blob: 1c50fdea8746ee54c264a812f5e6e62c6413f680 [file] [log] [blame]
/**
******************************************************************************
* @file stm32f2xx_hal_can.c
* @author MCD Application Team
* @brief CAN HAL module driver.
* This file provides firmware functions to manage the following
* functionalities of the Controller Area Network (CAN) peripheral:
* + Initialization and de-initialization functions
* + Configuration functions
* + Control functions
* + Interrupts management
* + Callbacks functions
* + Peripheral State and Error functions
*
@verbatim
==============================================================================
##### How to use this driver #####
==============================================================================
[..]
(#) Initialize the CAN low level resources by implementing the
HAL_CAN_MspInit():
(++) Enable the CAN interface clock using __HAL_RCC_CANx_CLK_ENABLE()
(++) Configure CAN pins
(+++) Enable the clock for the CAN GPIOs
(+++) Configure CAN pins as alternate function open-drain
(++) In case of using interrupts (e.g. HAL_CAN_ActivateNotification())
(+++) Configure the CAN interrupt priority using
HAL_NVIC_SetPriority()
(+++) Enable the CAN IRQ handler using HAL_NVIC_EnableIRQ()
(+++) In CAN IRQ handler, call HAL_CAN_IRQHandler()
(#) Initialize the CAN peripheral using HAL_CAN_Init() function. This
function resorts to HAL_CAN_MspInit() for low-level initialization.
(#) Configure the reception filters using the following configuration
functions:
(++) HAL_CAN_ConfigFilter()
(#) Start the CAN module using HAL_CAN_Start() function. At this level
the node is active on the bus: it receive messages, and can send
messages.
(#) To manage messages transmission, the following Tx control functions
can be used:
(++) HAL_CAN_AddTxMessage() to request transmission of a new
message.
(++) HAL_CAN_AbortTxRequest() to abort transmission of a pending
message.
(++) HAL_CAN_GetTxMailboxesFreeLevel() to get the number of free Tx
mailboxes.
(++) HAL_CAN_IsTxMessagePending() to check if a message is pending
in a Tx mailbox.
(++) HAL_CAN_GetTxTimestamp() to get the timestamp of Tx message
sent, if time triggered communication mode is enabled.
(#) When a message is received into the CAN Rx FIFOs, it can be retrieved
using the HAL_CAN_GetRxMessage() function. The function
HAL_CAN_GetRxFifoFillLevel() allows to know how many Rx message are
stored in the Rx Fifo.
(#) Calling the HAL_CAN_Stop() function stops the CAN module.
(#) The deinitialization is achieved with HAL_CAN_DeInit() function.
*** Polling mode operation ***
==============================
[..]
(#) Reception:
(++) Monitor reception of message using HAL_CAN_GetRxFifoFillLevel()
until at least one message is received.
(++) Then get the message using HAL_CAN_GetRxMessage().
(#) Transmission:
(++) Monitor the Tx mailboxes availability until at least one Tx
mailbox is free, using HAL_CAN_GetTxMailboxesFreeLevel().
(++) Then request transmission of a message using
HAL_CAN_AddTxMessage().
*** Interrupt mode operation ***
================================
[..]
(#) Notifications are activated using HAL_CAN_ActivateNotification()
function. Then, the process can be controlled through the
available user callbacks: HAL_CAN_xxxCallback(), using same APIs
HAL_CAN_GetRxMessage() and HAL_CAN_AddTxMessage().
(#) Notifications can be deactivated using
HAL_CAN_DeactivateNotification() function.
(#) Special care should be taken for CAN_IT_RX_FIFO0_MSG_PENDING and
CAN_IT_RX_FIFO1_MSG_PENDING notifications. These notifications trig
the callbacks HAL_CAN_RxFIFO0MsgPendingCallback() and
HAL_CAN_RxFIFO1MsgPendingCallback(). User has two possible options
here.
(++) Directly get the Rx message in the callback, using
HAL_CAN_GetRxMessage().
(++) Or deactivate the notification in the callback without
getting the Rx message. The Rx message can then be got later
using HAL_CAN_GetRxMessage(). Once the Rx message have been
read, the notification can be activated again.
*** Sleep mode ***
==================
[..]
(#) The CAN peripheral can be put in sleep mode (low power), using
HAL_CAN_RequestSleep(). The sleep mode will be entered as soon as the
current CAN activity (transmission or reception of a CAN frame) will
be completed.
(#) A notification can be activated to be informed when the sleep mode
will be entered.
(#) It can be checked if the sleep mode is entered using
HAL_CAN_IsSleepActive().
Note that the CAN state (accessible from the API HAL_CAN_GetState())
is HAL_CAN_STATE_SLEEP_PENDING as soon as the sleep mode request is
submitted (the sleep mode is not yet entered), and become
HAL_CAN_STATE_SLEEP_ACTIVE when the sleep mode is effective.
(#) The wake-up from sleep mode can be triggered by two ways:
(++) Using HAL_CAN_WakeUp(). When returning from this function,
the sleep mode is exited (if return status is HAL_OK).
(++) When a start of Rx CAN frame is detected by the CAN peripheral,
if automatic wake up mode is enabled.
*** Callback registration ***
=============================================
The compilation define USE_HAL_CAN_REGISTER_CALLBACKS when set to 1
allows the user to configure dynamically the driver callbacks.
Use Function @ref HAL_CAN_RegisterCallback() to register an interrupt callback.
Function @ref HAL_CAN_RegisterCallback() allows to register following callbacks:
(+) TxMailbox0CompleteCallback : Tx Mailbox 0 Complete Callback.
(+) TxMailbox1CompleteCallback : Tx Mailbox 1 Complete Callback.
(+) TxMailbox2CompleteCallback : Tx Mailbox 2 Complete Callback.
(+) TxMailbox0AbortCallback : Tx Mailbox 0 Abort Callback.
(+) TxMailbox1AbortCallback : Tx Mailbox 1 Abort Callback.
(+) TxMailbox2AbortCallback : Tx Mailbox 2 Abort Callback.
(+) RxFifo0MsgPendingCallback : Rx Fifo 0 Message Pending Callback.
(+) RxFifo0FullCallback : Rx Fifo 0 Full Callback.
(+) RxFifo1MsgPendingCallback : Rx Fifo 1 Message Pending Callback.
(+) RxFifo1FullCallback : Rx Fifo 1 Full Callback.
(+) SleepCallback : Sleep Callback.
(+) WakeUpFromRxMsgCallback : Wake Up From Rx Message Callback.
(+) ErrorCallback : Error Callback.
(+) MspInitCallback : CAN MspInit.
(+) MspDeInitCallback : CAN MspDeInit.
This function takes as parameters the HAL peripheral handle, the Callback ID
and a pointer to the user callback function.
Use function @ref HAL_CAN_UnRegisterCallback() to reset a callback to the default
weak function.
@ref HAL_CAN_UnRegisterCallback takes as parameters the HAL peripheral handle,
and the Callback ID.
This function allows to reset following callbacks:
(+) TxMailbox0CompleteCallback : Tx Mailbox 0 Complete Callback.
(+) TxMailbox1CompleteCallback : Tx Mailbox 1 Complete Callback.
(+) TxMailbox2CompleteCallback : Tx Mailbox 2 Complete Callback.
(+) TxMailbox0AbortCallback : Tx Mailbox 0 Abort Callback.
(+) TxMailbox1AbortCallback : Tx Mailbox 1 Abort Callback.
(+) TxMailbox2AbortCallback : Tx Mailbox 2 Abort Callback.
(+) RxFifo0MsgPendingCallback : Rx Fifo 0 Message Pending Callback.
(+) RxFifo0FullCallback : Rx Fifo 0 Full Callback.
(+) RxFifo1MsgPendingCallback : Rx Fifo 1 Message Pending Callback.
(+) RxFifo1FullCallback : Rx Fifo 1 Full Callback.
(+) SleepCallback : Sleep Callback.
(+) WakeUpFromRxMsgCallback : Wake Up From Rx Message Callback.
(+) ErrorCallback : Error Callback.
(+) MspInitCallback : CAN MspInit.
(+) MspDeInitCallback : CAN MspDeInit.
By default, after the @ref HAL_CAN_Init() and when the state is HAL_CAN_STATE_RESET,
all callbacks are set to the corresponding weak functions:
example @ref HAL_CAN_ErrorCallback().
Exception done for MspInit and MspDeInit functions that are
reset to the legacy weak function in the @ref HAL_CAN_Init()/ @ref HAL_CAN_DeInit() only when
these callbacks are null (not registered beforehand).
if not, MspInit or MspDeInit are not null, the @ref HAL_CAN_Init()/ @ref HAL_CAN_DeInit()
keep and use the user MspInit/MspDeInit callbacks (registered beforehand)
Callbacks can be registered/unregistered in HAL_CAN_STATE_READY state only.
Exception done MspInit/MspDeInit that can be registered/unregistered
in HAL_CAN_STATE_READY or HAL_CAN_STATE_RESET state,
thus registered (user) MspInit/DeInit callbacks can be used during the Init/DeInit.
In that case first register the MspInit/MspDeInit user callbacks
using @ref HAL_CAN_RegisterCallback() before calling @ref HAL_CAN_DeInit()
or @ref HAL_CAN_Init() function.
When The compilation define USE_HAL_CAN_REGISTER_CALLBACKS is set to 0 or
not defined, the callback registration feature is not available and all callbacks
are set to the corresponding weak functions.
@endverbatim
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2016 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f2xx_hal.h"
/** @addtogroup STM32F2xx_HAL_Driver
* @{
*/
#if defined(CAN1)
/** @defgroup CAN CAN
* @brief CAN driver modules
* @{
*/
#ifdef HAL_CAN_MODULE_ENABLED
#ifdef HAL_CAN_LEGACY_MODULE_ENABLED
#error "The CAN driver cannot be used with its legacy, Please enable only one CAN module at once"
#endif
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/** @defgroup CAN_Private_Constants CAN Private Constants
* @{
*/
#define CAN_TIMEOUT_VALUE 10U
/**
* @}
*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Exported functions --------------------------------------------------------*/
/** @defgroup CAN_Exported_Functions CAN Exported Functions
* @{
*/
/** @defgroup CAN_Exported_Functions_Group1 Initialization and de-initialization functions
* @brief Initialization and Configuration functions
*
@verbatim
==============================================================================
##### Initialization and de-initialization functions #####
==============================================================================
[..] This section provides functions allowing to:
(+) HAL_CAN_Init : Initialize and configure the CAN.
