blob: 306475925d481fb81887e8e4f4a2fb46be3b7335 [file] [log] [blame]
/**
******************************************************************************
* @file stm32f4xx_hal_fmpi2c.c
* @author MCD Application Team
* @brief FMPI2C HAL module driver.
* This file provides firmware functions to manage the following
* functionalities of the Inter Integrated Circuit (FMPI2C) peripheral:
* + Initialization and de-initialization functions
* + IO operation functions
* + Peripheral State and Errors functions
*
@verbatim
==============================================================================
##### How to use this driver #####
==============================================================================
[..]
The FMPI2C HAL driver can be used as follows:
(#) Declare a FMPI2C_HandleTypeDef handle structure, for example:
FMPI2C_HandleTypeDef hfmpi2c;
(#)Initialize the FMPI2C low level resources by implementing the HAL_FMPI2C_MspInit() API:
(##) Enable the FMPI2Cx interface clock
(##) FMPI2C pins configuration
(+++) Enable the clock for the FMPI2C GPIOs
(+++) Configure FMPI2C pins as alternate function open-drain
(##) NVIC configuration if you need to use interrupt process
(+++) Configure the FMPI2Cx interrupt priority
(+++) Enable the NVIC FMPI2C IRQ Channel
(##) DMA Configuration if you need to use DMA process
(+++) Declare a DMA_HandleTypeDef handle structure for
the transmit or receive stream
(+++) Enable the DMAx interface clock using
(+++) Configure the DMA handle parameters
(+++) Configure the DMA Tx or Rx stream
(+++) Associate the initialized DMA handle to the hfmpi2c DMA Tx or Rx handle
(+++) Configure the priority and enable the NVIC for the transfer complete interrupt on
the DMA Tx or Rx stream
(#) Configure the Communication Clock Timing, Own Address1, Master Addressing mode, Dual Addressing mode,
Own Address2, Own Address2 Mask, General call and Nostretch mode in the hfmpi2c Init structure.
(#) Initialize the FMPI2C registers by calling the HAL_FMPI2C_Init(), configures also the low level Hardware
(GPIO, CLOCK, NVIC...etc) by calling the customized HAL_FMPI2C_MspInit(&hfmpi2c) API.
(#) To check if target device is ready for communication, use the function HAL_FMPI2C_IsDeviceReady()
(#) For FMPI2C IO and IO MEM operations, three operation modes are available within this driver :
*** Polling mode IO operation ***
=================================
[..]
(+) Transmit in master mode an amount of data in blocking mode using HAL_FMPI2C_Master_Transmit()
(+) Receive in master mode an amount of data in blocking mode using HAL_FMPI2C_Master_Receive()
(+) Transmit in slave mode an amount of data in blocking mode using HAL_FMPI2C_Slave_Transmit()
(+) Receive in slave mode an amount of data in blocking mode using HAL_FMPI2C_Slave_Receive()
*** Polling mode IO MEM operation ***
=====================================
[..]
(+) Write an amount of data in blocking mode to a specific memory address using HAL_FMPI2C_Mem_Write()
(+) Read an amount of data in blocking mode from a specific memory address using HAL_FMPI2C_Mem_Read()
*** Interrupt mode IO operation ***
===================================
[..]
(+) Transmit in master mode an amount of data in non-blocking mode using HAL_FMPI2C_Master_Transmit_IT()
(+) At transmission end of transfer, HAL_FMPI2C_MasterTxCpltCallback() is executed and user can
add his own code by customization of function pointer HAL_FMPI2C_MasterTxCpltCallback()
(+) Receive in master mode an amount of data in non-blocking mode using HAL_FMPI2C_Master_Receive_IT()
(+) At reception end of transfer, HAL_FMPI2C_MasterRxCpltCallback() is executed and user can
add his own code by customization of function pointer HAL_FMPI2C_MasterRxCpltCallback()
(+) Transmit in slave mode an amount of data in non-blocking mode using HAL_FMPI2C_Slave_Transmit_IT()
(+) At transmission end of transfer, HAL_FMPI2C_SlaveTxCpltCallback() is executed and user can
add his own code by customization of function pointer HAL_FMPI2C_SlaveTxCpltCallback()
(+) Receive in slave mode an amount of data in non-blocking mode using HAL_FMPI2C_Slave_Receive_IT()
(+) At reception end of transfer, HAL_FMPI2C_SlaveRxCpltCallback() is executed and user can
add his own code by customization of function pointer HAL_FMPI2C_SlaveRxCpltCallback()
(+) In case of transfer Error, HAL_FMPI2C_ErrorCallback() function is executed and user can
add his own code by customization of function pointer HAL_FMPI2C_ErrorCallback()
(+) Abort a master FMPI2C process communication with Interrupt using HAL_FMPI2C_Master_Abort_IT()
(+) End of abort process, HAL_FMPI2C_AbortCpltCallback() is executed and user can
add his own code by customization of function pointer HAL_FMPI2C_AbortCpltCallback()
(+) Discard a slave FMPI2C process communication using __HAL_FMPI2C_GENERATE_NACK() macro.
This action will inform Master to generate a Stop condition to discard the communication.
*** Interrupt mode or DMA mode IO sequential operation ***
==========================================================
[..]
(@) These interfaces allow to manage a sequential transfer with a repeated start condition
when a direction change during transfer
[..]
(+) A specific option field manage the different steps of a sequential transfer
(+) Option field values are defined through FMPI2C_XFEROPTIONS and are listed below:
(++) FMPI2C_FIRST_AND_LAST_FRAME: No sequential usage, functional is same as associated interfaces in no sequential mode
(++) FMPI2C_FIRST_FRAME: Sequential usage, this option allow to manage a sequence with start condition, address
and data to transfer without a final stop condition
(++) FMPI2C_FIRST_AND_NEXT_FRAME: Sequential usage (Master only), this option allow to manage a sequence with start condition, address
and data to transfer without a final stop condition, an then permit a call the same master sequential interface
several times (like HAL_FMPI2C_Master_Seq_Transmit_IT() then HAL_FMPI2C_Master_Seq_Transmit_IT()
or HAL_FMPI2C_Master_Seq_Transmit_DMA() then HAL_FMPI2C_Master_Seq_Transmit_DMA())
(++) FMPI2C_NEXT_FRAME: Sequential usage, this option allow to manage a sequence with a restart condition, address
and with new data to transfer if the direction change or manage only the new data to
transfer
if no direction change and without a final stop condition in both cases
(++) FMPI2C_LAST_FRAME: Sequential usage, this option allow to manage a sequance with a restart condition, address
and with new data to transfer if the direction change or manage only the new data to
transfer
if no direction change and with a final stop condition in both cases
(++) FMPI2C_LAST_FRAME_NO_STOP: Sequential usage (Master only), this option allow to manage a restart condition
after several call of the same master sequential interface several times
(link with option FMPI2C_FIRST_AND_NEXT_FRAME).
Usage can, transfer several bytes one by one using
HAL_FMPI2C_Master_Seq_Transmit_IT
or HAL_FMPI2C_Master_Seq_Receive_IT
or HAL_FMPI2C_Master_Seq_Transmit_DMA
or HAL_FMPI2C_Master_Seq_Receive_DMA
with option FMPI2C_FIRST_AND_NEXT_FRAME then FMPI2C_NEXT_FRAME.
Then usage of this option FMPI2C_LAST_FRAME_NO_STOP at the last Transmit or
Receive sequence permit to call the opposite interface Receive or Transmit
without stopping the communication and so generate a restart condition.
(++) FMPI2C_OTHER_FRAME: Sequential usage (Master only), this option allow to manage a restart condition after
each call of the same master sequential
interface.
Usage can, transfer several bytes one by one with a restart with slave address between
each bytes using
HAL_FMPI2C_Master_Seq_Transmit_IT
or HAL_FMPI2C_Master_Seq_Receive_IT
or HAL_FMPI2C_Master_Seq_Transmit_DMA
or HAL_FMPI2C_Master_Seq_Receive_DMA
with option FMPI2C_FIRST_FRAME then FMPI2C_OTHER_FRAME.
Then usage of this option FMPI2C_OTHER_AND_LAST_FRAME at the last frame to help automatic
generation of STOP condition.
(+) Different sequential FMPI2C interfaces are listed below:
(++) Sequential transmit in master FMPI2C mode an amount of data in non-blocking mode using HAL_FMPI2C_Master_Seq_Transmit_IT()
or using HAL_FMPI2C_Master_Seq_Transmit_DMA()
(+++) At transmission end of current frame transfer, HAL_FMPI2C_MasterTxCpltCallback() is executed and user can
add his own code by customization of function pointer HAL_FMPI2C_MasterTxCpltCallback()
(++) Sequential receive in master FMPI2C mode an amount of data in non-blocking mode using HAL_FMPI2C_Master_Seq_Receive_IT()
or using HAL_FMPI2C_Master_Seq_Receive_DMA()
(+++) At reception end of current frame transfer, HAL_FMPI2C_MasterRxCpltCallback() is executed and user can
add his own code by customization of function pointer HAL_FMPI2C_MasterRxCpltCallback()
(++) Abort a master IT or DMA FMPI2C process communication with Interrupt using HAL_FMPI2C_Master_Abort_IT()
(+++) End of abort process, HAL_FMPI2C_AbortCpltCallback() is executed and user can
add his own code by customization of function pointer HAL_FMPI2C_AbortCpltCallback()
(++) Enable/disable the Address listen mode in slave FMPI2C mode using HAL_FMPI2C_EnableListen_IT() HAL_FMPI2C_DisableListen_IT()
(+++) When address slave FMPI2C match, HAL_FMPI2C_AddrCallback() is executed and user can
add his own code to check the Address Match Code and the transmission direction request by master (Write/Read).
(+++) At Listen mode end HAL_FMPI2C_ListenCpltCallback() is executed and user can
add his own code by customization of function pointer HAL_FMPI2C_ListenCpltCallback()
(++) Sequential transmit in slave FMPI2C mode an amount of data in non-blocking mode using HAL_FMPI2C_Slave_Seq_Transmit_IT()
or using HAL_FMPI2C_Slave_Seq_Transmit_DMA()
(+++) At transmission end of current frame transfer, HAL_FMPI2C_SlaveTxCpltCallback() is executed and user can
add his own code by customization of function pointer HAL_FMPI2C_SlaveTxCpltCallback()
(++) Sequential receive in slave FMPI2C mode an amount of data in non-blocking mode using HAL_FMPI2C_Slave_Seq_Receive_IT()
or using HAL_FMPI2C_Slave_Seq_Receive_DMA()
(+++) At reception end of current frame transfer, HAL_FMPI2C_SlaveRxCpltCallback() is executed and user can
add his own code by customization of function pointer HAL_FMPI2C_SlaveRxCpltCallback()
(++) In case of transfer Error, HAL_FMPI2C_ErrorCallback() function is executed and user can
add his own code by customization of function pointer HAL_FMPI2C_ErrorCallback()
(++) Discard a slave FMPI2C process communication using __HAL_FMPI2C_GENERATE_NACK() macro.
This action will inform Master to generate a Stop condition to discard the communication.
*** Interrupt mode IO MEM operation ***
=======================================
[..]
(+) Write an amount of data in non-blocking mode with Interrupt to a specific memory address using
HAL_FMPI2C_Mem_Write_IT()
(+) At Memory end of write transfer, HAL_FMPI2C_MemTxCpltCallback() is executed and user can
add his own code by customization of function pointer HAL_FMPI2C_MemTxCpltCallback()
(+) Read an amount of data in non-blocking mode with Interrupt from a specific memory address using
HAL_FMPI2C_Mem_Read_IT()
(+) At Memory end of read transfer, HAL_FMPI2C_MemRxCpltCallback() is executed and user can
add his own code by customization of function pointer HAL_FMPI2C_MemRxCpltCallback()
(+) In case of transfer Error, HAL_FMPI2C_ErrorCallback() function is executed and user can
add his own code by customization of function pointer HAL_FMPI2C_ErrorCallback()
*** DMA mode IO operation ***
==============================
[..]
(+) Transmit in master mode an amount of data in non-blocking mode (DMA) using
HAL_FMPI2C_Master_Transmit_DMA()
(+) At transmission end of transfer, HAL_FMPI2C_MasterTxCpltCallback() is executed and user can
add his own code by customization of function pointer HAL_FMPI2C_MasterTxCpltCallback()
(+) Receive in master mode an amount of data in non-blocking mode (DMA) using
HAL_FMPI2C_Master_Receive_DMA()
(+) At reception end of transfer, HAL_FMPI2C_MasterRxCpltCallback() is executed and user can
add his own code by customization of function pointer HAL_FMPI2C_MasterRxCpltCallback()
(+) Transmit in slave mode an amount of data in non-blocking mode (DMA) using
HAL_FMPI2C_Slave_Transmit_DMA()
(+) At transmission end of transfer, HAL_FMPI2C_SlaveTxCpltCallback() is executed and user can
add his own code by customization of function pointer HAL_FMPI2C_SlaveTxCpltCallback()
(+) Receive in slave mode an amount of data in non-blocking mode (DMA) using
HAL_FMPI2C_Slave_Receive_DMA()
(+) At reception end of transfer, HAL_FMPI2C_SlaveRxCpltCallback() is executed and user can
add his own code by customization of function pointer HAL_FMPI2C_SlaveRxCpltCallback()
(+) In case of transfer Error, HAL_FMPI2C_ErrorCallback() function is executed and user can
add his own code by customization of function pointer HAL_FMPI2C_ErrorCallback()
(+) Abort a master FMPI2C process communication with Interrupt using HAL_FMPI2C_Master_Abort_IT()
(+) End of abort process, HAL_FMPI2C_AbortCpltCallback() is executed and user can
add his own code by customization of function pointer HAL_FMPI2C_AbortCpltCallback()
(+) Discard a slave FMPI2C process communication using __HAL_FMPI2C_GENERATE_NACK() macro.
This action will inform Master to generate a Stop condition to discard the communication.
*** DMA mode IO MEM operation ***
=================================
[..]
(+) Write an amount of data in non-blocking mode with DMA to a specific memory address using
HAL_FMPI2C_Mem_Write_DMA()
(+) At Memory end of write transfer, HAL_FMPI2C_MemTxCpltCallback() is executed and user can
add his own code by customization of function pointer HAL_FMPI2C_MemTxCpltCallback()
(+) Read an amount of data in non-blocking mode with DMA from a specific memory address using
HAL_FMPI2C_Mem_Read_DMA()
(+) At Memory end of read transfer, HAL_FMPI2C_MemRxCpltCallback() is executed and user can
add his own code by customization of function pointer HAL_FMPI2C_MemRxCpltCallback()
(+) In case of transfer Error, HAL_FMPI2C_ErrorCallback() function is executed and user can
add his own code by customization of function pointer HAL_FMPI2C_ErrorCallback()
*** FMPI2C HAL driver macros list ***
==================================
[..]
Below the list of most used macros in FMPI2C HAL driver.
(+) __HAL_FMPI2C_ENABLE: Enable the FMPI2C peripheral
(+) __HAL_FMPI2C_DISABLE: Disable the FMPI2C peripheral
(+) __HAL_FMPI2C_GENERATE_NACK: Generate a Non-Acknowledge FMPI2C peripheral in Slave mode
(+) __HAL_FMPI2C_GET_FLAG: Check whether the specified FMPI2C flag is set or not
(+) __HAL_FMPI2C_CLEAR_FLAG: Clear the specified FMPI2C pending flag
(+) __HAL_FMPI2C_ENABLE_IT: Enable the specified FMPI2C interrupt
(+) __HAL_FMPI2C_DISABLE_IT: Disable the specified FMPI2C interrupt
*** Callback registration ***
=============================================
[..]
The compilation flag USE_HAL_FMPI2C_REGISTER_CALLBACKS when set to 1
allows the user to configure dynamically the driver callbacks.
Use Functions HAL_FMPI2C_RegisterCallback() or HAL_FMPI2C_RegisterAddrCallback()
to register an interrupt callback.
[..]
Function HAL_FMPI2C_RegisterCallback() allows to register following callbacks:
(+) MasterTxCpltCallback : callback for Master transmission end of transfer.
(+) MasterRxCpltCallback : callback for Master reception end of transfer.
(+) SlaveTxCpltCallback : callback for Slave transmission end of transfer.
(+) SlaveRxCpltCallback : callback for Slave reception end of transfer.
(+) ListenCpltCallback : callback for end of listen mode.
(+) MemTxCpltCallback : callback for Memory transmission end of transfer.
(+) MemRxCpltCallback : callback for Memory reception end of transfer.
(+) ErrorCallback : callback for error detection.
(+) AbortCpltCallback : callback for abort completion process.
(+) MspInitCallback : callback for Msp Init.
(+) MspDeInitCallback : callback for Msp DeInit.
This function takes as parameters the HAL peripheral handle, the Callback ID
and a pointer to the user callback function.
[..]
For specific callback AddrCallback use dedicated register callbacks : HAL_FMPI2C_RegisterAddrCallback().
[..]
