be modified, when the callback is needed, |
| the HAL_SPI_TxCpltCallback should be implemented in the user file |
| */ |
| } |
| |
| /** |
| * @brief Rx Transfer completed callback. |
| * @param hspi pointer to a SPI_HandleTypeDef structure that contains |
| * the configuration information for SPI module. |
| * @retval None |
| */ |
| __weak void HAL_SPI_RxCpltCallback(SPI_HandleTypeDef *hspi) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(hspi); |
| |
| /* NOTE : This function should not be modified, when the callback is needed, |
| the HAL_SPI_RxCpltCallback should be implemented in the user file |
| */ |
| } |
| |
| /** |
| * @brief Tx and Rx Transfer completed callback. |
| * @param hspi pointer to a SPI_HandleTypeDef structure that contains |
| * the configuration information for SPI module. |
| * @retval None |
| */ |
| __weak void HAL_SPI_TxRxCpltCallback(SPI_HandleTypeDef *hspi) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(hspi); |
| |
| /* NOTE : This function should not be modified, when the callback is needed, |
| the HAL_SPI_TxRxCpltCallback should be implemented in the user file |
| */ |
| } |
| |
| /** |
| * @brief Tx Half Transfer completed callback. |
| * @param hspi pointer to a SPI_HandleTypeDef structure that contains |
| * the configuration information for SPI module. |
| * @retval None |
| */ |
| __weak void HAL_SPI_TxHalfCpltCallback(SPI_HandleTypeDef *hspi) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(hspi); |
| |
| /* NOTE : This function should not be modified, when the callback is needed, |
| the HAL_SPI_TxHalfCpltCallback should be implemented in the user file |
| */ |
| } |
| |
| /** |
| * @brief Rx Half Transfer completed callback. |
| * @param hspi pointer to a SPI_HandleTypeDef structure that contains |
| * the configuration information for SPI module. |
| * @retval None |
| */ |
| __weak void HAL_SPI_RxHalfCpltCallback(SPI_HandleTypeDef *hspi) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(hspi); |
| |
| /* NOTE : This function should not be modified, when the callback is needed, |
| the HAL_SPI_RxHalfCpltCallback() should be implemented in the user file |
| */ |
| } |
| |
| /** |
| * @brief Tx and Rx Half Transfer callback. |
| * @param hspi pointer to a SPI_HandleTypeDef structure that contains |
| * the configuration information for SPI module. |
| * @retval None |
| */ |
| __weak void HAL_SPI_TxRxHalfCpltCallback(SPI_HandleTypeDef *hspi) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(hspi); |
| |
| /* NOTE : This function should not be modified, when the callback is needed, |
| the HAL_SPI_TxRxHalfCpltCallback() should be implemented in the user file |
| */ |
| } |
| |
| /** |
| * @brief SPI error callback. |
| * @param hspi pointer to a SPI_HandleTypeDef structure that contains |
| * the configuration information for SPI module. |
| * @retval None |
| */ |
| __weak void HAL_SPI_ErrorCallback(SPI_HandleTypeDef *hspi) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(hspi); |
| |
| /* NOTE : This function should not be modified, when the callback is needed, |
| the HAL_SPI_ErrorCallback should be implemented in the user file |
| */ |
| /* NOTE : The ErrorCode parameter in the hspi handle is updated by the SPI processes |
| and user can use HAL_SPI_GetError() API to check the latest error occurred |
| */ |
| } |
| |
| /** |
| * @brief SPI Abort Complete callback. |
| * @param hspi SPI handle. |
| * @retval None |
| */ |
| __weak void HAL_SPI_AbortCpltCallback(SPI_HandleTypeDef *hspi) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(hspi); |
| |
| /* NOTE : This function should not be modified, when the callback is needed, |
| the HAL_SPI_AbortCpltCallback can be implemented in the user file. |
| */ |
| } |
| |
| /** |
| * @} |
| */ |
| |
| /** @defgroup SPI_Exported_Functions_Group3 Peripheral State and Errors functions |
| * @brief SPI control functions |
| * |
| @verbatim |
| =============================================================================== |
| ##### Peripheral State and Errors functions ##### |
| =============================================================================== |
| [..] |
| This subsection provides a set of functions allowing to control the SPI. |
| (+) HAL_SPI_GetState() API can be helpful to check in run-time the state of the SPI peripheral |
| (+) HAL_SPI_GetError() check in run-time Errors occurring during communication |
| @endverbatim |
| * @{ |
| */ |
| |
| /** |
| * @brief Return the SPI handle state. |
| * @param hspi pointer to a SPI_HandleTypeDef structure that contains |
| * the configuration information for SPI module. |
| * @retval SPI state |
| */ |
| HAL_SPI_StateTypeDef HAL_SPI_GetState(SPI_HandleTypeDef *hspi) |
| { |
| /* Return SPI handle state */ |
| return hspi->State; |
| } |
| |
| /** |
| * @brief Return the SPI error code. |
| * @param hspi pointer to a SPI_HandleTypeDef structure that contains |
| * the configuration information for SPI module. |
| * @retval SPI error code in bitmap format |
| */ |
| uint32_t HAL_SPI_GetError(SPI_HandleTypeDef *hspi) |
| { |
| /* Return SPI ErrorCode */ |
| return hspi->ErrorCode; |
| } |
| |
| /** |
| * @} |
| */ |
| |
| /** |
| * @} |
| */ |
| |
| /** @addtogroup SPI_Private_Functions |
| * @brief Private functions |
| * @{ |
| */ |
| |
| /** |
| * @brief DMA SPI transmit process complete callback. |
| * @param hdma pointer to a DMA_HandleTypeDef structure that contains |
| * the configuration information for the specified DMA module. |
| * @retval None |
| */ |
| static void SPI_DMATransmitCplt(DMA_HandleTypeDef *hdma) |
| { |
| SPI_HandleTypeDef *hspi = (SPI_HandleTypeDef *)(((DMA_HandleTypeDef *)hdma)->Parent); /* Derogation MISRAC2012-Rule-11.5 */ |