(+) HAL_CAN_DeInit : De-initialize the CAN.
(+) HAL_CAN_MspInit : Initialize the CAN MSP.
(+) HAL_CAN_MspDeInit : DeInitialize the CAN MSP.
@endverbatim
* @{
*/
/**
* @brief Initializes the CAN peripheral according to the specified
* parameters in the CAN_InitStruct.
* @param hcan pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CAN_Init(CAN_HandleTypeDef *hcan)
{
uint32_t tickstart;
/* Check CAN handle */
if (hcan == NULL)
{
return HAL_ERROR;
}
/* Check the parameters */
assert_param(IS_CAN_ALL_INSTANCE(hcan->Instance));
assert_param(IS_FUNCTIONAL_STATE(hcan->Init.TimeTriggeredMode));
assert_param(IS_FUNCTIONAL_STATE(hcan->Init.AutoBusOff));
assert_param(IS_FUNCTIONAL_STATE(hcan->Init.AutoWakeUp));
assert_param(IS_FUNCTIONAL_STATE(hcan->Init.AutoRetransmission));
assert_param(IS_FUNCTIONAL_STATE(hcan->Init.ReceiveFifoLocked));
assert_param(IS_FUNCTIONAL_STATE(hcan->Init.TransmitFifoPriority));
assert_param(IS_CAN_MODE(hcan->Init.Mode));
assert_param(IS_CAN_SJW(hcan->Init.SyncJumpWidth));
assert_param(IS_CAN_BS1(hcan->Init.TimeSeg1));
assert_param(IS_CAN_BS2(hcan->Init.TimeSeg2));
assert_param(IS_CAN_PRESCALER(hcan->Init.Prescaler));
#if USE_HAL_CAN_REGISTER_CALLBACKS == 1
if (hcan->State == HAL_CAN_STATE_RESET)
{
/* Reset callbacks to legacy functions */
hcan->RxFifo0MsgPendingCallback = HAL_CAN_RxFifo0MsgPendingCallback; /* Legacy weak RxFifo0MsgPendingCallback */
hcan->RxFifo0FullCallback = HAL_CAN_RxFifo0FullCallback; /* Legacy weak RxFifo0FullCallback */
hcan->RxFifo1MsgPendingCallback = HAL_CAN_RxFifo1MsgPendingCallback; /* Legacy weak RxFifo1MsgPendingCallback */
hcan->RxFifo1FullCallback = HAL_CAN_RxFifo1FullCallback; /* Legacy weak RxFifo1FullCallback */
hcan->TxMailbox0CompleteCallback = HAL_CAN_TxMailbox0CompleteCallback; /* Legacy weak TxMailbox0CompleteCallback */
hcan->TxMailbox1CompleteCallback = HAL_CAN_TxMailbox1CompleteCallback; /* Legacy weak TxMailbox1CompleteCallback */
hcan->TxMailbox2CompleteCallback = HAL_CAN_TxMailbox2CompleteCallback; /* Legacy weak TxMailbox2CompleteCallback */
hcan->TxMailbox0AbortCallback = HAL_CAN_TxMailbox0AbortCallback; /* Legacy weak TxMailbox0AbortCallback */
hcan->TxMailbox1AbortCallback = HAL_CAN_TxMailbox1AbortCallback; /* Legacy weak TxMailbox1AbortCallback */
hcan->TxMailbox2AbortCallback = HAL_CAN_TxMailbox2AbortCallback; /* Legacy weak TxMailbox2AbortCallback */
hcan->SleepCallback = HAL_CAN_SleepCallback; /* Legacy weak SleepCallback */
hcan->WakeUpFromRxMsgCallback = HAL_CAN_WakeUpFromRxMsgCallback; /* Legacy weak WakeUpFromRxMsgCallback */
hcan->ErrorCallback = HAL_CAN_ErrorCallback; /* Legacy weak ErrorCallback */
if (hcan->MspInitCallback == NULL)
{
hcan->MspInitCallback = HAL_CAN_MspInit; /* Legacy weak MspInit */
}
/* Init the low level hardware: CLOCK, NVIC */
hcan->MspInitCallback(hcan);
}
#else
if (hcan->State == HAL_CAN_STATE_RESET)
{
/* Init the low level hardware: CLOCK, NVIC */
HAL_CAN_MspInit(hcan);
}
#endif /* (USE_HAL_CAN_REGISTER_CALLBACKS) */
/* Request initialisation */
SET_BIT(hcan->Instance->MCR, CAN_MCR_INRQ);
/* Get tick */
tickstart = HAL_GetTick();
/* Wait initialisation acknowledge */
while ((hcan->Instance->MSR & CAN_MSR_INAK) == 0U)
{
if ((HAL_GetTick() - tickstart) > CAN_TIMEOUT_VALUE)
{
/* Update error code */
hcan->ErrorCode |= HAL_CAN_ERROR_TIMEOUT;
/* Change CAN state */
hcan->State = HAL_CAN_STATE_ERROR;
return HAL_ERROR;
}
}
/* Exit from sleep mode */
CLEAR_BIT(hcan->Instance->MCR, CAN_MCR_SLEEP);
/* Get tick */
tickstart = HAL_GetTick();
/* Check Sleep mode leave acknowledge */
while ((hcan->Instance->MSR & CAN_MSR_SLAK) != 0U)
{
if ((HAL_GetTick() - tickstart) > CAN_TIMEOUT_VALUE)
{
/* Update error code */
hcan->ErrorCode |= HAL_CAN_ERROR_TIMEOUT;
/* Change CAN state */
hcan->State = HAL_CAN_STATE_ERROR;
return HAL_ERROR;
}
}
/* Set the time triggered communication mode */
if (hcan->Init.TimeTriggeredMode == ENABLE)
{
SET_BIT(hcan->Instance->MCR, CAN_MCR_TTCM);
}
else
{
CLEAR_BIT(hcan->Instance->MCR, CAN_MCR_TTCM);
}
/* Set the automatic bus-off management */
if (hcan->Init.AutoBusOff == ENABLE)
{
SET_BIT(hcan->Instance->MCR, CAN_MCR_ABOM);
}
else
{
CLEAR_BIT(hcan->Instance->MCR, CAN_MCR_ABOM);
}
/* Set the automatic wake-up mode */
if (hcan->Init.AutoWakeUp == ENABLE)
{
SET_BIT(hcan->Instance->MCR, CAN_MCR_AWUM);
}
else
{
CLEAR_BIT(hcan->Instance->MCR, CAN_MCR_AWUM);
}
/* Set the automatic retransmission */
if (hcan->Init.AutoRetransmission == ENABLE)
{
CLEAR_BIT(hcan->Instance->MCR, CAN_MCR_NART);
}
else
{
SET_BIT(hcan->Instance->MCR, CAN_MCR_NART);
}
/* Set the receive FIFO locked mode */
if (hcan->Init.ReceiveFifoLocked == ENABLE)
{
SET_BIT(hcan->Instance->MCR, CAN_MCR_RFLM);
}
else
{
CLEAR_BIT(hcan->Instance->MCR, CAN_MCR_RFLM);
}
/* Set the transmit FIFO priority */
if (hcan->Init.TransmitFifoPriority == ENABLE)
{
SET_BIT(hcan->Instance->MCR, CAN_MCR_TXFP);
}
else
{
CLEAR_BIT(hcan->Instance->MCR, CAN_MCR_TXFP);
}
/* Set the bit timing register */
WRITE_REG(hcan->Instance->BTR, (uint32_t)(hcan->Init.Mode |
hcan->Init.SyncJumpWidth |
hcan->Init.TimeSeg1 |
hcan->Init.TimeSeg2 |
(hcan->Init.Prescaler - 1U)));
/* Initialize the error code */
hcan->ErrorCode = HAL_CAN_ERROR_NONE;
/* Initialize the CAN state */
hcan->State = HAL_CAN_STATE_READY;
/* Return function status */
return HAL_OK;
}
/**
* @brief Deinitializes the CAN peripheral registers to their default
* reset values.
* @param hcan pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CAN_DeInit(CAN_HandleTypeDef *hcan)
{
/* Check CAN handle */
if (hcan == NULL)
{
return HAL_ERROR;
}
/* Check the parameters */
assert_param(IS_CAN_ALL_INSTANCE(hcan->Instance));
/* Stop the CAN module */
(void)HAL_CAN_Stop(hcan);
#if USE_HAL_CAN_REGISTER_CALLBACKS == 1
if (hcan->MspDeInitCallback == NULL)
{
hcan->MspDeInitCallback = HAL_CAN_MspDeInit; /* Legacy weak MspDeInit */
}
/* DeInit the low level hardware: CLOCK, NVIC */
hcan->MspDeInitCallback(hcan);
#else
/* DeInit the low level hardware: CLOCK, NVIC */
HAL_CAN_MspDeInit(hcan);
#endif /* (USE_HAL_CAN_REGISTER_CALLBACKS) */
/* Reset the CAN peripheral */
SET_BIT(hcan->Instance->MCR, CAN_MCR_RESET);
/* Reset the CAN ErrorCode */
hcan->ErrorCode = HAL_CAN_ERROR_NONE;
/* Change CAN state */
hcan->State = HAL_CAN_STATE_RESET;
/* Return function status */
return HAL_OK;
}
/**
* @brief Initializes the CAN MSP.
* @param hcan pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @retval None
*/
__weak void HAL_CAN_MspInit(CAN_HandleTypeDef *hcan)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hcan);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_CAN_MspInit could be implemented in the user file
*/
}
/**
* @brief DeInitializes the CAN MSP.
* @param hcan pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @retval None
*/
__weak void HAL_CAN_MspDeInit(CAN_HandleTypeDef *hcan)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hcan);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_CAN_MspDeInit could be implemented in the user file
*/
}
#if USE_HAL_CAN_REGISTER_CALLBACKS == 1
/**
* @brief Register a CAN CallBack.