Use function HAL_FMPI2C_UnRegisterCallback to reset a callback to the default
weak function.
HAL_FMPI2C_UnRegisterCallback takes as parameters the HAL peripheral handle,
and the Callback ID.
This function allows to reset following callbacks:
(+) MasterTxCpltCallback : callback for Master transmission end of transfer.
(+) MasterRxCpltCallback : callback for Master reception end of transfer.
(+) SlaveTxCpltCallback : callback for Slave transmission end of transfer.
(+) SlaveRxCpltCallback : callback for Slave reception end of transfer.
(+) ListenCpltCallback : callback for end of listen mode.
(+) MemTxCpltCallback : callback for Memory transmission end of transfer.
(+) MemRxCpltCallback : callback for Memory reception end of transfer.
(+) ErrorCallback : callback for error detection.
(+) AbortCpltCallback : callback for abort completion process.
(+) MspInitCallback : callback for Msp Init.
(+) MspDeInitCallback : callback for Msp DeInit.
[..]
For callback AddrCallback use dedicated register callbacks : HAL_FMPI2C_UnRegisterAddrCallback().
[..]
By default, after the HAL_FMPI2C_Init() and when the state is HAL_FMPI2C_STATE_RESET
all callbacks are set to the corresponding weak functions:
examples HAL_FMPI2C_MasterTxCpltCallback(), HAL_FMPI2C_MasterRxCpltCallback().
Exception done for MspInit and MspDeInit functions that are
reset to the legacy weak functions in the HAL_FMPI2C_Init()/ HAL_FMPI2C_DeInit() only when
these callbacks are null (not registered beforehand).
If MspInit or MspDeInit are not null, the HAL_FMPI2C_Init()/ HAL_FMPI2C_DeInit()
keep and use the user MspInit/MspDeInit callbacks (registered beforehand) whatever the state.
[..]
Callbacks can be registered/unregistered in HAL_FMPI2C_STATE_READY state only.
Exception done MspInit/MspDeInit functions that can be registered/unregistered
in HAL_FMPI2C_STATE_READY or HAL_FMPI2C_STATE_RESET state,
thus registered (user) MspInit/DeInit callbacks can be used during the Init/DeInit.
Then, the user first registers the MspInit/MspDeInit user callbacks
using HAL_FMPI2C_RegisterCallback() before calling HAL_FMPI2C_DeInit()
or HAL_FMPI2C_Init() function.
[..]
When the compilation flag USE_HAL_FMPI2C_REGISTER_CALLBACKS is set to 0 or
not defined, the callback registration feature is not available and all callbacks
are set to the corresponding weak functions.
[..]
(@) You can refer to the FMPI2C HAL driver header file for more useful macros
@endverbatim
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2016 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f4xx_hal.h"
/** @addtogroup STM32F4xx_HAL_Driver
* @{
*/
/** @defgroup FMPI2C FMPI2C
* @brief FMPI2C HAL module driver
* @{
*/
#ifdef HAL_FMPI2C_MODULE_ENABLED
#if defined(FMPI2C_CR1_PE)
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/** @defgroup FMPI2C_Private_Define FMPI2C Private Define
* @{
*/
#define TIMING_CLEAR_MASK (0xF0FFFFFFU) /*!< FMPI2C TIMING clear register Mask */
#define FMPI2C_TIMEOUT_ADDR (10000U) /*!< 10 s */
#define FMPI2C_TIMEOUT_BUSY (25U) /*!< 25 ms */
#define FMPI2C_TIMEOUT_DIR (25U) /*!< 25 ms */
#define FMPI2C_TIMEOUT_RXNE (25U) /*!< 25 ms */
#define FMPI2C_TIMEOUT_STOPF (25U) /*!< 25 ms */
#define FMPI2C_TIMEOUT_TC (25U) /*!< 25 ms */
#define FMPI2C_TIMEOUT_TCR (25U) /*!< 25 ms */
#define FMPI2C_TIMEOUT_TXIS (25U) /*!< 25 ms */
#define FMPI2C_TIMEOUT_FLAG (25U) /*!< 25 ms */
#define MAX_NBYTE_SIZE 255U
#define SLAVE_ADDR_SHIFT 7U
#define SLAVE_ADDR_MSK 0x06U
/* Private define for @ref PreviousState usage */
#define FMPI2C_STATE_MSK ((uint32_t)((uint32_t)((uint32_t)HAL_FMPI2C_STATE_BUSY_TX | \
(uint32_t)HAL_FMPI2C_STATE_BUSY_RX) & \
(uint32_t)(~((uint32_t)HAL_FMPI2C_STATE_READY))))
/*!< Mask State define, keep only RX and TX bits */
#define FMPI2C_STATE_NONE ((uint32_t)(HAL_FMPI2C_MODE_NONE))
/*!< Default Value */
#define FMPI2C_STATE_MASTER_BUSY_TX ((uint32_t)(((uint32_t)HAL_FMPI2C_STATE_BUSY_TX & FMPI2C_STATE_MSK) | \
(uint32_t)HAL_FMPI2C_MODE_MASTER))
/*!< Master Busy TX, combinaison of State LSB and Mode enum */
#define FMPI2C_STATE_MASTER_BUSY_RX ((uint32_t)(((uint32_t)HAL_FMPI2C_STATE_BUSY_RX & FMPI2C_STATE_MSK) | \
(uint32_t)HAL_FMPI2C_MODE_MASTER))
/*!< Master Busy RX, combinaison of State LSB and Mode enum */
#define FMPI2C_STATE_SLAVE_BUSY_TX ((uint32_t)(((uint32_t)HAL_FMPI2C_STATE_BUSY_TX & FMPI2C_STATE_MSK) | \
(uint32_t)HAL_FMPI2C_MODE_SLAVE))
/*!< Slave Busy TX, combinaison of State LSB and Mode enum */
#define FMPI2C_STATE_SLAVE_BUSY_RX ((uint32_t)(((uint32_t)HAL_FMPI2C_STATE_BUSY_RX & FMPI2C_STATE_MSK) | \
(uint32_t)HAL_FMPI2C_MODE_SLAVE))
/*!< Slave Busy RX, combinaison of State LSB and Mode enum */
#define FMPI2C_STATE_MEM_BUSY_TX ((uint32_t)(((uint32_t)HAL_FMPI2C_STATE_BUSY_TX & FMPI2C_STATE_MSK) | \
(uint32_t)HAL_FMPI2C_MODE_MEM))
/*!< Memory Busy TX, combinaison of State LSB and Mode enum */
#define FMPI2C_STATE_MEM_BUSY_RX ((uint32_t)(((uint32_t)HAL_FMPI2C_STATE_BUSY_RX & FMPI2C_STATE_MSK) | \
(uint32_t)HAL_FMPI2C_MODE_MEM))
/*!< Memory Busy RX, combinaison of State LSB and Mode enum */
/* Private define to centralize the enable/disable of Interrupts */
#define FMPI2C_XFER_TX_IT (uint16_t)(0x0001U) /*!< Bit field can be combinated with
@ref FMPI2C_XFER_LISTEN_IT */
#define FMPI2C_XFER_RX_IT (uint16_t)(0x0002U) /*!< Bit field can be combinated with
@ref FMPI2C_XFER_LISTEN_IT */
#define FMPI2C_XFER_LISTEN_IT (uint16_t)(0x8000U) /*!< Bit field can be combinated with @ref FMPI2C_XFER_TX_IT
and @ref FMPI2C_XFER_RX_IT */
#define FMPI2C_XFER_ERROR_IT (uint16_t)(0x0010U) /*!< Bit definition to manage addition of global Error
and NACK treatment */
#define FMPI2C_XFER_CPLT_IT (uint16_t)(0x0020U) /*!< Bit definition to manage only STOP evenement */
#define FMPI2C_XFER_RELOAD_IT (uint16_t)(0x0040U) /*!< Bit definition to manage only Reload of NBYTE */
/* Private define Sequential Transfer Options default/reset value */
#define FMPI2C_NO_OPTION_FRAME (0xFFFF0000U)
/**
* @}
*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/** @defgroup FMPI2C_Private_Functions FMPI2C Private Functions
* @{
*/
/* Private functions to handle DMA transfer */
static void FMPI2C_DMAMasterTransmitCplt(DMA_HandleTypeDef *hdma);
static void FMPI2C_DMAMasterReceiveCplt(DMA_HandleTypeDef *hdma);
static void FMPI2C_DMASlaveTransmitCplt(DMA_HandleTypeDef *hdma);
static void FMPI2C_DMASlaveReceiveCplt(DMA_HandleTypeDef *hdma);
static void FMPI2C_DMAError(DMA_HandleTypeDef *hdma);
static void FMPI2C_DMAAbort(DMA_HandleTypeDef *hdma);
/* Private functions to handle IT transfer */
static void FMPI2C_ITAddrCplt(FMPI2C_HandleTypeDef *hfmpi2c, uint32_t ITFlags);
static void FMPI2C_ITMasterSeqCplt(FMPI2C_HandleTypeDef *hfmpi2c);
static void FMPI2C_ITSlaveSeqCplt(FMPI2C_HandleTypeDef *hfmpi2c);
static void FMPI2C_ITMasterCplt(FMPI2C_HandleTypeDef *hfmpi2c, uint32_t ITFlags);
static void FMPI2C_ITSlaveCplt(FMPI2C_HandleTypeDef *hfmpi2c, uint32_t ITFlags);
static void FMPI2C_ITListenCplt(FMPI2C_HandleTypeDef *hfmpi2c, uint32_t ITFlags);
static void FMPI2C_ITError(FMPI2C_HandleTypeDef *hfmpi2c, uint32_t ErrorCode);
/* Private functions to handle IT transfer */
static HAL_StatusTypeDef FMPI2C_RequestMemoryWrite(FMPI2C_HandleTypeDef *hfmpi2c, uint16_t DevAddress,
uint16_t MemAddress, uint16_t MemAddSize, uint32_t Timeout,
uint32_t Tickstart);
static HAL_StatusTypeDef FMPI2C_RequestMemoryRead(FMPI2C_HandleTypeDef *hfmpi2c, uint16_t DevAddress,
uint16_t MemAddress, uint16_t MemAddSize, uint32_t Timeout,
uint32_t Tickstart);
/* Private functions for FMPI2C transfer IRQ handler */
static HAL_StatusTypeDef FMPI2C_Master_ISR_IT(struct __FMPI2C_HandleTypeDef *hfmpi2c, uint32_t ITFlags,
uint32_t ITSources);
static HAL_StatusTypeDef FMPI2C_Slave_ISR_IT(struct __FMPI2C_HandleTypeDef *hfmpi2c, uint32_t ITFlags,
uint32_t ITSources);
static HAL_StatusTypeDef FMPI2C_Master_ISR_DMA(struct __FMPI2C_HandleTypeDef *hfmpi2c, uint32_t ITFlags,
uint32_t ITSources);
static HAL_StatusTypeDef FMPI2C_Slave_ISR_DMA(struct __FMPI2C_HandleTypeDef *hfmpi2c, uint32_t ITFlags,
uint32_t ITSources);
/* Private functions to handle flags during polling transfer */
static HAL_StatusTypeDef FMPI2C_WaitOnFlagUntilTimeout(FMPI2C_HandleTypeDef *hfmpi2c, uint32_t Flag, FlagStatus Status,
uint32_t Timeout, uint32_t Tickstart);
static HAL_StatusTypeDef FMPI2C_WaitOnTXISFlagUntilTimeout(FMPI2C_HandleTypeDef *hfmpi2c, uint32_t Timeout,
uint32_t Tickstart);
static HAL_StatusTypeDef FMPI2C_WaitOnRXNEFlagUntilTimeout(FMPI2C_HandleTypeDef *hfmpi2c, uint32_t Timeout,
uint32_t Tickstart);
static HAL_StatusTypeDef FMPI2C_WaitOnSTOPFlagUntilTimeout(FMPI2C_HandleTypeDef *hfmpi2c, uint32_t Timeout,
uint32_t Tickstart);
static HAL_StatusTypeDef FMPI2C_IsAcknowledgeFailed(FMPI2C_HandleTypeDef *hfmpi2c, uint32_t Timeout,
uint32_t Tickstart);
/* Private functions to centralize the enable/disable of Interrupts */
static void FMPI2C_Enable_IRQ(FMPI2C_HandleTypeDef *hfmpi2c, uint16_t InterruptRequest);
static void FMPI2C_Disable_IRQ(FMPI2C_HandleTypeDef *hfmpi2c, uint16_t InterruptRequest);
/* Private function to treat different error callback */
static void FMPI2C_TreatErrorCallback(FMPI2C_HandleTypeDef *hfmpi2c);
/* Private function to flush TXDR register */
static void FMPI2C_Flush_TXDR(FMPI2C_HandleTypeDef *hfmpi2c);
/* Private function to handle start, restart or stop a transfer */
static void FMPI2C_TransferConfig(FMPI2C_HandleTypeDef *hfmpi2c, uint16_t DevAddress, uint8_t Size, uint32_t Mode,
uint32_t Request);
/* Private function to Convert Specific options */
static void FMPI2C_ConvertOtherXferOptions(FMPI2C_HandleTypeDef *hfmpi2c);
/**
* @}
*/
/* Exported functions --------------------------------------------------------*/
/** @defgroup FMPI2C_Exported_Functions FMPI2C Exported Functions
* @{
*/
/** @defgroup FMPI2C_Exported_Functions_Group1 Initialization and de-initialization functions
* @brief Initialization and Configuration functions
*
@verbatim
===============================================================================
##### Initialization and de-initialization functions #####
===============================================================================
[..] This subsection provides a set of functions allowing to initialize and
deinitialize the FMPI2Cx peripheral:
(+) User must Implement HAL_FMPI2C_MspInit() function in which he configures
all related peripherals resources (CLOCK, GPIO, DMA, IT and NVIC ).
(+) Call the function HAL_FMPI2C_Init() to configure the selected device with
the selected configuration:
(++) Clock Timing
(++) Own Address 1
(++) Addressing mode (Master, Slave)
(++) Dual Addressing mode
(++) Own Address 2
(++) Own Address 2 Mask
(++) General call mode
(++) Nostretch mode
(+) Call the function HAL_FMPI2C_DeInit() to restore the default configuration
of the selected FMPI2Cx peripheral.
@endverbatim
* @{
*/
/**
* @brief Initializes the FMPI2C according to the specified parameters
* in the FMPI2C_InitTypeDef and initialize the associated handle.
