| /** |
| ****************************************************************************** |
| * @file stm32f4xx_hal_adc.c |
| * @author MCD Application Team |
| * @brief This file provides firmware functions to manage the following |
| * functionalities of the Analog to Digital Converter (ADC) peripheral: |
| * + Initialization and de-initialization functions |
| * + Peripheral Control functions |
| * + Peripheral State functions |
| * |
| ****************************************************************************** |
| * @attention |
| * |
| * Copyright (c) 2017 STMicroelectronics. |
| * All rights reserved. |
| * |
| * This software is licensed under terms that can be found in the LICENSE file |
| * in the root directory of this software component. |
| * If no LICENSE file comes with this software, it is provided AS-IS. |
| * |
| ****************************************************************************** |
| @verbatim |
| ============================================================================== |
| ##### ADC Peripheral features ##### |
| ============================================================================== |
| [..] |
| (#) 12-bit, 10-bit, 8-bit or 6-bit configurable resolution. |
| (#) Interrupt generation at the end of conversion, end of injected conversion, |
| and in case of analog watchdog or overrun events |
| (#) Single and continuous conversion modes. |
| (#) Scan mode for automatic conversion of channel 0 to channel x. |
| (#) Data alignment with in-built data coherency. |
| (#) Channel-wise programmable sampling time. |
| (#) External trigger option with configurable polarity for both regular and |
| injected conversion. |
| (#) Dual/Triple mode (on devices with 2 ADCs or more). |
| (#) Configurable DMA data storage in Dual/Triple ADC mode. |
| (#) Configurable delay between conversions in Dual/Triple interleaved mode. |
| (#) ADC conversion type (refer to the datasheets). |
| (#) ADC supply requirements: 2.4 V to 3.6 V at full speed and down to 1.8 V at |
| slower speed. |
| (#) ADC input range: VREF(minus) = VIN = VREF(plus). |
| (#) DMA request generation during regular channel conversion. |
| |
| |
| ##### How to use this driver ##### |
| ============================================================================== |
| [..] |
| (#)Initialize the ADC low level resources by implementing the HAL_ADC_MspInit(): |
| (##) Enable the ADC interface clock using __HAL_RCC_ADC_CLK_ENABLE() |
| (##) ADC pins configuration |
| (+++) Enable the clock for the ADC GPIOs using the following function: |
| __HAL_RCC_GPIOx_CLK_ENABLE() |
| (+++) Configure these ADC pins in analog mode using HAL_GPIO_Init() |
| (##) In case of using interrupts (e.g. HAL_ADC_Start_IT()) |
| (+++) Configure the ADC interrupt priority using HAL_NVIC_SetPriority() |
| (+++) Enable the ADC IRQ handler using HAL_NVIC_EnableIRQ() |
| (+++) In ADC IRQ handler, call HAL_ADC_IRQHandler() |
| (##) In case of using DMA to control data transfer (e.g. HAL_ADC_Start_DMA()) |
| (+++) Enable the DMAx interface clock using __HAL_RCC_DMAx_CLK_ENABLE() |
| (+++) Configure and enable two DMA streams stream for managing data |
| transfer from peripheral to memory (output stream) |
| (+++) Associate the initialized DMA handle to the CRYP DMA handle |
| using __HAL_LINKDMA() |
| (+++) Configure the priority and enable the NVIC for the transfer complete |
| interrupt on the two DMA Streams. The output stream should have higher |
| priority than the input stream. |
| |
| *** Configuration of ADC, groups regular/injected, channels parameters *** |
| ============================================================================== |
| [..] |
| (#) Configure the ADC parameters (resolution, data alignment, ...) |
| and regular group parameters (conversion trigger, sequencer, ...) |
| using function HAL_ADC_Init(). |
| |
| (#) Configure the channels for regular group parameters (channel number, |
| channel rank into sequencer, ..., into regular group) |
| using function HAL_ADC_ConfigChannel(). |
| |
| (#) Optionally, configure the injected group parameters (conversion trigger, |
| sequencer, ..., of injected group) |
| and the channels for injected group parameters (channel number, |
| channel rank into sequencer, ..., into injected group) |
| using function HAL_ADCEx_InjectedConfigChannel(). |
| |
| (#) Optionally, configure the analog watchdog parameters (channels |
| monitored, thresholds, ...) using function HAL_ADC_AnalogWDGConfig(). |
| |
| (#) Optionally, for devices with several ADC instances: configure the |
| multimode parameters using function HAL_ADCEx_MultiModeConfigChannel(). |
| |
| *** Execution of ADC conversions *** |
| ============================================================================== |
| [..] |
| (#) ADC driver can be used among three modes: polling, interruption, |
| transfer by DMA. |
| |
| *** Polling mode IO operation *** |
| ================================= |
| [..] |
| (+) Start the ADC peripheral using HAL_ADC_Start() |
| (+) Wait for end of conversion using HAL_ADC_PollForConversion(), at this stage |
| user can specify the value of timeout according to his end application |
| (+) To read the ADC converted values, use the HAL_ADC_GetValue() function. |
| (+) Stop the ADC peripheral using HAL_ADC_Stop() |
| |
| *** Interrupt mode IO operation *** |
| =================================== |
| [..] |
| (+) Start the ADC peripheral using HAL_ADC_Start_IT() |
| (+) Use HAL_ADC_IRQHandler() called under ADC_IRQHandler() Interrupt subroutine |
| (+) At ADC end of conversion HAL_ADC_ConvCpltCallback() function is executed and user can |
| add his own code by customization of function pointer HAL_ADC_ConvCpltCallback |
| (+) In case of ADC Error, HAL_ADC_ErrorCallback() function is executed and user can |
| add his own code by customization of function pointer HAL_ADC_ErrorCallback |
| (+) Stop the ADC peripheral using HAL_ADC_Stop_IT() |
| |
| *** DMA mode IO operation *** |
| ============================== |
| [..] |
| (+) Start the ADC peripheral using HAL_ADC_Start_DMA(), at this stage the user specify the length |
| of data to be transferred at each end of conversion |
| (+) At The end of data transfer by HAL_ADC_ConvCpltCallback() function is executed and user can |
| add his own code by customization of function pointer HAL_ADC_ConvCpltCallback |
| (+) In case of transfer Error, HAL_ADC_ErrorCallback() function is executed and user can |
| add his own code by customization of function pointer HAL_ADC_ErrorCallback |
| (+) Stop the ADC peripheral using HAL_ADC_Stop_DMA() |
| |
| *** ADC HAL driver macros list *** |
| ============================================= |
| [..] |
| Below the list of most used macros in ADC HAL driver. |
| |
| (+) __HAL_ADC_ENABLE : Enable the ADC peripheral |
| (+) __HAL_ADC_DISABLE : Disable the ADC peripheral |
| (+) __HAL_ADC_ENABLE_IT: Enable the ADC end of conversion interrupt |
| (+) __HAL_ADC_DISABLE_IT: Disable the ADC end of conversion interrupt |
| (+) __HAL_ADC_GET_IT_SOURCE: Check if the specified ADC interrupt source is enabled or disabled |
| (+) __HAL_ADC_CLEAR_FLAG: Clear the ADC's pending flags |
| (+) __HAL_ADC_GET_FLAG: Get the selected ADC's flag status |
| (+) ADC_GET_RESOLUTION: Return resolution bits in CR1 register |
| |
| [..] |
| (@) You can refer to the ADC HAL driver header file for more useful macros |
| |
| *** Deinitialization of ADC *** |
| ============================================================================== |
| [..] |
| (#) Disable the ADC interface |
| (++) ADC clock can be hard reset and disabled at RCC top level. |
| (++) Hard reset of ADC peripherals |
| using macro __HAL_RCC_ADC_FORCE_RESET(), __HAL_RCC_ADC_RELEASE_RESET(). |
| (++) ADC clock disable using the equivalent macro/functions as configuration step. |
| (+++) Example: |
| Into HAL_ADC_MspDeInit() (recommended code location) or with |
| other device clock parameters configuration: |
| (+++) HAL_RCC_GetOscConfig(&RCC_OscInitStructure); |
| (+++) RCC_OscInitStructure.OscillatorType = RCC_OSCILLATORTYPE_HSI; |
| (+++) RCC_OscInitStructure.HSIState = RCC_HSI_OFF; (if not used for system clock) |
| (+++) HAL_RCC_OscConfig(&RCC_OscInitStructure); |
| |
| (#) ADC pins configuration |
| (++) Disable the clock for the ADC GPIOs using macro __HAL_RCC_GPIOx_CLK_DISABLE() |
| |
| (#) Optionally, in case of usage of ADC with interruptions: |
| (++) Disable the NVIC for ADC using function HAL_NVIC_DisableIRQ(ADCx_IRQn) |
| |
| (#) Optionally, in case of usage of DMA: |
| (++) Deinitialize the DMA using function HAL_DMA_DeInit(). |
| (++) Disable the NVIC for DMA using function HAL_NVIC_DisableIRQ(DMAx_Channelx_IRQn) |
| *** Callback registration *** |
| ============================================================================== |
| [..] |
| |
| The compilation flag USE_HAL_ADC_REGISTER_CALLBACKS, when set to 1, |
| allows the user to configure dynamically the driver callbacks. |
| Use Functions HAL_ADC_RegisterCallback() |
| to register an interrupt callback. |
| [..] |
| |
| Function HAL_ADC_RegisterCallback() allows to register following callbacks: |
| (+) ConvCpltCallback : ADC conversion complete callback |
| (+) ConvHalfCpltCallback : ADC conversion DMA half-transfer callback |
| (+) LevelOutOfWindowCallback : ADC analog watchdog 1 callback |
| (+) ErrorCallback : ADC error callback |
| (+) InjectedConvCpltCallback : ADC group injected conversion complete callback |