* To be used instead of the weak predefined callback
* @param hcan pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for CAN module
* @param CallbackID ID of the callback to be registered
* This parameter can be one of the following values:
* @arg @ref HAL_CAN_TX_MAILBOX0_COMPLETE_CB_ID Tx Mailbox 0 Complete callback ID
* @arg @ref HAL_CAN_TX_MAILBOX1_COMPLETE_CB_ID Tx Mailbox 1 Complete callback ID
* @arg @ref HAL_CAN_TX_MAILBOX2_COMPLETE_CB_ID Tx Mailbox 2 Complete callback ID
* @arg @ref HAL_CAN_TX_MAILBOX0_ABORT_CB_ID Tx Mailbox 0 Abort callback ID
* @arg @ref HAL_CAN_TX_MAILBOX1_ABORT_CB_ID Tx Mailbox 1 Abort callback ID
* @arg @ref HAL_CAN_TX_MAILBOX2_ABORT_CB_ID Tx Mailbox 2 Abort callback ID
* @arg @ref HAL_CAN_RX_FIFO0_MSG_PENDING_CB_ID Rx Fifo 0 message pending callback ID
* @arg @ref HAL_CAN_RX_FIFO0_FULL_CB_ID Rx Fifo 0 full callback ID
* @arg @ref HAL_CAN_RX_FIFO1_MSG_PENDING_CB_ID Rx Fifo 1 message pending callback ID
* @arg @ref HAL_CAN_RX_FIFO1_FULL_CB_ID Rx Fifo 1 full callback ID
* @arg @ref HAL_CAN_SLEEP_CB_ID Sleep callback ID
* @arg @ref HAL_CAN_WAKEUP_FROM_RX_MSG_CB_ID Wake Up from Rx message callback ID
* @arg @ref HAL_CAN_ERROR_CB_ID Error callback ID
* @arg @ref HAL_CAN_MSPINIT_CB_ID MspInit callback ID
* @arg @ref HAL_CAN_MSPDEINIT_CB_ID MspDeInit callback ID
* @param pCallback pointer to the Callback function
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CAN_RegisterCallback(CAN_HandleTypeDef *hcan, HAL_CAN_CallbackIDTypeDef CallbackID, void (* pCallback)(CAN_HandleTypeDef *_hcan))
{
HAL_StatusTypeDef status = HAL_OK;
if (pCallback == NULL)
{
/* Update the error code */
hcan->ErrorCode |= HAL_CAN_ERROR_INVALID_CALLBACK;
return HAL_ERROR;
}
if (hcan->State == HAL_CAN_STATE_READY)
{
switch (CallbackID)
{
case HAL_CAN_TX_MAILBOX0_COMPLETE_CB_ID :
hcan->TxMailbox0CompleteCallback = pCallback;
break;
case HAL_CAN_TX_MAILBOX1_COMPLETE_CB_ID :
hcan->TxMailbox1CompleteCallback = pCallback;
break;
case HAL_CAN_TX_MAILBOX2_COMPLETE_CB_ID :
hcan->TxMailbox2CompleteCallback = pCallback;
break;
case HAL_CAN_TX_MAILBOX0_ABORT_CB_ID :
hcan->TxMailbox0AbortCallback = pCallback;
break;
case HAL_CAN_TX_MAILBOX1_ABORT_CB_ID :
hcan->TxMailbox1AbortCallback = pCallback;
break;
case HAL_CAN_TX_MAILBOX2_ABORT_CB_ID :
hcan->TxMailbox2AbortCallback = pCallback;
break;
case HAL_CAN_RX_FIFO0_MSG_PENDING_CB_ID :
hcan->RxFifo0MsgPendingCallback = pCallback;
break;
case HAL_CAN_RX_FIFO0_FULL_CB_ID :
hcan->RxFifo0FullCallback = pCallback;
break;
case HAL_CAN_RX_FIFO1_MSG_PENDING_CB_ID :
hcan->RxFifo1MsgPendingCallback = pCallback;
break;
case HAL_CAN_RX_FIFO1_FULL_CB_ID :
hcan->RxFifo1FullCallback = pCallback;
break;
case HAL_CAN_SLEEP_CB_ID :
hcan->SleepCallback = pCallback;
break;
case HAL_CAN_WAKEUP_FROM_RX_MSG_CB_ID :
hcan->WakeUpFromRxMsgCallback = pCallback;
break;
case HAL_CAN_ERROR_CB_ID :
hcan->ErrorCallback = pCallback;
break;
case HAL_CAN_MSPINIT_CB_ID :
hcan->MspInitCallback = pCallback;
break;
case HAL_CAN_MSPDEINIT_CB_ID :
hcan->MspDeInitCallback = pCallback;
break;
default :
/* Update the error code */
hcan->ErrorCode |= HAL_CAN_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
break;
}
}
else if (hcan->State == HAL_CAN_STATE_RESET)
{
switch (CallbackID)
{
case HAL_CAN_MSPINIT_CB_ID :
hcan->MspInitCallback = pCallback;
break;
case HAL_CAN_MSPDEINIT_CB_ID :
hcan->MspDeInitCallback = pCallback;
break;
default :
/* Update the error code */
hcan->ErrorCode |= HAL_CAN_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
break;
}
}
else
{
/* Update the error code */
hcan->ErrorCode |= HAL_CAN_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
}
return status;
}
/**
* @brief Unregister a CAN CallBack.
* CAN callabck is redirected to the weak predefined callback
* @param hcan pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for CAN module
* @param CallbackID ID of the callback to be unregistered
* This parameter can be one of the following values:
* @arg @ref HAL_CAN_TX_MAILBOX0_COMPLETE_CB_ID Tx Mailbox 0 Complete callback ID
* @arg @ref HAL_CAN_TX_MAILBOX1_COMPLETE_CB_ID Tx Mailbox 1 Complete callback ID
* @arg @ref HAL_CAN_TX_MAILBOX2_COMPLETE_CB_ID Tx Mailbox 2 Complete callback ID
* @arg @ref HAL_CAN_TX_MAILBOX0_ABORT_CB_ID Tx Mailbox 0 Abort callback ID
* @arg @ref HAL_CAN_TX_MAILBOX1_ABORT_CB_ID Tx Mailbox 1 Abort callback ID
* @arg @ref HAL_CAN_TX_MAILBOX2_ABORT_CB_ID Tx Mailbox 2 Abort callback ID
* @arg @ref HAL_CAN_RX_FIFO0_MSG_PENDING_CB_ID Rx Fifo 0 message pending callback ID
* @arg @ref HAL_CAN_RX_FIFO0_FULL_CB_ID Rx Fifo 0 full callback ID
* @arg @ref HAL_CAN_RX_FIFO1_MSG_PENDING_CB_ID Rx Fifo 1 message pending callback ID
* @arg @ref HAL_CAN_RX_FIFO1_FULL_CB_ID Rx Fifo 1 full callback ID
* @arg @ref HAL_CAN_SLEEP_CB_ID Sleep callback ID
* @arg @ref HAL_CAN_WAKEUP_FROM_RX_MSG_CB_ID Wake Up from Rx message callback ID
* @arg @ref HAL_CAN_ERROR_CB_ID Error callback ID
* @arg @ref HAL_CAN_MSPINIT_CB_ID MspInit callback ID
* @arg @ref HAL_CAN_MSPDEINIT_CB_ID MspDeInit callback ID
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CAN_UnRegisterCallback(CAN_HandleTypeDef *hcan, HAL_CAN_CallbackIDTypeDef CallbackID)
{
HAL_StatusTypeDef status = HAL_OK;
if (hcan->State == HAL_CAN_STATE_READY)
{
switch (CallbackID)
{
case HAL_CAN_TX_MAILBOX0_COMPLETE_CB_ID :
hcan->TxMailbox0CompleteCallback = HAL_CAN_TxMailbox0CompleteCallback;
break;
case HAL_CAN_TX_MAILBOX1_COMPLETE_CB_ID :
hcan->TxMailbox1CompleteCallback = HAL_CAN_TxMailbox1CompleteCallback;
break;
case HAL_CAN_TX_MAILBOX2_COMPLETE_CB_ID :
hcan->TxMailbox2CompleteCallback = HAL_CAN_TxMailbox2CompleteCallback;
break;
case HAL_CAN_TX_MAILBOX0_ABORT_CB_ID :
hcan->TxMailbox0AbortCallback = HAL_CAN_TxMailbox0AbortCallback;
break;
case HAL_CAN_TX_MAILBOX1_ABORT_CB_ID :
hcan->TxMailbox1AbortCallback = HAL_CAN_TxMailbox1AbortCallback;
break;
case HAL_CAN_TX_MAILBOX2_ABORT_CB_ID :
hcan->TxMailbox2AbortCallback = HAL_CAN_TxMailbox2AbortCallback;
break;
case HAL_CAN_RX_FIFO0_MSG_PENDING_CB_ID :
hcan->RxFifo0MsgPendingCallback = HAL_CAN_RxFifo0MsgPendingCallback;
break;
case HAL_CAN_RX_FIFO0_FULL_CB_ID :
hcan->RxFifo0FullCallback = HAL_CAN_RxFifo0FullCallback;
break;
case HAL_CAN_RX_FIFO1_MSG_PENDING_CB_ID :
hcan->RxFifo1MsgPendingCallback = HAL_CAN_RxFifo1MsgPendingCallback;
break;
case HAL_CAN_RX_FIFO1_FULL_CB_ID :
hcan->RxFifo1FullCallback = HAL_CAN_RxFifo1FullCallback;
break;
case HAL_CAN_SLEEP_CB_ID :
hcan->SleepCallback = HAL_CAN_SleepCallback;
break;
case HAL_CAN_WAKEUP_FROM_RX_MSG_CB_ID :
hcan->WakeUpFromRxMsgCallback = HAL_CAN_WakeUpFromRxMsgCallback;
break;
case HAL_CAN_ERROR_CB_ID :
hcan->ErrorCallback = HAL_CAN_ErrorCallback;
break;
case HAL_CAN_MSPINIT_CB_ID :
hcan->MspInitCallback = HAL_CAN_MspInit;
break;
case HAL_CAN_MSPDEINIT_CB_ID :
hcan->MspDeInitCallback = HAL_CAN_MspDeInit;
break;
default :
/* Update the error code */
hcan->ErrorCode |= HAL_CAN_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
break;
}
}
else if (hcan->State == HAL_CAN_STATE_RESET)
{
switch (CallbackID)
{
case HAL_CAN_MSPINIT_CB_ID :
hcan->MspInitCallback = HAL_CAN_MspInit;
break;
case HAL_CAN_MSPDEINIT_CB_ID :
hcan->MspDeInitCallback = HAL_CAN_MspDeInit;
break;
default :
/* Update the error code */
hcan->ErrorCode |= HAL_CAN_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
break;
}
}
else
{
/* Update the error code */
hcan->ErrorCode |= HAL_CAN_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
}
return status;
}
#endif /* USE_HAL_CAN_REGISTER_CALLBACKS */
/**
* @}
*/
/** @defgroup CAN_Exported_Functions_Group2 Configuration functions
* @brief Configuration functions.