* @param hfmpi2c Pointer to a FMPI2C_HandleTypeDef structure that contains
* the configuration information for the specified FMPI2C.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FMPI2C_Init(FMPI2C_HandleTypeDef *hfmpi2c)
{
/* Check the FMPI2C handle allocation */
if (hfmpi2c == NULL)
{
return HAL_ERROR;
}
/* Check the parameters */
assert_param(IS_FMPI2C_ALL_INSTANCE(hfmpi2c->Instance));
assert_param(IS_FMPI2C_OWN_ADDRESS1(hfmpi2c->Init.OwnAddress1));
assert_param(IS_FMPI2C_ADDRESSING_MODE(hfmpi2c->Init.AddressingMode));
assert_param(IS_FMPI2C_DUAL_ADDRESS(hfmpi2c->Init.DualAddressMode));
assert_param(IS_FMPI2C_OWN_ADDRESS2(hfmpi2c->Init.OwnAddress2));
assert_param(IS_FMPI2C_OWN_ADDRESS2_MASK(hfmpi2c->Init.OwnAddress2Masks));
assert_param(IS_FMPI2C_GENERAL_CALL(hfmpi2c->Init.GeneralCallMode));
assert_param(IS_FMPI2C_NO_STRETCH(hfmpi2c->Init.NoStretchMode));
if (hfmpi2c->State == HAL_FMPI2C_STATE_RESET)
{
/* Allocate lock resource and initialize it */
hfmpi2c->Lock = HAL_UNLOCKED;
#if (USE_HAL_FMPI2C_REGISTER_CALLBACKS == 1)
/* Init the FMPI2C Callback settings */
hfmpi2c->MasterTxCpltCallback = HAL_FMPI2C_MasterTxCpltCallback; /* Legacy weak MasterTxCpltCallback */
hfmpi2c->MasterRxCpltCallback = HAL_FMPI2C_MasterRxCpltCallback; /* Legacy weak MasterRxCpltCallback */
hfmpi2c->SlaveTxCpltCallback = HAL_FMPI2C_SlaveTxCpltCallback; /* Legacy weak SlaveTxCpltCallback */
hfmpi2c->SlaveRxCpltCallback = HAL_FMPI2C_SlaveRxCpltCallback; /* Legacy weak SlaveRxCpltCallback */
hfmpi2c->ListenCpltCallback = HAL_FMPI2C_ListenCpltCallback; /* Legacy weak ListenCpltCallback */
hfmpi2c->MemTxCpltCallback = HAL_FMPI2C_MemTxCpltCallback; /* Legacy weak MemTxCpltCallback */
hfmpi2c->MemRxCpltCallback = HAL_FMPI2C_MemRxCpltCallback; /* Legacy weak MemRxCpltCallback */
hfmpi2c->ErrorCallback = HAL_FMPI2C_ErrorCallback; /* Legacy weak ErrorCallback */
hfmpi2c->AbortCpltCallback = HAL_FMPI2C_AbortCpltCallback; /* Legacy weak AbortCpltCallback */
hfmpi2c->AddrCallback = HAL_FMPI2C_AddrCallback; /* Legacy weak AddrCallback */
if (hfmpi2c->MspInitCallback == NULL)
{
hfmpi2c->MspInitCallback = HAL_FMPI2C_MspInit; /* Legacy weak MspInit */
}
/* Init the low level hardware : GPIO, CLOCK, CORTEX...etc */
hfmpi2c->MspInitCallback(hfmpi2c);
#else
/* Init the low level hardware : GPIO, CLOCK, CORTEX...etc */
HAL_FMPI2C_MspInit(hfmpi2c);
#endif /* USE_HAL_FMPI2C_REGISTER_CALLBACKS */
}
hfmpi2c->State = HAL_FMPI2C_STATE_BUSY;
/* Disable the selected FMPI2C peripheral */
__HAL_FMPI2C_DISABLE(hfmpi2c);
/*---------------------------- FMPI2Cx TIMINGR Configuration ------------------*/
/* Configure FMPI2Cx: Frequency range */
hfmpi2c->Instance->TIMINGR = hfmpi2c->Init.Timing & TIMING_CLEAR_MASK;
/*---------------------------- FMPI2Cx OAR1 Configuration ---------------------*/
/* Disable Own Address1 before set the Own Address1 configuration */
hfmpi2c->Instance->OAR1 &= ~FMPI2C_OAR1_OA1EN;
/* Configure FMPI2Cx: Own Address1 and ack own address1 mode */
if (hfmpi2c->Init.AddressingMode == FMPI2C_ADDRESSINGMODE_7BIT)
{
hfmpi2c->Instance->OAR1 = (FMPI2C_OAR1_OA1EN | hfmpi2c->Init.OwnAddress1);
}
else /* FMPI2C_ADDRESSINGMODE_10BIT */
{
hfmpi2c->Instance->OAR1 = (FMPI2C_OAR1_OA1EN | FMPI2C_OAR1_OA1MODE | hfmpi2c->Init.OwnAddress1);
}
/*---------------------------- FMPI2Cx CR2 Configuration ----------------------*/
/* Configure FMPI2Cx: Addressing Master mode */
if (hfmpi2c->Init.AddressingMode == FMPI2C_ADDRESSINGMODE_10BIT)
{
hfmpi2c->Instance->CR2 = (FMPI2C_CR2_ADD10);
}
/* Enable the AUTOEND by default, and enable NACK (should be disable only during Slave process */
hfmpi2c->Instance->CR2 |= (FMPI2C_CR2_AUTOEND | FMPI2C_CR2_NACK);
/*---------------------------- FMPI2Cx OAR2 Configuration ---------------------*/
/* Disable Own Address2 before set the Own Address2 configuration */
hfmpi2c->Instance->OAR2 &= ~FMPI2C_DUALADDRESS_ENABLE;
/* Configure FMPI2Cx: Dual mode and Own Address2 */
hfmpi2c->Instance->OAR2 = (hfmpi2c->Init.DualAddressMode | hfmpi2c->Init.OwnAddress2 | \
(hfmpi2c->Init.OwnAddress2Masks << 8));
/*---------------------------- FMPI2Cx CR1 Configuration ----------------------*/
/* Configure FMPI2Cx: Generalcall and NoStretch mode */
hfmpi2c->Instance->CR1 = (hfmpi2c->Init.GeneralCallMode | hfmpi2c->Init.NoStretchMode);
/* Enable the selected FMPI2C peripheral */
__HAL_FMPI2C_ENABLE(hfmpi2c);
hfmpi2c->ErrorCode = HAL_FMPI2C_ERROR_NONE;
hfmpi2c->State = HAL_FMPI2C_STATE_READY;
hfmpi2c->PreviousState = FMPI2C_STATE_NONE;
hfmpi2c->Mode = HAL_FMPI2C_MODE_NONE;
return HAL_OK;
}
/**
* @brief DeInitialize the FMPI2C peripheral.
* @param hfmpi2c Pointer to a FMPI2C_HandleTypeDef structure that contains
* the configuration information for the specified FMPI2C.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FMPI2C_DeInit(FMPI2C_HandleTypeDef *hfmpi2c)
{
/* Check the FMPI2C handle allocation */
if (hfmpi2c == NULL)
{
return HAL_ERROR;
}
/* Check the parameters */
assert_param(IS_FMPI2C_ALL_INSTANCE(hfmpi2c->Instance));
hfmpi2c->State = HAL_FMPI2C_STATE_BUSY;
/* Disable the FMPI2C Peripheral Clock */
__HAL_FMPI2C_DISABLE(hfmpi2c);
#if (USE_HAL_FMPI2C_REGISTER_CALLBACKS == 1)
if (hfmpi2c->MspDeInitCallback == NULL)
{
hfmpi2c->MspDeInitCallback = HAL_FMPI2C_MspDeInit; /* Legacy weak MspDeInit */
}
/* DeInit the low level hardware: GPIO, CLOCK, NVIC */
hfmpi2c->MspDeInitCallback(hfmpi2c);
#else
/* DeInit the low level hardware: GPIO, CLOCK, NVIC */
HAL_FMPI2C_MspDeInit(hfmpi2c);
#endif /* USE_HAL_FMPI2C_REGISTER_CALLBACKS */
hfmpi2c->ErrorCode = HAL_FMPI2C_ERROR_NONE;
hfmpi2c->State = HAL_FMPI2C_STATE_RESET;
hfmpi2c->PreviousState = FMPI2C_STATE_NONE;
hfmpi2c->Mode = HAL_FMPI2C_MODE_NONE;
/* Release Lock */
__HAL_UNLOCK(hfmpi2c);
return HAL_OK;
}
/**
* @brief Initialize the FMPI2C MSP.
* @param hfmpi2c Pointer to a FMPI2C_HandleTypeDef structure that contains
* the configuration information for the specified FMPI2C.
* @retval None
*/
__weak void HAL_FMPI2C_MspInit(FMPI2C_HandleTypeDef *hfmpi2c)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hfmpi2c);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_FMPI2C_MspInit could be implemented in the user file
*/
}
/**
* @brief DeInitialize the FMPI2C MSP.
* @param hfmpi2c Pointer to a FMPI2C_HandleTypeDef structure that contains
* the configuration information for the specified FMPI2C.
* @retval None
*/
__weak void HAL_FMPI2C_MspDeInit(FMPI2C_HandleTypeDef *hfmpi2c)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hfmpi2c);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_FMPI2C_MspDeInit could be implemented in the user file
*/
}
#if (USE_HAL_FMPI2C_REGISTER_CALLBACKS == 1)
/**
* @brief Register a User FMPI2C Callback
* To be used instead of the weak predefined callback
* @param hfmpi2c Pointer to a FMPI2C_HandleTypeDef structure that contains
* the configuration information for the specified FMPI2C.
* @param CallbackID ID of the callback to be registered
* This parameter can be one of the following values:
* @arg @ref HAL_FMPI2C_MASTER_TX_COMPLETE_CB_ID Master Tx Transfer completed callback ID
* @arg @ref HAL_FMPI2C_MASTER_RX_COMPLETE_CB_ID Master Rx Transfer completed callback ID
* @arg @ref HAL_FMPI2C_SLAVE_TX_COMPLETE_CB_ID Slave Tx Transfer completed callback ID
* @arg @ref HAL_FMPI2C_SLAVE_RX_COMPLETE_CB_ID Slave Rx Transfer completed callback ID
* @arg @ref HAL_FMPI2C_LISTEN_COMPLETE_CB_ID Listen Complete callback ID
* @arg @ref HAL_FMPI2C_MEM_TX_COMPLETE_CB_ID Memory Tx Transfer callback ID
* @arg @ref HAL_FMPI2C_MEM_RX_COMPLETE_CB_ID Memory Rx Transfer completed callback ID
* @arg @ref HAL_FMPI2C_ERROR_CB_ID Error callback ID
* @arg @ref HAL_FMPI2C_ABORT_CB_ID Abort callback ID
* @arg @ref HAL_FMPI2C_MSPINIT_CB_ID MspInit callback ID
* @arg @ref HAL_FMPI2C_MSPDEINIT_CB_ID MspDeInit callback ID
* @param pCallback pointer to the Callback function
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FMPI2C_RegisterCallback(FMPI2C_HandleTypeDef *hfmpi2c, HAL_FMPI2C_CallbackIDTypeDef CallbackID,
pFMPI2C_CallbackTypeDef pCallback)
{
HAL_StatusTypeDef status = HAL_OK;
if (pCallback == NULL)
{
/* Update the error code */
hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_INVALID_CALLBACK;
return HAL_ERROR;
}
/* Process locked */
__HAL_LOCK(hfmpi2c);
if (HAL_FMPI2C_STATE_READY == hfmpi2c->State)
{
switch (CallbackID)
{
case HAL_FMPI2C_MASTER_TX_COMPLETE_CB_ID :
hfmpi2c->MasterTxCpltCallback = pCallback;
break;
case HAL_FMPI2C_MASTER_RX_COMPLETE_CB_ID :
hfmpi2c->MasterRxCpltCallback = pCallback;
break;
case HAL_FMPI2C_SLAVE_TX_COMPLETE_CB_ID :
hfmpi2c->SlaveTxCpltCallback = pCallback;
break;
case HAL_FMPI2C_SLAVE_RX_COMPLETE_CB_ID :
hfmpi2c->SlaveRxCpltCallback = pCallback;
break;
case HAL_FMPI2C_LISTEN_COMPLETE_CB_ID :
hfmpi2c->ListenCpltCallback = pCallback;
break;
case HAL_FMPI2C_MEM_TX_COMPLETE_CB_ID :
hfmpi2c->MemTxCpltCallback = pCallback;
break;
case HAL_FMPI2C_MEM_RX_COMPLETE_CB_ID :
hfmpi2c->MemRxCpltCallback = pCallback;
break;
case HAL_FMPI2C_ERROR_CB_ID :
hfmpi2c->ErrorCallback = pCallback;
break;
case HAL_FMPI2C_ABORT_CB_ID :
hfmpi2c->AbortCpltCallback = pCallback;
break;
case HAL_FMPI2C_MSPINIT_CB_ID :
hfmpi2c->MspInitCallback = pCallback;
break;
case HAL_FMPI2C_MSPDEINIT_CB_ID :
hfmpi2c->MspDeInitCallback = pCallback;
break;
default :
/* Update the error code */
hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
break;
}
}
else if (HAL_FMPI2C_STATE_RESET == hfmpi2c->State)
{
switch (CallbackID)
{
case HAL_FMPI2C_MSPINIT_CB_ID :
hfmpi2c->MspInitCallback = pCallback;
break;
case HAL_FMPI2C_MSPDEINIT_CB_ID :
hfmpi2c->MspDeInitCallback = pCallback;
break;
default :
/* Update the error code */
hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
break;
}
}
else
{
/* Update the error code */
hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
}
/* Release Lock */
__HAL_UNLOCK(hfmpi2c);
return status;
}
/**
* @brief Unregister an FMPI2C Callback
* FMPI2C callback is redirected to the weak predefined callback
* @param hfmpi2c Pointer to a FMPI2C_HandleTypeDef structure that contains
* the configuration information for the specified FMPI2C.
* @param CallbackID ID of the callback to be unregistered
* This parameter can be one of the following values:
* This parameter can be one of the following values:
* @arg @ref HAL_FMPI2C_MASTER_TX_COMPLETE_CB_ID Master Tx Transfer completed callback ID
* @arg @ref HAL_FMPI2C_MASTER_RX_COMPLETE_CB_ID Master Rx Transfer completed callback ID
* @arg @ref HAL_FMPI2C_SLAVE_TX_COMPLETE_CB_ID Slave Tx Transfer completed callback ID
* @arg @ref HAL_FMPI2C_SLAVE_RX_COMPLETE_CB_ID Slave Rx Transfer completed callback ID
* @arg @ref HAL_FMPI2C_LISTEN_COMPLETE_CB_ID Listen Complete callback ID
* @arg @ref HAL_FMPI2C_MEM_TX_COMPLETE_CB_ID Memory Tx Transfer callback ID
* @arg @ref HAL_FMPI2C_MEM_RX_COMPLETE_CB_ID Memory Rx Transfer completed callback ID
* @arg @ref HAL_FMPI2C_ERROR_CB_ID Error callback ID
* @arg @ref HAL_FMPI2C_ABORT_CB_ID Abort callback ID
* @arg @ref HAL_FMPI2C_MSPINIT_CB_ID MspInit callback ID
* @arg @ref HAL_FMPI2C_MSPDEINIT_CB_ID MspDeInit callback ID
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FMPI2C_UnRegisterCallback(FMPI2C_HandleTypeDef *hfmpi2c, HAL_FMPI2C_CallbackIDTypeDef CallbackID)
{
HAL_StatusTypeDef status = HAL_OK;
/* Process locked */
__HAL_LOCK(hfmpi2c);
if (HAL_FMPI2C_STATE_READY == hfmpi2c->State)
{
switch (CallbackID)
{
case HAL_FMPI2C_MASTER_TX_COMPLETE_CB_ID :
hfmpi2c->MasterTxCpltCallback = HAL_FMPI2C_MasterTxCpltCallback; /* Legacy weak MasterTxCpltCallback */
break;
case HAL_FMPI2C_MASTER_RX_COMPLETE_CB_ID :
hfmpi2c->MasterRxCpltCallback = HAL_FMPI2C_MasterRxCpltCallback; /* Legacy weak MasterRxCpltCallback */
break;
case HAL_FMPI2C_SLAVE_TX_COMPLETE_CB_ID :
hfmpi2c->SlaveTxCpltCallback = HAL_FMPI2C_SlaveTxCpltCallback; /* Legacy weak SlaveTxCpltCallback */
break;
case HAL_FMPI2C_SLAVE_RX_COMPLETE_CB_ID :
hfmpi2c->SlaveRxCpltCallback = HAL_FMPI2C_SlaveRxCpltCallback; /* Legacy weak SlaveRxCpltCallback */
break;
case HAL_FMPI2C_LISTEN_COMPLETE_CB_ID :
hfmpi2c->ListenCpltCallback = HAL_FMPI2C_ListenCpltCallback; /* Legacy weak ListenCpltCallback */
break;
case HAL_FMPI2C_MEM_TX_COMPLETE_CB_ID :
hfmpi2c->MemTxCpltCallback = HAL_FMPI2C_MemTxCpltCallback; /* Legacy weak MemTxCpltCallback */
break;
case HAL_FMPI2C_MEM_RX_COMPLETE_CB_ID :
hfmpi2c->MemRxCpltCallback = HAL_FMPI2C_MemRxCpltCallback; /* Legacy weak MemRxCpltCallback */
break;
case HAL_FMPI2C_ERROR_CB_ID :
hfmpi2c->ErrorCallback = HAL_FMPI2C_ErrorCallback; /* Legacy weak ErrorCallback */
break;
case HAL_FMPI2C_ABORT_CB_ID :
hfmpi2c->AbortCpltCallback = HAL_FMPI2C_AbortCpltCallback; /* Legacy weak AbortCpltCallback */
break;
case HAL_FMPI2C_MSPINIT_CB_ID :
hfmpi2c->MspInitCallback = HAL_FMPI2C_MspInit; /* Legacy weak MspInit */
break;
case HAL_FMPI2C_MSPDEINIT_CB_ID :
hfmpi2c->MspDeInitCallback = HAL_FMPI2C_MspDeInit; /* Legacy weak MspDeInit */
break;
default :
/* Update the error code */
hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
break;
}
}
else if (HAL_FMPI2C_STATE_RESET == hfmpi2c->State)
{
switch (CallbackID)
{
case HAL_FMPI2C_MSPINIT_CB_ID :
hfmpi2c->MspInitCallback = HAL_FMPI2C_MspInit; /* Legacy weak MspInit */
break;
case HAL_FMPI2C_MSPDEINIT_CB_ID :
hfmpi2c->MspDeInitCallback = HAL_FMPI2C_MspDeInit; /* Legacy weak MspDeInit */
break;
default :
/* Update the error code */
hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
break;
}
}
else
{
/* Update the error code */
hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
}
/* Release Lock */
__HAL_UNLOCK(hfmpi2c);
return status;
}
/**
* @brief Register the Slave Address Match FMPI2C Callback
* To be used instead of the weak HAL_FMPI2C_AddrCallback() predefined callback
* @param hfmpi2c Pointer to a FMPI2C_HandleTypeDef structure that contains
* the configuration information for the specified FMPI2C.