| (+) InjectedQueueOverflowCallback : ADC group injected context queue overflow callback |
| (+) LevelOutOfWindow2Callback : ADC analog watchdog 2 callback |
| (+) LevelOutOfWindow3Callback : ADC analog watchdog 3 callback |
| (+) EndOfSamplingCallback : ADC end of sampling callback |
| (+) MspInitCallback : ADC Msp Init callback |
| (+) MspDeInitCallback : ADC Msp DeInit callback |
| This function takes as parameters the HAL peripheral handle, the Callback ID |
| and a pointer to the user callback function. |
| [..] |
| |
| Use function HAL_ADC_UnRegisterCallback to reset a callback to the default |
| weak function. |
| [..] |
| |
| HAL_ADC_UnRegisterCallback takes as parameters the HAL peripheral handle, |
| and the Callback ID. |
| This function allows to reset following callbacks: |
| (+) ConvCpltCallback : ADC conversion complete callback |
| (+) ConvHalfCpltCallback : ADC conversion DMA half-transfer callback |
| (+) LevelOutOfWindowCallback : ADC analog watchdog 1 callback |
| (+) ErrorCallback : ADC error callback |
| (+) InjectedConvCpltCallback : ADC group injected conversion complete callback |
| (+) InjectedQueueOverflowCallback : ADC group injected context queue overflow callback |
| (+) LevelOutOfWindow2Callback : ADC analog watchdog 2 callback |
| (+) LevelOutOfWindow3Callback : ADC analog watchdog 3 callback |
| (+) EndOfSamplingCallback : ADC end of sampling callback |
| (+) MspInitCallback : ADC Msp Init callback |
| (+) MspDeInitCallback : ADC Msp DeInit callback |
| [..] |
| |
| By default, after the HAL_ADC_Init() and when the state is HAL_ADC_STATE_RESET |
| all callbacks are set to the corresponding weak functions: |
| examples HAL_ADC_ConvCpltCallback(), HAL_ADC_ErrorCallback(). |
| Exception done for MspInit and MspDeInit functions that are |
| reset to the legacy weak functions in the HAL_ADC_Init()/ HAL_ADC_DeInit() only when |
| these callbacks are null (not registered beforehand). |
| [..] |
| |
| If MspInit or MspDeInit are not null, the HAL_ADC_Init()/ HAL_ADC_DeInit() |
| keep and use the user MspInit/MspDeInit callbacks (registered beforehand) whatever the state. |
| [..] |
| |
| Callbacks can be registered/unregistered in HAL_ADC_STATE_READY state only. |
| Exception done MspInit/MspDeInit functions that can be registered/unregistered |
| in HAL_ADC_STATE_READY or HAL_ADC_STATE_RESET state, |
| thus registered (user) MspInit/DeInit callbacks can be used during the Init/DeInit. |
| [..] |
| |
| Then, the user first registers the MspInit/MspDeInit user callbacks |
| using HAL_ADC_RegisterCallback() before calling HAL_ADC_DeInit() |
| or HAL_ADC_Init() function. |
| [..] |
| |
| When the compilation flag USE_HAL_ADC_REGISTER_CALLBACKS is set to 0 or |
| not defined, the callback registration feature is not available and all callbacks |
| are set to the corresponding weak functions. |
| |
| @endverbatim |
| */ |
| |
| /* Includes ------------------------------------------------------------------*/ |
| #include "stm32f4xx_hal.h" |
| |
| /** @addtogroup STM32F4xx_HAL_Driver |
| * @{ |
| */ |
| |
| /** @defgroup ADC ADC |
| * @brief ADC driver modules |
| * @{ |
| */ |
| |
| #ifdef HAL_ADC_MODULE_ENABLED |
| |
| /* Private typedef -----------------------------------------------------------*/ |
| /* Private define ------------------------------------------------------------*/ |
| /* Private macro -------------------------------------------------------------*/ |
| /* Private variables ---------------------------------------------------------*/ |
| /** @addtogroup ADC_Private_Functions |
| * @{ |
| */ |
| /* Private function prototypes -----------------------------------------------*/ |
| static void ADC_Init(ADC_HandleTypeDef* hadc); |
| static void ADC_DMAConvCplt(DMA_HandleTypeDef *hdma); |
| static void ADC_DMAError(DMA_HandleTypeDef *hdma); |
| static void ADC_DMAHalfConvCplt(DMA_HandleTypeDef *hdma); |
| /** |
| * @} |
| */ |
| /* Exported functions --------------------------------------------------------*/ |
| /** @defgroup ADC_Exported_Functions ADC Exported Functions |
| * @{ |
| */ |
| |
| /** @defgroup ADC_Exported_Functions_Group1 Initialization and de-initialization functions |
| * @brief Initialization and Configuration functions |
| * |
| @verbatim |
| =============================================================================== |
| ##### Initialization and de-initialization functions ##### |
| =============================================================================== |
| [..] This section provides functions allowing to: |
| (+) Initialize and configure the ADC. |
| (+) De-initialize the ADC. |
| |
| @endverbatim |
| * @{ |
| */ |
| |
| /** |
| * @brief Initializes the ADCx peripheral according to the specified parameters |
| * in the ADC_InitStruct and initializes the ADC MSP. |
| * |
| * @note This function is used to configure the global features of the ADC ( |
| * ClockPrescaler, Resolution, Data Alignment and number of conversion), however, |
| * the rest of the configuration parameters are specific to the regular |
| * channels group (scan mode activation, continuous mode activation, |
| * External trigger source and edge, DMA continuous request after the |
| * last transfer and End of conversion selection). |
| * |
| * @param hadc pointer to a ADC_HandleTypeDef structure that contains |
| * the configuration information for the specified ADC. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_ADC_Init(ADC_HandleTypeDef* hadc) |
| { |
| HAL_StatusTypeDef tmp_hal_status = HAL_OK; |
| |
| /* Check ADC handle */ |
| if(hadc == NULL) |
| { |
| return HAL_ERROR; |
| } |
| |
| /* Check the parameters */ |
| assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); |
| assert_param(IS_ADC_CLOCKPRESCALER(hadc->Init.ClockPrescaler)); |
| assert_param(IS_ADC_RESOLUTION(hadc->Init.Resolution)); |
| assert_param(IS_FUNCTIONAL_STATE(hadc->Init.ScanConvMode)); |
| assert_param(IS_FUNCTIONAL_STATE(hadc->Init.ContinuousConvMode)); |
| assert_param(IS_ADC_EXT_TRIG(hadc->Init.ExternalTrigConv)); |
| assert_param(IS_ADC_DATA_ALIGN(hadc->Init.DataAlign)); |
| assert_param(IS_ADC_REGULAR_LENGTH(hadc->Init.NbrOfConversion)); |
| assert_param(IS_FUNCTIONAL_STATE(hadc->Init.DMAContinuousRequests)); |
| assert_param(IS_ADC_EOCSelection(hadc->Init.EOCSelection)); |
| assert_param(IS_FUNCTIONAL_STATE(hadc->Init.DiscontinuousConvMode)); |
| |
| if(hadc->Init.ExternalTrigConv != ADC_SOFTWARE_START) |
| { |
| assert_param(IS_ADC_EXT_TRIG_EDGE(hadc->Init.ExternalTrigConvEdge)); |
| } |
| |
| if(hadc->State == HAL_ADC_STATE_RESET) |
| { |
| #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) |
| /* Init the ADC Callback settings */ |
| hadc->ConvCpltCallback = HAL_ADC_ConvCpltCallback; /* Legacy weak callback */ |
| hadc->ConvHalfCpltCallback = HAL_ADC_ConvHalfCpltCallback; /* Legacy weak callback */ |
| hadc->LevelOutOfWindowCallback = HAL_ADC_LevelOutOfWindowCallback; /* Legacy weak callback */ |
| hadc->ErrorCallback = HAL_ADC_ErrorCallback; /* Legacy weak callback */ |
| hadc->InjectedConvCpltCallback = HAL_ADCEx_InjectedConvCpltCallback; /* Legacy weak callback */ |
| if (hadc->MspInitCallback == NULL) |
| { |
| hadc->MspInitCallback = HAL_ADC_MspInit; /* Legacy weak MspInit */ |
| } |
| |
| /* Init the low level hardware */ |
| hadc->MspInitCallback(hadc); |
| #else |
| /* Init the low level hardware */ |
| HAL_ADC_MspInit(hadc); |
| #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ |
| |
| /* Initialize ADC error code */ |
| ADC_CLEAR_ERRORCODE(hadc); |
| |
| /* Allocate lock resource and initialize it */ |
| hadc->Lock = HAL_UNLOCKED; |
| } |
| |
| /* Configuration of ADC parameters if previous preliminary actions are */ |
| /* correctly completed. */ |
| if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL)) |
| { |
| /* Set ADC state */ |
| ADC_STATE_CLR_SET(hadc->State, |
| HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY, |
| HAL_ADC_STATE_BUSY_INTERNAL); |
| |
| /* Set ADC parameters */ |
| ADC_Init(hadc); |
| |
| /* Set ADC error code to none */ |
| ADC_CLEAR_ERRORCODE(hadc); |
| |
| /* Set the ADC state */ |
| ADC_STATE_CLR_SET(hadc->State, |
| HAL_ADC_STATE_BUSY_INTERNAL, |
| HAL_ADC_STATE_READY); |
| } |
| else |
| { |
| tmp_hal_status = HAL_ERROR; |
| } |
| |
| /* Release Lock */ |
| __HAL_UNLOCK(hadc); |
| |
| /* Return function status */ |
| return tmp_hal_status; |
| } |
| |
| /** |
| * @brief Deinitializes the ADCx peripheral registers to their default reset values. |
| * @param hadc pointer to a ADC_HandleTypeDef structure that contains |
| * the configuration information for the specified ADC. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_ADC_DeInit(ADC_HandleTypeDef* hadc) |
| { |
| HAL_StatusTypeDef tmp_hal_status = HAL_OK; |
| |
| /* Check ADC handle */ |
| if(hadc == NULL) |
| { |
| return HAL_ERROR; |
| } |
| |
| /* Check the parameters */ |
| assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); |
| |
| /* Set ADC state */ |
| SET_BIT(hadc->State, HAL_ADC_STATE_BUSY_INTERNAL); |
| |
| /* Stop potential conversion on going, on regular and injected groups */ |
| /* Disable ADC peripheral */ |
| __HAL_ADC_DISABLE(hadc); |
| |
| /* Configuration of ADC parameters if previous preliminary actions are */ |
| /* correctly completed. */ |
| if(HAL_IS_BIT_CLR(hadc->Instance->CR2, ADC_CR2_ADON)) |
| { |
| #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) |
| if (hadc->MspDeInitCallback == NULL) |