*
@verbatim
==============================================================================
##### Configuration functions #####
==============================================================================
[..] This section provides functions allowing to:
(+) HAL_CAN_ConfigFilter : Configure the CAN reception filters
@endverbatim
* @{
*/
/**
* @brief Configures the CAN reception filter according to the specified
* parameters in the CAN_FilterInitStruct.
* @param hcan pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @param sFilterConfig pointer to a CAN_FilterTypeDef structure that
* contains the filter configuration information.
* @retval None
*/
HAL_StatusTypeDef HAL_CAN_ConfigFilter(CAN_HandleTypeDef *hcan, CAN_FilterTypeDef *sFilterConfig)
{
uint32_t filternbrbitpos;
CAN_TypeDef *can_ip = hcan->Instance;
HAL_CAN_StateTypeDef state = hcan->State;
if ((state == HAL_CAN_STATE_READY) ||
(state == HAL_CAN_STATE_LISTENING))
{
/* Check the parameters */
assert_param(IS_CAN_FILTER_ID_HALFWORD(sFilterConfig->FilterIdHigh));
assert_param(IS_CAN_FILTER_ID_HALFWORD(sFilterConfig->FilterIdLow));
assert_param(IS_CAN_FILTER_ID_HALFWORD(sFilterConfig->FilterMaskIdHigh));
assert_param(IS_CAN_FILTER_ID_HALFWORD(sFilterConfig->FilterMaskIdLow));
assert_param(IS_CAN_FILTER_MODE(sFilterConfig->FilterMode));
assert_param(IS_CAN_FILTER_SCALE(sFilterConfig->FilterScale));
assert_param(IS_CAN_FILTER_FIFO(sFilterConfig->FilterFIFOAssignment));
assert_param(IS_CAN_FILTER_ACTIVATION(sFilterConfig->FilterActivation));
#if defined(CAN2)
/* CAN1 and CAN2 are dual instances with 28 common filters banks */
/* Select master instance to access the filter banks */
can_ip = CAN1;
/* Check the parameters */
assert_param(IS_CAN_FILTER_BANK_DUAL(sFilterConfig->FilterBank));
assert_param(IS_CAN_FILTER_BANK_DUAL(sFilterConfig->SlaveStartFilterBank));
#else
/* CAN1 is single instance with 14 dedicated filters banks */
/* Check the parameters */
assert_param(IS_CAN_FILTER_BANK_SINGLE(sFilterConfig->FilterBank));
#endif
/* Initialisation mode for the filter */
SET_BIT(can_ip->FMR, CAN_FMR_FINIT);
#if defined(CAN2)
/* Select the start filter number of CAN2 slave instance */
CLEAR_BIT(can_ip->FMR, CAN_FMR_CAN2SB);
SET_BIT(can_ip->FMR, sFilterConfig->SlaveStartFilterBank << CAN_FMR_CAN2SB_Pos);
#endif
/* Convert filter number into bit position */
filternbrbitpos = (uint32_t)1 << (sFilterConfig->FilterBank & 0x1FU);
/* Filter Deactivation */
CLEAR_BIT(can_ip->FA1R, filternbrbitpos);
/* Filter Scale */
if (sFilterConfig->FilterScale == CAN_FILTERSCALE_16BIT)
{
/* 16-bit scale for the filter */
CLEAR_BIT(can_ip->FS1R, filternbrbitpos);
/* First 16-bit identifier and First 16-bit mask */
/* Or First 16-bit identifier and Second 16-bit identifier */
can_ip->sFilterRegister[sFilterConfig->FilterBank].FR1 =
((0x0000FFFFU & (uint32_t)sFilterConfig->FilterMaskIdLow) << 16U) |
(0x0000FFFFU & (uint32_t)sFilterConfig->FilterIdLow);
/* Second 16-bit identifier and Second 16-bit mask */
/* Or Third 16-bit identifier and Fourth 16-bit identifier */
can_ip->sFilterRegister[sFilterConfig->FilterBank].FR2 =
((0x0000FFFFU & (uint32_t)sFilterConfig->FilterMaskIdHigh) << 16U) |
(0x0000FFFFU & (uint32_t)sFilterConfig->FilterIdHigh);
}
if (sFilterConfig->FilterScale == CAN_FILTERSCALE_32BIT)
{
/* 32-bit scale for the filter */
SET_BIT(can_ip->FS1R, filternbrbitpos);
/* 32-bit identifier or First 32-bit identifier */
can_ip->sFilterRegister[sFilterConfig->FilterBank].FR1 =
((0x0000FFFFU & (uint32_t)sFilterConfig->FilterIdHigh) << 16U) |
(0x0000FFFFU & (uint32_t)sFilterConfig->FilterIdLow);
/* 32-bit mask or Second 32-bit identifier */
can_ip->sFilterRegister[sFilterConfig->FilterBank].FR2 =
((0x0000FFFFU & (uint32_t)sFilterConfig->FilterMaskIdHigh) << 16U) |
(0x0000FFFFU & (uint32_t)sFilterConfig->FilterMaskIdLow);
}
/* Filter Mode */
if (sFilterConfig->FilterMode == CAN_FILTERMODE_IDMASK)
{
/* Id/Mask mode for the filter*/
CLEAR_BIT(can_ip->FM1R, filternbrbitpos);
}
else /* CAN_FilterInitStruct->CAN_FilterMode == CAN_FilterMode_IdList */
{
/* Identifier list mode for the filter*/
SET_BIT(can_ip->FM1R, filternbrbitpos);
}
/* Filter FIFO assignment */
if (sFilterConfig->FilterFIFOAssignment == CAN_FILTER_FIFO0)
{
/* FIFO 0 assignation for the filter */
CLEAR_BIT(can_ip->FFA1R, filternbrbitpos);
}
else
{
/* FIFO 1 assignation for the filter */
SET_BIT(can_ip->FFA1R, filternbrbitpos);
}
/* Filter activation */
if (sFilterConfig->FilterActivation == CAN_FILTER_ENABLE)
{
SET_BIT(can_ip->FA1R, filternbrbitpos);
}
/* Leave the initialisation mode for the filter */
CLEAR_BIT(can_ip->FMR, CAN_FMR_FINIT);
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hcan->ErrorCode |= HAL_CAN_ERROR_NOT_INITIALIZED;
return HAL_ERROR;
}
}
/**
* @}
*/
/** @defgroup CAN_Exported_Functions_Group3 Control functions
* @brief Control functions
*
@verbatim
==============================================================================
##### Control functions #####
==============================================================================
[..] This section provides functions allowing to:
(+) HAL_CAN_Start : Start the CAN module
(+) HAL_CAN_Stop : Stop the CAN module
(+) HAL_CAN_RequestSleep : Request sleep mode entry.
(+) HAL_CAN_WakeUp : Wake up from sleep mode.
(+) HAL_CAN_IsSleepActive : Check is sleep mode is active.
(+) HAL_CAN_AddTxMessage : Add a message to the Tx mailboxes
and activate the corresponding
transmission request
(+) HAL_CAN_AbortTxRequest : Abort transmission request
(+) HAL_CAN_GetTxMailboxesFreeLevel : Return Tx mailboxes free level
(+) HAL_CAN_IsTxMessagePending : Check if a transmission request is
pending on the selected Tx mailbox
(+) HAL_CAN_GetRxMessage : Get a CAN frame from the Rx FIFO
(+) HAL_CAN_GetRxFifoFillLevel : Return Rx FIFO fill level
@endverbatim
* @{
*/
/**
* @brief Start the CAN module.
* @param hcan pointer to an CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CAN_Start(CAN_HandleTypeDef *hcan)
{
uint32_t tickstart;
if (hcan->State == HAL_CAN_STATE_READY)
{
/* Change CAN peripheral state */
hcan->State = HAL_CAN_STATE_LISTENING;
/* Request leave initialisation */
CLEAR_BIT(hcan->Instance->MCR, CAN_MCR_INRQ);
/* Get tick */
tickstart = HAL_GetTick();
/* Wait the acknowledge */
while ((hcan->Instance->MSR & CAN_MSR_INAK) != 0U)
{
/* Check for the Timeout */
if ((HAL_GetTick() - tickstart) > CAN_TIMEOUT_VALUE)
{
/* Update error code */
hcan->ErrorCode |= HAL_CAN_ERROR_TIMEOUT;
/* Change CAN state */
hcan->State = HAL_CAN_STATE_ERROR;
return HAL_ERROR;
}
}
/* Reset the CAN ErrorCode */
hcan->ErrorCode = HAL_CAN_ERROR_NONE;
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hcan->ErrorCode |= HAL_CAN_ERROR_NOT_READY;
return HAL_ERROR;
}
}
/**
* @brief Stop the CAN module and enable access to configuration registers.
* @param hcan pointer to an CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CAN_Stop(CAN_HandleTypeDef *hcan)
{
uint32_t tickstart;
if (hcan->State == HAL_CAN_STATE_LISTENING)
{
/* Request initialisation */
SET_BIT(hcan->Instance->MCR, CAN_MCR_INRQ);
/* Get tick */
tickstart = HAL_GetTick();
/* Wait the acknowledge */
while ((hcan->Instance->MSR & CAN_MSR_INAK) == 0U)
{
/* Check for the Timeout */
if ((HAL_GetTick() - tickstart) > CAN_TIMEOUT_VALUE)
{
/* Update error code */
hcan->ErrorCode |= HAL_CAN_ERROR_TIMEOUT;
/* Change CAN state */
hcan->State = HAL_CAN_STATE_ERROR;
return HAL_ERROR;
}
}
/* Exit from sleep mode */
CLEAR_BIT(hcan->Instance->MCR, CAN_MCR_SLEEP);
/* Change CAN peripheral state */
hcan->State = HAL_CAN_STATE_READY;
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hcan->ErrorCode |= HAL_CAN_ERROR_NOT_STARTED;
return HAL_ERROR;
}
}
/**
* @brief Request the sleep mode (low power) entry.
* When returning from this function, Sleep mode will be entered
* as soon as the current CAN activity (transmission or reception
* of a CAN frame) has been completed.
* @param hcan pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @retval HAL status.