* @param pCallback pointer to the Address Match Callback function
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FMPI2C_RegisterAddrCallback(FMPI2C_HandleTypeDef *hfmpi2c, pFMPI2C_AddrCallbackTypeDef pCallback)
{
HAL_StatusTypeDef status = HAL_OK;
if (pCallback == NULL)
{
/* Update the error code */
hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_INVALID_CALLBACK;
return HAL_ERROR;
}
/* Process locked */
__HAL_LOCK(hfmpi2c);
if (HAL_FMPI2C_STATE_READY == hfmpi2c->State)
{
hfmpi2c->AddrCallback = pCallback;
}
else
{
/* Update the error code */
hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
}
/* Release Lock */
__HAL_UNLOCK(hfmpi2c);
return status;
}
/**
* @brief UnRegister the Slave Address Match FMPI2C Callback
* Info Ready FMPI2C Callback is redirected to the weak HAL_FMPI2C_AddrCallback() predefined callback
* @param hfmpi2c Pointer to a FMPI2C_HandleTypeDef structure that contains
* the configuration information for the specified FMPI2C.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FMPI2C_UnRegisterAddrCallback(FMPI2C_HandleTypeDef *hfmpi2c)
{
HAL_StatusTypeDef status = HAL_OK;
/* Process locked */
__HAL_LOCK(hfmpi2c);
if (HAL_FMPI2C_STATE_READY == hfmpi2c->State)
{
hfmpi2c->AddrCallback = HAL_FMPI2C_AddrCallback; /* Legacy weak AddrCallback */
}
else
{
/* Update the error code */
hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
}
/* Release Lock */
__HAL_UNLOCK(hfmpi2c);
return status;
}
#endif /* USE_HAL_FMPI2C_REGISTER_CALLBACKS */
/**
* @}
*/
/** @defgroup FMPI2C_Exported_Functions_Group2 Input and Output operation functions
* @brief Data transfers functions
*
@verbatim
===============================================================================
##### IO operation functions #####
===============================================================================
[..]
This subsection provides a set of functions allowing to manage the FMPI2C data
transfers.
(#) There are two modes of transfer:
(++) Blocking mode : The communication is performed in the polling mode.
The status of all data processing is returned by the same function
after finishing transfer.
(++) No-Blocking mode : The communication is performed using Interrupts
or DMA. These functions return the status of the transfer startup.
The end of the data processing will be indicated through the
dedicated FMPI2C IRQ when using Interrupt mode or the DMA IRQ when
using DMA mode.
(#) Blocking mode functions are :
(++) HAL_FMPI2C_Master_Transmit()
(++) HAL_FMPI2C_Master_Receive()
(++) HAL_FMPI2C_Slave_Transmit()
(++) HAL_FMPI2C_Slave_Receive()
(++) HAL_FMPI2C_Mem_Write()
(++) HAL_FMPI2C_Mem_Read()
(++) HAL_FMPI2C_IsDeviceReady()
(#) No-Blocking mode functions with Interrupt are :
(++) HAL_FMPI2C_Master_Transmit_IT()
(++) HAL_FMPI2C_Master_Receive_IT()
(++) HAL_FMPI2C_Slave_Transmit_IT()
(++) HAL_FMPI2C_Slave_Receive_IT()
(++) HAL_FMPI2C_Mem_Write_IT()
(++) HAL_FMPI2C_Mem_Read_IT()
(++) HAL_FMPI2C_Master_Seq_Transmit_IT()
(++) HAL_FMPI2C_Master_Seq_Receive_IT()
(++) HAL_FMPI2C_Slave_Seq_Transmit_IT()
(++) HAL_FMPI2C_Slave_Seq_Receive_IT()
(++) HAL_FMPI2C_EnableListen_IT()
(++) HAL_FMPI2C_DisableListen_IT()
(++) HAL_FMPI2C_Master_Abort_IT()
(#) No-Blocking mode functions with DMA are :
(++) HAL_FMPI2C_Master_Transmit_DMA()
(++) HAL_FMPI2C_Master_Receive_DMA()
(++) HAL_FMPI2C_Slave_Transmit_DMA()
(++) HAL_FMPI2C_Slave_Receive_DMA()
(++) HAL_FMPI2C_Mem_Write_DMA()
(++) HAL_FMPI2C_Mem_Read_DMA()
(++) HAL_FMPI2C_Master_Seq_Transmit_DMA()
(++) HAL_FMPI2C_Master_Seq_Receive_DMA()
(++) HAL_FMPI2C_Slave_Seq_Transmit_DMA()
(++) HAL_FMPI2C_Slave_Seq_Receive_DMA()
(#) A set of Transfer Complete Callbacks are provided in non Blocking mode:
(++) HAL_FMPI2C_MasterTxCpltCallback()
(++) HAL_FMPI2C_MasterRxCpltCallback()
(++) HAL_FMPI2C_SlaveTxCpltCallback()
(++) HAL_FMPI2C_SlaveRxCpltCallback()
(++) HAL_FMPI2C_MemTxCpltCallback()
(++) HAL_FMPI2C_MemRxCpltCallback()
(++) HAL_FMPI2C_AddrCallback()
(++) HAL_FMPI2C_ListenCpltCallback()
(++) HAL_FMPI2C_ErrorCallback()
(++) HAL_FMPI2C_AbortCpltCallback()
@endverbatim
* @{
*/
/**
* @brief Transmits in master mode an amount of data in blocking mode.
* @param hfmpi2c Pointer to a FMPI2C_HandleTypeDef structure that contains
* the configuration information for the specified FMPI2C.
* @param DevAddress Target device address: The device 7 bits address value
* in datasheet must be shifted to the left before calling the interface
* @param pData Pointer to data buffer
* @param Size Amount of data to be sent
* @param Timeout Timeout duration
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FMPI2C_Master_Transmit(FMPI2C_HandleTypeDef *hfmpi2c, uint16_t DevAddress, uint8_t *pData,
uint16_t Size, uint32_t Timeout)
{
uint32_t tickstart;
if (hfmpi2c->State == HAL_FMPI2C_STATE_READY)
{
/* Process Locked */
__HAL_LOCK(hfmpi2c);
/* Init tickstart for timeout management*/
tickstart = HAL_GetTick();
if (FMPI2C_WaitOnFlagUntilTimeout(hfmpi2c, FMPI2C_FLAG_BUSY, SET, FMPI2C_TIMEOUT_BUSY, tickstart) != HAL_OK)
{
return HAL_ERROR;
}
hfmpi2c->State = HAL_FMPI2C_STATE_BUSY_TX;
hfmpi2c->Mode = HAL_FMPI2C_MODE_MASTER;
hfmpi2c->ErrorCode = HAL_FMPI2C_ERROR_NONE;
/* Prepare transfer parameters */
hfmpi2c->pBuffPtr = pData;
hfmpi2c->XferCount = Size;
hfmpi2c->XferISR = NULL;
/* Send Slave Address */
/* Set NBYTES to write and reload if hfmpi2c->XferCount > MAX_NBYTE_SIZE and generate RESTART */
if (hfmpi2c->XferCount > MAX_NBYTE_SIZE)
{
hfmpi2c->XferSize = MAX_NBYTE_SIZE;
FMPI2C_TransferConfig(hfmpi2c, DevAddress, (uint8_t)hfmpi2c->XferSize, FMPI2C_RELOAD_MODE,
FMPI2C_GENERATE_START_WRITE);
}
else
{
hfmpi2c->XferSize = hfmpi2c->XferCount;
FMPI2C_TransferConfig(hfmpi2c, DevAddress, (uint8_t)hfmpi2c->XferSize, FMPI2C_AUTOEND_MODE,
FMPI2C_GENERATE_START_WRITE);
}
while (hfmpi2c->XferCount > 0U)
{
/* Wait until TXIS flag is set */
if (FMPI2C_WaitOnTXISFlagUntilTimeout(hfmpi2c, Timeout, tickstart) != HAL_OK)
{
return HAL_ERROR;
}
/* Write data to TXDR */
hfmpi2c->Instance->TXDR = *hfmpi2c->pBuffPtr;
/* Increment Buffer pointer */
hfmpi2c->pBuffPtr++;
hfmpi2c->XferCount--;
hfmpi2c->XferSize--;
if ((hfmpi2c->XferCount != 0U) && (hfmpi2c->XferSize == 0U))
{
/* Wait until TCR flag is set */
if (FMPI2C_WaitOnFlagUntilTimeout(hfmpi2c, FMPI2C_FLAG_TCR, RESET, Timeout, tickstart) != HAL_OK)
{
return HAL_ERROR;
}
if (hfmpi2c->XferCount > MAX_NBYTE_SIZE)
{
hfmpi2c->XferSize = MAX_NBYTE_SIZE;
FMPI2C_TransferConfig(hfmpi2c, DevAddress, (uint8_t)hfmpi2c->XferSize, FMPI2C_RELOAD_MODE,
FMPI2C_NO_STARTSTOP);
}
else
{
hfmpi2c->XferSize = hfmpi2c->XferCount;
FMPI2C_TransferConfig(hfmpi2c, DevAddress, (uint8_t)hfmpi2c->XferSize, FMPI2C_AUTOEND_MODE,
FMPI2C_NO_STARTSTOP);
}
}
}
/* No need to Check TC flag, with AUTOEND mode the stop is automatically generated */
/* Wait until STOPF flag is set */
if (FMPI2C_WaitOnSTOPFlagUntilTimeout(hfmpi2c, Timeout, tickstart) != HAL_OK)
{
return HAL_ERROR;
}
/* Clear STOP Flag */
__HAL_FMPI2C_CLEAR_FLAG(hfmpi2c, FMPI2C_FLAG_STOPF);
/* Clear Configuration Register 2 */
FMPI2C_RESET_CR2(hfmpi2c);
hfmpi2c->State = HAL_FMPI2C_STATE_READY;
hfmpi2c->Mode = HAL_FMPI2C_MODE_NONE;
/* Process Unlocked */
__HAL_UNLOCK(hfmpi2c);
return HAL_OK;
}
else
{
return HAL_BUSY;
}
}
/**
* @brief Receives in master mode an amount of data in blocking mode.
* @param hfmpi2c Pointer to a FMPI2C_HandleTypeDef structure that contains
* the configuration information for the specified FMPI2C.
* @param DevAddress Target device address: The device 7 bits address value
* in datasheet must be shifted to the left before calling the interface
* @param pData Pointer to data buffer
* @param Size Amount of data to be sent
* @param Timeout Timeout duration
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FMPI2C_Master_Receive(FMPI2C_HandleTypeDef *hfmpi2c, uint16_t DevAddress, uint8_t *pData,
uint16_t Size, uint32_t Timeout)
{
uint32_t tickstart;
if (hfmpi2c->State == HAL_FMPI2C_STATE_READY)
{
/* Process Locked */
__HAL_LOCK(hfmpi2c);
/* Init tickstart for timeout management*/
tickstart = HAL_GetTick();
if (FMPI2C_WaitOnFlagUntilTimeout(hfmpi2c, FMPI2C_FLAG_BUSY, SET, FMPI2C_TIMEOUT_BUSY, tickstart) != HAL_OK)
{
return HAL_ERROR;
}
hfmpi2c->State = HAL_FMPI2C_STATE_BUSY_RX;
hfmpi2c->Mode = HAL_FMPI2C_MODE_MASTER;
hfmpi2c->ErrorCode = HAL_FMPI2C_ERROR_NONE;
/* Prepare transfer parameters */
hfmpi2c->pBuffPtr = pData;
hfmpi2c->XferCount = Size;
hfmpi2c->XferISR = NULL;
/* Send Slave Address */
/* Set NBYTES to write and reload if hfmpi2c->XferCount > MAX_NBYTE_SIZE and generate RESTART */
if (hfmpi2c->XferCount > MAX_NBYTE_SIZE)
{
hfmpi2c->XferSize = MAX_NBYTE_SIZE;
FMPI2C_TransferConfig(hfmpi2c, DevAddress, (uint8_t)hfmpi2c->XferSize, FMPI2C_RELOAD_MODE,
FMPI2C_GENERATE_START_READ);
}
else
{
hfmpi2c->XferSize = hfmpi2c->XferCount;
FMPI2C_TransferConfig(hfmpi2c, DevAddress, (uint8_t)hfmpi2c->XferSize, FMPI2C_AUTOEND_MODE,
FMPI2C_GENERATE_START_READ);
}
while (hfmpi2c->XferCount > 0U)
{
/* Wait until RXNE flag is set */
if (FMPI2C_WaitOnRXNEFlagUntilTimeout(hfmpi2c, Timeout, tickstart) != HAL_OK)
{
return HAL_ERROR;
}
/* Read data from RXDR */
*hfmpi2c->pBuffPtr = (uint8_t)hfmpi2c->Instance->RXDR;
/* Increment Buffer pointer */
hfmpi2c->pBuffPtr++;
hfmpi2c->XferSize--;
hfmpi2c->XferCount--;
if ((hfmpi2c->XferCount != 0U) && (hfmpi2c->XferSize == 0U))
{
/* Wait until TCR flag is set */
if (FMPI2C_WaitOnFlagUntilTimeout(hfmpi2c, FMPI2C_FLAG_TCR, RESET, Timeout, tickstart) != HAL_OK)
{
return HAL_ERROR;
}
if (hfmpi2c->XferCount > MAX_NBYTE_SIZE)
{
hfmpi2c->XferSize = MAX_NBYTE_SIZE;
FMPI2C_TransferConfig(hfmpi2c, DevAddress, (uint8_t)hfmpi2c->XferSize, FMPI2C_RELOAD_MODE,
FMPI2C_NO_STARTSTOP);
}
else
{
hfmpi2c->XferSize = hfmpi2c->XferCount;
FMPI2C_TransferConfig(hfmpi2c, DevAddress, (uint8_t)hfmpi2c->XferSize, FMPI2C_AUTOEND_MODE,
FMPI2C_NO_STARTSTOP);
}
}
}
/* No need to Check TC flag, with AUTOEND mode the stop is automatically generated */
/* Wait until STOPF flag is set */
if (FMPI2C_WaitOnSTOPFlagUntilTimeout(hfmpi2c, Timeout, tickstart) != HAL_OK)
{
return HAL_ERROR;
}
/* Clear STOP Flag */
__HAL_FMPI2C_CLEAR_FLAG(hfmpi2c, FMPI2C_FLAG_STOPF);
/* Clear Configuration Register 2 */
FMPI2C_RESET_CR2(hfmpi2c);
hfmpi2c->State = HAL_FMPI2C_STATE_READY;
hfmpi2c->Mode = HAL_FMPI2C_MODE_NONE;
/* Process Unlocked */
__HAL_UNLOCK(hfmpi2c);
return HAL_OK;
}
else
{
return HAL_BUSY;
}
}
/**
* @brief Transmits in slave mode an amount of data in blocking mode.
* @param hfmpi2c Pointer to a FMPI2C_HandleTypeDef structure that contains
* the configuration information for the specified FMPI2C.