| { |
| hadc->MspDeInitCallback = HAL_ADC_MspDeInit; /* Legacy weak MspDeInit */ |
| } |
| |
| /* DeInit the low level hardware: RCC clock, NVIC */ |
| hadc->MspDeInitCallback(hadc); |
| #else |
| /* DeInit the low level hardware: RCC clock, NVIC */ |
| HAL_ADC_MspDeInit(hadc); |
| #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ |
| |
| /* Set ADC error code to none */ |
| ADC_CLEAR_ERRORCODE(hadc); |
| |
| /* Set ADC state */ |
| hadc->State = HAL_ADC_STATE_RESET; |
| } |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hadc); |
| |
| /* Return function status */ |
| return tmp_hal_status; |
| } |
| |
| #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) |
| /** |
| * @brief Register a User ADC Callback |
| * To be used instead of the weak predefined callback |
| * @param hadc Pointer to a ADC_HandleTypeDef structure that contains |
| * the configuration information for the specified ADC. |
| * @param CallbackID ID of the callback to be registered |
| * This parameter can be one of the following values: |
| * @arg @ref HAL_ADC_CONVERSION_COMPLETE_CB_ID ADC conversion complete callback ID |
| * @arg @ref HAL_ADC_CONVERSION_HALF_CB_ID ADC conversion DMA half-transfer callback ID |
| * @arg @ref HAL_ADC_LEVEL_OUT_OF_WINDOW_1_CB_ID ADC analog watchdog 1 callback ID |
| * @arg @ref HAL_ADC_ERROR_CB_ID ADC error callback ID |
| * @arg @ref HAL_ADC_INJ_CONVERSION_COMPLETE_CB_ID ADC group injected conversion complete callback ID |
| * @arg @ref HAL_ADC_MSPINIT_CB_ID ADC Msp Init callback ID |
| * @arg @ref HAL_ADC_MSPDEINIT_CB_ID ADC Msp DeInit callback ID |
| * @param pCallback pointer to the Callback function |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_ADC_RegisterCallback(ADC_HandleTypeDef *hadc, HAL_ADC_CallbackIDTypeDef CallbackID, pADC_CallbackTypeDef pCallback) |
| { |
| HAL_StatusTypeDef status = HAL_OK; |
| |
| if (pCallback == NULL) |
| { |
| /* Update the error code */ |
| hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK; |
| |
| return HAL_ERROR; |
| } |
| |
| if ((hadc->State & HAL_ADC_STATE_READY) != 0UL) |
| { |
| switch (CallbackID) |
| { |
| case HAL_ADC_CONVERSION_COMPLETE_CB_ID : |
| hadc->ConvCpltCallback = pCallback; |
| break; |
| |
| case HAL_ADC_CONVERSION_HALF_CB_ID : |
| hadc->ConvHalfCpltCallback = pCallback; |
| break; |
| |
| case HAL_ADC_LEVEL_OUT_OF_WINDOW_1_CB_ID : |
| hadc->LevelOutOfWindowCallback = pCallback; |
| break; |
| |
| case HAL_ADC_ERROR_CB_ID : |
| hadc->ErrorCallback = pCallback; |
| break; |
| |
| case HAL_ADC_INJ_CONVERSION_COMPLETE_CB_ID : |
| hadc->InjectedConvCpltCallback = pCallback; |
| break; |
| |
| case HAL_ADC_MSPINIT_CB_ID : |
| hadc->MspInitCallback = pCallback; |
| break; |
| |
| case HAL_ADC_MSPDEINIT_CB_ID : |
| hadc->MspDeInitCallback = pCallback; |
| break; |
| |
| default : |
| /* Update the error code */ |
| hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK; |
| |
| /* Return error status */ |
| status = HAL_ERROR; |
| break; |
| } |
| } |
| else if (HAL_ADC_STATE_RESET == hadc->State) |
| { |
| switch (CallbackID) |
| { |
| case HAL_ADC_MSPINIT_CB_ID : |
| hadc->MspInitCallback = pCallback; |
| break; |
| |
| case HAL_ADC_MSPDEINIT_CB_ID : |
| hadc->MspDeInitCallback = pCallback; |
| break; |
| |
| default : |
| /* Update the error code */ |
| hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK; |
| |
| /* Return error status */ |
| status = HAL_ERROR; |
| break; |
| } |
| } |
| else |
| { |
| /* Update the error code */ |
| hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK; |
| |
| /* Return error status */ |
| status = HAL_ERROR; |
| } |
| |
| return status; |
| } |
| |
| /** |
| * @brief Unregister a ADC Callback |
| * ADC callback is redirected to the weak predefined callback |
| * @param hadc Pointer to a ADC_HandleTypeDef structure that contains |
| * the configuration information for the specified ADC. |
| * @param CallbackID ID of the callback to be unregistered |
| * This parameter can be one of the following values: |
| * @arg @ref HAL_ADC_CONVERSION_COMPLETE_CB_ID ADC conversion complete callback ID |
| * @arg @ref HAL_ADC_CONVERSION_HALF_CB_ID ADC conversion DMA half-transfer callback ID |
| * @arg @ref HAL_ADC_LEVEL_OUT_OF_WINDOW_1_CB_ID ADC analog watchdog 1 callback ID |
| * @arg @ref HAL_ADC_ERROR_CB_ID ADC error callback ID |
| * @arg @ref HAL_ADC_INJ_CONVERSION_COMPLETE_CB_ID ADC group injected conversion complete callback ID |
| * @arg @ref HAL_ADC_MSPINIT_CB_ID ADC Msp Init callback ID |
| * @arg @ref HAL_ADC_MSPDEINIT_CB_ID ADC Msp DeInit callback ID |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_ADC_UnRegisterCallback(ADC_HandleTypeDef *hadc, HAL_ADC_CallbackIDTypeDef CallbackID) |
| { |
| HAL_StatusTypeDef status = HAL_OK; |
| |
| if ((hadc->State & HAL_ADC_STATE_READY) != 0UL) |
| { |
| switch (CallbackID) |
| { |
| case HAL_ADC_CONVERSION_COMPLETE_CB_ID : |
| hadc->ConvCpltCallback = HAL_ADC_ConvCpltCallback; |
| break; |
| |
| case HAL_ADC_CONVERSION_HALF_CB_ID : |
| hadc->ConvHalfCpltCallback = HAL_ADC_ConvHalfCpltCallback; |
| break; |
| |
| case HAL_ADC_LEVEL_OUT_OF_WINDOW_1_CB_ID : |
| hadc->LevelOutOfWindowCallback = HAL_ADC_LevelOutOfWindowCallback; |
| break; |
| |
| case HAL_ADC_ERROR_CB_ID : |
| hadc->ErrorCallback = HAL_ADC_ErrorCallback; |
| break; |
| |
| case HAL_ADC_INJ_CONVERSION_COMPLETE_CB_ID : |
| hadc->InjectedConvCpltCallback = HAL_ADCEx_InjectedConvCpltCallback; |
| break; |
| |
| case HAL_ADC_MSPINIT_CB_ID : |
| hadc->MspInitCallback = HAL_ADC_MspInit; /* Legacy weak MspInit */ |
| break; |
| |
| case HAL_ADC_MSPDEINIT_CB_ID : |
| hadc->MspDeInitCallback = HAL_ADC_MspDeInit; /* Legacy weak MspDeInit */ |
| break; |
| |
| default : |
| /* Update the error code */ |
| hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK; |
| |
| /* Return error status */ |
| status = HAL_ERROR; |
| break; |
| } |
| } |
| else if (HAL_ADC_STATE_RESET == hadc->State) |
| { |
| switch (CallbackID) |
| { |
| case HAL_ADC_MSPINIT_CB_ID : |
| hadc->MspInitCallback = HAL_ADC_MspInit; /* Legacy weak MspInit */ |
| break; |
| |
| case HAL_ADC_MSPDEINIT_CB_ID : |
| hadc->MspDeInitCallback = HAL_ADC_MspDeInit; /* Legacy weak MspDeInit */ |
| break; |
| |
| default : |
| /* Update the error code */ |
| hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK; |
| |
| /* Return error status */ |
| status = HAL_ERROR; |
| break; |
| } |
| } |
| else |
| { |
| /* Update the error code */ |
| hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK; |
| |
| /* Return error status */ |
| status = HAL_ERROR; |
| } |
| |
| return status; |
| } |
| |
| #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ |
| |
| /** |
| * @brief Initializes the ADC MSP. |
| * @param hadc pointer to a ADC_HandleTypeDef structure that contains |
| * the configuration information for the specified ADC. |
| * @retval None |
| */ |
| __weak void HAL_ADC_MspInit(ADC_HandleTypeDef* hadc) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(hadc); |
| /* NOTE : This function Should not be modified, when the callback is needed, |
| the HAL_ADC_MspInit could be implemented in the user file |
| */ |
| } |
| |
| /** |
| * @brief DeInitializes the ADC MSP. |
| * @param hadc pointer to a ADC_HandleTypeDef structure that contains |
| * the configuration information for the specified ADC. |
| * @retval None |
| */ |
| __weak void HAL_ADC_MspDeInit(ADC_HandleTypeDef* hadc) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(hadc); |
| /* NOTE : This function Should not be modified, when the callback is needed, |
| the HAL_ADC_MspDeInit could be implemented in the user file |
| */ |
| } |
| |
| /** |
| * @} |
| */ |
| |
| /** @defgroup ADC_Exported_Functions_Group2 IO operation functions |
| * @brief IO operation functions |
| * |
| @verbatim |
| =============================================================================== |
| ##### IO operation functions ##### |
| =============================================================================== |
| [..] This section provides functions allowing to: |
| (+) Start conversion of regular channel. |
| (+) Stop conversion of regular channel. |
| (+) Start conversion of regular channel and enable interrupt. |
| (+) Stop conversion of regular channel and disable interrupt. |
| (+) Start conversion of regular channel and enable DMA transfer. |
| (+) Stop conversion of regular channel and disable DMA transfer. |
| (+) Handle ADC interrupt request. |
| |
| @endverbatim |
| * @{ |
| */ |
| |
| /** |
| * @brief Enables ADC and starts conversion of the regular channels. |
| * @param hadc pointer to a ADC_HandleTypeDef structure that contains |
| * the configuration information for the specified ADC. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_ADC_Start(ADC_HandleTypeDef* hadc) |
| { |
| __IO uint32_t counter = 0U; |
| ADC_Common_TypeDef *tmpADC_Common; |
| |
| /* Check the parameters */ |
| assert_param(IS_FUNCTIONAL_STATE(hadc->Init.ContinuousConvMode)); |
| assert_param(IS_ADC_EXT_TRIG_EDGE(hadc->Init.ExternalTrigConvEdge)); |
| |
| /* Process locked */ |
| __HAL_LOCK(hadc); |
| |
| /* Enable the ADC peripheral */ |
| /* Check if ADC peripheral is disabled in order to enable it and wait during |
| Tstab time the ADC's stabilization */ |
| if((hadc->Instance->CR2 & ADC_CR2_ADON) != ADC_CR2_ADON) |
| { |
| /* Enable the Peripheral */ |
| __HAL_ADC_ENABLE(hadc); |
| |
| /* Delay for ADC stabilization time */ |
| /* Compute number of CPU cycles to wait for */ |