*/
HAL_StatusTypeDef HAL_CAN_RequestSleep(CAN_HandleTypeDef *hcan)
{
HAL_CAN_StateTypeDef state = hcan->State;
if ((state == HAL_CAN_STATE_READY) ||
(state == HAL_CAN_STATE_LISTENING))
{
/* Request Sleep mode */
SET_BIT(hcan->Instance->MCR, CAN_MCR_SLEEP);
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hcan->ErrorCode |= HAL_CAN_ERROR_NOT_INITIALIZED;
/* Return function status */
return HAL_ERROR;
}
}
/**
* @brief Wake up from sleep mode.
* When returning with HAL_OK status from this function, Sleep mode
* is exited.
* @param hcan pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @retval HAL status.
*/
HAL_StatusTypeDef HAL_CAN_WakeUp(CAN_HandleTypeDef *hcan)
{
__IO uint32_t count = 0;
uint32_t timeout = 1000000U;
HAL_CAN_StateTypeDef state = hcan->State;
if ((state == HAL_CAN_STATE_READY) ||
(state == HAL_CAN_STATE_LISTENING))
{
/* Wake up request */
CLEAR_BIT(hcan->Instance->MCR, CAN_MCR_SLEEP);
/* Wait sleep mode is exited */
do
{
/* Increment counter */
count++;
/* Check if timeout is reached */
if (count > timeout)
{
/* Update error code */
hcan->ErrorCode |= HAL_CAN_ERROR_TIMEOUT;
return HAL_ERROR;
}
}
while ((hcan->Instance->MSR & CAN_MSR_SLAK) != 0U);
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hcan->ErrorCode |= HAL_CAN_ERROR_NOT_INITIALIZED;
return HAL_ERROR;
}
}
/**
* @brief Check is sleep mode is active.
* @param hcan pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @retval Status
* - 0 : Sleep mode is not active.
* - 1 : Sleep mode is active.
*/
uint32_t HAL_CAN_IsSleepActive(CAN_HandleTypeDef *hcan)
{
uint32_t status = 0U;
HAL_CAN_StateTypeDef state = hcan->State;
if ((state == HAL_CAN_STATE_READY) ||
(state == HAL_CAN_STATE_LISTENING))
{
/* Check Sleep mode */
if ((hcan->Instance->MSR & CAN_MSR_SLAK) != 0U)
{
status = 1U;
}
}
/* Return function status */
return status;
}
/**
* @brief Add a message to the first free Tx mailbox and activate the
* corresponding transmission request.
* @param hcan pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @param pHeader pointer to a CAN_TxHeaderTypeDef structure.
* @param aData array containing the payload of the Tx frame.
* @param pTxMailbox pointer to a variable where the function will return
* the TxMailbox used to store the Tx message.
* This parameter can be a value of @arg CAN_Tx_Mailboxes.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CAN_AddTxMessage(CAN_HandleTypeDef *hcan, CAN_TxHeaderTypeDef *pHeader, uint8_t aData[], uint32_t *pTxMailbox)
{
uint32_t transmitmailbox;
HAL_CAN_StateTypeDef state = hcan->State;
uint32_t tsr = READ_REG(hcan->Instance->TSR);
/* Check the parameters */
assert_param(IS_CAN_IDTYPE(pHeader->IDE));
assert_param(IS_CAN_RTR(pHeader->RTR));
assert_param(IS_CAN_DLC(pHeader->DLC));
if (pHeader->IDE == CAN_ID_STD)
{
assert_param(IS_CAN_STDID(pHeader->StdId));
}
else
{
assert_param(IS_CAN_EXTID(pHeader->ExtId));
}
assert_param(IS_FUNCTIONAL_STATE(pHeader->TransmitGlobalTime));
if ((state == HAL_CAN_STATE_READY) ||
(state == HAL_CAN_STATE_LISTENING))
{
/* Check that all the Tx mailboxes are not full */
if (((tsr & CAN_TSR_TME0) != 0U) ||
((tsr & CAN_TSR_TME1) != 0U) ||
((tsr & CAN_TSR_TME2) != 0U))
{
/* Select an empty transmit mailbox */
transmitmailbox = (tsr & CAN_TSR_CODE) >> CAN_TSR_CODE_Pos;
/* Check transmit mailbox value */
if (transmitmailbox > 2U)
{
/* Update error code */
hcan->ErrorCode |= HAL_CAN_ERROR_INTERNAL;
return HAL_ERROR;
}
/* Store the Tx mailbox */
*pTxMailbox = (uint32_t)1 << transmitmailbox;
/* Set up the Id */
if (pHeader->IDE == CAN_ID_STD)
{
hcan->Instance->sTxMailBox[transmitmailbox].TIR = ((pHeader->StdId << CAN_TI0R_STID_Pos) |
pHeader->RTR);
}
else
{
hcan->Instance->sTxMailBox[transmitmailbox].TIR = ((pHeader->ExtId << CAN_TI0R_EXID_Pos) |
pHeader->IDE |
pHeader->RTR);
}
/* Set up the DLC */
hcan->Instance->sTxMailBox[transmitmailbox].TDTR = (pHeader->DLC);
/* Set up the Transmit Global Time mode */
if (pHeader->TransmitGlobalTime == ENABLE)
{
SET_BIT(hcan->Instance->sTxMailBox[transmitmailbox].TDTR, CAN_TDT0R_TGT);
}
/* Set up the data field */
WRITE_REG(hcan->Instance->sTxMailBox[transmitmailbox].TDHR,
((uint32_t)aData[7] << CAN_TDH0R_DATA7_Pos) |
((uint32_t)aData[6] << CAN_TDH0R_DATA6_Pos) |
((uint32_t)aData[5] << CAN_TDH0R_DATA5_Pos) |
((uint32_t)aData[4] << CAN_TDH0R_DATA4_Pos));
WRITE_REG(hcan->Instance->sTxMailBox[transmitmailbox].TDLR,
((uint32_t)aData[3] << CAN_TDL0R_DATA3_Pos) |
((uint32_t)aData[2] << CAN_TDL0R_DATA2_Pos) |
((uint32_t)aData[1] << CAN_TDL0R_DATA1_Pos) |
((uint32_t)aData[0] << CAN_TDL0R_DATA0_Pos));
/* Request transmission */
SET_BIT(hcan->Instance->sTxMailBox[transmitmailbox].TIR, CAN_TI0R_TXRQ);
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hcan->ErrorCode |= HAL_CAN_ERROR_PARAM;
return HAL_ERROR;
}
}
else
{
/* Update error code */
hcan->ErrorCode |= HAL_CAN_ERROR_NOT_INITIALIZED;
return HAL_ERROR;
}
}
/**
* @brief Abort transmission requests
* @param hcan pointer to an CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @param TxMailboxes List of the Tx Mailboxes to abort.
* This parameter can be any combination of @arg CAN_Tx_Mailboxes.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CAN_AbortTxRequest(CAN_HandleTypeDef *hcan, uint32_t TxMailboxes)
{
HAL_CAN_StateTypeDef state = hcan->State;
/* Check function parameters */
assert_param(IS_CAN_TX_MAILBOX_LIST(TxMailboxes));
if ((state == HAL_CAN_STATE_READY) ||
(state == HAL_CAN_STATE_LISTENING))
{
/* Check Tx Mailbox 0 */
if ((TxMailboxes & CAN_TX_MAILBOX0) != 0U)
{
/* Add cancellation request for Tx Mailbox 0 */
SET_BIT(hcan->Instance->TSR, CAN_TSR_ABRQ0);
}
/* Check Tx Mailbox 1 */
if ((TxMailboxes & CAN_TX_MAILBOX1) != 0U)
{
/* Add cancellation request for Tx Mailbox 1 */
SET_BIT(hcan->Instance->TSR, CAN_TSR_ABRQ1);
}
/* Check Tx Mailbox 2 */
if ((TxMailboxes & CAN_TX_MAILBOX2) != 0U)
{
/* Add cancellation request for Tx Mailbox 2 */
SET_BIT(hcan->Instance->TSR, CAN_TSR_ABRQ2);
}
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hcan->ErrorCode |= HAL_CAN_ERROR_NOT_INITIALIZED;
return HAL_ERROR;
}
}
/**
* @brief Return Tx Mailboxes free level: number of free Tx Mailboxes.
* @param hcan pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @retval Number of free Tx Mailboxes.
*/
uint32_t HAL_CAN_GetTxMailboxesFreeLevel(CAN_HandleTypeDef *hcan)
{
uint32_t freelevel = 0U;
HAL_CAN_StateTypeDef state = hcan->State;
if ((state == HAL_CAN_STATE_READY) ||
(state == HAL_CAN_STATE_LISTENING))
{
/* Check Tx Mailbox 0 status */
if ((hcan->Instance->TSR & CAN_TSR_TME0) != 0U)
{
freelevel++;
}
/* Check Tx Mailbox 1 status */
if ((hcan->Instance->TSR & CAN_TSR_TME1) != 0U)
{
freelevel++;
}
/* Check Tx Mailbox 2 status */
if ((hcan->Instance->TSR & CAN_TSR_TME2) != 0U)
{
freelevel++;
}
}
/* Return Tx Mailboxes free level */
return freelevel;
}
/**
* @brief Check if a transmission request is pending on the selected Tx
* Mailboxes.
* @param hcan pointer to an CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @param TxMailboxes List of Tx Mailboxes to check.
* This parameter can be any combination of @arg CAN_Tx_Mailboxes.
* @retval Status
* - 0 : No pending transmission request on any selected Tx Mailboxes.
* - 1 : Pending transmission request on at least one of the selected
* Tx Mailbox.
*/
uint32_t HAL_CAN_IsTxMessagePending(CAN_HandleTypeDef *hcan, uint32_t TxMailboxes)
{
uint32_t status = 0U;
HAL_CAN_StateTypeDef state = hcan->State;
/* Check function parameters */
assert_param(IS_CAN_TX_MAILBOX_LIST(TxMailboxes));
if ((state == HAL_CAN_STATE_READY) ||
(state == HAL_CAN_STATE_LISTENING))
{
/* Check pending transmission request on the selected Tx Mailboxes */
if ((hcan->Instance->TSR & (TxMailboxes << CAN_TSR_TME0_Pos)) != (TxMailboxes << CAN_TSR_TME0_Pos))
{
status = 1U;
}
}
/* Return status */
return status;
}
/**
* @brief Return timestamp of Tx message sent, if time triggered communication
mode is enabled.