| uint32_t tickstart; |
| |
| /* Init tickstart for timeout management*/ |
| tickstart = HAL_GetTick(); |
| |
| /* DMA Normal Mode */ |
| if ((hdma->Instance->CCR & DMA_CCR_CIRC) != DMA_CCR_CIRC) |
| { |
| /* Disable ERR interrupt */ |
| __HAL_SPI_DISABLE_IT(hspi, SPI_IT_ERR); |
| |
| /* Disable Tx DMA Request */ |
| CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN); |
| |
| /* Check the end of the transaction */ |
| if (SPI_EndRxTxTransaction(hspi, SPI_DEFAULT_TIMEOUT, tickstart) != HAL_OK) |
| { |
| SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_FLAG); |
| } |
| |
| /* Clear overrun flag in 2 Lines communication mode because received data is not read */ |
| if (hspi->Init.Direction == SPI_DIRECTION_2LINES) |
| { |
| __HAL_SPI_CLEAR_OVRFLAG(hspi); |
| } |
| |
| hspi->TxXferCount = 0U; |
| hspi->State = HAL_SPI_STATE_READY; |
| |
| if (hspi->ErrorCode != HAL_SPI_ERROR_NONE) |
| { |
| /* Call user error callback */ |
| #if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U) |
| hspi->ErrorCallback(hspi); |
| #else |
| HAL_SPI_ErrorCallback(hspi); |
| #endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ |
| return; |
| } |
| } |
| /* Call user Tx complete callback */ |
| #if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U) |
| hspi->TxCpltCallback(hspi); |
| #else |
| HAL_SPI_TxCpltCallback(hspi); |
| #endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ |
| } |
| |
| /** |
| * @brief DMA SPI receive process complete callback. |
| * @param hdma pointer to a DMA_HandleTypeDef structure that contains |
| * the configuration information for the specified DMA module. |
| * @retval None |
| */ |
| static void SPI_DMAReceiveCplt(DMA_HandleTypeDef *hdma) |
| { |
| SPI_HandleTypeDef *hspi = (SPI_HandleTypeDef *)(((DMA_HandleTypeDef *)hdma)->Parent); /* Derogation MISRAC2012-Rule-11.5 */ |
| uint32_t tickstart; |
| #if (USE_SPI_CRC != 0U) |
| __IO uint32_t tmpreg = 0U; |
| #endif /* USE_SPI_CRC */ |
| |
| /* Init tickstart for timeout management*/ |
| tickstart = HAL_GetTick(); |
| |
| /* DMA Normal Mode */ |
| if ((hdma->Instance->CCR & DMA_CCR_CIRC) != DMA_CCR_CIRC) |
| { |
| /* Disable ERR interrupt */ |
| __HAL_SPI_DISABLE_IT(hspi, SPI_IT_ERR); |
| |
| #if (USE_SPI_CRC != 0U) |
| /* CRC handling */ |
| if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) |
| { |
| /* Wait until RXNE flag */ |
| if (SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_RXNE, SET, SPI_DEFAULT_TIMEOUT, tickstart) != HAL_OK) |
| { |
| /* Error on the CRC reception */ |
| SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_CRC); |
| } |
| /* Read CRC */ |
| tmpreg = READ_REG(hspi->Instance->DR); |
| /* To avoid GCC warning */ |
| UNUSED(tmpreg); |
| } |
| #endif /* USE_SPI_CRC */ |
| |
| /* Check if we are in Master RX 2 line mode */ |
| if ((hspi->Init.Direction == SPI_DIRECTION_2LINES) && (hspi->Init.Mode == SPI_MODE_MASTER)) |
| { |
| /* Disable Rx/Tx DMA Request (done by default to handle the case master rx direction 2 lines) */ |
| CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN | SPI_CR2_RXDMAEN); |
| } |
| else |
| { |
| /* Normal case */ |
| CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_RXDMAEN); |
| } |
| |
| /* Check the end of the transaction */ |
| if (SPI_EndRxTransaction(hspi, SPI_DEFAULT_TIMEOUT, tickstart) != HAL_OK) |
| { |
| hspi->ErrorCode = HAL_SPI_ERROR_FLAG; |
| } |
| |
| hspi->RxXferCount = 0U; |
| hspi->State = HAL_SPI_STATE_READY; |
| |
| #if (USE_SPI_CRC != 0U) |
| /* Check if CRC error occurred */ |
| if (__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_CRCERR) != RESET) |
| { |
| /* Check if CRC error is valid or not (workaround to be applied or not) */ |
| if (SPI_ISCRCErrorValid(hspi) == SPI_VALID_CRC_ERROR) |
| { |
| SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_CRC); |
| |
| /* Reset CRC Calculation */ |
| SPI_RESET_CRC(hspi); |
| } |
| else |
| { |
| __HAL_SPI_CLEAR_CRCERRFLAG(hspi); |
| } |
| } |
| #endif /* USE_SPI_CRC */ |
| |
| if (hspi->ErrorCode != HAL_SPI_ERROR_NONE) |
| { |
| /* Call user error callback */ |
| #if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U) |
| hspi->ErrorCallback(hspi); |
| #else |
| HAL_SPI_ErrorCallback(hspi); |
| #endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ |
| return; |
| } |
| } |
| /* Call user Rx complete callback */ |
| #if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U) |
| hspi->RxCpltCallback(hspi); |
| #else |
| HAL_SPI_RxCpltCallback(hspi); |
| #endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ |
| } |
| |
| /** |
| * @brief DMA SPI transmit receive process complete callback. |
| * @param hdma pointer to a DMA_HandleTypeDef structure that contains |
| * the configuration information for the specified DMA module. |
| * @retval None |
| */ |
| static void SPI_DMATransmitReceiveCplt(DMA_HandleTypeDef *hdma) |
| { |
| SPI_HandleTypeDef *hspi = (SPI_HandleTypeDef *)(((DMA_HandleTypeDef *)hdma)->Parent); /* Derogation MISRAC2012-Rule-11.5 */ |
| uint32_t tickstart; |
| #if (USE_SPI_CRC != 0U) |
| __IO uint32_t tmpreg = 0U; |
| #endif /* USE_SPI_CRC */ |
| |
| /* Init tickstart for timeout management*/ |
| tickstart = HAL_GetTick(); |
| |
| /* DMA Normal Mode */ |
| if ((hdma->Instance->CCR & DMA_CCR_CIRC) != DMA_CCR_CIRC) |
| { |
| /* Disable ERR interrupt */ |
| __HAL_SPI_DISABLE_IT(hspi, SPI_IT_ERR); |
| |
| #if (USE_SPI_CRC != 0U) |
| /* CRC handling */ |
| if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) |
| { |
| /* Wait the CRC data */ |
| if (SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_RXNE, SET, SPI_DEFAULT_TIMEOUT, tickstart) != HAL_OK) |
| { |
| SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_CRC); |