| counter = (ADC_STAB_DELAY_US * (SystemCoreClock / 1000000U)); |
| while(counter != 0U) |
| { |
| counter--; |
| } |
| } |
| |
| /* Start conversion if ADC is effectively enabled */ |
| if(HAL_IS_BIT_SET(hadc->Instance->CR2, ADC_CR2_ADON)) |
| { |
| /* Set ADC state */ |
| /* - Clear state bitfield related to regular group conversion results */ |
| /* - Set state bitfield related to regular group operation */ |
| ADC_STATE_CLR_SET(hadc->State, |
| HAL_ADC_STATE_READY | HAL_ADC_STATE_REG_EOC | HAL_ADC_STATE_REG_OVR, |
| HAL_ADC_STATE_REG_BUSY); |
| |
| /* If conversions on group regular are also triggering group injected, */ |
| /* update ADC state. */ |
| if (READ_BIT(hadc->Instance->CR1, ADC_CR1_JAUTO) != RESET) |
| { |
| ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_INJ_EOC, HAL_ADC_STATE_INJ_BUSY); |
| } |
| |
| /* State machine update: Check if an injected conversion is ongoing */ |
| if (HAL_IS_BIT_SET(hadc->State, HAL_ADC_STATE_INJ_BUSY)) |
| { |
| /* Reset ADC error code fields related to conversions on group regular */ |
| CLEAR_BIT(hadc->ErrorCode, (HAL_ADC_ERROR_OVR | HAL_ADC_ERROR_DMA)); |
| } |
| else |
| { |
| /* Reset ADC all error code fields */ |
| ADC_CLEAR_ERRORCODE(hadc); |
| } |
| |
| /* Process unlocked */ |
| /* Unlock before starting ADC conversions: in case of potential */ |
| /* interruption, to let the process to ADC IRQ Handler. */ |
| __HAL_UNLOCK(hadc); |
| |
| /* Pointer to the common control register to which is belonging hadc */ |
| /* (Depending on STM32F4 product, there may be up to 3 ADCs and 1 common */ |
| /* control register) */ |
| tmpADC_Common = ADC_COMMON_REGISTER(hadc); |
| |
| /* Clear regular group conversion flag and overrun flag */ |
| /* (To ensure of no unknown state from potential previous ADC operations) */ |
| __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_EOC | ADC_FLAG_OVR); |
| |
| /* Check if Multimode enabled */ |
| if(HAL_IS_BIT_CLR(tmpADC_Common->CCR, ADC_CCR_MULTI)) |
| { |
| #if defined(ADC2) && defined(ADC3) |
| if((hadc->Instance == ADC1) || ((hadc->Instance == ADC2) && ((ADC->CCR & ADC_CCR_MULTI_Msk) < ADC_CCR_MULTI_0)) \ |
| || ((hadc->Instance == ADC3) && ((ADC->CCR & ADC_CCR_MULTI_Msk) < ADC_CCR_MULTI_4))) |
| { |
| #endif /* ADC2 || ADC3 */ |
| /* if no external trigger present enable software conversion of regular channels */ |
| if((hadc->Instance->CR2 & ADC_CR2_EXTEN) == RESET) |
| { |
| /* Enable the selected ADC software conversion for regular group */ |
| hadc->Instance->CR2 |= (uint32_t)ADC_CR2_SWSTART; |
| } |
| #if defined(ADC2) && defined(ADC3) |
| } |
| #endif /* ADC2 || ADC3 */ |
| } |
| else |
| { |
| /* if instance of handle correspond to ADC1 and no external trigger present enable software conversion of regular channels */ |
| if((hadc->Instance == ADC1) && ((hadc->Instance->CR2 & ADC_CR2_EXTEN) == RESET)) |
| { |
| /* Enable the selected ADC software conversion for regular group */ |
| hadc->Instance->CR2 |= (uint32_t)ADC_CR2_SWSTART; |
| } |
| } |
| } |
| else |
| { |
| /* Update ADC state machine to error */ |
| SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL); |
| |
| /* Set ADC error code to ADC IP internal error */ |
| SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL); |
| } |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Disables ADC and stop conversion of regular channels. |
| * |
| * @note Caution: This function will stop also injected channels. |
| * |
| * @param hadc pointer to a ADC_HandleTypeDef structure that contains |
| * the configuration information for the specified ADC. |
| * |
| * @retval HAL status. |
| */ |
| HAL_StatusTypeDef HAL_ADC_Stop(ADC_HandleTypeDef* hadc) |
| { |
| /* Check the parameters */ |
| assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); |
| |
| /* Process locked */ |
| __HAL_LOCK(hadc); |
| |
| /* Stop potential conversion on going, on regular and injected groups */ |
| /* Disable ADC peripheral */ |
| __HAL_ADC_DISABLE(hadc); |
| |
| /* Check if ADC is effectively disabled */ |
| if(HAL_IS_BIT_CLR(hadc->Instance->CR2, ADC_CR2_ADON)) |
| { |
| /* Set ADC state */ |
| ADC_STATE_CLR_SET(hadc->State, |
| HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY, |
| HAL_ADC_STATE_READY); |
| } |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hadc); |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Poll for regular conversion complete |
| * @note ADC conversion flags EOS (end of sequence) and EOC (end of |
| * conversion) are cleared by this function. |
| * @note This function cannot be used in a particular setup: ADC configured |
| * in DMA mode and polling for end of each conversion (ADC init |
| * parameter "EOCSelection" set to ADC_EOC_SINGLE_CONV). |
| * In this case, DMA resets the flag EOC and polling cannot be |
| * performed on each conversion. Nevertheless, polling can still |
| * be performed on the complete sequence. |
| * @param hadc pointer to a ADC_HandleTypeDef structure that contains |
| * the configuration information for the specified ADC. |
| * @param Timeout Timeout value in millisecond. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_ADC_PollForConversion(ADC_HandleTypeDef* hadc, uint32_t Timeout) |
| { |
| uint32_t tickstart = 0U; |
| |
| /* Verification that ADC configuration is compliant with polling for */ |
| /* each conversion: */ |
| /* Particular case is ADC configured in DMA mode and ADC sequencer with */ |
| /* several ranks and polling for end of each conversion. */ |
| /* For code simplicity sake, this particular case is generalized to */ |
| /* ADC configured in DMA mode and polling for end of each conversion. */ |
| if (HAL_IS_BIT_SET(hadc->Instance->CR2, ADC_CR2_EOCS) && |
| HAL_IS_BIT_SET(hadc->Instance->CR2, ADC_CR2_DMA) ) |
| { |
| /* Update ADC state machine to error */ |
| SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG); |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hadc); |
| |
| return HAL_ERROR; |
| } |
| |
| /* Get tick */ |
| tickstart = HAL_GetTick(); |
| |
| /* Check End of conversion flag */ |
| while(!(__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_EOC))) |
| { |
| /* Check if timeout is disabled (set to infinite wait) */ |
| if(Timeout != HAL_MAX_DELAY) |
| { |
| if((Timeout == 0U) || ((HAL_GetTick() - tickstart ) > Timeout)) |
| { |
| /* New check to avoid false timeout detection in case of preemption */ |
| if(!(__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_EOC))) |
| { |
| /* Update ADC state machine to timeout */ |
| SET_BIT(hadc->State, HAL_ADC_STATE_TIMEOUT); |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hadc); |
| |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| } |
| |
| /* Clear regular group conversion flag */ |
| __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_STRT | ADC_FLAG_EOC); |
| |
| /* Update ADC state machine */ |
| SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOC); |
| |
| /* Determine whether any further conversion upcoming on group regular */ |
| /* by external trigger, continuous mode or scan sequence on going. */ |
| /* Note: On STM32F4, there is no independent flag of end of sequence. */ |
| /* The test of scan sequence on going is done either with scan */ |
| /* sequence disabled or with end of conversion flag set to */ |
| /* of end of sequence. */ |
| if(ADC_IS_SOFTWARE_START_REGULAR(hadc) && |
| (hadc->Init.ContinuousConvMode == DISABLE) && |
| (HAL_IS_BIT_CLR(hadc->Instance->SQR1, ADC_SQR1_L) || |
| HAL_IS_BIT_CLR(hadc->Instance->CR2, ADC_CR2_EOCS) ) ) |
| { |
| /* Set ADC state */ |
| CLEAR_BIT(hadc->State, HAL_ADC_STATE_REG_BUSY); |
| |
| if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_INJ_BUSY)) |
| { |
| SET_BIT(hadc->State, HAL_ADC_STATE_READY); |
| } |
| } |
| |
| /* Return ADC state */ |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Poll for conversion event |
| * @param hadc pointer to a ADC_HandleTypeDef structure that contains |
| * the configuration information for the specified ADC. |
| * @param EventType the ADC event type. |
| * This parameter can be one of the following values: |
| * @arg ADC_AWD_EVENT: ADC Analog watch Dog event. |
| * @arg ADC_OVR_EVENT: ADC Overrun event. |
| * @param Timeout Timeout value in millisecond. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_ADC_PollForEvent(ADC_HandleTypeDef* hadc, uint32_t EventType, uint32_t Timeout) |
| { |
| uint32_t tickstart = 0U; |
| |
| /* Check the parameters */ |
| assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); |
| assert_param(IS_ADC_EVENT_TYPE(EventType)); |
| |
| /* Get tick */ |
| tickstart = HAL_GetTick(); |
| |
| /* Check selected event flag */ |
| while(!(__HAL_ADC_GET_FLAG(hadc,EventType))) |
| { |
| /* Check for the Timeout */ |
| if(Timeout != HAL_MAX_DELAY) |
| { |
| if((Timeout == 0U) || ((HAL_GetTick() - tickstart ) > Timeout)) |
| { |
| /* New check to avoid false timeout detection in case of preemption */ |
| if(!(__HAL_ADC_GET_FLAG(hadc,EventType))) |
| { |
| /* Update ADC state machine to timeout */ |
| SET_BIT(hadc->State, HAL_ADC_STATE_TIMEOUT); |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hadc); |
| |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| } |
| |
| /* Analog watchdog (level out of window) event */ |
| if(EventType == ADC_AWD_EVENT) |
| { |
| /* Set ADC state */ |
| SET_BIT(hadc->State, HAL_ADC_STATE_AWD1); |
| |
| /* Clear ADC analog watchdog flag */ |
| __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD); |