* @param hcan pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @param TxMailbox Tx Mailbox where the timestamp of message sent will be
* read.
* This parameter can be one value of @arg CAN_Tx_Mailboxes.
* @retval Timestamp of message sent from Tx Mailbox.
*/
uint32_t HAL_CAN_GetTxTimestamp(CAN_HandleTypeDef *hcan, uint32_t TxMailbox)
{
uint32_t timestamp = 0U;
uint32_t transmitmailbox;
HAL_CAN_StateTypeDef state = hcan->State;
/* Check function parameters */
assert_param(IS_CAN_TX_MAILBOX(TxMailbox));
if ((state == HAL_CAN_STATE_READY) ||
(state == HAL_CAN_STATE_LISTENING))
{
/* Select the Tx mailbox */
transmitmailbox = POSITION_VAL(TxMailbox);
/* Get timestamp */
timestamp = (hcan->Instance->sTxMailBox[transmitmailbox].TDTR & CAN_TDT0R_TIME) >> CAN_TDT0R_TIME_Pos;
}
/* Return the timestamp */
return timestamp;
}
/**
* @brief Get an CAN frame from the Rx FIFO zone into the message RAM.
* @param hcan pointer to an CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @param RxFifo Fifo number of the received message to be read.
* This parameter can be a value of @arg CAN_receive_FIFO_number.
* @param pHeader pointer to a CAN_RxHeaderTypeDef structure where the header
* of the Rx frame will be stored.
* @param aData array where the payload of the Rx frame will be stored.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CAN_GetRxMessage(CAN_HandleTypeDef *hcan, uint32_t RxFifo, CAN_RxHeaderTypeDef *pHeader, uint8_t aData[])
{
HAL_CAN_StateTypeDef state = hcan->State;
assert_param(IS_CAN_RX_FIFO(RxFifo));
if ((state == HAL_CAN_STATE_READY) ||
(state == HAL_CAN_STATE_LISTENING))
{
/* Check the Rx FIFO */
if (RxFifo == CAN_RX_FIFO0) /* Rx element is assigned to Rx FIFO 0 */
{
/* Check that the Rx FIFO 0 is not empty */
if ((hcan->Instance->RF0R & CAN_RF0R_FMP0) == 0U)
{
/* Update error code */
hcan->ErrorCode |= HAL_CAN_ERROR_PARAM;
return HAL_ERROR;
}
}
else /* Rx element is assigned to Rx FIFO 1 */
{
/* Check that the Rx FIFO 1 is not empty */
if ((hcan->Instance->RF1R & CAN_RF1R_FMP1) == 0U)
{
/* Update error code */
hcan->ErrorCode |= HAL_CAN_ERROR_PARAM;
return HAL_ERROR;
}
}
/* Get the header */
pHeader->IDE = CAN_RI0R_IDE & hcan->Instance->sFIFOMailBox[RxFifo].RIR;
if (pHeader->IDE == CAN_ID_STD)
{
pHeader->StdId = (CAN_RI0R_STID & hcan->Instance->sFIFOMailBox[RxFifo].RIR) >> CAN_TI0R_STID_Pos;
}
else
{
pHeader->ExtId = ((CAN_RI0R_EXID | CAN_RI0R_STID) & hcan->Instance->sFIFOMailBox[RxFifo].RIR) >> CAN_RI0R_EXID_Pos;
}
pHeader->RTR = (CAN_RI0R_RTR & hcan->Instance->sFIFOMailBox[RxFifo].RIR);
pHeader->DLC = (CAN_RDT0R_DLC & hcan->Instance->sFIFOMailBox[RxFifo].RDTR) >> CAN_RDT0R_DLC_Pos;
pHeader->FilterMatchIndex = (CAN_RDT0R_FMI & hcan->Instance->sFIFOMailBox[RxFifo].RDTR) >> CAN_RDT0R_FMI_Pos;
pHeader->Timestamp = (CAN_RDT0R_TIME & hcan->Instance->sFIFOMailBox[RxFifo].RDTR) >> CAN_RDT0R_TIME_Pos;
/* Get the data */
aData[0] = (uint8_t)((CAN_RDL0R_DATA0 & hcan->Instance->sFIFOMailBox[RxFifo].RDLR) >> CAN_RDL0R_DATA0_Pos);
aData[1] = (uint8_t)((CAN_RDL0R_DATA1 & hcan->Instance->sFIFOMailBox[RxFifo].RDLR) >> CAN_RDL0R_DATA1_Pos);
aData[2] = (uint8_t)((CAN_RDL0R_DATA2 & hcan->Instance->sFIFOMailBox[RxFifo].RDLR) >> CAN_RDL0R_DATA2_Pos);
aData[3] = (uint8_t)((CAN_RDL0R_DATA3 & hcan->Instance->sFIFOMailBox[RxFifo].RDLR) >> CAN_RDL0R_DATA3_Pos);
aData[4] = (uint8_t)((CAN_RDH0R_DATA4 & hcan->Instance->sFIFOMailBox[RxFifo].RDHR) >> CAN_RDH0R_DATA4_Pos);
aData[5] = (uint8_t)((CAN_RDH0R_DATA5 & hcan->Instance->sFIFOMailBox[RxFifo].RDHR) >> CAN_RDH0R_DATA5_Pos);
aData[6] = (uint8_t)((CAN_RDH0R_DATA6 & hcan->Instance->sFIFOMailBox[RxFifo].RDHR) >> CAN_RDH0R_DATA6_Pos);
aData[7] = (uint8_t)((CAN_RDH0R_DATA7 & hcan->Instance->sFIFOMailBox[RxFifo].RDHR) >> CAN_RDH0R_DATA7_Pos);
/* Release the FIFO */
if (RxFifo == CAN_RX_FIFO0) /* Rx element is assigned to Rx FIFO 0 */
{
/* Release RX FIFO 0 */
SET_BIT(hcan->Instance->RF0R, CAN_RF0R_RFOM0);
}
else /* Rx element is assigned to Rx FIFO 1 */
{
/* Release RX FIFO 1 */
SET_BIT(hcan->Instance->RF1R, CAN_RF1R_RFOM1);
}
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hcan->ErrorCode |= HAL_CAN_ERROR_NOT_INITIALIZED;
return HAL_ERROR;
}
}
/**
* @brief Return Rx FIFO fill level.
* @param hcan pointer to an CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @param RxFifo Rx FIFO.
* This parameter can be a value of @arg CAN_receive_FIFO_number.
* @retval Number of messages available in Rx FIFO.
*/
uint32_t HAL_CAN_GetRxFifoFillLevel(CAN_HandleTypeDef *hcan, uint32_t RxFifo)
{
uint32_t filllevel = 0U;
HAL_CAN_StateTypeDef state = hcan->State;
/* Check function parameters */
assert_param(IS_CAN_RX_FIFO(RxFifo));
if ((state == HAL_CAN_STATE_READY) ||
(state == HAL_CAN_STATE_LISTENING))
{
if (RxFifo == CAN_RX_FIFO0)
{
filllevel = hcan->Instance->RF0R & CAN_RF0R_FMP0;
}
else /* RxFifo == CAN_RX_FIFO1 */
{
filllevel = hcan->Instance->RF1R & CAN_RF1R_FMP1;
}
}
/* Return Rx FIFO fill level */
return filllevel;
}
/**
* @}
*/
/** @defgroup CAN_Exported_Functions_Group4 Interrupts management
* @brief Interrupts management
*
@verbatim
==============================================================================
##### Interrupts management #####
==============================================================================
[..] This section provides functions allowing to:
(+) HAL_CAN_ActivateNotification : Enable interrupts
(+) HAL_CAN_DeactivateNotification : Disable interrupts
(+) HAL_CAN_IRQHandler : Handles CAN interrupt request
@endverbatim
* @{
*/
/**
* @brief Enable interrupts.
* @param hcan pointer to an CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @param ActiveITs indicates which interrupts will be enabled.
* This parameter can be any combination of @arg CAN_Interrupts.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CAN_ActivateNotification(CAN_HandleTypeDef *hcan, uint32_t ActiveITs)
{
HAL_CAN_StateTypeDef state = hcan->State;
/* Check function parameters */
assert_param(IS_CAN_IT(ActiveITs));
if ((state == HAL_CAN_STATE_READY) ||
(state == HAL_CAN_STATE_LISTENING))
{
/* Enable the selected interrupts */
__HAL_CAN_ENABLE_IT(hcan, ActiveITs);
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hcan->ErrorCode |= HAL_CAN_ERROR_NOT_INITIALIZED;
return HAL_ERROR;
}
}
/**
* @brief Disable interrupts.
* @param hcan pointer to an CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @param InactiveITs indicates which interrupts will be disabled.