* @param pData Pointer to data buffer
* @param Size Amount of data to be sent
* @param Timeout Timeout duration
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FMPI2C_Slave_Transmit(FMPI2C_HandleTypeDef *hfmpi2c, uint8_t *pData, uint16_t Size,
uint32_t Timeout)
{
uint32_t tickstart;
if (hfmpi2c->State == HAL_FMPI2C_STATE_READY)
{
if ((pData == NULL) || (Size == 0U))
{
hfmpi2c->ErrorCode = HAL_FMPI2C_ERROR_INVALID_PARAM;
return HAL_ERROR;
}
/* Process Locked */
__HAL_LOCK(hfmpi2c);
/* Init tickstart for timeout management*/
tickstart = HAL_GetTick();
hfmpi2c->State = HAL_FMPI2C_STATE_BUSY_TX;
hfmpi2c->Mode = HAL_FMPI2C_MODE_SLAVE;
hfmpi2c->ErrorCode = HAL_FMPI2C_ERROR_NONE;
/* Prepare transfer parameters */
hfmpi2c->pBuffPtr = pData;
hfmpi2c->XferCount = Size;
hfmpi2c->XferISR = NULL;
/* Enable Address Acknowledge */
hfmpi2c->Instance->CR2 &= ~FMPI2C_CR2_NACK;
/* Wait until ADDR flag is set */
if (FMPI2C_WaitOnFlagUntilTimeout(hfmpi2c, FMPI2C_FLAG_ADDR, RESET, Timeout, tickstart) != HAL_OK)
{
/* Disable Address Acknowledge */
hfmpi2c->Instance->CR2 |= FMPI2C_CR2_NACK;
return HAL_ERROR;
}
/* Clear ADDR flag */
__HAL_FMPI2C_CLEAR_FLAG(hfmpi2c, FMPI2C_FLAG_ADDR);
/* If 10bit addressing mode is selected */
if (hfmpi2c->Init.AddressingMode == FMPI2C_ADDRESSINGMODE_10BIT)
{
/* Wait until ADDR flag is set */
if (FMPI2C_WaitOnFlagUntilTimeout(hfmpi2c, FMPI2C_FLAG_ADDR, RESET, Timeout, tickstart) != HAL_OK)
{
/* Disable Address Acknowledge */
hfmpi2c->Instance->CR2 |= FMPI2C_CR2_NACK;
return HAL_ERROR;
}
/* Clear ADDR flag */
__HAL_FMPI2C_CLEAR_FLAG(hfmpi2c, FMPI2C_FLAG_ADDR);
}
/* Wait until DIR flag is set Transmitter mode */
if (FMPI2C_WaitOnFlagUntilTimeout(hfmpi2c, FMPI2C_FLAG_DIR, RESET, Timeout, tickstart) != HAL_OK)
{
/* Disable Address Acknowledge */
hfmpi2c->Instance->CR2 |= FMPI2C_CR2_NACK;
return HAL_ERROR;
}
while (hfmpi2c->XferCount > 0U)
{
/* Wait until TXIS flag is set */
if (FMPI2C_WaitOnTXISFlagUntilTimeout(hfmpi2c, Timeout, tickstart) != HAL_OK)
{
/* Disable Address Acknowledge */
hfmpi2c->Instance->CR2 |= FMPI2C_CR2_NACK;
return HAL_ERROR;
}
/* Write data to TXDR */
hfmpi2c->Instance->TXDR = *hfmpi2c->pBuffPtr;
/* Increment Buffer pointer */
hfmpi2c->pBuffPtr++;
hfmpi2c->XferCount--;
}
/* Wait until STOP flag is set */
if (FMPI2C_WaitOnSTOPFlagUntilTimeout(hfmpi2c, Timeout, tickstart) != HAL_OK)
{
/* Disable Address Acknowledge */
hfmpi2c->Instance->CR2 |= FMPI2C_CR2_NACK;
if (hfmpi2c->ErrorCode == HAL_FMPI2C_ERROR_AF)
{
/* Normal use case for Transmitter mode */
/* A NACK is generated to confirm the end of transfer */
hfmpi2c->ErrorCode = HAL_FMPI2C_ERROR_NONE;
}
else
{
return HAL_ERROR;
}
}
/* Clear STOP flag */
__HAL_FMPI2C_CLEAR_FLAG(hfmpi2c, FMPI2C_FLAG_STOPF);
/* Wait until BUSY flag is reset */
if (FMPI2C_WaitOnFlagUntilTimeout(hfmpi2c, FMPI2C_FLAG_BUSY, SET, Timeout, tickstart) != HAL_OK)
{
/* Disable Address Acknowledge */
hfmpi2c->Instance->CR2 |= FMPI2C_CR2_NACK;
return HAL_ERROR;
}
/* Disable Address Acknowledge */
hfmpi2c->Instance->CR2 |= FMPI2C_CR2_NACK;
hfmpi2c->State = HAL_FMPI2C_STATE_READY;
hfmpi2c->Mode = HAL_FMPI2C_MODE_NONE;
/* Process Unlocked */
__HAL_UNLOCK(hfmpi2c);
return HAL_OK;
}
else
{
return HAL_BUSY;
}
}
/**
* @brief Receive in slave mode an amount of data in blocking mode
* @param hfmpi2c Pointer to a FMPI2C_HandleTypeDef structure that contains
* the configuration information for the specified FMPI2C.
* @param pData Pointer to data buffer
* @param Size Amount of data to be sent
* @param Timeout Timeout duration
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FMPI2C_Slave_Receive(FMPI2C_HandleTypeDef *hfmpi2c, uint8_t *pData, uint16_t Size,
uint32_t Timeout)
{
uint32_t tickstart;
if (hfmpi2c->State == HAL_FMPI2C_STATE_READY)
{
if ((pData == NULL) || (Size == 0U))
{
hfmpi2c->ErrorCode = HAL_FMPI2C_ERROR_INVALID_PARAM;
return HAL_ERROR;
}
/* Process Locked */
__HAL_LOCK(hfmpi2c);
/* Init tickstart for timeout management*/
tickstart = HAL_GetTick();
hfmpi2c->State = HAL_FMPI2C_STATE_BUSY_RX;
hfmpi2c->Mode = HAL_FMPI2C_MODE_SLAVE;
hfmpi2c->ErrorCode = HAL_FMPI2C_ERROR_NONE;
/* Prepare transfer parameters */
hfmpi2c->pBuffPtr = pData;
hfmpi2c->XferCount = Size;
hfmpi2c->XferISR = NULL;
/* Enable Address Acknowledge */
hfmpi2c->Instance->CR2 &= ~FMPI2C_CR2_NACK;
/* Wait until ADDR flag is set */
if (FMPI2C_WaitOnFlagUntilTimeout(hfmpi2c, FMPI2C_FLAG_ADDR, RESET, Timeout, tickstart) != HAL_OK)
{
/* Disable Address Acknowledge */
hfmpi2c->Instance->CR2 |= FMPI2C_CR2_NACK;
return HAL_ERROR;
}
/* Clear ADDR flag */
__HAL_FMPI2C_CLEAR_FLAG(hfmpi2c, FMPI2C_FLAG_ADDR);
/* Wait until DIR flag is reset Receiver mode */
if (FMPI2C_WaitOnFlagUntilTimeout(hfmpi2c, FMPI2C_FLAG_DIR, SET, Timeout, tickstart) != HAL_OK)
{
/* Disable Address Acknowledge */
hfmpi2c->Instance->CR2 |= FMPI2C_CR2_NACK;
return HAL_ERROR;
}
while (hfmpi2c->XferCount > 0U)
{
/* Wait until RXNE flag is set */
if (FMPI2C_WaitOnRXNEFlagUntilTimeout(hfmpi2c, Timeout, tickstart) != HAL_OK)
{
/* Disable Address Acknowledge */
hfmpi2c->Instance->CR2 |= FMPI2C_CR2_NACK;
/* Store Last receive data if any */
if (__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_RXNE) == SET)
{
/* Read data from RXDR */
*hfmpi2c->pBuffPtr = (uint8_t)hfmpi2c->Instance->RXDR;
/* Increment Buffer pointer */
hfmpi2c->pBuffPtr++;
hfmpi2c->XferCount--;
}
return HAL_ERROR;
}
/* Read data from RXDR */
*hfmpi2c->pBuffPtr = (uint8_t)hfmpi2c->Instance->RXDR;
/* Increment Buffer pointer */
hfmpi2c->pBuffPtr++;
hfmpi2c->XferCount--;
}
/* Wait until STOP flag is set */
if (FMPI2C_WaitOnSTOPFlagUntilTimeout(hfmpi2c, Timeout, tickstart) != HAL_OK)
{
/* Disable Address Acknowledge */
hfmpi2c->Instance->CR2 |= FMPI2C_CR2_NACK;
return HAL_ERROR;
}
/* Clear STOP flag */
__HAL_FMPI2C_CLEAR_FLAG(hfmpi2c, FMPI2C_FLAG_STOPF);
/* Wait until BUSY flag is reset */
if (FMPI2C_WaitOnFlagUntilTimeout(hfmpi2c, FMPI2C_FLAG_BUSY, SET, Timeout, tickstart) != HAL_OK)
{
/* Disable Address Acknowledge */
hfmpi2c->Instance->CR2 |= FMPI2C_CR2_NACK;
return HAL_ERROR;
}
/* Disable Address Acknowledge */
hfmpi2c->Instance->CR2 |= FMPI2C_CR2_NACK;
hfmpi2c->State = HAL_FMPI2C_STATE_READY;
hfmpi2c->Mode = HAL_FMPI2C_MODE_NONE;
/* Process Unlocked */
__HAL_UNLOCK(hfmpi2c);
return HAL_OK;
}
else
{
return HAL_BUSY;
}
}
/**
* @brief Transmit in master mode an amount of data in non-blocking mode with Interrupt
* @param hfmpi2c Pointer to a FMPI2C_HandleTypeDef structure that contains
* the configuration information for the specified FMPI2C.
* @param DevAddress Target device address: The device 7 bits address value
* in datasheet must be shifted to the left before calling the interface
* @param pData Pointer to data buffer
* @param Size Amount of data to be sent
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FMPI2C_Master_Transmit_IT(FMPI2C_HandleTypeDef *hfmpi2c, uint16_t DevAddress, uint8_t *pData,
uint16_t Size)
{
uint32_t xfermode;
if (hfmpi2c->State == HAL_FMPI2C_STATE_READY)
{
if (__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_BUSY) == SET)
{
return HAL_BUSY;
}
/* Process Locked */
__HAL_LOCK(hfmpi2c);
hfmpi2c->State = HAL_FMPI2C_STATE_BUSY_TX;
hfmpi2c->Mode = HAL_FMPI2C_MODE_MASTER;
hfmpi2c->ErrorCode = HAL_FMPI2C_ERROR_NONE;
/* Prepare transfer parameters */
hfmpi2c->pBuffPtr = pData;
hfmpi2c->XferCount = Size;
hfmpi2c->XferOptions = FMPI2C_NO_OPTION_FRAME;
hfmpi2c->XferISR = FMPI2C_Master_ISR_IT;
if (hfmpi2c->XferCount > MAX_NBYTE_SIZE)
{
hfmpi2c->XferSize = MAX_NBYTE_SIZE;
xfermode = FMPI2C_RELOAD_MODE;
}
else
{
hfmpi2c->XferSize = hfmpi2c->XferCount;
xfermode = FMPI2C_AUTOEND_MODE;
}
/* Send Slave Address */
/* Set NBYTES to write and reload if hfmpi2c->XferCount > MAX_NBYTE_SIZE */
FMPI2C_TransferConfig(hfmpi2c, DevAddress, (uint8_t)hfmpi2c->XferSize, xfermode, FMPI2C_GENERATE_START_WRITE);
/* Process Unlocked */
__HAL_UNLOCK(hfmpi2c);
/* Note : The FMPI2C interrupts must be enabled after unlocking current process
to avoid the risk of FMPI2C interrupt handle execution before current
process unlock */
/* Enable ERR, TC, STOP, NACK, TXI interrupt */
/* possible to enable all of these */
/* FMPI2C_IT_ERRI | FMPI2C_IT_TCI | FMPI2C_IT_STOPI | FMPI2C_IT_NACKI |
FMPI2C_IT_ADDRI | FMPI2C_IT_RXI | FMPI2C_IT_TXI */
FMPI2C_Enable_IRQ(hfmpi2c, FMPI2C_XFER_TX_IT);
return HAL_OK;
}
else
{
return HAL_BUSY;
}
}
/**
* @brief Receive in master mode an amount of data in non-blocking mode with Interrupt
* @param hfmpi2c Pointer to a FMPI2C_HandleTypeDef structure that contains
* the configuration information for the specified FMPI2C.
* @param DevAddress Target device address: The device 7 bits address value
* in datasheet must be shifted to the left before calling the interface
* @param pData Pointer to data buffer
* @param Size Amount of data to be sent
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FMPI2C_Master_Receive_IT(FMPI2C_HandleTypeDef *hfmpi2c, uint16_t DevAddress, uint8_t *pData,
uint16_t Size)
{
uint32_t xfermode;
if (hfmpi2c->State == HAL_FMPI2C_STATE_READY)
{
if (__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_BUSY) == SET)
{
return HAL_BUSY;
}
/* Process Locked */
__HAL_LOCK(hfmpi2c);
hfmpi2c->State = HAL_FMPI2C_STATE_BUSY_RX;
hfmpi2c->Mode = HAL_FMPI2C_MODE_MASTER;
hfmpi2c->ErrorCode = HAL_FMPI2C_ERROR_NONE;
/* Prepare transfer parameters */
hfmpi2c->pBuffPtr = pData;
hfmpi2c->XferCount = Size;
hfmpi2c->XferOptions = FMPI2C_NO_OPTION_FRAME;
hfmpi2c->XferISR = FMPI2C_Master_ISR_IT;
if (hfmpi2c->XferCount > MAX_NBYTE_SIZE)
{
hfmpi2c->XferSize = MAX_NBYTE_SIZE;
xfermode = FMPI2C_RELOAD_MODE;
}
else
{
hfmpi2c->XferSize = hfmpi2c->XferCount;
xfermode = FMPI2C_AUTOEND_MODE;
}
/* Send Slave Address */
/* Set NBYTES to write and reload if hfmpi2c->XferCount > MAX_NBYTE_SIZE */
FMPI2C_TransferConfig(hfmpi2c, DevAddress, (uint8_t)hfmpi2c->XferSize, xfermode, FMPI2C_GENERATE_START_READ);
/* Process Unlocked */
__HAL_UNLOCK(hfmpi2c);
/* Note : The FMPI2C interrupts must be enabled after unlocking current process
to avoid the risk of FMPI2C interrupt handle execution before current
process unlock */
/* Enable ERR, TC, STOP, NACK, RXI interrupt */
/* possible to enable all of these */
/* FMPI2C_IT_ERRI | FMPI2C_IT_TCI | FMPI2C_IT_STOPI | FMPI2C_IT_NACKI |
FMPI2C_IT_ADDRI | FMPI2C_IT_RXI | FMPI2C_IT_TXI */
FMPI2C_Enable_IRQ(hfmpi2c, FMPI2C_XFER_RX_IT);
return HAL_OK;
}
else
{
return HAL_BUSY;
}
}
/**
* @brief Transmit in slave mode an amount of data in non-blocking mode with Interrupt
* @param hfmpi2c Pointer to a FMPI2C_HandleTypeDef structure that contains
* the configuration information for the specified FMPI2C.
* @param pData Pointer to data buffer
* @param Size Amount of data to be sent
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FMPI2C_Slave_Transmit_IT(FMPI2C_HandleTypeDef *hfmpi2c, uint8_t *pData, uint16_t Size)
{
if (hfmpi2c->State == HAL_FMPI2C_STATE_READY)
{
/* Process Locked */
__HAL_LOCK(hfmpi2c);
hfmpi2c->State = HAL_FMPI2C_STATE_BUSY_TX;
hfmpi2c->Mode = HAL_FMPI2C_MODE_SLAVE;
hfmpi2c->ErrorCode = HAL_FMPI2C_ERROR_NONE;
/* Enable Address Acknowledge */
hfmpi2c->Instance->CR2 &= ~FMPI2C_CR2_NACK;
/* Prepare transfer parameters */
hfmpi2c->pBuffPtr = pData;
hfmpi2c->XferCount = Size;
hfmpi2c->XferSize = hfmpi2c->XferCount;
hfmpi2c->XferOptions = FMPI2C_NO_OPTION_FRAME;
hfmpi2c->XferISR = FMPI2C_Slave_ISR_IT;
/* Process Unlocked */
__HAL_UNLOCK(hfmpi2c);
/* Note : The FMPI2C interrupts must be enabled after unlocking current process
to avoid the risk of FMPI2C interrupt handle execution before current
process unlock */
/* Enable ERR, TC, STOP, NACK, TXI interrupt */
/* possible to enable all of these */
/* FMPI2C_IT_ERRI | FMPI2C_IT_TCI | FMPI2C_IT_STOPI | FMPI2C_IT_NACKI |
FMPI2C_IT_ADDRI | FMPI2C_IT_RXI | FMPI2C_IT_TXI */
FMPI2C_Enable_IRQ(hfmpi2c, FMPI2C_XFER_TX_IT | FMPI2C_XFER_LISTEN_IT);
return HAL_OK;
}
else
{
return HAL_BUSY;
}
}
/**
* @brief Receive in slave mode an amount of data in non-blocking mode with Interrupt
* @param hfmpi2c Pointer to a FMPI2C_HandleTypeDef structure that contains
* the configuration information for the specified FMPI2C.
* @param pData Pointer to data buffer
* @param Size Amount of data to be sent
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FMPI2C_Slave_Receive_IT(FMPI2C_HandleTypeDef *hfmpi2c, uint8_t *pData, uint16_t Size)
{
if (hfmpi2c->State == HAL_FMPI2C_STATE_READY)
{
/* Process Locked */
__HAL_LOCK(hfmpi2c);
hfmpi2c->State = HAL_FMPI2C_STATE_BUSY_RX;
hfmpi2c->Mode = HAL_FMPI2C_MODE_SLAVE;
hfmpi2c->ErrorCode = HAL_FMPI2C_ERROR_NONE;
/* Enable Address Acknowledge */
hfmpi2c->Instance->CR2 &= ~FMPI2C_CR2_NACK;
/* Prepare transfer parameters */
hfmpi2c->pBuffPtr = pData;
hfmpi2c->XferCount = Size;
hfmpi2c->XferSize = hfmpi2c->XferCount;
hfmpi2c->XferOptions = FMPI2C_NO_OPTION_FRAME;
hfmpi2c->XferISR = FMPI2C_Slave_ISR_IT;
/* Process Unlocked */
__HAL_UNLOCK(hfmpi2c);
/* Note : The FMPI2C interrupts must be enabled after unlocking current process
to avoid the risk of FMPI2C interrupt handle execution before current
process unlock */
/* Enable ERR, TC, STOP, NACK, RXI interrupt */
/* possible to enable all of these */
/* FMPI2C_IT_ERRI | FMPI2C_IT_TCI | FMPI2C_IT_STOPI | FMPI2C_IT_NACKI |
FMPI2C_IT_ADDRI | FMPI2C_IT_RXI | FMPI2C_IT_TXI */
FMPI2C_Enable_IRQ(hfmpi2c, FMPI2C_XFER_RX_IT | FMPI2C_XFER_LISTEN_IT);
return HAL_OK;
}
else
{
return HAL_BUSY;
}
}
/**
* @brief Transmit in master mode an amount of data in non-blocking mode with DMA
* @param hfmpi2c Pointer to a FMPI2C_HandleTypeDef structure that contains
* the configuration information for the specified FMPI2C.