| } |
| /* Overrun event */ |
| else |
| { |
| /* Set ADC state */ |
| SET_BIT(hadc->State, HAL_ADC_STATE_REG_OVR); |
| /* Set ADC error code to overrun */ |
| SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_OVR); |
| |
| /* Clear ADC overrun flag */ |
| __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_OVR); |
| } |
| |
| /* Return ADC state */ |
| return HAL_OK; |
| } |
| |
| |
| /** |
| * @brief Enables the interrupt and starts ADC conversion of regular channels. |
| * @param hadc pointer to a ADC_HandleTypeDef structure that contains |
| * the configuration information for the specified ADC. |
| * @retval HAL status. |
| */ |
| HAL_StatusTypeDef HAL_ADC_Start_IT(ADC_HandleTypeDef* hadc) |
| { |
| __IO uint32_t counter = 0U; |
| ADC_Common_TypeDef *tmpADC_Common; |
| |
| /* Check the parameters */ |
| assert_param(IS_FUNCTIONAL_STATE(hadc->Init.ContinuousConvMode)); |
| assert_param(IS_ADC_EXT_TRIG_EDGE(hadc->Init.ExternalTrigConvEdge)); |
| |
| /* Process locked */ |
| __HAL_LOCK(hadc); |
| |
| /* Enable the ADC peripheral */ |
| /* Check if ADC peripheral is disabled in order to enable it and wait during |
| Tstab time the ADC's stabilization */ |
| if((hadc->Instance->CR2 & ADC_CR2_ADON) != ADC_CR2_ADON) |
| { |
| /* Enable the Peripheral */ |
| __HAL_ADC_ENABLE(hadc); |
| |
| /* Delay for ADC stabilization time */ |
| /* Compute number of CPU cycles to wait for */ |
| counter = (ADC_STAB_DELAY_US * (SystemCoreClock / 1000000U)); |
| while(counter != 0U) |
| { |
| counter--; |
| } |
| } |
| |
| /* Start conversion if ADC is effectively enabled */ |
| if(HAL_IS_BIT_SET(hadc->Instance->CR2, ADC_CR2_ADON)) |
| { |
| /* Set ADC state */ |
| /* - Clear state bitfield related to regular group conversion results */ |
| /* - Set state bitfield related to regular group operation */ |
| ADC_STATE_CLR_SET(hadc->State, |
| HAL_ADC_STATE_READY | HAL_ADC_STATE_REG_EOC | HAL_ADC_STATE_REG_OVR, |
| HAL_ADC_STATE_REG_BUSY); |
| |
| /* If conversions on group regular are also triggering group injected, */ |
| /* update ADC state. */ |
| if (READ_BIT(hadc->Instance->CR1, ADC_CR1_JAUTO) != RESET) |
| { |
| ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_INJ_EOC, HAL_ADC_STATE_INJ_BUSY); |
| } |
| |
| /* State machine update: Check if an injected conversion is ongoing */ |
| if (HAL_IS_BIT_SET(hadc->State, HAL_ADC_STATE_INJ_BUSY)) |
| { |
| /* Reset ADC error code fields related to conversions on group regular */ |
| CLEAR_BIT(hadc->ErrorCode, (HAL_ADC_ERROR_OVR | HAL_ADC_ERROR_DMA)); |
| } |
| else |
| { |
| /* Reset ADC all error code fields */ |
| ADC_CLEAR_ERRORCODE(hadc); |
| } |
| |
| /* Process unlocked */ |
| /* Unlock before starting ADC conversions: in case of potential */ |
| /* interruption, to let the process to ADC IRQ Handler. */ |
| __HAL_UNLOCK(hadc); |
| |
| /* Pointer to the common control register to which is belonging hadc */ |
| /* (Depending on STM32F4 product, there may be up to 3 ADCs and 1 common */ |
| /* control register) */ |
| tmpADC_Common = ADC_COMMON_REGISTER(hadc); |
| |
| /* Clear regular group conversion flag and overrun flag */ |
| /* (To ensure of no unknown state from potential previous ADC operations) */ |
| __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_EOC | ADC_FLAG_OVR); |
| |
| /* Enable end of conversion interrupt for regular group */ |
| __HAL_ADC_ENABLE_IT(hadc, (ADC_IT_EOC | ADC_IT_OVR)); |
| |
| /* Check if Multimode enabled */ |
| if(HAL_IS_BIT_CLR(tmpADC_Common->CCR, ADC_CCR_MULTI)) |
| { |
| #if defined(ADC2) && defined(ADC3) |
| if((hadc->Instance == ADC1) || ((hadc->Instance == ADC2) && ((ADC->CCR & ADC_CCR_MULTI_Msk) < ADC_CCR_MULTI_0)) \ |
| || ((hadc->Instance == ADC3) && ((ADC->CCR & ADC_CCR_MULTI_Msk) < ADC_CCR_MULTI_4))) |
| { |
| #endif /* ADC2 || ADC3 */ |
| /* if no external trigger present enable software conversion of regular channels */ |
| if((hadc->Instance->CR2 & ADC_CR2_EXTEN) == RESET) |
| { |
| /* Enable the selected ADC software conversion for regular group */ |
| hadc->Instance->CR2 |= (uint32_t)ADC_CR2_SWSTART; |
| } |
| #if defined(ADC2) && defined(ADC3) |
| } |
| #endif /* ADC2 || ADC3 */ |
| } |
| else |
| { |
| /* if instance of handle correspond to ADC1 and no external trigger present enable software conversion of regular channels */ |
| if((hadc->Instance == ADC1) && ((hadc->Instance->CR2 & ADC_CR2_EXTEN) == RESET)) |
| { |
| /* Enable the selected ADC software conversion for regular group */ |
| hadc->Instance->CR2 |= (uint32_t)ADC_CR2_SWSTART; |
| } |
| } |
| } |
| else |
| { |
| /* Update ADC state machine to error */ |
| SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL); |
| |
| /* Set ADC error code to ADC IP internal error */ |
| SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL); |
| } |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Disables the interrupt and stop ADC conversion of regular channels. |
| * |
| * @note Caution: This function will stop also injected channels. |
| * |
| * @param hadc pointer to a ADC_HandleTypeDef structure that contains |
| * the configuration information for the specified ADC. |
| * @retval HAL status. |
| */ |
| HAL_StatusTypeDef HAL_ADC_Stop_IT(ADC_HandleTypeDef* hadc) |
| { |
| /* Check the parameters */ |
| assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); |
| |
| /* Process locked */ |
| __HAL_LOCK(hadc); |
| |
| /* Stop potential conversion on going, on regular and injected groups */ |
| /* Disable ADC peripheral */ |
| __HAL_ADC_DISABLE(hadc); |
| |
| /* Check if ADC is effectively disabled */ |
| if(HAL_IS_BIT_CLR(hadc->Instance->CR2, ADC_CR2_ADON)) |
| { |
| /* Disable ADC end of conversion interrupt for regular group */ |
| __HAL_ADC_DISABLE_IT(hadc, (ADC_IT_EOC | ADC_IT_OVR)); |
| |
| /* Set ADC state */ |
| ADC_STATE_CLR_SET(hadc->State, |
| HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY, |
| HAL_ADC_STATE_READY); |
| } |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hadc); |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Handles ADC interrupt request |
| * @param hadc pointer to a ADC_HandleTypeDef structure that contains |
| * the configuration information for the specified ADC. |
| * @retval None |
| */ |
| void HAL_ADC_IRQHandler(ADC_HandleTypeDef* hadc) |
| { |
| uint32_t tmp1 = 0U, tmp2 = 0U; |
| |
| uint32_t tmp_sr = hadc->Instance->SR; |
| uint32_t tmp_cr1 = hadc->Instance->CR1; |
| |
| /* Check the parameters */ |
| assert_param(IS_FUNCTIONAL_STATE(hadc->Init.ContinuousConvMode)); |
| assert_param(IS_ADC_REGULAR_LENGTH(hadc->Init.NbrOfConversion)); |
| assert_param(IS_ADC_EOCSelection(hadc->Init.EOCSelection)); |
| |
| tmp1 = tmp_sr & ADC_FLAG_EOC; |
| tmp2 = tmp_cr1 & ADC_IT_EOC; |
| /* Check End of conversion flag for regular channels */ |
| if(tmp1 && tmp2) |
| { |
| /* Update state machine on conversion status if not in error state */ |
| if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL)) |
| { |
| /* Set ADC state */ |
| SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOC); |
| } |
| |
| /* Determine whether any further conversion upcoming on group regular */ |
| /* by external trigger, continuous mode or scan sequence on going. */ |
| /* Note: On STM32F4, there is no independent flag of end of sequence. */ |
| /* The test of scan sequence on going is done either with scan */ |
| /* sequence disabled or with end of conversion flag set to */ |
| /* of end of sequence. */ |
| if(ADC_IS_SOFTWARE_START_REGULAR(hadc) && |
| (hadc->Init.ContinuousConvMode == DISABLE) && |
| (HAL_IS_BIT_CLR(hadc->Instance->SQR1, ADC_SQR1_L) || |
| HAL_IS_BIT_CLR(hadc->Instance->CR2, ADC_CR2_EOCS) ) ) |
| { |
| /* Disable ADC end of single conversion interrupt on group regular */ |
| /* Note: Overrun interrupt was enabled with EOC interrupt in */ |
| /* HAL_ADC_Start_IT(), but is not disabled here because can be used */ |
| /* by overrun IRQ process below. */ |
| __HAL_ADC_DISABLE_IT(hadc, ADC_IT_EOC); |
| |
| /* Set ADC state */ |
| CLEAR_BIT(hadc->State, HAL_ADC_STATE_REG_BUSY); |
| |
| if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_INJ_BUSY)) |
| { |
| SET_BIT(hadc->State, HAL_ADC_STATE_READY); |
| } |
| } |
| |
| /* Conversion complete callback */ |
| #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) |
| hadc->ConvCpltCallback(hadc); |
| #else |
| HAL_ADC_ConvCpltCallback(hadc); |
| #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ |
| |
| /* Clear regular group conversion flag */ |
| __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_STRT | ADC_FLAG_EOC); |
| } |
| |
| tmp1 = tmp_sr & ADC_FLAG_JEOC; |
| tmp2 = tmp_cr1 & ADC_IT_JEOC; |
| /* Check End of conversion flag for injected channels */ |
| if(tmp1 && tmp2) |
| { |
| /* Update state machine on conversion status if not in error state */ |
| if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL)) |
| { |
| /* Set ADC state */ |
| SET_BIT(hadc->State, HAL_ADC_STATE_INJ_EOC); |
| } |
| |
| /* Determine whether any further conversion upcoming on group injected */ |
| /* by external trigger, scan sequence on going or by automatic injected */ |
| /* conversion from group regular (same conditions as group regular */ |
| /* interruption disabling above). */ |
| if(ADC_IS_SOFTWARE_START_INJECTED(hadc) && |
| (HAL_IS_BIT_CLR(hadc->Instance->JSQR, ADC_JSQR_JL) || |
| HAL_IS_BIT_CLR(hadc->Instance->CR2, ADC_CR2_EOCS) ) && |
| (HAL_IS_BIT_CLR(hadc->Instance->CR1, ADC_CR1_JAUTO) && |