| } |
| /* Read CRC to Flush DR and RXNE flag */ |
| tmpreg = READ_REG(hspi->Instance->DR); |
| /* To avoid GCC warning */ |
| UNUSED(tmpreg); |
| } |
| #endif /* USE_SPI_CRC */ |
| |
| /* Check the end of the transaction */ |
| if (SPI_EndRxTxTransaction(hspi, SPI_DEFAULT_TIMEOUT, tickstart) != HAL_OK) |
| { |
| SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_FLAG); |
| } |
| |
| /* Disable Rx/Tx DMA Request */ |
| CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN | SPI_CR2_RXDMAEN); |
| |
| hspi->TxXferCount = 0U; |
| hspi->RxXferCount = 0U; |
| hspi->State = HAL_SPI_STATE_READY; |
| |
| #if (USE_SPI_CRC != 0U) |
| /* Check if CRC error occurred */ |
| if (__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_CRCERR) != RESET) |
| { |
| /* Check if CRC error is valid or not (workaround to be applied or not) */ |
| if (SPI_ISCRCErrorValid(hspi) == SPI_VALID_CRC_ERROR) |
| { |
| SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_CRC); |
| |
| /* Reset CRC Calculation */ |
| SPI_RESET_CRC(hspi); |
| } |
| else |
| { |
| __HAL_SPI_CLEAR_CRCERRFLAG(hspi); |
| } |
| } |
| #endif /* USE_SPI_CRC */ |
| |
| if (hspi->ErrorCode != HAL_SPI_ERROR_NONE) |
| { |
| /* Call user error callback */ |
| #if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U) |
| hspi->ErrorCallback(hspi); |
| #else |
| HAL_SPI_ErrorCallback(hspi); |
| #endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ |
| return; |
| } |
| } |
| /* Call user TxRx complete callback */ |
| #if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U) |
| hspi->TxRxCpltCallback(hspi); |
| #else |
| HAL_SPI_TxRxCpltCallback(hspi); |
| #endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ |
| } |
| |
| /** |
| * @brief DMA SPI half transmit process complete callback. |
| * @param hdma pointer to a DMA_HandleTypeDef structure that contains |
| * the configuration information for the specified DMA module. |
| * @retval None |
| */ |
| static void SPI_DMAHalfTransmitCplt(DMA_HandleTypeDef *hdma) |
| { |
| SPI_HandleTypeDef *hspi = (SPI_HandleTypeDef *)(((DMA_HandleTypeDef *)hdma)->Parent); /* Derogation MISRAC2012-Rule-11.5 */ |
| |
| /* Call user Tx half complete callback */ |
| #if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U) |
| hspi->TxHalfCpltCallback(hspi); |
| #else |
| HAL_SPI_TxHalfCpltCallback(hspi); |
| #endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ |
| } |
| |
| /** |
| * @brief DMA SPI half receive process complete callback |
| * @param hdma pointer to a DMA_HandleTypeDef structure that contains |
| * the configuration information for the specified DMA module. |
| * @retval None |
| */ |
| static void SPI_DMAHalfReceiveCplt(DMA_HandleTypeDef *hdma) |
| { |
| SPI_HandleTypeDef *hspi = (SPI_HandleTypeDef *)(((DMA_HandleTypeDef *)hdma)->Parent); /* Derogation MISRAC2012-Rule-11.5 */ |
| |
| /* Call user Rx half complete callback */ |
| #if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U) |
| hspi->RxHalfCpltCallback(hspi); |
| #else |
| HAL_SPI_RxHalfCpltCallback(hspi); |
| #endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ |
| } |
| |
| /** |
| * @brief DMA SPI half transmit receive process complete callback. |
| * @param hdma pointer to a DMA_HandleTypeDef structure that contains |
| * the configuration information for the specified DMA module. |
| * @retval None |
| */ |
| static void SPI_DMAHalfTransmitReceiveCplt(DMA_HandleTypeDef *hdma) |
| { |
| SPI_HandleTypeDef *hspi = (SPI_HandleTypeDef *)(((DMA_HandleTypeDef *)hdma)->Parent); /* Derogation MISRAC2012-Rule-11.5 */ |
| |
| /* Call user TxRx half complete callback */ |
| #if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U) |
| hspi->TxRxHalfCpltCallback(hspi); |
| #else |
| HAL_SPI_TxRxHalfCpltCallback(hspi); |
| #endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ |
| } |
| |
| /** |
| * @brief DMA SPI communication error callback. |
| * @param hdma pointer to a DMA_HandleTypeDef structure that contains |
| * the configuration information for the specified DMA module. |
| * @retval None |
| */ |
| static void SPI_DMAError(DMA_HandleTypeDef *hdma) |
| { |
| SPI_HandleTypeDef *hspi = (SPI_HandleTypeDef *)(((DMA_HandleTypeDef *)hdma)->Parent); /* Derogation MISRAC2012-Rule-11.5 */ |
| |
| /* Stop the disable DMA transfer on SPI side */ |
| CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN | SPI_CR2_RXDMAEN); |
| |
| SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_DMA); |
| hspi->State = HAL_SPI_STATE_READY; |
| /* Call user error callback */ |
| #if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U) |
| hspi->ErrorCallback(hspi); |
| #else |
| HAL_SPI_ErrorCallback(hspi); |
| #endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ |
| } |
| |
| /** |
| * @brief DMA SPI communication abort callback, when initiated by HAL services on Error |
| * (To be called at end of DMA Abort procedure following error occurrence). |
| * @param hdma DMA handle. |
| * @retval None |
| */ |
| static void SPI_DMAAbortOnError(DMA_HandleTypeDef *hdma) |
| { |
| SPI_HandleTypeDef *hspi = (SPI_HandleTypeDef *)(((DMA_HandleTypeDef *)hdma)->Parent); /* Derogation MISRAC2012-Rule-11.5 */ |
| hspi->RxXferCount = 0U; |
| hspi->TxXferCount = 0U; |
| |
| /* Call user error callback */ |
| #if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U) |
| hspi->ErrorCallback(hspi); |
| #else |
| HAL_SPI_ErrorCallback(hspi); |
| #endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ |
| } |
| |
| /** |
| * @brief DMA SPI Tx communication abort callback, when initiated by user |
| * (To be called at end of DMA Tx Abort procedure following user abort request). |