* @param DevAddress Target device address: The device 7 bits address value
* in datasheet must be shifted to the left before calling the interface
* @param pData Pointer to data buffer
* @param Size Amount of data to be sent
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FMPI2C_Master_Transmit_DMA(FMPI2C_HandleTypeDef *hfmpi2c, uint16_t DevAddress, uint8_t *pData,
uint16_t Size)
{
uint32_t xfermode;
HAL_StatusTypeDef dmaxferstatus;
if (hfmpi2c->State == HAL_FMPI2C_STATE_READY)
{
if (__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_BUSY) == SET)
{
return HAL_BUSY;
}
/* Process Locked */
__HAL_LOCK(hfmpi2c);
hfmpi2c->State = HAL_FMPI2C_STATE_BUSY_TX;
hfmpi2c->Mode = HAL_FMPI2C_MODE_MASTER;
hfmpi2c->ErrorCode = HAL_FMPI2C_ERROR_NONE;
/* Prepare transfer parameters */
hfmpi2c->pBuffPtr = pData;
hfmpi2c->XferCount = Size;
hfmpi2c->XferOptions = FMPI2C_NO_OPTION_FRAME;
hfmpi2c->XferISR = FMPI2C_Master_ISR_DMA;
if (hfmpi2c->XferCount > MAX_NBYTE_SIZE)
{
hfmpi2c->XferSize = MAX_NBYTE_SIZE;
xfermode = FMPI2C_RELOAD_MODE;
}
else
{
hfmpi2c->XferSize = hfmpi2c->XferCount;
xfermode = FMPI2C_AUTOEND_MODE;
}
if (hfmpi2c->XferSize > 0U)
{
if (hfmpi2c->hdmatx != NULL)
{
/* Set the FMPI2C DMA transfer complete callback */
hfmpi2c->hdmatx->XferCpltCallback = FMPI2C_DMAMasterTransmitCplt;
/* Set the DMA error callback */
hfmpi2c->hdmatx->XferErrorCallback = FMPI2C_DMAError;
/* Set the unused DMA callbacks to NULL */
hfmpi2c->hdmatx->XferHalfCpltCallback = NULL;
hfmpi2c->hdmatx->XferAbortCallback = NULL;
/* Enable the DMA stream */
dmaxferstatus = HAL_DMA_Start_IT(hfmpi2c->hdmatx, (uint32_t)pData, (uint32_t)&hfmpi2c->Instance->TXDR,
hfmpi2c->XferSize);
}
else
{
/* Update FMPI2C state */
hfmpi2c->State = HAL_FMPI2C_STATE_READY;
hfmpi2c->Mode = HAL_FMPI2C_MODE_NONE;
/* Update FMPI2C error code */
hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_DMA_PARAM;
/* Process Unlocked */
__HAL_UNLOCK(hfmpi2c);
return HAL_ERROR;
}
if (dmaxferstatus == HAL_OK)
{
/* Send Slave Address */
/* Set NBYTES to write and reload if hfmpi2c->XferCount > MAX_NBYTE_SIZE and generate RESTART */
FMPI2C_TransferConfig(hfmpi2c, DevAddress, (uint8_t)hfmpi2c->XferSize, xfermode, FMPI2C_GENERATE_START_WRITE);
/* Update XferCount value */
hfmpi2c->XferCount -= hfmpi2c->XferSize;
/* Process Unlocked */
__HAL_UNLOCK(hfmpi2c);
/* Note : The FMPI2C interrupts must be enabled after unlocking current process
to avoid the risk of FMPI2C interrupt handle execution before current
process unlock */
/* Enable ERR and NACK interrupts */
FMPI2C_Enable_IRQ(hfmpi2c, FMPI2C_XFER_ERROR_IT);
/* Enable DMA Request */
hfmpi2c->Instance->CR1 |= FMPI2C_CR1_TXDMAEN;
}
else
{
/* Update FMPI2C state */
hfmpi2c->State = HAL_FMPI2C_STATE_READY;
hfmpi2c->Mode = HAL_FMPI2C_MODE_NONE;
/* Update FMPI2C error code */
hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_DMA;
/* Process Unlocked */
__HAL_UNLOCK(hfmpi2c);
return HAL_ERROR;
}
}
else
{
/* Update Transfer ISR function pointer */
hfmpi2c->XferISR = FMPI2C_Master_ISR_IT;
/* Send Slave Address */
/* Set NBYTES to write and generate START condition */
FMPI2C_TransferConfig(hfmpi2c, DevAddress, (uint8_t)hfmpi2c->XferSize, FMPI2C_AUTOEND_MODE,
FMPI2C_GENERATE_START_WRITE);
/* Process Unlocked */
__HAL_UNLOCK(hfmpi2c);
/* Note : The FMPI2C interrupts must be enabled after unlocking current process
to avoid the risk of FMPI2C interrupt handle execution before current
process unlock */
/* Enable ERR, TC, STOP, NACK, TXI interrupt */
/* possible to enable all of these */
/* FMPI2C_IT_ERRI | FMPI2C_IT_TCI | FMPI2C_IT_STOPI | FMPI2C_IT_NACKI |
FMPI2C_IT_ADDRI | FMPI2C_IT_RXI | FMPI2C_IT_TXI */
FMPI2C_Enable_IRQ(hfmpi2c, FMPI2C_XFER_TX_IT);
}
return HAL_OK;
}
else
{
return HAL_BUSY;
}
}
/**
* @brief Receive in master mode an amount of data in non-blocking mode with DMA
* @param hfmpi2c Pointer to a FMPI2C_HandleTypeDef structure that contains
* the configuration information for the specified FMPI2C.
* @param DevAddress Target device address: The device 7 bits address value
* in datasheet must be shifted to the left before calling the interface
* @param pData Pointer to data buffer
* @param Size Amount of data to be sent
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FMPI2C_Master_Receive_DMA(FMPI2C_HandleTypeDef *hfmpi2c, uint16_t DevAddress, uint8_t *pData,
uint16_t Size)
{
uint32_t xfermode;
HAL_StatusTypeDef dmaxferstatus;
if (hfmpi2c->State == HAL_FMPI2C_STATE_READY)
{
if (__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_BUSY) == SET)
{
return HAL_BUSY;
}
/* Process Locked */
__HAL_LOCK(hfmpi2c);
hfmpi2c->State = HAL_FMPI2C_STATE_BUSY_RX;
hfmpi2c->Mode = HAL_FMPI2C_MODE_MASTER;
hfmpi2c->ErrorCode = HAL_FMPI2C_ERROR_NONE;
/* Prepare transfer parameters */
hfmpi2c->pBuffPtr = pData;
hfmpi2c->XferCount = Size;
hfmpi2c->XferOptions = FMPI2C_NO_OPTION_FRAME;
hfmpi2c->XferISR = FMPI2C_Master_ISR_DMA;
if (hfmpi2c->XferCount > MAX_NBYTE_SIZE)
{
hfmpi2c->XferSize = MAX_NBYTE_SIZE;
xfermode = FMPI2C_RELOAD_MODE;
}
else
{
hfmpi2c->XferSize = hfmpi2c->XferCount;
xfermode = FMPI2C_AUTOEND_MODE;
}
if (hfmpi2c->XferSize > 0U)
{
if (hfmpi2c->hdmarx != NULL)
{
/* Set the FMPI2C DMA transfer complete callback */
hfmpi2c->hdmarx->XferCpltCallback = FMPI2C_DMAMasterReceiveCplt;
/* Set the DMA error callback */
hfmpi2c->hdmarx->XferErrorCallback = FMPI2C_DMAError;
/* Set the unused DMA callbacks to NULL */
hfmpi2c->hdmarx->XferHalfCpltCallback = NULL;
hfmpi2c->hdmarx->XferAbortCallback = NULL;
/* Enable the DMA stream */
dmaxferstatus = HAL_DMA_Start_IT(hfmpi2c->hdmarx, (uint32_t)&hfmpi2c->Instance->RXDR, (uint32_t)pData,
hfmpi2c->XferSize);
}
else
{
/* Update FMPI2C state */
hfmpi2c->State = HAL_FMPI2C_STATE_READY;
hfmpi2c->Mode = HAL_FMPI2C_MODE_NONE;
/* Update FMPI2C error code */
hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_DMA_PARAM;
/* Process Unlocked */
__HAL_UNLOCK(hfmpi2c);
return HAL_ERROR;
}
if (dmaxferstatus == HAL_OK)
{
/* Send Slave Address */
/* Set NBYTES to read and reload if hfmpi2c->XferCount > MAX_NBYTE_SIZE and generate RESTART */
FMPI2C_TransferConfig(hfmpi2c, DevAddress, (uint8_t)hfmpi2c->XferSize, xfermode, FMPI2C_GENERATE_START_READ);
/* Update XferCount value */
hfmpi2c->XferCount -= hfmpi2c->XferSize;
/* Process Unlocked */
__HAL_UNLOCK(hfmpi2c);
/* Note : The FMPI2C interrupts must be enabled after unlocking current process
to avoid the risk of FMPI2C interrupt handle execution before current
process unlock */
/* Enable ERR and NACK interrupts */
FMPI2C_Enable_IRQ(hfmpi2c, FMPI2C_XFER_ERROR_IT);
/* Enable DMA Request */
hfmpi2c->Instance->CR1 |= FMPI2C_CR1_RXDMAEN;
}
else
{
/* Update FMPI2C state */
hfmpi2c->State = HAL_FMPI2C_STATE_READY;
hfmpi2c->Mode = HAL_FMPI2C_MODE_NONE;
/* Update FMPI2C error code */
hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_DMA;
/* Process Unlocked */
__HAL_UNLOCK(hfmpi2c);
return HAL_ERROR;
}
}
else
{
/* Update Transfer ISR function pointer */
hfmpi2c->XferISR = FMPI2C_Master_ISR_IT;
/* Send Slave Address */
/* Set NBYTES to read and generate START condition */
FMPI2C_TransferConfig(hfmpi2c, DevAddress, (uint8_t)hfmpi2c->XferSize, FMPI2C_AUTOEND_MODE,
FMPI2C_GENERATE_START_READ);
/* Process Unlocked */
__HAL_UNLOCK(hfmpi2c);
/* Note : The FMPI2C interrupts must be enabled after unlocking current process
to avoid the risk of FMPI2C interrupt handle execution before current
process unlock */
/* Enable ERR, TC, STOP, NACK, TXI interrupt */
/* possible to enable all of these */
/* FMPI2C_IT_ERRI | FMPI2C_IT_TCI | FMPI2C_IT_STOPI | FMPI2C_IT_NACKI |
FMPI2C_IT_ADDRI | FMPI2C_IT_RXI | FMPI2C_IT_TXI */
FMPI2C_Enable_IRQ(hfmpi2c, FMPI2C_XFER_TX_IT);
}
return HAL_OK;
}
else
{
return HAL_BUSY;
}
}
/**
* @brief Transmit in slave mode an amount of data in non-blocking mode with DMA
* @param hfmpi2c Pointer to a FMPI2C_HandleTypeDef structure that contains
* the configuration information for the specified FMPI2C.
* @param pData Pointer to data buffer
* @param Size Amount of data to be sent
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FMPI2C_Slave_Transmit_DMA(FMPI2C_HandleTypeDef *hfmpi2c, uint8_t *pData, uint16_t Size)
{
HAL_StatusTypeDef dmaxferstatus;
if (hfmpi2c->State == HAL_FMPI2C_STATE_READY)
{
if ((pData == NULL) || (Size == 0U))
{
hfmpi2c->ErrorCode = HAL_FMPI2C_ERROR_INVALID_PARAM;
return HAL_ERROR;
}
/* Process Locked */
__HAL_LOCK(hfmpi2c);
hfmpi2c->State = HAL_FMPI2C_STATE_BUSY_TX;
hfmpi2c->Mode = HAL_FMPI2C_MODE_SLAVE;
hfmpi2c->ErrorCode = HAL_FMPI2C_ERROR_NONE;
/* Prepare transfer parameters */
hfmpi2c->pBuffPtr = pData;
hfmpi2c->XferCount = Size;
hfmpi2c->XferSize = hfmpi2c->XferCount;
hfmpi2c->XferOptions = FMPI2C_NO_OPTION_FRAME;
hfmpi2c->XferISR = FMPI2C_Slave_ISR_DMA;
if (hfmpi2c->hdmatx != NULL)
{
/* Set the FMPI2C DMA transfer complete callback */
hfmpi2c->hdmatx->XferCpltCallback = FMPI2C_DMASlaveTransmitCplt;
/* Set the DMA error callback */
hfmpi2c->hdmatx->XferErrorCallback = FMPI2C_DMAError;
/* Set the unused DMA callbacks to NULL */
hfmpi2c->hdmatx->XferHalfCpltCallback = NULL;
hfmpi2c->hdmatx->XferAbortCallback = NULL;
/* Enable the DMA stream */
dmaxferstatus = HAL_DMA_Start_IT(hfmpi2c->hdmatx, (uint32_t)pData, (uint32_t)&hfmpi2c->Instance->TXDR,
hfmpi2c->XferSize);
}
else
{
/* Update FMPI2C state */
hfmpi2c->State = HAL_FMPI2C_STATE_LISTEN;
hfmpi2c->Mode = HAL_FMPI2C_MODE_NONE;
/* Update FMPI2C error code */
hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_DMA_PARAM;
/* Process Unlocked */
__HAL_UNLOCK(hfmpi2c);
return HAL_ERROR;
}
if (dmaxferstatus == HAL_OK)
{
/* Enable Address Acknowledge */
hfmpi2c->Instance->CR2 &= ~FMPI2C_CR2_NACK;
/* Process Unlocked */
__HAL_UNLOCK(hfmpi2c);
/* Note : The FMPI2C interrupts must be enabled after unlocking current process
to avoid the risk of FMPI2C interrupt handle execution before current
process unlock */
/* Enable ERR, STOP, NACK, ADDR interrupts */
FMPI2C_Enable_IRQ(hfmpi2c, FMPI2C_XFER_LISTEN_IT);
/* Enable DMA Request */
hfmpi2c->Instance->CR1 |= FMPI2C_CR1_TXDMAEN;
}
else
{
/* Update FMPI2C state */
hfmpi2c->State = HAL_FMPI2C_STATE_LISTEN;
hfmpi2c->Mode = HAL_FMPI2C_MODE_NONE;
/* Update FMPI2C error code */
hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_DMA;
/* Process Unlocked */
__HAL_UNLOCK(hfmpi2c);
return HAL_ERROR;
}
return HAL_OK;
}
else
{
return HAL_BUSY;
}
}
/**
* @brief Receive in slave mode an amount of data in non-blocking mode with DMA
* @param hfmpi2c Pointer to a FMPI2C_HandleTypeDef structure that contains
* the configuration information for the specified FMPI2C.
* @param pData Pointer to data buffer
* @param Size Amount of data to be sent
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FMPI2C_Slave_Receive_DMA(FMPI2C_HandleTypeDef *hfmpi2c, uint8_t *pData, uint16_t Size)
{
HAL_StatusTypeDef dmaxferstatus;
if (hfmpi2c->State == HAL_FMPI2C_STATE_READY)
{
if ((pData == NULL) || (Size == 0U))
{
hfmpi2c->ErrorCode = HAL_FMPI2C_ERROR_INVALID_PARAM;
return HAL_ERROR;
}
/* Process Locked */
__HAL_LOCK(hfmpi2c);
hfmpi2c->State = HAL_FMPI2C_STATE_BUSY_RX;
hfmpi2c->Mode = HAL_FMPI2C_MODE_SLAVE;
hfmpi2c->ErrorCode = HAL_FMPI2C_ERROR_NONE;
/* Prepare transfer parameters */
hfmpi2c->pBuffPtr = pData;
hfmpi2c->XferCount = Size;
hfmpi2c->XferSize = hfmpi2c->XferCount;
hfmpi2c->XferOptions = FMPI2C_NO_OPTION_FRAME;
hfmpi2c->XferISR = FMPI2C_Slave_ISR_DMA;
if (hfmpi2c->hdmarx != NULL)
{
/* Set the FMPI2C DMA transfer complete callback */
hfmpi2c->hdmarx->XferCpltCallback = FMPI2C_DMASlaveReceiveCplt;
/* Set the DMA error callback */
hfmpi2c->hdmarx->XferErrorCallback = FMPI2C_DMAError;
/* Set the unused DMA callbacks to NULL */
hfmpi2c->hdmarx->XferHalfCpltCallback = NULL;
hfmpi2c->hdmarx->XferAbortCallback = NULL;
/* Enable the DMA stream */
dmaxferstatus = HAL_DMA_Start_IT(hfmpi2c->hdmarx, (uint32_t)&hfmpi2c->Instance->RXDR, (uint32_t)pData,
hfmpi2c->XferSize);
}
else
{
/* Update FMPI2C state */
hfmpi2c->State = HAL_FMPI2C_STATE_LISTEN;
hfmpi2c->Mode = HAL_FMPI2C_MODE_NONE;
/* Update FMPI2C error code */
hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_DMA_PARAM;
/* Process Unlocked */
__HAL_UNLOCK(hfmpi2c);
return HAL_ERROR;
}
if (dmaxferstatus == HAL_OK)
{
/* Enable Address Acknowledge */
hfmpi2c->Instance->CR2 &= ~FMPI2C_CR2_NACK;
/* Process Unlocked */
__HAL_UNLOCK(hfmpi2c);
/* Note : The FMPI2C interrupts must be enabled after unlocking current process
to avoid the risk of FMPI2C interrupt handle execution before current
process unlock */
/* Enable ERR, STOP, NACK, ADDR interrupts */
FMPI2C_Enable_IRQ(hfmpi2c, FMPI2C_XFER_LISTEN_IT);
/* Enable DMA Request */
hfmpi2c->Instance->CR1 |= FMPI2C_CR1_RXDMAEN;
}
else
{
/* Update FMPI2C state */
hfmpi2c->State = HAL_FMPI2C_STATE_LISTEN;
hfmpi2c->Mode = HAL_FMPI2C_MODE_NONE;
/* Update FMPI2C error code */
hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_DMA;
/* Process Unlocked */
__HAL_UNLOCK(hfmpi2c);
return HAL_ERROR;
}
return HAL_OK;
}
else
{
return HAL_BUSY;
}
}
/**
* @brief Write an amount of data in blocking mode to a specific memory address
* @param hfmpi2c Pointer to a FMPI2C_HandleTypeDef structure that contains
* the configuration information for the specified FMPI2C.