| (ADC_IS_SOFTWARE_START_REGULAR(hadc) && |
| (hadc->Init.ContinuousConvMode == DISABLE) ) ) ) |
| { |
| /* Disable ADC end of single conversion interrupt on group injected */ |
| __HAL_ADC_DISABLE_IT(hadc, ADC_IT_JEOC); |
| |
| /* Set ADC state */ |
| CLEAR_BIT(hadc->State, HAL_ADC_STATE_INJ_BUSY); |
| |
| if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_REG_BUSY)) |
| { |
| SET_BIT(hadc->State, HAL_ADC_STATE_READY); |
| } |
| } |
| |
| /* Conversion complete callback */ |
| /* Conversion complete callback */ |
| #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) |
| hadc->InjectedConvCpltCallback(hadc); |
| #else |
| HAL_ADCEx_InjectedConvCpltCallback(hadc); |
| #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ |
| |
| /* Clear injected group conversion flag */ |
| __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_JSTRT | ADC_FLAG_JEOC)); |
| } |
| |
| tmp1 = tmp_sr & ADC_FLAG_AWD; |
| tmp2 = tmp_cr1 & ADC_IT_AWD; |
| /* Check Analog watchdog flag */ |
| if(tmp1 && tmp2) |
| { |
| if(__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_AWD)) |
| { |
| /* Set ADC state */ |
| SET_BIT(hadc->State, HAL_ADC_STATE_AWD1); |
| |
| /* Level out of window callback */ |
| #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) |
| hadc->LevelOutOfWindowCallback(hadc); |
| #else |
| HAL_ADC_LevelOutOfWindowCallback(hadc); |
| #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ |
| |
| /* Clear the ADC analog watchdog flag */ |
| __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD); |
| } |
| } |
| |
| tmp1 = tmp_sr & ADC_FLAG_OVR; |
| tmp2 = tmp_cr1 & ADC_IT_OVR; |
| /* Check Overrun flag */ |
| if(tmp1 && tmp2) |
| { |
| /* Note: On STM32F4, ADC overrun can be set through other parameters */ |
| /* refer to description of parameter "EOCSelection" for more */ |
| /* details. */ |
| |
| /* Set ADC error code to overrun */ |
| SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_OVR); |
| |
| /* Clear ADC overrun flag */ |
| __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_OVR); |
| |
| /* Error callback */ |
| #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) |
| hadc->ErrorCallback(hadc); |
| #else |
| HAL_ADC_ErrorCallback(hadc); |
| #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ |
| |
| /* Clear the Overrun flag */ |
| __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_OVR); |
| } |
| } |
| |
| /** |
| * @brief Enables ADC DMA request after last transfer (Single-ADC mode) and enables ADC peripheral |
| * @param hadc pointer to a ADC_HandleTypeDef structure that contains |
| * the configuration information for the specified ADC. |
| * @param pData The destination Buffer address. |
| * @param Length The length of data to be transferred from ADC peripheral to memory. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_ADC_Start_DMA(ADC_HandleTypeDef* hadc, uint32_t* pData, uint32_t Length) |
| { |
| __IO uint32_t counter = 0U; |
| ADC_Common_TypeDef *tmpADC_Common; |
| |
| /* Check the parameters */ |
| assert_param(IS_FUNCTIONAL_STATE(hadc->Init.ContinuousConvMode)); |
| assert_param(IS_ADC_EXT_TRIG_EDGE(hadc->Init.ExternalTrigConvEdge)); |
| |
| /* Process locked */ |
| __HAL_LOCK(hadc); |
| |
| /* Enable the ADC peripheral */ |
| /* Check if ADC peripheral is disabled in order to enable it and wait during |
| Tstab time the ADC's stabilization */ |
| if((hadc->Instance->CR2 & ADC_CR2_ADON) != ADC_CR2_ADON) |
| { |
| /* Enable the Peripheral */ |
| __HAL_ADC_ENABLE(hadc); |
| |
| /* Delay for ADC stabilization time */ |
| /* Compute number of CPU cycles to wait for */ |
| counter = (ADC_STAB_DELAY_US * (SystemCoreClock / 1000000U)); |
| while(counter != 0U) |
| { |
| counter--; |
| } |
| } |
| |
| /* Check ADC DMA Mode */ |
| /* - disable the DMA Mode if it is already enabled */ |
| if((hadc->Instance->CR2 & ADC_CR2_DMA) == ADC_CR2_DMA) |
| { |
| CLEAR_BIT(hadc->Instance->CR2, ADC_CR2_DMA); |
| } |
| |
| /* Start conversion if ADC is effectively enabled */ |
| if(HAL_IS_BIT_SET(hadc->Instance->CR2, ADC_CR2_ADON)) |
| { |
| /* Set ADC state */ |
| /* - Clear state bitfield related to regular group conversion results */ |
| /* - Set state bitfield related to regular group operation */ |
| ADC_STATE_CLR_SET(hadc->State, |
| HAL_ADC_STATE_READY | HAL_ADC_STATE_REG_EOC | HAL_ADC_STATE_REG_OVR, |
| HAL_ADC_STATE_REG_BUSY); |
| |
| /* If conversions on group regular are also triggering group injected, */ |
| /* update ADC state. */ |
| if (READ_BIT(hadc->Instance->CR1, ADC_CR1_JAUTO) != RESET) |
| { |
| ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_INJ_EOC, HAL_ADC_STATE_INJ_BUSY); |
| } |
| |
| /* State machine update: Check if an injected conversion is ongoing */ |
| if (HAL_IS_BIT_SET(hadc->State, HAL_ADC_STATE_INJ_BUSY)) |
| { |
| /* Reset ADC error code fields related to conversions on group regular */ |
| CLEAR_BIT(hadc->ErrorCode, (HAL_ADC_ERROR_OVR | HAL_ADC_ERROR_DMA)); |
| } |
| else |
| { |
| /* Reset ADC all error code fields */ |
| ADC_CLEAR_ERRORCODE(hadc); |
| } |
| |
| /* Process unlocked */ |
| /* Unlock before starting ADC conversions: in case of potential */ |
| /* interruption, to let the process to ADC IRQ Handler. */ |
| __HAL_UNLOCK(hadc); |
| |
| /* Pointer to the common control register to which is belonging hadc */ |
| /* (Depending on STM32F4 product, there may be up to 3 ADCs and 1 common */ |
| /* control register) */ |
| tmpADC_Common = ADC_COMMON_REGISTER(hadc); |
| |
| /* Set the DMA transfer complete callback */ |
| hadc->DMA_Handle->XferCpltCallback = ADC_DMAConvCplt; |
| |
| /* Set the DMA half transfer complete callback */ |
| hadc->DMA_Handle->XferHalfCpltCallback = ADC_DMAHalfConvCplt; |
| |
| /* Set the DMA error callback */ |
| hadc->DMA_Handle->XferErrorCallback = ADC_DMAError; |
| |
| |
| /* Manage ADC and DMA start: ADC overrun interruption, DMA start, ADC */ |
| /* start (in case of SW start): */ |
| |
| /* Clear regular group conversion flag and overrun flag */ |
| /* (To ensure of no unknown state from potential previous ADC operations) */ |
| __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_EOC | ADC_FLAG_OVR); |
| |
| /* Enable ADC overrun interrupt */ |
| __HAL_ADC_ENABLE_IT(hadc, ADC_IT_OVR); |
| |
| /* Enable ADC DMA mode */ |
| hadc->Instance->CR2 |= ADC_CR2_DMA; |
| |
| /* Start the DMA channel */ |
| HAL_DMA_Start_IT(hadc->DMA_Handle, (uint32_t)&hadc->Instance->DR, (uint32_t)pData, Length); |
| |
| /* Check if Multimode enabled */ |
| if(HAL_IS_BIT_CLR(tmpADC_Common->CCR, ADC_CCR_MULTI)) |
| { |
| #if defined(ADC2) && defined(ADC3) |
| if((hadc->Instance == ADC1) || ((hadc->Instance == ADC2) && ((ADC->CCR & ADC_CCR_MULTI_Msk) < ADC_CCR_MULTI_0)) \ |
| || ((hadc->Instance == ADC3) && ((ADC->CCR & ADC_CCR_MULTI_Msk) < ADC_CCR_MULTI_4))) |
| { |
| #endif /* ADC2 || ADC3 */ |
| /* if no external trigger present enable software conversion of regular channels */ |
| if((hadc->Instance->CR2 & ADC_CR2_EXTEN) == RESET) |
| { |
| /* Enable the selected ADC software conversion for regular group */ |
| hadc->Instance->CR2 |= (uint32_t)ADC_CR2_SWSTART; |
| } |
| #if defined(ADC2) && defined(ADC3) |
| } |
| #endif /* ADC2 || ADC3 */ |
| } |
| else |
| { |
| /* if instance of handle correspond to ADC1 and no external trigger present enable software conversion of regular channels */ |
| if((hadc->Instance == ADC1) && ((hadc->Instance->CR2 & ADC_CR2_EXTEN) == RESET)) |
| { |
| /* Enable the selected ADC software conversion for regular group */ |
| hadc->Instance->CR2 |= (uint32_t)ADC_CR2_SWSTART; |
| } |
| } |
| } |
| else |
| { |
| /* Update ADC state machine to error */ |
| SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL); |
| |
| /* Set ADC error code to ADC IP internal error */ |
| SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL); |
| } |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Disables ADC DMA (Single-ADC mode) and disables ADC peripheral |
| * @param hadc pointer to a ADC_HandleTypeDef structure that contains |
| * the configuration information for the specified ADC. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_ADC_Stop_DMA(ADC_HandleTypeDef* hadc) |
| { |
| HAL_StatusTypeDef tmp_hal_status = HAL_OK; |
| |
| /* Check the parameters */ |
| assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); |
| |
| /* Process locked */ |
| __HAL_LOCK(hadc); |
| |
| /* Stop potential conversion on going, on regular and injected groups */ |
| /* Disable ADC peripheral */ |
| __HAL_ADC_DISABLE(hadc); |
| |
| /* Check if ADC is effectively disabled */ |
| if(HAL_IS_BIT_CLR(hadc->Instance->CR2, ADC_CR2_ADON)) |
| { |
| /* Disable the selected ADC DMA mode */ |
| hadc->Instance->CR2 &= ~ADC_CR2_DMA; |
| |
| /* Disable the DMA channel (in case of DMA in circular mode or stop while */ |
| /* DMA transfer is on going) */ |
| if (hadc->DMA_Handle->State == HAL_DMA_STATE_BUSY) |
| { |
| tmp_hal_status = HAL_DMA_Abort(hadc->DMA_Handle); |
| |
| /* Check if DMA channel effectively disabled */ |
| if (tmp_hal_status != HAL_OK) |
| { |
| /* Update ADC state machine to error */ |
| SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_DMA); |
| } |
| } |
| |
| /* Disable ADC overrun interrupt */ |
| __HAL_ADC_DISABLE_IT(hadc, ADC_IT_OVR); |
| |
| /* Set ADC state */ |
| ADC_STATE_CLR_SET(hadc->State, |
| HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY, |
| HAL_ADC_STATE_READY); |
| } |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hadc); |
| |
| /* Return function status */ |