| * @note When this callback is executed, User Abort complete call back is called only if no |
| * Abort still ongoing for Rx DMA Handle. |
| * @param hdma DMA handle. |
| * @retval None |
| */ |
| static void SPI_DMATxAbortCallback(DMA_HandleTypeDef *hdma) |
| { |
| SPI_HandleTypeDef *hspi = (SPI_HandleTypeDef *)(((DMA_HandleTypeDef *)hdma)->Parent); /* Derogation MISRAC2012-Rule-11.5 */ |
| __IO uint32_t count; |
| |
| hspi->hdmatx->XferAbortCallback = NULL; |
| count = SPI_DEFAULT_TIMEOUT * (SystemCoreClock / 24U / 1000U); |
| |
| /* Disable Tx DMA Request */ |
| CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN); |
| |
| /* Wait until TXE flag is set */ |
| do |
| { |
| if (count == 0U) |
| { |
| SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_ABORT); |
| break; |
| } |
| count--; |
| } while ((hspi->Instance->SR & SPI_FLAG_TXE) == RESET); |
| |
| /* Check if an Abort process is still ongoing */ |
| if (hspi->hdmarx != NULL) |
| { |
| if (hspi->hdmarx->XferAbortCallback != NULL) |
| { |
| return; |
| } |
| } |
| |
| /* No Abort process still ongoing : All DMA Stream/Channel are aborted, call user Abort Complete callback */ |
| hspi->RxXferCount = 0U; |
| hspi->TxXferCount = 0U; |
| |
| /* Check no error during Abort procedure */ |
| if (hspi->ErrorCode != HAL_SPI_ERROR_ABORT) |
| { |
| /* Reset errorCode */ |
| hspi->ErrorCode = HAL_SPI_ERROR_NONE; |
| } |
| |
| /* Clear the Error flags in the SR register */ |
| __HAL_SPI_CLEAR_OVRFLAG(hspi); |
| |
| /* Restore hspi->State to Ready */ |
| hspi->State = HAL_SPI_STATE_READY; |
| |
| /* Call user Abort complete callback */ |
| #if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U) |
| hspi->AbortCpltCallback(hspi); |
| #else |
| HAL_SPI_AbortCpltCallback(hspi); |
| #endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ |
| } |
| |
| /** |
| * @brief DMA SPI Rx communication abort callback, when initiated by user |
| * (To be called at end of DMA Rx Abort procedure following user abort request). |
| * @note When this callback is executed, User Abort complete call back is called only if no |
| * Abort still ongoing for Tx DMA Handle. |
| * @param hdma DMA handle. |
| * @retval None |
| */ |
| static void SPI_DMARxAbortCallback(DMA_HandleTypeDef *hdma) |
| { |
| SPI_HandleTypeDef *hspi = (SPI_HandleTypeDef *)(((DMA_HandleTypeDef *)hdma)->Parent); /* Derogation MISRAC2012-Rule-11.5 */ |
| |
| /* Disable SPI Peripheral */ |
| __HAL_SPI_DISABLE(hspi); |
| |
| hspi->hdmarx->XferAbortCallback = NULL; |
| |
| /* Disable Rx DMA Request */ |
| CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_RXDMAEN); |
| |
| /* Check Busy flag */ |
| if (SPI_EndRxTxTransaction(hspi, SPI_DEFAULT_TIMEOUT, HAL_GetTick()) != HAL_OK) |
| { |
| SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_ABORT); |
| } |
| |
| /* Check if an Abort process is still ongoing */ |
| if (hspi->hdmatx != NULL) |
| { |
| if (hspi->hdmatx->XferAbortCallback != NULL) |
| { |
| return; |
| } |
| } |
| |
| /* No Abort process still ongoing : All DMA Stream/Channel are aborted, call user Abort Complete callback */ |
| hspi->RxXferCount = 0U; |
| hspi->TxXferCount = 0U; |
| |
| /* Check no error during Abort procedure */ |
| if (hspi->ErrorCode != HAL_SPI_ERROR_ABORT) |
| { |
| /* Reset errorCode */ |
| hspi->ErrorCode = HAL_SPI_ERROR_NONE; |
| } |
| |
| /* Clear the Error flags in the SR register */ |
| __HAL_SPI_CLEAR_OVRFLAG(hspi); |
| |
| /* Restore hspi->State to Ready */ |
| hspi->State = HAL_SPI_STATE_READY; |
| |
| /* Call user Abort complete callback */ |
| #if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U) |
| hspi->AbortCpltCallback(hspi); |
| #else |
| HAL_SPI_AbortCpltCallback(hspi); |
| #endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ |
| } |
| |
| /** |
| * @brief Rx 8-bit handler for Transmit and Receive in Interrupt mode. |
| * @param hspi pointer to a SPI_HandleTypeDef structure that contains |
| * the configuration information for SPI module. |
| * @retval None |
| */ |
| static void SPI_2linesRxISR_8BIT(struct __SPI_HandleTypeDef *hspi) |
| { |
| /* Receive data in 8bit mode */ |
| *hspi->pRxBuffPtr = *((__IO uint8_t *)&hspi->Instance->DR); |
| hspi->pRxBuffPtr++; |
| hspi->RxXferCount--; |
| |
| /* Check end of the reception */ |
| if (hspi->RxXferCount == 0U) |
| { |
| #if (USE_SPI_CRC != 0U) |
| if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) |
| { |
| hspi->RxISR = SPI_2linesRxISR_8BITCRC; |
| return; |
| } |
| #endif /* USE_SPI_CRC */ |
| |
| /* Disable RXNE and ERR interrupt */ |
| __HAL_SPI_DISABLE_IT(hspi, (SPI_IT_RXNE | SPI_IT_ERR)); |
| |
| if (hspi->TxXferCount == 0U) |
| { |
| SPI_CloseRxTx_ISR(hspi); |
| } |
| } |
| } |
| |
| #if (USE_SPI_CRC != 0U) |
| /** |
| * @brief Rx 8-bit handler for Transmit and Receive in Interrupt mode. |
| * @param hspi pointer to a SPI_HandleTypeDef structure that contains |
| * the configuration information for SPI module. |
| * @retval None |
| */ |
| static void SPI_2linesRxISR_8BITCRC(struct __SPI_HandleTypeDef *hspi) |
| { |
| __IO uint8_t * ptmpreg8; |
| __IO uint8_t tmpreg8 = 0; |
| |
| /* Initialize the 8bit temporary pointer */ |
| ptmpreg8 = (__IO uint8_t *)&hspi->Instance->DR; |
| /* Read 8bit CRC to flush Data Register */ |
| tmpreg8 = *ptmpreg8; |
| /* To avoid GCC warning */ |
| UNUSED(tmpreg8); |
| |
| /* Disable RXNE and ERR interrupt */ |
| __HAL_SPI_DISABLE_IT(hspi, (SPI_IT_RXNE | SPI_IT_ERR)); |
| |
| if (hspi->TxXferCount == 0U) |
| { |
| SPI_CloseRxTx_ISR(hspi); |
| } |
| } |
| #endif /* USE_SPI_CRC */ |
| |
| /** |
| * @brief Tx 8-bit handler for Transmit and Receive in Interrupt mode. |
| * @param hspi pointer to a SPI_HandleTypeDef structure that contains |
| * the configuration information for SPI module. |