* @param DevAddress Target device address: The device 7 bits address value
* in datasheet must be shifted to the left before calling the interface
* @param MemAddress Internal memory address
* @param MemAddSize Size of internal memory address
* @param pData Pointer to data buffer
* @param Size Amount of data to be sent
* @param Timeout Timeout duration
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FMPI2C_Mem_Write(FMPI2C_HandleTypeDef *hfmpi2c, uint16_t DevAddress, uint16_t MemAddress,
uint16_t MemAddSize, uint8_t *pData, uint16_t Size, uint32_t Timeout)
{
uint32_t tickstart;
/* Check the parameters */
assert_param(IS_FMPI2C_MEMADD_SIZE(MemAddSize));
if (hfmpi2c->State == HAL_FMPI2C_STATE_READY)
{
if ((pData == NULL) || (Size == 0U))
{
hfmpi2c->ErrorCode = HAL_FMPI2C_ERROR_INVALID_PARAM;
return HAL_ERROR;
}
/* Process Locked */
__HAL_LOCK(hfmpi2c);
/* Init tickstart for timeout management*/
tickstart = HAL_GetTick();
if (FMPI2C_WaitOnFlagUntilTimeout(hfmpi2c, FMPI2C_FLAG_BUSY, SET, FMPI2C_TIMEOUT_BUSY, tickstart) != HAL_OK)
{
return HAL_ERROR;
}
hfmpi2c->State = HAL_FMPI2C_STATE_BUSY_TX;
hfmpi2c->Mode = HAL_FMPI2C_MODE_MEM;
hfmpi2c->ErrorCode = HAL_FMPI2C_ERROR_NONE;
/* Prepare transfer parameters */
hfmpi2c->pBuffPtr = pData;
hfmpi2c->XferCount = Size;
hfmpi2c->XferISR = NULL;
/* Send Slave Address and Memory Address */
if (FMPI2C_RequestMemoryWrite(hfmpi2c, DevAddress, MemAddress, MemAddSize, Timeout, tickstart) != HAL_OK)
{
/* Process Unlocked */
__HAL_UNLOCK(hfmpi2c);
return HAL_ERROR;
}
/* Set NBYTES to write and reload if hfmpi2c->XferCount > MAX_NBYTE_SIZE */
if (hfmpi2c->XferCount > MAX_NBYTE_SIZE)
{
hfmpi2c->XferSize = MAX_NBYTE_SIZE;
FMPI2C_TransferConfig(hfmpi2c, DevAddress, (uint8_t)hfmpi2c->XferSize, FMPI2C_RELOAD_MODE, FMPI2C_NO_STARTSTOP);
}
else
{
hfmpi2c->XferSize = hfmpi2c->XferCount;
FMPI2C_TransferConfig(hfmpi2c, DevAddress, (uint8_t)hfmpi2c->XferSize, FMPI2C_AUTOEND_MODE, FMPI2C_NO_STARTSTOP);
}
do
{
/* Wait until TXIS flag is set */
if (FMPI2C_WaitOnTXISFlagUntilTimeout(hfmpi2c, Timeout, tickstart) != HAL_OK)
{
return HAL_ERROR;
}
/* Write data to TXDR */
hfmpi2c->Instance->TXDR = *hfmpi2c->pBuffPtr;
/* Increment Buffer pointer */
hfmpi2c->pBuffPtr++;
hfmpi2c->XferCount--;
hfmpi2c->XferSize--;
if ((hfmpi2c->XferCount != 0U) && (hfmpi2c->XferSize == 0U))
{
/* Wait until TCR flag is set */
if (FMPI2C_WaitOnFlagUntilTimeout(hfmpi2c, FMPI2C_FLAG_TCR, RESET, Timeout, tickstart) != HAL_OK)
{
return HAL_ERROR;
}
if (hfmpi2c->XferCount > MAX_NBYTE_SIZE)
{
hfmpi2c->XferSize = MAX_NBYTE_SIZE;
FMPI2C_TransferConfig(hfmpi2c, DevAddress, (uint8_t)hfmpi2c->XferSize, FMPI2C_RELOAD_MODE,
FMPI2C_NO_STARTSTOP);
}
else
{
hfmpi2c->XferSize = hfmpi2c->XferCount;
FMPI2C_TransferConfig(hfmpi2c, DevAddress, (uint8_t)hfmpi2c->XferSize, FMPI2C_AUTOEND_MODE,
FMPI2C_NO_STARTSTOP);
}
}
} while (hfmpi2c->XferCount > 0U);
/* No need to Check TC flag, with AUTOEND mode the stop is automatically generated */
/* Wait until STOPF flag is reset */
if (FMPI2C_WaitOnSTOPFlagUntilTimeout(hfmpi2c, Timeout, tickstart) != HAL_OK)
{
return HAL_ERROR;
}
/* Clear STOP Flag */
__HAL_FMPI2C_CLEAR_FLAG(hfmpi2c, FMPI2C_FLAG_STOPF);
/* Clear Configuration Register 2 */
FMPI2C_RESET_CR2(hfmpi2c);
hfmpi2c->State = HAL_FMPI2C_STATE_READY;
hfmpi2c->Mode = HAL_FMPI2C_MODE_NONE;
/* Process Unlocked */
__HAL_UNLOCK(hfmpi2c);
return HAL_OK;
}
else
{
return HAL_BUSY;
}
}
/**
* @brief Read an amount of data in blocking mode from a specific memory address
* @param hfmpi2c Pointer to a FMPI2C_HandleTypeDef structure that contains
* the configuration information for the specified FMPI2C.
* @param DevAddress Target device address: The device 7 bits address value
* in datasheet must be shifted to the left before calling the interface
* @param MemAddress Internal memory address
* @param MemAddSize Size of internal memory address
* @param pData Pointer to data buffer
* @param Size Amount of data to be sent
* @param Timeout Timeout duration
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FMPI2C_Mem_Read(FMPI2C_HandleTypeDef *hfmpi2c, uint16_t DevAddress, uint16_t MemAddress,
uint16_t MemAddSize, uint8_t *pData, uint16_t Size, uint32_t Timeout)
{
uint32_t tickstart;
/* Check the parameters */
assert_param(IS_FMPI2C_MEMADD_SIZE(MemAddSize));
if (hfmpi2c->State == HAL_FMPI2C_STATE_READY)
{
if ((pData == NULL) || (Size == 0U))
{
hfmpi2c->ErrorCode = HAL_FMPI2C_ERROR_INVALID_PARAM;
return HAL_ERROR;
}
/* Process Locked */
__HAL_LOCK(hfmpi2c);
/* Init tickstart for timeout management*/
tickstart = HAL_GetTick();
if (FMPI2C_WaitOnFlagUntilTimeout(hfmpi2c, FMPI2C_FLAG_BUSY, SET, FMPI2C_TIMEOUT_BUSY, tickstart) != HAL_OK)
{
return HAL_ERROR;
}
hfmpi2c->State = HAL_FMPI2C_STATE_BUSY_RX;
hfmpi2c->Mode = HAL_FMPI2C_MODE_MEM;
hfmpi2c->ErrorCode = HAL_FMPI2C_ERROR_NONE;
/* Prepare transfer parameters */
hfmpi2c->pBuffPtr = pData;
hfmpi2c->XferCount = Size;
hfmpi2c->XferISR = NULL;
/* Send Slave Address and Memory Address */
if (FMPI2C_RequestMemoryRead(hfmpi2c, DevAddress, MemAddress, MemAddSize, Timeout, tickstart) != HAL_OK)
{
/* Process Unlocked */
__HAL_UNLOCK(hfmpi2c);
return HAL_ERROR;
}
/* Send Slave Address */
/* Set NBYTES to write and reload if hfmpi2c->XferCount > MAX_NBYTE_SIZE and generate RESTART */
if (hfmpi2c->XferCount > MAX_NBYTE_SIZE)
{
hfmpi2c->XferSize = MAX_NBYTE_SIZE;
FMPI2C_TransferConfig(hfmpi2c, DevAddress, (uint8_t)hfmpi2c->XferSize, FMPI2C_RELOAD_MODE,
FMPI2C_GENERATE_START_READ);
}
else
{
hfmpi2c->XferSize = hfmpi2c->XferCount;
FMPI2C_TransferConfig(hfmpi2c, DevAddress, (uint8_t)hfmpi2c->XferSize, FMPI2C_AUTOEND_MODE,
FMPI2C_GENERATE_START_READ);
}
do
{
/* Wait until RXNE flag is set */
if (FMPI2C_WaitOnFlagUntilTimeout(hfmpi2c, FMPI2C_FLAG_RXNE, RESET, Timeout, tickstart) != HAL_OK)
{
return HAL_ERROR;
}
/* Read data from RXDR */
*hfmpi2c->pBuffPtr = (uint8_t)hfmpi2c->Instance->RXDR;
/* Increment Buffer pointer */
hfmpi2c->pBuffPtr++;
hfmpi2c->XferSize--;
hfmpi2c->XferCount--;
if ((hfmpi2c->XferCount != 0U) && (hfmpi2c->XferSize == 0U))
{
/* Wait until TCR flag is set */
if (FMPI2C_WaitOnFlagUntilTimeout(hfmpi2c, FMPI2C_FLAG_TCR, RESET, Timeout, tickstart) != HAL_OK)
{
return HAL_ERROR;
}
if (hfmpi2c->XferCount > MAX_NBYTE_SIZE)
{
hfmpi2c->XferSize = MAX_NBYTE_SIZE;
FMPI2C_TransferConfig(hfmpi2c, DevAddress, (uint8_t) hfmpi2c->XferSize, FMPI2C_RELOAD_MODE,
FMPI2C_NO_STARTSTOP);
}
else
{
hfmpi2c->XferSize = hfmpi2c->XferCount;
FMPI2C_TransferConfig(hfmpi2c, DevAddress, (uint8_t)hfmpi2c->XferSize, FMPI2C_AUTOEND_MODE,
FMPI2C_NO_STARTSTOP);
}
}
} while (hfmpi2c->XferCount > 0U);
/* No need to Check TC flag, with AUTOEND mode the stop is automatically generated */
/* Wait until STOPF flag is reset */
if (FMPI2C_WaitOnSTOPFlagUntilTimeout(hfmpi2c, Timeout, tickstart) != HAL_OK)
{
return HAL_ERROR;
}
/* Clear STOP Flag */
__HAL_FMPI2C_CLEAR_FLAG(hfmpi2c, FMPI2C_FLAG_STOPF);
/* Clear Configuration Register 2 */
FMPI2C_RESET_CR2(hfmpi2c);
hfmpi2c->State = HAL_FMPI2C_STATE_READY;
hfmpi2c->Mode = HAL_FMPI2C_MODE_NONE;
/* Process Unlocked */
__HAL_UNLOCK(hfmpi2c);
return HAL_OK;
}
else
{
return HAL_BUSY;
}
}
/**
* @brief Write an amount of data in non-blocking mode with Interrupt to a specific memory address
* @param hfmpi2c Pointer to a FMPI2C_HandleTypeDef structure that contains
* the configuration information for the specified FMPI2C.
* @param DevAddress Target device address: The device 7 bits address value
* in datasheet must be shifted to the left before calling the interface
* @param MemAddress Internal memory address
* @param MemAddSize Size of internal memory address
* @param pData Pointer to data buffer
* @param Size Amount of data to be sent
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FMPI2C_Mem_Write_IT(FMPI2C_HandleTypeDef *hfmpi2c, uint16_t DevAddress, uint16_t MemAddress,
uint16_t MemAddSize, uint8_t *pData, uint16_t Size)
{
uint32_t tickstart;
uint32_t xfermode;
/* Check the parameters */
assert_param(IS_FMPI2C_MEMADD_SIZE(MemAddSize));
if (hfmpi2c->State == HAL_FMPI2C_STATE_READY)
{
if ((pData == NULL) || (Size == 0U))
{
hfmpi2c->ErrorCode = HAL_FMPI2C_ERROR_INVALID_PARAM;
return HAL_ERROR;
}
if (__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_BUSY) == SET)
{
return HAL_BUSY;
}
/* Process Locked */
__HAL_LOCK(hfmpi2c);
/* Init tickstart for timeout management*/
tickstart = HAL_GetTick();
hfmpi2c->State = HAL_FMPI2C_STATE_BUSY_TX;
hfmpi2c->Mode = HAL_FMPI2C_MODE_MEM;
hfmpi2c->ErrorCode = HAL_FMPI2C_ERROR_NONE;
/* Prepare transfer parameters */
hfmpi2c->pBuffPtr = pData;
hfmpi2c->XferCount = Size;
hfmpi2c->XferOptions = FMPI2C_NO_OPTION_FRAME;
hfmpi2c->XferISR = FMPI2C_Master_ISR_IT;
if (hfmpi2c->XferCount > MAX_NBYTE_SIZE)
{
hfmpi2c->XferSize = MAX_NBYTE_SIZE;
xfermode = FMPI2C_RELOAD_MODE;
}
else
{
hfmpi2c->XferSize = hfmpi2c->XferCount;
xfermode = FMPI2C_AUTOEND_MODE;
}
/* Send Slave Address and Memory Address */
if (FMPI2C_RequestMemoryWrite(hfmpi2c, DevAddress, MemAddress, MemAddSize, FMPI2C_TIMEOUT_FLAG, tickstart)
!= HAL_OK)
{
/* Process Unlocked */
__HAL_UNLOCK(hfmpi2c);
return HAL_ERROR;
}
/* Set NBYTES to write and reload if hfmpi2c->XferCount > MAX_NBYTE_SIZE and generate RESTART */
FMPI2C_TransferConfig(hfmpi2c, DevAddress, (uint8_t)hfmpi2c->XferSize, xfermode, FMPI2C_NO_STARTSTOP);
/* Process Unlocked */
__HAL_UNLOCK(hfmpi2c);
/* Note : The FMPI2C interrupts must be enabled after unlocking current process
to avoid the risk of FMPI2C interrupt handle execution before current
process unlock */
/* Enable ERR, TC, STOP, NACK, TXI interrupt */
/* possible to enable all of these */
/* FMPI2C_IT_ERRI | FMPI2C_IT_TCI | FMPI2C_IT_STOPI | FMPI2C_IT_NACKI |
FMPI2C_IT_ADDRI | FMPI2C_IT_RXI | FMPI2C_IT_TXI */
FMPI2C_Enable_IRQ(hfmpi2c, FMPI2C_XFER_TX_IT);
return HAL_OK;
}
else
{
return HAL_BUSY;
}
}
/**
* @brief Read an amount of data in non-blocking mode with Interrupt from a specific memory address
* @param hfmpi2c Pointer to a FMPI2C_HandleTypeDef structure that contains
* the configuration information for the specified FMPI2C.