| return tmp_hal_status; |
| } |
| |
| /** |
| * @brief Gets the converted value from data register of regular channel. |
| * @param hadc pointer to a ADC_HandleTypeDef structure that contains |
| * the configuration information for the specified ADC. |
| * @retval Converted value |
| */ |
| uint32_t HAL_ADC_GetValue(ADC_HandleTypeDef* hadc) |
| { |
| /* Return the selected ADC converted value */ |
| return hadc->Instance->DR; |
| } |
| |
| /** |
| * @brief Regular conversion complete callback in non blocking mode |
| * @param hadc pointer to a ADC_HandleTypeDef structure that contains |
| * the configuration information for the specified ADC. |
| * @retval None |
| */ |
| __weak void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef* hadc) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(hadc); |
| /* NOTE : This function Should not be modified, when the callback is needed, |
| the HAL_ADC_ConvCpltCallback could be implemented in the user file |
| */ |
| } |
| |
| /** |
| * @brief Regular conversion half DMA transfer callback in non blocking mode |
| * @param hadc pointer to a ADC_HandleTypeDef structure that contains |
| * the configuration information for the specified ADC. |
| * @retval None |
| */ |
| __weak void HAL_ADC_ConvHalfCpltCallback(ADC_HandleTypeDef* hadc) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(hadc); |
| /* NOTE : This function Should not be modified, when the callback is needed, |
| the HAL_ADC_ConvHalfCpltCallback could be implemented in the user file |
| */ |
| } |
| |
| /** |
| * @brief Analog watchdog callback in non blocking mode |
| * @param hadc pointer to a ADC_HandleTypeDef structure that contains |
| * the configuration information for the specified ADC. |
| * @retval None |
| */ |
| __weak void HAL_ADC_LevelOutOfWindowCallback(ADC_HandleTypeDef* hadc) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(hadc); |
| /* NOTE : This function Should not be modified, when the callback is needed, |
| the HAL_ADC_LevelOoutOfWindowCallback could be implemented in the user file |
| */ |
| } |
| |
| /** |
| * @brief Error ADC callback. |
| * @note In case of error due to overrun when using ADC with DMA transfer |
| * (HAL ADC handle parameter "ErrorCode" to state "HAL_ADC_ERROR_OVR"): |
| * - Reinitialize the DMA using function "HAL_ADC_Stop_DMA()". |
| * - If needed, restart a new ADC conversion using function |
| * "HAL_ADC_Start_DMA()" |
| * (this function is also clearing overrun flag) |
| * @param hadc pointer to a ADC_HandleTypeDef structure that contains |
| * the configuration information for the specified ADC. |
| * @retval None |
| */ |
| __weak void HAL_ADC_ErrorCallback(ADC_HandleTypeDef *hadc) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(hadc); |
| /* NOTE : This function Should not be modified, when the callback is needed, |
| the HAL_ADC_ErrorCallback could be implemented in the user file |
| */ |
| } |
| |
| /** |
| * @} |
| */ |
| |
| /** @defgroup ADC_Exported_Functions_Group3 Peripheral Control functions |
| * @brief Peripheral Control functions |
| * |
| @verbatim |
| =============================================================================== |
| ##### Peripheral Control functions ##### |
| =============================================================================== |
| [..] This section provides functions allowing to: |
| (+) Configure regular channels. |
| (+) Configure injected channels. |
| (+) Configure multimode. |
| (+) Configure the analog watch dog. |
| |
| @endverbatim |
| * @{ |
| */ |
| |
| /** |
| * @brief Configures for the selected ADC regular channel its corresponding |
| * rank in the sequencer and its sample time. |
| * @param hadc pointer to a ADC_HandleTypeDef structure that contains |
| * the configuration information for the specified ADC. |
| * @param sConfig ADC configuration structure. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_ADC_ConfigChannel(ADC_HandleTypeDef* hadc, ADC_ChannelConfTypeDef* sConfig) |
| { |
| __IO uint32_t counter = 0U; |
| ADC_Common_TypeDef *tmpADC_Common; |
| |
| /* Check the parameters */ |
| assert_param(IS_ADC_CHANNEL(sConfig->Channel)); |
| assert_param(IS_ADC_REGULAR_RANK(sConfig->Rank)); |
| assert_param(IS_ADC_SAMPLE_TIME(sConfig->SamplingTime)); |
| |
| /* Process locked */ |
| __HAL_LOCK(hadc); |
| |
| /* if ADC_Channel_10 ... ADC_Channel_18 is selected */ |
| if (sConfig->Channel > ADC_CHANNEL_9) |
| { |
| /* Clear the old sample time */ |
| hadc->Instance->SMPR1 &= ~ADC_SMPR1(ADC_SMPR1_SMP10, sConfig->Channel); |
| |
| /* Set the new sample time */ |
| hadc->Instance->SMPR1 |= ADC_SMPR1(sConfig->SamplingTime, sConfig->Channel); |
| } |
| else /* ADC_Channel include in ADC_Channel_[0..9] */ |
| { |
| /* Clear the old sample time */ |
| hadc->Instance->SMPR2 &= ~ADC_SMPR2(ADC_SMPR2_SMP0, sConfig->Channel); |
| |
| /* Set the new sample time */ |
| hadc->Instance->SMPR2 |= ADC_SMPR2(sConfig->SamplingTime, sConfig->Channel); |
| } |
| |
| /* For Rank 1 to 6 */ |
| if (sConfig->Rank < 7U) |
| { |
| /* Clear the old SQx bits for the selected rank */ |
| hadc->Instance->SQR3 &= ~ADC_SQR3_RK(ADC_SQR3_SQ1, sConfig->Rank); |
| |
| /* Set the SQx bits for the selected rank */ |
| hadc->Instance->SQR3 |= ADC_SQR3_RK(sConfig->Channel, sConfig->Rank); |
| } |
| /* For Rank 7 to 12 */ |
| else if (sConfig->Rank < 13U) |
| { |
| /* Clear the old SQx bits for the selected rank */ |
| hadc->Instance->SQR2 &= ~ADC_SQR2_RK(ADC_SQR2_SQ7, sConfig->Rank); |
| |
| /* Set the SQx bits for the selected rank */ |
| hadc->Instance->SQR2 |= ADC_SQR2_RK(sConfig->Channel, sConfig->Rank); |
| } |
| /* For Rank 13 to 16 */ |
| else |
| { |
| /* Clear the old SQx bits for the selected rank */ |
| hadc->Instance->SQR1 &= ~ADC_SQR1_RK(ADC_SQR1_SQ13, sConfig->Rank); |
| |
| /* Set the SQx bits for the selected rank */ |
| hadc->Instance->SQR1 |= ADC_SQR1_RK(sConfig->Channel, sConfig->Rank); |
| } |
| |
| /* Pointer to the common control register to which is belonging hadc */ |
| /* (Depending on STM32F4 product, there may be up to 3 ADCs and 1 common */ |
| /* control register) */ |
| tmpADC_Common = ADC_COMMON_REGISTER(hadc); |
| |
| /* if ADC1 Channel_18 is selected for VBAT Channel ennable VBATE */ |
| if ((hadc->Instance == ADC1) && (sConfig->Channel == ADC_CHANNEL_VBAT)) |
| { |
| /* Disable the TEMPSENSOR channel in case of using board with multiplixed ADC_CHANNEL_VBAT & ADC_CHANNEL_TEMPSENSOR*/ |
| if ((uint16_t)ADC_CHANNEL_TEMPSENSOR == (uint16_t)ADC_CHANNEL_VBAT) |
| { |
| tmpADC_Common->CCR &= ~ADC_CCR_TSVREFE; |
| } |
| /* Enable the VBAT channel*/ |
| tmpADC_Common->CCR |= ADC_CCR_VBATE; |
| } |
| |
| /* if ADC1 Channel_16 or Channel_18 is selected for Temperature sensor or |
| Channel_17 is selected for VREFINT enable TSVREFE */ |
| if ((hadc->Instance == ADC1) && ((sConfig->Channel == ADC_CHANNEL_TEMPSENSOR) || (sConfig->Channel == ADC_CHANNEL_VREFINT))) |
| { |
| /* Disable the VBAT channel in case of using board with multiplixed ADC_CHANNEL_VBAT & ADC_CHANNEL_TEMPSENSOR*/ |
| if ((uint16_t)ADC_CHANNEL_TEMPSENSOR == (uint16_t)ADC_CHANNEL_VBAT) |
| { |
| tmpADC_Common->CCR &= ~ADC_CCR_VBATE; |
| } |
| /* Enable the Temperature sensor and VREFINT channel*/ |
| tmpADC_Common->CCR |= ADC_CCR_TSVREFE; |
| |
| if(sConfig->Channel == ADC_CHANNEL_TEMPSENSOR) |
| { |
| /* Delay for temperature sensor stabilization time */ |
| /* Compute number of CPU cycles to wait for */ |
| counter = (ADC_TEMPSENSOR_DELAY_US * (SystemCoreClock / 1000000U)); |
| while(counter != 0U) |
| { |
| counter--; |
| } |
| } |
| } |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hadc); |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Configures the analog watchdog. |
| * @note Analog watchdog thresholds can be modified while ADC conversion |
| * is on going. |
| * In this case, some constraints must be taken into account: |
| * The programmed threshold values are effective from the next |
| * ADC EOC (end of unitary conversion). |
| * Considering that registers write delay may happen due to |
| * bus activity, this might cause an uncertainty on the |
| * effective timing of the new programmed threshold values. |
| * @param hadc pointer to a ADC_HandleTypeDef structure that contains |
| * the configuration information for the specified ADC. |
| * @param AnalogWDGConfig pointer to an ADC_AnalogWDGConfTypeDef structure |
| * that contains the configuration information of ADC analog watchdog. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_ADC_AnalogWDGConfig(ADC_HandleTypeDef* hadc, ADC_AnalogWDGConfTypeDef* AnalogWDGConfig) |
| { |
| #ifdef USE_FULL_ASSERT |
| uint32_t tmp = 0U; |
| #endif /* USE_FULL_ASSERT */ |
| |
| /* Check the parameters */ |
| assert_param(IS_ADC_ANALOG_WATCHDOG(AnalogWDGConfig->WatchdogMode)); |
| assert_param(IS_ADC_CHANNEL(AnalogWDGConfig->Channel)); |
| assert_param(IS_FUNCTIONAL_STATE(AnalogWDGConfig->ITMode)); |
| |
| #ifdef USE_FULL_ASSERT |
| tmp = ADC_GET_RESOLUTION(hadc); |
| assert_param(IS_ADC_RANGE(tmp, AnalogWDGConfig->HighThreshold)); |
| assert_param(IS_ADC_RANGE(tmp, AnalogWDGConfig->LowThreshold)); |
| #endif /* USE_FULL_ASSERT */ |
| |
| /* Process locked */ |
| __HAL_LOCK(hadc); |
| |
| if(AnalogWDGConfig->ITMode == ENABLE) |
| { |
| /* Enable the ADC Analog watchdog interrupt */ |
| __HAL_ADC_ENABLE_IT(hadc, ADC_IT_AWD); |
| } |
| else |
| { |
| /* Disable the ADC Analog watchdog interrupt */ |
| __HAL_ADC_DISABLE_IT(hadc, ADC_IT_AWD); |