| * @retval None |
| */ |
| static void SPI_2linesTxISR_8BIT(struct __SPI_HandleTypeDef *hspi) |
| { |
| *(__IO uint8_t *)&hspi->Instance->DR = (*hspi->pTxBuffPtr); |
| hspi->pTxBuffPtr++; |
| hspi->TxXferCount--; |
| |
| /* Check the end of the transmission */ |
| if (hspi->TxXferCount == 0U) |
| { |
| #if (USE_SPI_CRC != 0U) |
| if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) |
| { |
| /* Set CRC Next Bit to send CRC */ |
| SET_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT); |
| /* Disable TXE interrupt */ |
| __HAL_SPI_DISABLE_IT(hspi, SPI_IT_TXE); |
| return; |
| } |
| #endif /* USE_SPI_CRC */ |
| |
| /* Disable TXE interrupt */ |
| __HAL_SPI_DISABLE_IT(hspi, SPI_IT_TXE); |
| |
| if (hspi->RxXferCount == 0U) |
| { |
| SPI_CloseRxTx_ISR(hspi); |
| } |
| } |
| } |
| |
| /** |
| * @brief Rx 16-bit handler for Transmit and Receive in Interrupt mode. |
| * @param hspi pointer to a SPI_HandleTypeDef structure that contains |
| * the configuration information for SPI module. |
| * @retval None |
| */ |
| static void SPI_2linesRxISR_16BIT(struct __SPI_HandleTypeDef *hspi) |
| { |
| /* Receive data in 16 Bit mode */ |
| *((uint16_t *)hspi->pRxBuffPtr) = (uint16_t)(hspi->Instance->DR); |
| hspi->pRxBuffPtr += sizeof(uint16_t); |
| hspi->RxXferCount--; |
| |
| if (hspi->RxXferCount == 0U) |
| { |
| #if (USE_SPI_CRC != 0U) |
| if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) |
| { |
| hspi->RxISR = SPI_2linesRxISR_16BITCRC; |
| return; |
| } |
| #endif /* USE_SPI_CRC */ |
| |
| /* Disable RXNE interrupt */ |
| __HAL_SPI_DISABLE_IT(hspi, SPI_IT_RXNE); |
| |
| if (hspi->TxXferCount == 0U) |
| { |
| SPI_CloseRxTx_ISR(hspi); |
| } |
| } |
| } |
| |
| #if (USE_SPI_CRC != 0U) |
| /** |
| * @brief Manage the CRC 16-bit receive for Transmit and Receive in Interrupt mode. |
| * @param hspi pointer to a SPI_HandleTypeDef structure that contains |
| * the configuration information for SPI module. |
| * @retval None |
| */ |
| static void SPI_2linesRxISR_16BITCRC(struct __SPI_HandleTypeDef *hspi) |
| { |
| __IO uint32_t tmpreg = 0U; |
| |
| /* Read 16bit CRC to flush Data Register */ |
| tmpreg = READ_REG(hspi->Instance->DR); |
| /* To avoid GCC warning */ |
| UNUSED(tmpreg); |
| |
| /* Disable RXNE interrupt */ |
| __HAL_SPI_DISABLE_IT(hspi, SPI_IT_RXNE); |
| |
| SPI_CloseRxTx_ISR(hspi); |
| } |
| #endif /* USE_SPI_CRC */ |
| |
| /** |
| * @brief Tx 16-bit handler for Transmit and Receive in Interrupt mode. |
| * @param hspi pointer to a SPI_HandleTypeDef structure that contains |
| * the configuration information for SPI module. |
| * @retval None |
| */ |
| static void SPI_2linesTxISR_16BIT(struct __SPI_HandleTypeDef *hspi) |
| { |
| /* Transmit data in 16 Bit mode */ |
| hspi->Instance->DR = *((uint16_t *)hspi->pTxBuffPtr); |
| hspi->pTxBuffPtr += sizeof(uint16_t); |
| hspi->TxXferCount--; |
| |
| /* Enable CRC Transmission */ |
| if (hspi->TxXferCount == 0U) |
| { |
| #if (USE_SPI_CRC != 0U) |
| if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) |
| { |
| /* Set CRC Next Bit to send CRC */ |
| SET_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT); |
| /* Disable TXE interrupt */ |
| __HAL_SPI_DISABLE_IT(hspi, SPI_IT_TXE); |
| return; |
| } |
| #endif /* USE_SPI_CRC */ |
| |
| /* Disable TXE interrupt */ |
| __HAL_SPI_DISABLE_IT(hspi, SPI_IT_TXE); |
| |
| if (hspi->RxXferCount == 0U) |
| { |
| SPI_CloseRxTx_ISR(hspi); |
| } |
| } |
| } |
| |
| #if (USE_SPI_CRC != 0U) |
| /** |
| * @brief Manage the CRC 8-bit receive in Interrupt context. |
| * @param hspi pointer to a SPI_HandleTypeDef structure that contains |
| * the configuration information for SPI module. |
| * @retval None |
| */ |
| static void SPI_RxISR_8BITCRC(struct __SPI_HandleTypeDef *hspi) |
| { |
| __IO uint8_t * ptmpreg8; |
| __IO uint8_t tmpreg8 = 0; |
| |
| /* Initialize the 8bit temporary pointer */ |
| ptmpreg8 = (__IO uint8_t *)&hspi->Instance->DR; |
| /* Read 8bit CRC to flush Data Register */ |
| tmpreg8 = *ptmpreg8; |
| /* To avoid GCC warning */ |
| UNUSED(tmpreg8); |
| |
| SPI_CloseRx_ISR(hspi); |
| } |
| #endif /* USE_SPI_CRC */ |
| |
| /** |
| * @brief Manage the receive 8-bit in Interrupt context. |
| * @param hspi pointer to a SPI_HandleTypeDef structure that contains |
| * the configuration information for SPI module. |
| * @retval None |
| */ |
| static void SPI_RxISR_8BIT(struct __SPI_HandleTypeDef *hspi) |
| { |
| *hspi->pRxBuffPtr = (*(__IO uint8_t *)&hspi->Instance->DR); |
| hspi->pRxBuffPtr++; |
| hspi->RxXferCount--; |
| |
| #if (USE_SPI_CRC != 0U) |
| /* Enable CRC Transmission */ |
| if ((hspi->RxXferCount == 1U) && (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)) |
| { |
| SET_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT); |
| } |
| /* Check if CRCNEXT is well reseted by hardware */ |
| if (READ_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT)) |
| { |
| /* Workaround to force CRCNEXT bit to zero in case of CRCNEXT is not reset automatically by hardware */ |
| CLEAR_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT); |
| } |
| |
| #endif /* USE_SPI_CRC */ |
| |
| if (hspi->RxXferCount == 0U) |
| { |
| #if (USE_SPI_CRC != 0U) |
| if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) |
| { |
| hspi->RxISR = SPI_RxISR_8BITCRC; |
| return; |
| } |
| #endif /* USE_SPI_CRC */ |
| SPI_CloseRx_ISR(hspi); |
| } |
| } |
| |
| #if (USE_SPI_CRC != 0U) |
| /** |
| * @brief Manage the CRC 16-bit receive in Interrupt context. |
| * @param hspi pointer to a SPI_HandleTypeDef structure that contains |
| * the configuration information for SPI module. |
| * @retval None |
| */ |
| static void SPI_RxISR_16BITCRC(struct __SPI_HandleTypeDef *hspi) |