* This parameter can be any combination of @arg CAN_Interrupts.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CAN_DeactivateNotification(CAN_HandleTypeDef *hcan, uint32_t InactiveITs)
{
HAL_CAN_StateTypeDef state = hcan->State;
/* Check function parameters */
assert_param(IS_CAN_IT(InactiveITs));
if ((state == HAL_CAN_STATE_READY) ||
(state == HAL_CAN_STATE_LISTENING))
{
/* Disable the selected interrupts */
__HAL_CAN_DISABLE_IT(hcan, InactiveITs);
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hcan->ErrorCode |= HAL_CAN_ERROR_NOT_INITIALIZED;
return HAL_ERROR;
}
}
/**
* @brief Handles CAN interrupt request
* @param hcan pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @retval None
*/
void HAL_CAN_IRQHandler(CAN_HandleTypeDef *hcan)
{
uint32_t errorcode = HAL_CAN_ERROR_NONE;
uint32_t interrupts = READ_REG(hcan->Instance->IER);
uint32_t msrflags = READ_REG(hcan->Instance->MSR);
uint32_t tsrflags = READ_REG(hcan->Instance->TSR);
uint32_t rf0rflags = READ_REG(hcan->Instance->RF0R);
uint32_t rf1rflags = READ_REG(hcan->Instance->RF1R);
uint32_t esrflags = READ_REG(hcan->Instance->ESR);
/* Transmit Mailbox empty interrupt management *****************************/
if ((interrupts & CAN_IT_TX_MAILBOX_EMPTY) != 0U)
{
/* Transmit Mailbox 0 management *****************************************/
if ((tsrflags & CAN_TSR_RQCP0) != 0U)
{
/* Clear the Transmission Complete flag (and TXOK0,ALST0,TERR0 bits) */
__HAL_CAN_CLEAR_FLAG(hcan, CAN_FLAG_RQCP0);
if ((tsrflags & CAN_TSR_TXOK0) != 0U)
{
/* Transmission Mailbox 0 complete callback */
#if USE_HAL_CAN_REGISTER_CALLBACKS == 1
/* Call registered callback*/
hcan->TxMailbox0CompleteCallback(hcan);
#else
/* Call weak (surcharged) callback */
HAL_CAN_TxMailbox0CompleteCallback(hcan);
#endif /* USE_HAL_CAN_REGISTER_CALLBACKS */
}
else
{
if ((tsrflags & CAN_TSR_ALST0) != 0U)
{
/* Update error code */
errorcode |= HAL_CAN_ERROR_TX_ALST0;
}
else if ((tsrflags & CAN_TSR_TERR0) != 0U)
{
/* Update error code */
errorcode |= HAL_CAN_ERROR_TX_TERR0;
}
else
{
/* Transmission Mailbox 0 abort callback */
#if USE_HAL_CAN_REGISTER_CALLBACKS == 1
/* Call registered callback*/
hcan->TxMailbox0AbortCallback(hcan);
#else
/* Call weak (surcharged) callback */
HAL_CAN_TxMailbox0AbortCallback(hcan);
#endif /* USE_HAL_CAN_REGISTER_CALLBACKS */
}
}
}
/* Transmit Mailbox 1 management *****************************************/
if ((tsrflags & CAN_TSR_RQCP1) != 0U)
{
/* Clear the Transmission Complete flag (and TXOK1,ALST1,TERR1 bits) */
__HAL_CAN_CLEAR_FLAG(hcan, CAN_FLAG_RQCP1);
if ((tsrflags & CAN_TSR_TXOK1) != 0U)
{
/* Transmission Mailbox 1 complete callback */
#if USE_HAL_CAN_REGISTER_CALLBACKS == 1
/* Call registered callback*/
hcan->TxMailbox1CompleteCallback(hcan);
#else
/* Call weak (surcharged) callback */
HAL_CAN_TxMailbox1CompleteCallback(hcan);
#endif /* USE_HAL_CAN_REGISTER_CALLBACKS */
}
else
{
if ((tsrflags & CAN_TSR_ALST1) != 0U)
{
/* Update error code */
errorcode |= HAL_CAN_ERROR_TX_ALST1;
}
else if ((tsrflags & CAN_TSR_TERR1) != 0U)
{
/* Update error code */
errorcode |= HAL_CAN_ERROR_TX_TERR1;
}
else
{
/* Transmission Mailbox 1 abort callback */
#if USE_HAL_CAN_REGISTER_CALLBACKS == 1
/* Call registered callback*/
hcan->TxMailbox1AbortCallback(hcan);
#else
/* Call weak (surcharged) callback */
HAL_CAN_TxMailbox1AbortCallback(hcan);
#endif /* USE_HAL_CAN_REGISTER_CALLBACKS */
}
}
}
/* Transmit Mailbox 2 management *****************************************/
if ((tsrflags & CAN_TSR_RQCP2) != 0U)
{
/* Clear the Transmission Complete flag (and TXOK2,ALST2,TERR2 bits) */
__HAL_CAN_CLEAR_FLAG(hcan, CAN_FLAG_RQCP2);
if ((tsrflags & CAN_TSR_TXOK2) != 0U)
{
/* Transmission Mailbox 2 complete callback */
#if USE_HAL_CAN_REGISTER_CALLBACKS == 1
/* Call registered callback*/
hcan->TxMailbox2CompleteCallback(hcan);
#else
/* Call weak (surcharged) callback */
HAL_CAN_TxMailbox2CompleteCallback(hcan);
#endif /* USE_HAL_CAN_REGISTER_CALLBACKS */
}
else
{
if ((tsrflags & CAN_TSR_ALST2) != 0U)
{
/* Update error code */
errorcode |= HAL_CAN_ERROR_TX_ALST2;
}
else if ((tsrflags & CAN_TSR_TERR2) != 0U)
{
/* Update error code */
errorcode |= HAL_CAN_ERROR_TX_TERR2;
}
else
{
/* Transmission Mailbox 2 abort callback */
#if USE_HAL_CAN_REGISTER_CALLBACKS == 1
/* Call registered callback*/
hcan->TxMailbox2AbortCallback(hcan);
#else
/* Call weak (surcharged) callback */
HAL_CAN_TxMailbox2AbortCallback(hcan);
#endif /* USE_HAL_CAN_REGISTER_CALLBACKS */
}
}
}
}
/* Receive FIFO 0 overrun interrupt management *****************************/
if ((interrupts & CAN_IT_RX_FIFO0_OVERRUN) != 0U)
{
if ((rf0rflags & CAN_RF0R_FOVR0) != 0U)
{
/* Set CAN error code to Rx Fifo 0 overrun error */
errorcode |= HAL_CAN_ERROR_RX_FOV0;
/* Clear FIFO0 Overrun Flag */
__HAL_CAN_CLEAR_FLAG(hcan, CAN_FLAG_FOV0);
}
}
/* Receive FIFO 0 full interrupt management ********************************/
if ((interrupts & CAN_IT_RX_FIFO0_FULL) != 0U)
{
if ((rf0rflags & CAN_RF0R_FULL0) != 0U)
{
/* Clear FIFO 0 full Flag */
__HAL_CAN_CLEAR_FLAG(hcan, CAN_FLAG_FF0);
/* Receive FIFO 0 full Callback */
#if USE_HAL_CAN_REGISTER_CALLBACKS == 1
/* Call registered callback*/
hcan->RxFifo0FullCallback(hcan);
#else
/* Call weak (surcharged) callback */
HAL_CAN_RxFifo0FullCallback(hcan);
#endif /* USE_HAL_CAN_REGISTER_CALLBACKS */
}
}
/* Receive FIFO 0 message pending interrupt management *********************/
if ((interrupts & CAN_IT_RX_FIFO0_MSG_PENDING) != 0U)
{
/* Check if message is still pending */
if ((hcan->Instance->RF0R & CAN_RF0R_FMP0) != 0U)
{
/* Receive FIFO 0 message pending Callback */
#if USE_HAL_CAN_REGISTER_CALLBACKS == 1
/* Call registered callback*/
hcan->RxFifo0MsgPendingCallback(hcan);
#else
/* Call weak (surcharged) callback */
HAL_CAN_RxFifo0MsgPendingCallback(hcan);
#endif /* USE_HAL_CAN_REGISTER_CALLBACKS */
}
}
/* Receive FIFO 1 overrun interrupt management *****************************/
if ((interrupts & CAN_IT_RX_FIFO1_OVERRUN) != 0U)
{
if ((rf1rflags & CAN_RF1R_FOVR1) != 0U)
{
/* Set CAN error code to Rx Fifo 1 overrun error */
errorcode |= HAL_CAN_ERROR_RX_FOV1;
/* Clear FIFO1 Overrun Flag */
__HAL_CAN_CLEAR_FLAG(hcan, CAN_FLAG_FOV1);
}
}
/* Receive FIFO 1 full interrupt management ********************************/
if ((interrupts & CAN_IT_RX_FIFO1_FULL) != 0U)
{
if ((rf1rflags & CAN_RF1R_FULL1) != 0U)
{
/* Clear FIFO 1 full Flag */
__HAL_CAN_CLEAR_FLAG(hcan, CAN_FLAG_FF1);
/* Receive FIFO 1 full Callback */
#if USE_HAL_CAN_REGISTER_CALLBACKS == 1
/* Call registered callback*/
hcan->RxFifo1FullCallback(hcan);
#else
/* Call weak (surcharged) callback */
HAL_CAN_RxFifo1FullCallback(hcan);
#endif /* USE_HAL_CAN_REGISTER_CALLBACKS */
}
}
/* Receive FIFO 1 message pending interrupt management *********************/
if ((interrupts & CAN_IT_RX_FIFO1_MSG_PENDING) != 0U)
{
/* Check if message is still pending */
if ((hcan->Instance->RF1R & CAN_RF1R_FMP1) != 0U)
{
/* Receive FIFO 1 message pending Callback */
#if USE_HAL_CAN_REGISTER_CALLBACKS == 1
/* Call registered callback*/
hcan->RxFifo1MsgPendingCallback(hcan);
#else
/* Call weak (surcharged) callback */
HAL_CAN_RxFifo1MsgPendingCallback(hcan);
#endif /* USE_HAL_CAN_REGISTER_CALLBACKS */
}
}
/* Sleep interrupt management *********************************************/
if ((interrupts & CAN_IT_SLEEP_ACK) != 0U)
{
if ((msrflags & CAN_MSR_SLAKI) != 0U)
{
/* Clear Sleep interrupt Flag */
__HAL_CAN_CLEAR_FLAG(hcan, CAN_FLAG_SLAKI);
/* Sleep Callback */
#if USE_HAL_CAN_REGISTER_CALLBACKS == 1
/* Call registered callback*/
hcan->SleepCallback(hcan);
#else
/* Call weak (surcharged) callback */
HAL_CAN_SleepCallback(hcan);
#endif /* USE_HAL_CAN_REGISTER_CALLBACKS */
}
}
/* WakeUp interrupt management *********************************************/
if ((interrupts & CAN_IT_WAKEUP) != 0U)
{
if ((msrflags & CAN_MSR_WKUI) != 0U)
{
/* Clear WakeUp Flag */
__HAL_CAN_CLEAR_FLAG(hcan, CAN_FLAG_WKU);
/* WakeUp Callback */
#if USE_HAL_CAN_REGISTER_CALLBACKS == 1
/* Call registered callback*/
hcan->WakeUpFromRxMsgCallback(hcan);
#else
/* Call weak (surcharged) callback */
HAL_CAN_WakeUpFromRxMsgCallback(hcan);
#endif /* USE_HAL_CAN_REGISTER_CALLBACKS */
}
}
/* Error interrupts management *********************************************/
if ((interrupts & CAN_IT_ERROR) != 0U)
{
if ((msrflags & CAN_MSR_ERRI) != 0U)
{
/* Check Error Warning Flag */
if (((interrupts & CAN_IT_ERROR_WARNING) != 0U) &&
((esrflags & CAN_ESR_EWGF) != 0U))
{
/* Set CAN error code to Error Warning */
errorcode |= HAL_CAN_ERROR_EWG;
/* No need for clear of Error Warning Flag as read-only */
}
/* Check Error Passive Flag */
if (((interrupts & CAN_IT_ERROR_PASSIVE) != 0U) &&
((esrflags & CAN_ESR_EPVF) != 0U))
{
/* Set CAN error code to Error Passive */
errorcode |= HAL_CAN_ERROR_EPV;
/* No need for clear of Error Passive Flag as read-only */
}
/* Check Bus-off Flag */
if (((interrupts & CAN_IT_BUSOFF) != 0U) &&
((esrflags & CAN_ESR_BOFF) != 0U))
{
/* Set CAN error code to Bus-Off */
errorcode |= HAL_CAN_ERROR_BOF;
/* No need for clear of Error Bus-Off as read-only */
}
/* Check Last Error Code Flag */
if (((interrupts & CAN_IT_LAST_ERROR_CODE) != 0U) &&
((esrflags & CAN_ESR_LEC) != 0U))
{
switch (esrflags & CAN_ESR_LEC)
{
case (CAN_ESR_LEC_0):
/* Set CAN error code to Stuff error */
errorcode |= HAL_CAN_ERROR_STF;
break;
case (CAN_ESR_LEC_1):
/* Set CAN error code to Form error */
errorcode |= HAL_CAN_ERROR_FOR;
break;
case (CAN_ESR_LEC_1 | CAN_ESR_LEC_0):
/* Set CAN error code to Acknowledgement error */
errorcode |= HAL_CAN_ERROR_ACK;
break;
case (CAN_ESR_LEC_2):
/* Set CAN error code to Bit recessive error */
errorcode |= HAL_CAN_ERROR_BR;
break;
case (CAN_ESR_LEC_2 | CAN_ESR_LEC_0):
/* Set CAN error code to Bit Dominant error */
errorcode |= HAL_CAN_ERROR_BD;
break;
case (CAN_ESR_LEC_2 | CAN_ESR_LEC_1):
/* Set CAN error code to CRC error */
errorcode |= HAL_CAN_ERROR_CRC;
break;
default:
break;
}
/* Clear Last error code Flag */
CLEAR_BIT(hcan->Instance->ESR, CAN_ESR_LEC);
}
}
/* Clear ERRI Flag */
__HAL_CAN_CLEAR_FLAG(hcan, CAN_FLAG_ERRI);
}
/* Call the Error call Back in case of Errors */
if (errorcode != HAL_CAN_ERROR_NONE)
{
/* Update error code in handle */
hcan->ErrorCode |= errorcode;
/* Call Error callback function */
#if USE_HAL_CAN_REGISTER_CALLBACKS == 1
/* Call registered callback*/
hcan->ErrorCallback(hcan);
#else
/* Call weak (surcharged) callback */
HAL_CAN_ErrorCallback(hcan);
#endif /* USE_HAL_CAN_REGISTER_CALLBACKS */
}
}
/**
* @}
*/
/** @defgroup CAN_Exported_Functions_Group5 Callback functions
* @brief CAN Callback functions
*
@verbatim
==============================================================================
##### Callback functions #####
==============================================================================
[..]