| } |
| |
| /* Clear AWDEN, JAWDEN and AWDSGL bits */ |
| hadc->Instance->CR1 &= ~(ADC_CR1_AWDSGL | ADC_CR1_JAWDEN | ADC_CR1_AWDEN); |
| |
| /* Set the analog watchdog enable mode */ |
| hadc->Instance->CR1 |= AnalogWDGConfig->WatchdogMode; |
| |
| /* Set the high threshold */ |
| hadc->Instance->HTR = AnalogWDGConfig->HighThreshold; |
| |
| /* Set the low threshold */ |
| hadc->Instance->LTR = AnalogWDGConfig->LowThreshold; |
| |
| /* Clear the Analog watchdog channel select bits */ |
| hadc->Instance->CR1 &= ~ADC_CR1_AWDCH; |
| |
| /* Set the Analog watchdog channel */ |
| hadc->Instance->CR1 |= (uint32_t)((uint16_t)(AnalogWDGConfig->Channel)); |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hadc); |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| |
| /** |
| * @} |
| */ |
| |
| /** @defgroup ADC_Exported_Functions_Group4 ADC Peripheral State functions |
| * @brief ADC Peripheral State functions |
| * |
| @verbatim |
| =============================================================================== |
| ##### Peripheral State and errors functions ##### |
| =============================================================================== |
| [..] |
| This subsection provides functions allowing to |
| (+) Check the ADC state |
| (+) Check the ADC Error |
| |
| @endverbatim |
| * @{ |
| */ |
| |
| /** |
| * @brief return the ADC state |
| * @param hadc pointer to a ADC_HandleTypeDef structure that contains |
| * the configuration information for the specified ADC. |
| * @retval HAL state |
| */ |
| uint32_t HAL_ADC_GetState(ADC_HandleTypeDef* hadc) |
| { |
| /* Return ADC state */ |
| return hadc->State; |
| } |
| |
| /** |
| * @brief Return the ADC error code |
| * @param hadc pointer to a ADC_HandleTypeDef structure that contains |
| * the configuration information for the specified ADC. |
| * @retval ADC Error Code |
| */ |
| uint32_t HAL_ADC_GetError(ADC_HandleTypeDef *hadc) |
| { |
| return hadc->ErrorCode; |
| } |
| |
| /** |
| * @} |
| */ |
| |
| /** @addtogroup ADC_Private_Functions |
| * @{ |
| */ |
| |
| /** |
| * @brief Initializes the ADCx peripheral according to the specified parameters |
| * in the ADC_InitStruct without initializing the ADC MSP. |
| * @param hadc pointer to a ADC_HandleTypeDef structure that contains |
| * the configuration information for the specified ADC. |
| * @retval None |
| */ |
| static void ADC_Init(ADC_HandleTypeDef* hadc) |
| { |
| ADC_Common_TypeDef *tmpADC_Common; |
| |
| /* Set ADC parameters */ |
| /* Pointer to the common control register to which is belonging hadc */ |
| /* (Depending on STM32F4 product, there may be up to 3 ADCs and 1 common */ |
| /* control register) */ |
| tmpADC_Common = ADC_COMMON_REGISTER(hadc); |
| |
| /* Set the ADC clock prescaler */ |
| tmpADC_Common->CCR &= ~(ADC_CCR_ADCPRE); |
| tmpADC_Common->CCR |= hadc->Init.ClockPrescaler; |
| |
| /* Set ADC scan mode */ |
| hadc->Instance->CR1 &= ~(ADC_CR1_SCAN); |
| hadc->Instance->CR1 |= ADC_CR1_SCANCONV(hadc->Init.ScanConvMode); |
| |
| /* Set ADC resolution */ |
| hadc->Instance->CR1 &= ~(ADC_CR1_RES); |
| hadc->Instance->CR1 |= hadc->Init.Resolution; |
| |
| /* Set ADC data alignment */ |
| hadc->Instance->CR2 &= ~(ADC_CR2_ALIGN); |
| hadc->Instance->CR2 |= hadc->Init.DataAlign; |
| |
| /* Enable external trigger if trigger selection is different of software */ |
| /* start. */ |
| /* Note: This configuration keeps the hardware feature of parameter */ |
| /* ExternalTrigConvEdge "trigger edge none" equivalent to */ |
| /* software start. */ |
| if(hadc->Init.ExternalTrigConv != ADC_SOFTWARE_START) |
| { |
| /* Select external trigger to start conversion */ |
| hadc->Instance->CR2 &= ~(ADC_CR2_EXTSEL); |
| hadc->Instance->CR2 |= hadc->Init.ExternalTrigConv; |
| |
| /* Select external trigger polarity */ |
| hadc->Instance->CR2 &= ~(ADC_CR2_EXTEN); |
| hadc->Instance->CR2 |= hadc->Init.ExternalTrigConvEdge; |
| } |
| else |
| { |
| /* Reset the external trigger */ |
| hadc->Instance->CR2 &= ~(ADC_CR2_EXTSEL); |
| hadc->Instance->CR2 &= ~(ADC_CR2_EXTEN); |
| } |
| |
| /* Enable or disable ADC continuous conversion mode */ |
| hadc->Instance->CR2 &= ~(ADC_CR2_CONT); |
| hadc->Instance->CR2 |= ADC_CR2_CONTINUOUS((uint32_t)hadc->Init.ContinuousConvMode); |
| |
| if(hadc->Init.DiscontinuousConvMode != DISABLE) |
| { |
| assert_param(IS_ADC_REGULAR_DISC_NUMBER(hadc->Init.NbrOfDiscConversion)); |
| |
| /* Enable the selected ADC regular discontinuous mode */ |
| hadc->Instance->CR1 |= (uint32_t)ADC_CR1_DISCEN; |
| |
| /* Set the number of channels to be converted in discontinuous mode */ |
| hadc->Instance->CR1 &= ~(ADC_CR1_DISCNUM); |
| hadc->Instance->CR1 |= ADC_CR1_DISCONTINUOUS(hadc->Init.NbrOfDiscConversion); |
| } |
| else |
| { |
| /* Disable the selected ADC regular discontinuous mode */ |
| hadc->Instance->CR1 &= ~(ADC_CR1_DISCEN); |
| } |
| |
| /* Set ADC number of conversion */ |
| hadc->Instance->SQR1 &= ~(ADC_SQR1_L); |
| hadc->Instance->SQR1 |= ADC_SQR1(hadc->Init.NbrOfConversion); |
| |
| /* Enable or disable ADC DMA continuous request */ |
| hadc->Instance->CR2 &= ~(ADC_CR2_DDS); |
| hadc->Instance->CR2 |= ADC_CR2_DMAContReq((uint32_t)hadc->Init.DMAContinuousRequests); |
| |
| /* Enable or disable ADC end of conversion selection */ |
| hadc->Instance->CR2 &= ~(ADC_CR2_EOCS); |
| hadc->Instance->CR2 |= ADC_CR2_EOCSelection(hadc->Init.EOCSelection); |
| } |
| |
| /** |
| * @brief DMA transfer complete callback. |
| * @param hdma pointer to a DMA_HandleTypeDef structure that contains |
| * the configuration information for the specified DMA module. |
| * @retval None |
| */ |
| static void ADC_DMAConvCplt(DMA_HandleTypeDef *hdma) |
| { |
| /* Retrieve ADC handle corresponding to current DMA handle */ |
| ADC_HandleTypeDef* hadc = ( ADC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; |
| |
| /* Update state machine on conversion status if not in error state */ |
| if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL | HAL_ADC_STATE_ERROR_DMA)) |
| { |
| /* Update ADC state machine */ |
| SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOC); |
| |
| /* Determine whether any further conversion upcoming on group regular */ |
| /* by external trigger, continuous mode or scan sequence on going. */ |
| /* Note: On STM32F4, there is no independent flag of end of sequence. */ |
| /* The test of scan sequence on going is done either with scan */ |
| /* sequence disabled or with end of conversion flag set to */ |
| /* of end of sequence. */ |
| if(ADC_IS_SOFTWARE_START_REGULAR(hadc) && |
| (hadc->Init.ContinuousConvMode == DISABLE) && |
| (HAL_IS_BIT_CLR(hadc->Instance->SQR1, ADC_SQR1_L) || |
| HAL_IS_BIT_CLR(hadc->Instance->CR2, ADC_CR2_EOCS) ) ) |
| { |
| /* Disable ADC end of single conversion interrupt on group regular */ |
| /* Note: Overrun interrupt was enabled with EOC interrupt in */ |
| /* HAL_ADC_Start_IT(), but is not disabled here because can be used */ |
| /* by overrun IRQ process below. */ |
| __HAL_ADC_DISABLE_IT(hadc, ADC_IT_EOC); |
| |
| /* Set ADC state */ |
| CLEAR_BIT(hadc->State, HAL_ADC_STATE_REG_BUSY); |
| |
| if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_INJ_BUSY)) |
| { |
| SET_BIT(hadc->State, HAL_ADC_STATE_READY); |
| } |
| } |
| |
| /* Conversion complete callback */ |
| #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) |
| hadc->ConvCpltCallback(hadc); |
| #else |
| HAL_ADC_ConvCpltCallback(hadc); |
| #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ |
| } |
| else /* DMA and-or internal error occurred */ |
| { |
| if ((hadc->State & HAL_ADC_STATE_ERROR_INTERNAL) != 0UL) |
| { |
| /* Call HAL ADC Error Callback function */ |
| #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) |
| hadc->ErrorCallback(hadc); |
| #else |
| HAL_ADC_ErrorCallback(hadc); |
| #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ |
| } |
| else |
| { |
| /* Call DMA error callback */ |
| hadc->DMA_Handle->XferErrorCallback(hdma); |
| } |
| } |
| } |
| |
| /** |
| * @brief DMA half transfer complete callback. |
| * @param hdma pointer to a DMA_HandleTypeDef structure that contains |
| * the configuration information for the specified DMA module. |
| * @retval None |
| */ |
| static void ADC_DMAHalfConvCplt(DMA_HandleTypeDef *hdma) |
| { |
| ADC_HandleTypeDef* hadc = ( ADC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; |
| /* Half conversion callback */ |
| #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) |
| hadc->ConvHalfCpltCallback(hadc); |
| #else |
| HAL_ADC_ConvHalfCpltCallback(hadc); |
| #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ |
| } |
| |
| /** |
| * @brief DMA error callback |
| * @param hdma pointer to a DMA_HandleTypeDef structure that contains |
| * the configuration information for the specified DMA module. |
| * @retval None |
| */ |
| static void ADC_DMAError(DMA_HandleTypeDef *hdma) |
| { |
| ADC_HandleTypeDef* hadc = ( ADC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; |
| hadc->State= HAL_ADC_STATE_ERROR_DMA; |
| /* Set ADC error code to DMA error */ |
| hadc->ErrorCode |= HAL_ADC_ERROR_DMA; |
| /* Error callback */ |
| #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) |
| hadc->ErrorCallback(hadc); |
| #else |
| HAL_ADC_ErrorCallback(hadc); |
| #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ |
| } |
| |
| /** |
| * @} |
| */ |
| |
| /** |
| * @} |
| */ |
| |
| #endif /* HAL_ADC_MODULE_ENABLED */ |
| /** |
| * @} |
| */ |
| |
| /** |
| * @} |
| */ |
| |