| { |
| __IO uint32_t tmpreg = 0U; |
| |
| /* Read 16bit CRC to flush Data Register */ |
| tmpreg = READ_REG(hspi->Instance->DR); |
| /* To avoid GCC warning */ |
| UNUSED(tmpreg); |
| |
| /* Disable RXNE and ERR interrupt */ |
| __HAL_SPI_DISABLE_IT(hspi, (SPI_IT_RXNE | SPI_IT_ERR)); |
| |
| SPI_CloseRx_ISR(hspi); |
| } |
| #endif /* USE_SPI_CRC */ |
| |
| /** |
| * @brief Manage the 16-bit receive in Interrupt context. |
| * @param hspi pointer to a SPI_HandleTypeDef structure that contains |
| * the configuration information for SPI module. |
| * @retval None |
| */ |
| static void SPI_RxISR_16BIT(struct __SPI_HandleTypeDef *hspi) |
| { |
| *((uint16_t *)hspi->pRxBuffPtr) = (uint16_t)(hspi->Instance->DR); |
| hspi->pRxBuffPtr += sizeof(uint16_t); |
| hspi->RxXferCount--; |
| |
| #if (USE_SPI_CRC != 0U) |
| /* Enable CRC Transmission */ |
| if ((hspi->RxXferCount == 1U) && (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)) |
| { |
| SET_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT); |
| } |
| /* Check if CRCNEXT is well reseted by hardware */ |
| if (READ_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT)) |
| { |
| /* Workaround to force CRCNEXT bit to zero in case of CRCNEXT is not reset automatically by hardware */ |
| CLEAR_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT); |
| } |
| |
| #endif /* USE_SPI_CRC */ |
| |
| if (hspi->RxXferCount == 0U) |
| { |
| #if (USE_SPI_CRC != 0U) |
| if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) |
| { |
| hspi->RxISR = SPI_RxISR_16BITCRC; |
| return; |
| } |
| #endif /* USE_SPI_CRC */ |
| SPI_CloseRx_ISR(hspi); |
| } |
| } |
| |
| /** |
| * @brief Handle the data 8-bit transmit in Interrupt mode. |
| * @param hspi pointer to a SPI_HandleTypeDef structure that contains |
| * the configuration information for SPI module. |
| * @retval None |
| */ |
| static void SPI_TxISR_8BIT(struct __SPI_HandleTypeDef *hspi) |
| { |
| *(__IO uint8_t *)&hspi->Instance->DR = (*hspi->pTxBuffPtr); |
| hspi->pTxBuffPtr++; |
| hspi->TxXferCount--; |
| |
| if (hspi->TxXferCount == 0U) |
| { |
| #if (USE_SPI_CRC != 0U) |
| if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) |
| { |
| /* Enable CRC Transmission */ |
| SET_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT); |
| } |
| #endif /* USE_SPI_CRC */ |
| SPI_CloseTx_ISR(hspi); |
| } |
| } |
| |
| /** |
| * @brief Handle the data 16-bit transmit in Interrupt mode. |
| * @param hspi pointer to a SPI_HandleTypeDef structure that contains |
| * the configuration information for SPI module. |
| * @retval None |
| */ |
| static void SPI_TxISR_16BIT(struct __SPI_HandleTypeDef *hspi) |
| { |
| /* Transmit data in 16 Bit mode */ |
| hspi->Instance->DR = *((uint16_t *)hspi->pTxBuffPtr); |
| hspi->pTxBuffPtr += sizeof(uint16_t); |
| hspi->TxXferCount--; |
| |
| if (hspi->TxXferCount == 0U) |
| { |
| #if (USE_SPI_CRC != 0U) |
| if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) |
| { |
| /* Enable CRC Transmission */ |
| SET_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT); |
| } |
| #endif /* USE_SPI_CRC */ |
| SPI_CloseTx_ISR(hspi); |
| } |
| } |
| |
| /** |
| * @brief Handle SPI Communication Timeout. |
| * @param hspi pointer to a SPI_HandleTypeDef structure that contains |
| * the configuration information for SPI module. |
| * @param Flag SPI flag to check |
| * @param State flag state to check |
| * @param Timeout Timeout duration |
| * @param Tickstart tick start value |
| * @retval HAL status |
| */ |
| static HAL_StatusTypeDef SPI_WaitFlagStateUntilTimeout(SPI_HandleTypeDef *hspi, uint32_t Flag, FlagStatus State, |
| uint32_t Timeout, uint32_t Tickstart) |
| { |
| __IO uint32_t count; |
| uint32_t tmp_timeout; |
| uint32_t tmp_tickstart; |
| |
| /* Adjust Timeout value in case of end of transfer */ |
| tmp_timeout = Timeout - (HAL_GetTick() - Tickstart); |
| tmp_tickstart = HAL_GetTick(); |
| |
| /* Calculate Timeout based on a software loop to avoid blocking issue if Systick is disabled */ |
| count = tmp_timeout * ((SystemCoreClock * 32U) >> 20U); |
| |
| while ((__HAL_SPI_GET_FLAG(hspi, Flag) ? SET : RESET) != State) |
| { |
| if (Timeout != HAL_MAX_DELAY) |
| { |
| if (((HAL_GetTick() - tmp_tickstart) >= tmp_timeout) || (tmp_timeout == 0U)) |
| { |
| /* Disable the SPI and reset the CRC: the CRC value should be cleared |
| on both master and slave sides in order to resynchronize the master |
| and slave for their respective CRC calculation */ |
| |
| /* Disable TXE, RXNE and ERR interrupts for the interrupt process */ |
| __HAL_SPI_DISABLE_IT(hspi, (SPI_IT_TXE | SPI_IT_RXNE | SPI_IT_ERR)); |
| |
| if ((hspi->Init.Mode == SPI_MODE_MASTER) && ((hspi->Init.Direction == SPI_DIRECTION_1LINE) |
| || (hspi->Init.Direction == SPI_DIRECTION_2LINES_RXONLY))) |
| { |
| /* Disable SPI peripheral */ |
| __HAL_SPI_DISABLE(hspi); |
| } |
| |
| /* Reset CRC Calculation */ |
| if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) |
| { |
| SPI_RESET_CRC(hspi); |
| } |
| |
| hspi->State = HAL_SPI_STATE_READY; |
| |
| /* Process Unlocked */ |
| __HAL_UNLOCK(hspi); |
| |
| return HAL_TIMEOUT; |
| } |
| /* If Systick is disabled or not incremented, deactivate timeout to go in disable loop procedure */ |
| if(count == 0U) |
| { |
| tmp_timeout = 0U; |
| } |
| count--; |
| } |
| } |
| |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Handle the check of the RX transaction complete. |
| * @param hspi pointer to a SPI_HandleTypeDef structure that contains |
| * the configuration information for SPI module. |
| * @param Timeout Timeout duration |
| * @param Tickstart tick start value |
| * @retval HAL status |
| */ |