This subsection provides the following callback functions:
(+) HAL_CAN_TxMailbox0CompleteCallback
(+) HAL_CAN_TxMailbox1CompleteCallback
(+) HAL_CAN_TxMailbox2CompleteCallback
(+) HAL_CAN_TxMailbox0AbortCallback
(+) HAL_CAN_TxMailbox1AbortCallback
(+) HAL_CAN_TxMailbox2AbortCallback
(+) HAL_CAN_RxFifo0MsgPendingCallback
(+) HAL_CAN_RxFifo0FullCallback
(+) HAL_CAN_RxFifo1MsgPendingCallback
(+) HAL_CAN_RxFifo1FullCallback
(+) HAL_CAN_SleepCallback
(+) HAL_CAN_WakeUpFromRxMsgCallback
(+) HAL_CAN_ErrorCallback
@endverbatim
* @{
*/
/**
* @brief Transmission Mailbox 0 complete callback.
* @param hcan pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @retval None
*/
__weak void HAL_CAN_TxMailbox0CompleteCallback(CAN_HandleTypeDef *hcan)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hcan);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_CAN_TxMailbox0CompleteCallback could be implemented in the
user file
*/
}
/**
* @brief Transmission Mailbox 1 complete callback.
* @param hcan pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @retval None
*/
__weak void HAL_CAN_TxMailbox1CompleteCallback(CAN_HandleTypeDef *hcan)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hcan);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_CAN_TxMailbox1CompleteCallback could be implemented in the
user file
*/
}
/**
* @brief Transmission Mailbox 2 complete callback.
* @param hcan pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @retval None
*/
__weak void HAL_CAN_TxMailbox2CompleteCallback(CAN_HandleTypeDef *hcan)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hcan);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_CAN_TxMailbox2CompleteCallback could be implemented in the
user file
*/
}
/**
* @brief Transmission Mailbox 0 Cancellation callback.
* @param hcan pointer to an CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @retval None
*/
__weak void HAL_CAN_TxMailbox0AbortCallback(CAN_HandleTypeDef *hcan)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hcan);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_CAN_TxMailbox0AbortCallback could be implemented in the
user file
*/
}
/**
* @brief Transmission Mailbox 1 Cancellation callback.
* @param hcan pointer to an CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @retval None
*/
__weak void HAL_CAN_TxMailbox1AbortCallback(CAN_HandleTypeDef *hcan)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hcan);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_CAN_TxMailbox1AbortCallback could be implemented in the
user file
*/
}
/**
* @brief Transmission Mailbox 2 Cancellation callback.
* @param hcan pointer to an CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @retval None
*/
__weak void HAL_CAN_TxMailbox2AbortCallback(CAN_HandleTypeDef *hcan)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hcan);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_CAN_TxMailbox2AbortCallback could be implemented in the
user file
*/
}
/**
* @brief Rx FIFO 0 message pending callback.
* @param hcan pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @retval None
*/
__weak void HAL_CAN_RxFifo0MsgPendingCallback(CAN_HandleTypeDef *hcan)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hcan);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_CAN_RxFifo0MsgPendingCallback could be implemented in the
user file
*/
}
/**
* @brief Rx FIFO 0 full callback.
* @param hcan pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @retval None
*/
__weak void HAL_CAN_RxFifo0FullCallback(CAN_HandleTypeDef *hcan)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hcan);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_CAN_RxFifo0FullCallback could be implemented in the user
file
*/
}
/**
* @brief Rx FIFO 1 message pending callback.
* @param hcan pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @retval None
*/
__weak void HAL_CAN_RxFifo1MsgPendingCallback(CAN_HandleTypeDef *hcan)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hcan);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_CAN_RxFifo1MsgPendingCallback could be implemented in the
user file
*/
}
/**
* @brief Rx FIFO 1 full callback.
* @param hcan pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @retval None
*/
__weak void HAL_CAN_RxFifo1FullCallback(CAN_HandleTypeDef *hcan)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hcan);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_CAN_RxFifo1FullCallback could be implemented in the user
file
*/
}
/**
* @brief Sleep callback.
* @param hcan pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @retval None
*/
__weak void HAL_CAN_SleepCallback(CAN_HandleTypeDef *hcan)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hcan);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_CAN_SleepCallback could be implemented in the user file
*/
}
/**
* @brief WakeUp from Rx message callback.
* @param hcan pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @retval None
*/
__weak void HAL_CAN_WakeUpFromRxMsgCallback(CAN_HandleTypeDef *hcan)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hcan);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_CAN_WakeUpFromRxMsgCallback could be implemented in the
user file
*/
}
/**
* @brief Error CAN callback.
* @param hcan pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @retval None
*/
__weak void HAL_CAN_ErrorCallback(CAN_HandleTypeDef *hcan)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hcan);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_CAN_ErrorCallback could be implemented in the user file
*/
}
/**
* @}
*/
/** @defgroup CAN_Exported_Functions_Group6 Peripheral State and Error functions
* @brief CAN Peripheral State functions
*
@verbatim
==============================================================================
##### Peripheral State and Error functions #####
==============================================================================
[..]
This subsection provides functions allowing to :
(+) HAL_CAN_GetState() : Return the CAN state.
(+) HAL_CAN_GetError() : Return the CAN error codes if any.
(+) HAL_CAN_ResetError(): Reset the CAN error codes if any.
@endverbatim
* @{
*/
/**
* @brief Return the CAN state.
* @param hcan pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @retval HAL state
*/
HAL_CAN_StateTypeDef HAL_CAN_GetState(CAN_HandleTypeDef *hcan)
{
HAL_CAN_StateTypeDef state = hcan->State;
if ((state == HAL_CAN_STATE_READY) ||
(state == HAL_CAN_STATE_LISTENING))
{
/* Check sleep mode acknowledge flag */
if ((hcan->Instance->MSR & CAN_MSR_SLAK) != 0U)
{
/* Sleep mode is active */
state = HAL_CAN_STATE_SLEEP_ACTIVE;
}
/* Check sleep mode request flag */
else if ((hcan->Instance->MCR & CAN_MCR_SLEEP) != 0U)
{
/* Sleep mode request is pending */
state = HAL_CAN_STATE_SLEEP_PENDING;
}
else
{
/* Neither sleep mode request nor sleep mode acknowledge */
}
}
/* Return CAN state */
return state;
}
/**
* @brief Return the CAN error code.
* @param hcan pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @retval CAN Error Code
*/
uint32_t HAL_CAN_GetError(CAN_HandleTypeDef *hcan)
{
/* Return CAN error code */
return hcan->ErrorCode;
}
/**
* @brief Reset the CAN error code.
* @param hcan pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CAN_ResetError(CAN_HandleTypeDef *hcan)
{
HAL_StatusTypeDef status = HAL_OK;
HAL_CAN_StateTypeDef state = hcan->State;
if ((state == HAL_CAN_STATE_READY) ||
(state == HAL_CAN_STATE_LISTENING))
{
/* Reset CAN error code */
hcan->ErrorCode = 0U;
}
else
{
/* Update error code */
hcan->ErrorCode |= HAL_CAN_ERROR_NOT_INITIALIZED;
status = HAL_ERROR;
}
/* Return the status */
return status;
}
/**
* @}
*/
/**
* @}
*/
#endif /* HAL_CAN_MODULE_ENABLED */
/**
* @}
*/
#endif /* CAN1 */
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/