| static HAL_StatusTypeDef SPI_EndRxTransaction(SPI_HandleTypeDef *hspi, uint32_t Timeout, uint32_t Tickstart) |
| { |
| if ((hspi->Init.Mode == SPI_MODE_MASTER) && ((hspi->Init.Direction == SPI_DIRECTION_1LINE) |
| || (hspi->Init.Direction == SPI_DIRECTION_2LINES_RXONLY))) |
| { |
| /* Disable SPI peripheral */ |
| __HAL_SPI_DISABLE(hspi); |
| } |
| |
| if ((hspi->Init.Mode == SPI_MODE_MASTER) && (hspi->Init.Direction == SPI_DIRECTION_2LINES_RXONLY)) |
| { |
| /* Wait the RXNE reset */ |
| if (SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_RXNE, RESET, Timeout, Tickstart) != HAL_OK) |
| { |
| SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_FLAG); |
| return HAL_TIMEOUT; |
| } |
| } |
| else |
| { |
| /* Control the BSY flag */ |
| if (SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_BSY, RESET, Timeout, Tickstart) != HAL_OK) |
| { |
| SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_FLAG); |
| return HAL_TIMEOUT; |
| } |
| } |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Handle the check of the RXTX or TX transaction complete. |
| * @param hspi SPI handle |
| * @param Timeout Timeout duration |
| * @param Tickstart tick start value |
| * @retval HAL status |
| */ |
| static HAL_StatusTypeDef SPI_EndRxTxTransaction(SPI_HandleTypeDef *hspi, uint32_t Timeout, uint32_t Tickstart) |
| { |
| /* Control the BSY flag */ |
| if (SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_BSY, RESET, Timeout, Tickstart) != HAL_OK) |
| { |
| SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_FLAG); |
| return HAL_TIMEOUT; |
| } |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Handle the end of the RXTX transaction. |
| * @param hspi pointer to a SPI_HandleTypeDef structure that contains |
| * the configuration information for SPI module. |
| * @retval None |
| */ |
| static void SPI_CloseRxTx_ISR(SPI_HandleTypeDef *hspi) |
| { |
| uint32_t tickstart; |
| __IO uint32_t count = SPI_DEFAULT_TIMEOUT * (SystemCoreClock / 24U / 1000U); |
| |
| /* Init tickstart for timeout management */ |
| tickstart = HAL_GetTick(); |
| |
| /* Disable ERR interrupt */ |
| __HAL_SPI_DISABLE_IT(hspi, SPI_IT_ERR); |
| |
| /* Wait until TXE flag is set */ |
| do |
| { |
| if (count == 0U) |
| { |
| SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_FLAG); |
| break; |
| } |
| count--; |
| } while ((hspi->Instance->SR & SPI_FLAG_TXE) == RESET); |
| |
| /* Check the end of the transaction */ |
| if (SPI_EndRxTxTransaction(hspi, SPI_DEFAULT_TIMEOUT, tickstart) != HAL_OK) |
| { |
| SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_FLAG); |
| } |
| |
| /* Clear overrun flag in 2 Lines communication mode because received is not read */ |
| if (hspi->Init.Direction == SPI_DIRECTION_2LINES) |
| { |
| __HAL_SPI_CLEAR_OVRFLAG(hspi); |
| } |
| |
| #if (USE_SPI_CRC != 0U) |
| /* Check if CRC error occurred */ |
| if (__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_CRCERR) != RESET) |
| { |
| /* Check if CRC error is valid or not (workaround to be applied or not) */ |
| if (SPI_ISCRCErrorValid(hspi) == SPI_VALID_CRC_ERROR) |
| { |
| hspi->State = HAL_SPI_STATE_READY; |
| SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_CRC); |
| |
| /* Reset CRC Calculation */ |
| SPI_RESET_CRC(hspi); |
| |
| /* Call user error callback */ |
| #if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U) |
| hspi->ErrorCallback(hspi); |
| #else |
| HAL_SPI_ErrorCallback(hspi); |
| #endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ |
| } |
| else |
| { |
| __HAL_SPI_CLEAR_CRCERRFLAG(hspi); |
| } |
| } |
| else |
| { |
| #endif /* USE_SPI_CRC */ |
| if (hspi->ErrorCode == HAL_SPI_ERROR_NONE) |
| { |
| if (hspi->State == HAL_SPI_STATE_BUSY_RX) |
| { |
| hspi->State = HAL_SPI_STATE_READY; |
| /* Call user Rx complete callback */ |
| #if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U) |
| hspi->RxCpltCallback(hspi); |
| #else |
| HAL_SPI_RxCpltCallback(hspi); |
| #endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ |
| } |
| else |
| { |
| hspi->State = HAL_SPI_STATE_READY; |
| /* Call user TxRx complete callback */ |
| #if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U) |
| hspi->TxRxCpltCallback(hspi); |
| #else |
| HAL_SPI_TxRxCpltCallback(hspi); |
| #endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ |
| } |
| } |
| else |
| { |
| hspi->State = HAL_SPI_STATE_READY; |
| /* Call user error callback */ |
| #if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U) |
| hspi->ErrorCallback(hspi); |
| #else |
| HAL_SPI_ErrorCallback(hspi); |
| #endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ |
| } |
| #if (USE_SPI_CRC != 0U) |
| } |
| #endif /* USE_SPI_CRC */ |
| } |
| |
| /** |
| * @brief Handle the end of the RX transaction. |
| * @param hspi pointer to a SPI_HandleTypeDef structure that contains |
| * the configuration information for SPI module. |
| * @retval None |
| */ |
| static void SPI_CloseRx_ISR(SPI_HandleTypeDef *hspi) |
| { |
| /* Disable RXNE and ERR interrupt */ |
| __HAL_SPI_DISABLE_IT(hspi, (SPI_IT_RXNE | SPI_IT_ERR)); |
| |
| /* Check the end of the transaction */ |
| if (SPI_EndRxTransaction(hspi, SPI_DEFAULT_TIMEOUT, HAL_GetTick()) != HAL_OK) |
| { |
| SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_FLAG); |
| } |
| |
| /* Clear overrun flag in 2 Lines communication mode because received is not read */ |
| if (hspi->Init.Direction == SPI_DIRECTION_2LINES) |
| { |
| __HAL_SPI_CLEAR_OVRFLAG(hspi); |
| } |
| hspi->State = HAL_SPI_STATE_READY; |
| |
| #if (USE_SPI_CRC != 0U) |
| /* Check if CRC error occurred */ |
| if (__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_CRCERR) != RESET) |
| { |
| /* Check if CRC error is valid or not (workaround to be applied or not) */ |
| if (SPI_ISCRCErrorValid(hspi) == SPI_VALID_CRC_ERROR) |
| { |
| SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_CRC); |
| |
| /* Reset CRC Calculation */ |
| SPI_RESET_CRC(hspi); |
| |
| /* Call user error callback */ |
| #if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U) |
| hspi->ErrorCallback(hspi); |
| #else |
| HAL_SPI_ErrorCallback(hspi); |
| #endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ |
| } |
| else |
| { |
| __HAL_SPI_CLEAR_CRCERRFLAG(hspi); |
| } |
| } |
| else |
| { |
| #endif /* USE_SPI_CRC */ |
| if (hspi->ErrorCode == HAL_SPI_ERROR_NONE) |
| { |
| /* Call user Rx complete callback */ |
| #if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U) |
| hspi->RxCpltCallback(hspi); |
| #else |
| HAL_SPI_RxCpltCallback(hspi); |
| #endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ |
| } |
| else |
| { |
| /* Call user error callback */ |
| #if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U) |
| hspi->ErrorCallback(hspi); |
| #else |
| HAL_SPI_ErrorCallback(hspi); |
| #endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ |
| } |
| #if (USE_SPI_CRC != 0U) |
| } |
| #endif /* USE_SPI_CRC */ |
| } |
| |
| /** |
| * @brief Handle the end of the TX transaction. |
| * @param hspi pointer to a SPI_HandleTypeDef structure that contains |
| * the configuration information for SPI module. |
| * @retval None |
| */ |
| static void SPI_CloseTx_ISR(SPI_HandleTypeDef *hspi) |
| { |
| uint32_t tickstart; |
| __IO uint32_t count = SPI_DEFAULT_TIMEOUT * (SystemCoreClock / 24U / 1000U); |
| |
| /* Init tickstart for timeout management*/ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait until TXE flag is set */ |
| do |
| { |
| if (count == 0U) |
| { |
| SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_FLAG); |
| break; |
| } |
| count--; |
| } while ((hspi->Instance->SR & SPI_FLAG_TXE) == RESET); |
| |
| /* Disable TXE and ERR interrupt */ |
| __HAL_SPI_DISABLE_IT(hspi, (SPI_IT_TXE | SPI_IT_ERR)); |
| |
| /* Check the end of the transaction */ |
| if (SPI_EndRxTxTransaction(hspi, SPI_DEFAULT_TIMEOUT, tickstart) != HAL_OK) |
| { |
| SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_FLAG); |
| } |
| |
| /* Clear overrun flag in 2 Lines communication mode because received is not read */ |
| if (hspi->Init.Direction == SPI_DIRECTION_2LINES) |
| { |
| __HAL_SPI_CLEAR_OVRFLAG(hspi); |
| } |
| |
| hspi->State = HAL_SPI_STATE_READY; |
| if (hspi->ErrorCode != HAL_SPI_ERROR_NONE) |
| { |
| /* Call user error callback */ |
| #if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U) |
| hspi->ErrorCallback(hspi); |
| #else |
| HAL_SPI_ErrorCallback(hspi); |
| #endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ |
| } |
| else |
| { |
| /* Call user Rx complete callback */ |
| #if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U) |
| hspi->TxCpltCallback(hspi); |
| #else |
| HAL_SPI_TxCpltCallback(hspi); |
| #endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ |
| } |
| } |
| |
| /** |
| * @brief Handle abort a Rx transaction. |
| * @param hspi pointer to a SPI_HandleTypeDef structure that contains |
| * the configuration information for SPI module. |
| * @retval None |
| */ |
| static void SPI_AbortRx_ISR(SPI_HandleTypeDef *hspi) |
| { |
| __IO uint32_t tmpreg = 0U; |
| __IO uint32_t count = SPI_DEFAULT_TIMEOUT * (SystemCoreClock / 24U / 1000U); |
| |
| /* Wait until TXE flag is set */ |
| do |
| { |
| if (count == 0U) |
| { |
| SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_ABORT); |
| break; |
| } |
| count--; |
| } while ((hspi->Instance->SR & SPI_FLAG_TXE) == RESET); |
| |
| /* Disable SPI Peripheral */ |
| __HAL_SPI_DISABLE(hspi); |
| |
| /* Disable TXEIE, RXNEIE and ERRIE(mode fault event, overrun error, TI frame error) interrupts */ |
| CLEAR_BIT(hspi->Instance->CR2, (SPI_CR2_TXEIE | SPI_CR2_RXNEIE | SPI_CR2_ERRIE)); |
| |
| /* Flush Data Register by a blank read */ |
| tmpreg = READ_REG(hspi->Instance->DR); |
| /* To avoid GCC warning */ |
| UNUSED(tmpreg); |
| |
| hspi->State = HAL_SPI_STATE_ABORT; |
| } |
| |
| /** |
| * @brief Handle abort a Tx or Rx/Tx transaction. |
| * @param hspi pointer to a SPI_HandleTypeDef structure that contains |
| * the configuration information for SPI module. |
| * @retval None |
| */ |
| static void SPI_AbortTx_ISR(SPI_HandleTypeDef *hspi) |
| { |
| /* Disable TXEIE interrupt */ |
| CLEAR_BIT(hspi->Instance->CR2, (SPI_CR2_TXEIE)); |
| |
| /* Disable SPI Peripheral */ |
| __HAL_SPI_DISABLE(hspi); |
| |
| hspi->State = HAL_SPI_STATE_ABORT; |
| } |
| |
| #if (USE_SPI_CRC != 0U) |
| /** |
| * @brief Checks if encountered CRC error could be corresponding to wrongly detected errors |
| * according to SPI instance, Device type, and revision ID. |
| * @param hspi: pointer to a SPI_HandleTypeDef structure that contains |
| * the configuration information for SPI module. |
| * @retval CRC error validity (SPI_INVALID_CRC_ERROR or SPI_VALID_CRC_ERROR). |
| */ |
| uint8_t SPI_ISCRCErrorValid(SPI_HandleTypeDef *hspi) |
| { |
| #if defined(SPI_CRC_ERROR_WORKAROUND_FEATURE) && (USE_SPI_CRC_ERROR_WORKAROUND != 0U) |
| /* Check how to handle this CRC error (workaround to be applied or not) */ |
| /* If CRC errors could be wrongly detected (issue 2.15.2 in STM32F10xxC/D/E silicon limitations ES (DocID14732 Rev 13) */ |
| if (hspi->Instance == SPI2) |
| { |
| if (hspi->Instance->RXCRCR == 0U) |
| { |
| return (SPI_INVALID_CRC_ERROR); |
| } |
| } |
| #endif |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(hspi); |
| |
| return (SPI_VALID_CRC_ERROR); |
| } |
| #endif /* USE_SPI_CRC */ |
| /** |
| * @} |
| */ |
| |
| #endif /* HAL_SPI_MODULE_ENABLED */ |
| |
| /** |
| * @} |
| */ |
| |
| /** |
| * @} |
| */ |