* @param DevAddress Target device address: The device 7 bits address value
* in datasheet must be shifted to the left before calling the interface
* @param MemAddress Internal memory address
* @param MemAddSize Size of internal memory address
* @param pData Pointer to data buffer
* @param Size Amount of data to be sent
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FMPI2C_Mem_Read_IT(FMPI2C_HandleTypeDef *hfmpi2c, uint16_t DevAddress, uint16_t MemAddress,
uint16_t MemAddSize, uint8_t *pData, uint16_t Size)
{
uint32_t tickstart;
uint32_t xfermode;
/* Check the parameters */
assert_param(IS_FMPI2C_MEMADD_SIZE(MemAddSize));
if (hfmpi2c->State == HAL_FMPI2C_STATE_READY)
{
if ((pData == NULL) || (Size == 0U))
{
hfmpi2c->ErrorCode = HAL_FMPI2C_ERROR_INVALID_PARAM;
return HAL_ERROR;
}
if (__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_BUSY) == SET)
{
return HAL_BUSY;
}
/* Process Locked */
__HAL_LOCK(hfmpi2c);
/* Init tickstart for timeout management*/
tickstart = HAL_GetTick();
hfmpi2c->State = HAL_FMPI2C_STATE_BUSY_RX;
hfmpi2c->Mode = HAL_FMPI2C_MODE_MEM;
hfmpi2c->ErrorCode = HAL_FMPI2C_ERROR_NONE;
/* Prepare transfer parameters */
hfmpi2c->pBuffPtr = pData;
hfmpi2c->XferCount = Size;
hfmpi2c->XferOptions = FMPI2C_NO_OPTION_FRAME;
hfmpi2c->XferISR = FMPI2C_Master_ISR_IT;
if (hfmpi2c->XferCount > MAX_NBYTE_SIZE)
{
hfmpi2c->XferSize = MAX_NBYTE_SIZE;
xfermode = FMPI2C_RELOAD_MODE;
}
else
{
hfmpi2c->XferSize = hfmpi2c->XferCount;
xfermode = FMPI2C_AUTOEND_MODE;
}
/* Send Slave Address and Memory Address */
if (FMPI2C_RequestMemoryRead(hfmpi2c, DevAddress, MemAddress, MemAddSize, FMPI2C_TIMEOUT_FLAG, tickstart) != HAL_OK)
{
/* Process Unlocked */
__HAL_UNLOCK(hfmpi2c);
return HAL_ERROR;
}
/* Set NBYTES to write and reload if hfmpi2c->XferCount > MAX_NBYTE_SIZE and generate RESTART */
FMPI2C_TransferConfig(hfmpi2c, DevAddress, (uint8_t)hfmpi2c->XferSize, xfermode, FMPI2C_GENERATE_START_READ);
/* Process Unlocked */
__HAL_UNLOCK(hfmpi2c);
/* Note : The FMPI2C interrupts must be enabled after unlocking current process
to avoid the risk of FMPI2C interrupt handle execution before current
process unlock */
/* Enable ERR, TC, STOP, NACK, RXI interrupt */
/* possible to enable all of these */
/* FMPI2C_IT_ERRI | FMPI2C_IT_TCI | FMPI2C_IT_STOPI | FMPI2C_IT_NACKI |
FMPI2C_IT_ADDRI | FMPI2C_IT_RXI | FMPI2C_IT_TXI */
FMPI2C_Enable_IRQ(hfmpi2c, FMPI2C_XFER_RX_IT);
return HAL_OK;
}
else
{
return HAL_BUSY;
}
}
/**
* @brief Write an amount of data in non-blocking mode with DMA to a specific memory address
* @param hfmpi2c Pointer to a FMPI2C_HandleTypeDef structure that contains
* the configuration information for the specified FMPI2C.
* @param DevAddress Target device address: The device 7 bits address value
* in datasheet must be shifted to the left before calling the interface
* @param MemAddress Internal memory address
* @param MemAddSize Size of internal memory address
* @param pData Pointer to data buffer
* @param Size Amount of data to be sent
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FMPI2C_Mem_Write_DMA(FMPI2C_HandleTypeDef *hfmpi2c, uint16_t DevAddress, uint16_t MemAddress,
uint16_t MemAddSize, uint8_t *pData, uint16_t Size)
{
uint32_t tickstart;
uint32_t xfermode;
HAL_StatusTypeDef dmaxferstatus;
/* Check the parameters */
assert_param(IS_FMPI2C_MEMADD_SIZE(MemAddSize));
if (hfmpi2c->State == HAL_FMPI2C_STATE_READY)
{
if ((pData == NULL) || (Size == 0U))
{
hfmpi2c->ErrorCode = HAL_FMPI2C_ERROR_INVALID_PARAM;
return HAL_ERROR;
}
if (__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_BUSY) == SET)
{
return HAL_BUSY;
}
/* Process Locked */
__HAL_LOCK(hfmpi2c);
/* Init tickstart for timeout management*/
tickstart = HAL_GetTick();
hfmpi2c->State = HAL_FMPI2C_STATE_BUSY_TX;
hfmpi2c->Mode = HAL_FMPI2C_MODE_MEM;
hfmpi2c->ErrorCode = HAL_FMPI2C_ERROR_NONE;
/* Prepare transfer parameters */
hfmpi2c->pBuffPtr = pData;
hfmpi2c->XferCount = Size;
hfmpi2c->XferOptions = FMPI2C_NO_OPTION_FRAME;
hfmpi2c->XferISR = FMPI2C_Master_ISR_DMA;
if (hfmpi2c->XferCount > MAX_NBYTE_SIZE)
{
hfmpi2c->XferSize = MAX_NBYTE_SIZE;
xfermode = FMPI2C_RELOAD_MODE;
}
else
{
hfmpi2c->XferSize = hfmpi2c->XferCount;
xfermode = FMPI2C_AUTOEND_MODE;
}
/* Send Slave Address and Memory Address */
if (FMPI2C_RequestMemoryWrite(hfmpi2c, DevAddress, MemAddress, MemAddSize, FMPI2C_TIMEOUT_FLAG, tickstart)
!= HAL_OK)
{
/* Process Unlocked */
__HAL_UNLOCK(hfmpi2c);
return HAL_ERROR;
}
if (hfmpi2c->hdmatx != NULL)
{
/* Set the FMPI2C DMA transfer complete callback */
hfmpi2c->hdmatx->XferCpltCallback = FMPI2C_DMAMasterTransmitCplt;
/* Set the DMA error callback */
hfmpi2c->hdmatx->XferErrorCallback = FMPI2C_DMAError;
/* Set the unused DMA callbacks to NULL */
hfmpi2c->hdmatx->XferHalfCpltCallback = NULL;
hfmpi2c->hdmatx->XferAbortCallback = NULL;
/* Enable the DMA stream */
dmaxferstatus = HAL_DMA_Start_IT(hfmpi2c->hdmatx, (uint32_t)pData, (uint32_t)&hfmpi2c->Instance->TXDR,
hfmpi2c->XferSize);
}
else
{
/* Update FMPI2C state */
hfmpi2c->State = HAL_FMPI2C_STATE_READY;
hfmpi2c->Mode = HAL_FMPI2C_MODE_NONE;
/* Update FMPI2C error code */
hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_DMA_PARAM;
/* Process Unlocked */
__HAL_UNLOCK(hfmpi2c);
return HAL_ERROR;
}
if (dmaxferstatus == HAL_OK)
{
/* Send Slave Address */
/* Set NBYTES to write and reload if hfmpi2c->XferCount > MAX_NBYTE_SIZE and generate RESTART */
FMPI2C_TransferConfig(hfmpi2c, DevAddress, (uint8_t)hfmpi2c->XferSize, xfermode, FMPI2C_NO_STARTSTOP);
/* Update XferCount value */
hfmpi2c->XferCount -= hfmpi2c->XferSize;
/* Process Unlocked */
__HAL_UNLOCK(hfmpi2c);
/* Note : The FMPI2C interrupts must be enabled after unlocking current process
to avoid the risk of FMPI2C interrupt handle execution before current
process unlock */
/* Enable ERR and NACK interrupts */
FMPI2C_Enable_IRQ(hfmpi2c, FMPI2C_XFER_ERROR_IT);
/* Enable DMA Request */
hfmpi2c->Instance->CR1 |= FMPI2C_CR1_TXDMAEN;
}
else
{
/* Update FMPI2C state */
hfmpi2c->State = HAL_FMPI2C_STATE_READY;
hfmpi2c->Mode = HAL_FMPI2C_MODE_NONE;
/* Update FMPI2C error code */
hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_DMA;
/* Process Unlocked */
__HAL_UNLOCK(hfmpi2c);
return HAL_ERROR;
}
return HAL_OK;
}
else
{
return HAL_BUSY;
}
}
/**
* @brief Reads an amount of data in non-blocking mode with DMA from a specific memory address.
* @param hfmpi2c Pointer to a FMPI2C_HandleTypeDef structure that contains
* the configuration information for the specified FMPI2C.
* @param DevAddress Target device address: The device 7 bits address value
* in datasheet must be shifted to the left before calling the interface
* @param MemAddress Internal memory address
* @param MemAddSize Size of internal memory address
* @param pData Pointer to data buffer
* @param Size Amount of data to be read
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FMPI2C_Mem_Read_DMA(FMPI2C_HandleTypeDef *hfmpi2c, uint16_t DevAddress, uint16_t MemAddress,
uint16_t MemAddSize, uint8_t *pData, uint16_t Size)
{
uint32_t tickstart;
uint32_t xfermode;
HAL_StatusTypeDef dmaxferstatus;
/* Check the parameters */
assert_param(IS_FMPI2C_MEMADD_SIZE(MemAddSize));
if (hfmpi2c->State == HAL_FMPI2C_STATE_READY)
{
if ((pData == NULL) || (Size == 0U))
{
hfmpi2c->ErrorCode = HAL_FMPI2C_ERROR_INVALID_PARAM;
return HAL_ERROR;
}
if (__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_BUSY) == SET)
{
return HAL_BUSY;
}
/* Process Locked */
__HAL_LOCK(hfmpi2c);
/* Init tickstart for timeout management*/
tickstart = HAL_GetTick();
hfmpi2c->State = HAL_FMPI2C_STATE_BUSY_RX;
hfmpi2c->Mode = HAL_FMPI2C_MODE_MEM;
hfmpi2c->ErrorCode = HAL_FMPI2C_ERROR_NONE;
/* Prepare transfer parameters */
hfmpi2c->pBuffPtr = pData;
hfmpi2c->XferCount = Size;
hfmpi2c->XferOptions = FMPI2C_NO_OPTION_FRAME;
hfmpi2c->XferISR = FMPI2C_Master_ISR_DMA;
if (hfmpi2c->XferCount > MAX_NBYTE_SIZE)
{
hfmpi2c->XferSize = MAX_NBYTE_SIZE;
xfermode = FMPI2C_RELOAD_MODE;
}
else
{
hfmpi2c->XferSize = hfmpi2c->XferCount;
xfermode = FMPI2C_AUTOEND_MODE;
}
/* Send Slave Address and Memory Address */
if (FMPI2C_RequestMemoryRead(hfmpi2c, DevAddress, MemAddress, MemAddSize, FMPI2C_TIMEOUT_FLAG, tickstart) != HAL_OK)
{
/* Process Unlocked */
__HAL_UNLOCK(hfmpi2c);
return HAL_ERROR;
}
if (hfmpi2c->hdmarx != NULL)
{
/* Set the FMPI2C DMA transfer complete callback */
hfmpi2c->hdmarx->XferCpltCallback = FMPI2C_DMAMasterReceiveCplt;
/* Set the DMA error callback */
hfmpi2c->hdmarx->XferErrorCallback = FMPI2C_DMAError;
/* Set the unused DMA callbacks to NULL */
hfmpi2c->hdmarx->XferHalfCpltCallback = NULL;
hfmpi2c->hdmarx->XferAbortCallback = NULL;
/* Enable the DMA stream */
dmaxferstatus = HAL_DMA_Start_IT(hfmpi2c->hdmarx, (uint32_t)&hfmpi2c->Instance->RXDR, (uint32_t)pData,
hfmpi2c->XferSize);
}
else
{
/* Update FMPI2C state */
hfmpi2c->State = HAL_FMPI2C_STATE_READY;
hfmpi2c->Mode = HAL_FMPI2C_MODE_NONE;
/* Update FMPI2C error code */
hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_DMA_PARAM;
/* Process Unlocked */
__HAL_UNLOCK(hfmpi2c);
return HAL_ERROR;
}
if (dmaxferstatus == HAL_OK)
{
/* Set NBYTES to write and reload if hfmpi2c->XferCount > MAX_NBYTE_SIZE and generate RESTART */
FMPI2C_TransferConfig(hfmpi2c, DevAddress, (uint8_t)hfmpi2c->XferSize, xfermode, FMPI2C_GENERATE_START_READ);
/* Update XferCount value */
hfmpi2c->XferCount -= hfmpi2c->XferSize;
/* Process Unlocked */
__HAL_UNLOCK(hfmpi2c);
/* Note : The FMPI2C interrupts must be enabled after unlocking current process
to avoid the risk of FMPI2C interrupt handle execution before current
process unlock */
/* Enable ERR and NACK interrupts */
FMPI2C_Enable_IRQ(hfmpi2c, FMPI2C_XFER_ERROR_IT);
/* Enable DMA Request */
hfmpi2c->Instance->CR1 |= FMPI2C_CR1_RXDMAEN;
}
else
{
/* Update FMPI2C state */
hfmpi2c->State = HAL_FMPI2C_STATE_READY;
hfmpi2c->Mode = HAL_FMPI2C_MODE_NONE;
/* Update FMPI2C error code */
hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_DMA;
/* Process Unlocked */
__HAL_UNLOCK(hfmpi2c);
return HAL_ERROR;
}
return HAL_OK;
}
else
{
return HAL_BUSY;
}
}
/**
* @brief Checks if target device is ready for communication.
* @note This function is used with Memory devices
* @param hfmpi2c Pointer to a FMPI2C_HandleTypeDef structure that contains
* the configuration information for the specified FMPI2C.
* @param DevAddress Target device address: The device 7 bits address value
* in datasheet must be shifted to the left before calling the interface
* @param Trials Number of trials
* @param Timeout Timeout duration
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FMPI2C_IsDeviceReady(FMPI2C_HandleTypeDef *hfmpi2c, uint16_t DevAddress, uint32_t Trials,
uint32_t Timeout)
{
uint32_t tickstart;
__IO uint32_t FMPI2C_Trials = 0UL;
FlagStatus tmp1;
FlagStatus tmp2;
if (hfmpi2c->State == HAL_FMPI2C_STATE_READY)
{
if (__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_BUSY) == SET)
{
return HAL_BUSY;
}
/* Process Locked */
__HAL_LOCK(hfmpi2c);
hfmpi2c->State = HAL_FMPI2C_STATE_BUSY;
hfmpi2c->ErrorCode = HAL_FMPI2C_ERROR_NONE;
do
{
/* Generate Start */
hfmpi2c->Instance->CR2 = FMPI2C_GENERATE_START(hfmpi2c->Init.AddressingMode, DevAddress);
/* No need to Check TC flag, with AUTOEND mode the stop is automatically generated */
/* Wait until STOPF flag is set or a NACK flag is set*/
tickstart = HAL_GetTick();
tmp1 = __HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_STOPF);
tmp2 = __HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_AF);
while ((tmp1 == RESET) && (tmp2 == RESET))
{
if (Timeout != HAL_MAX_DELAY)
{
if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U))
{
/* Update FMPI2C state */
hfmpi2c->State = HAL_FMPI2C_STATE_READY;
/* Update FMPI2C error code */
hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_TIMEOUT;
/* Process Unlocked */
__HAL_UNLOCK(hfmpi2c);
return HAL_ERROR;
}
}
tmp1 = __HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_STOPF);
tmp2 = __HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_AF);
}
/* Check if the NACKF flag has not been set */
if (__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_AF) == RESET)
{
/* Wait until STOPF flag is reset */
if (FMPI2C_WaitOnFlagUntilTimeout(hfmpi2c, FMPI2C_FLAG_STOPF, RESET, Timeout, tickstart) != HAL_OK)
{
return HAL_ERROR;
}
/* Clear STOP Flag */
__HAL_FMPI2C_CLEAR_FLAG(hfmpi2c, FMPI2C_FLAG_STOPF);
/* Device is ready */
hfmpi2c->State = HAL_FMPI2C_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hfmpi2c);
return HAL_OK;
}
else
{
/* Wait until STOPF flag is reset */
if (FMPI2C_WaitOnFlagUntilTimeout(hfmpi2c, FMPI2C_FLAG_STOPF, RESET, Timeout, tickstart) != HAL_OK)
{
return HAL_ERROR;
}
/* Clear NACK Flag */
__HAL_FMPI2C_CLEAR_FLAG(hfmpi2c, FMPI2C_FLAG_AF);
/* Clear STOP Flag, auto generated with autoend*/
__HAL_FMPI2C_CLEAR_FLAG(hfmpi2c, FMPI2C_FLAG_STOPF);
}
/* Check if the maximum allowed number of trials has been reached */
if (FMPI2C_Trials == Trials)
{
/* Generate Stop */
hfmpi2c->Instance->CR2 |= FMPI2C_CR2_STOP;
/* Wait until STOPF flag is reset */
if (FMPI2C_WaitOnFlagUntilTimeout(hfmpi2c, FMPI2C_FLAG_STOPF, RESET, Timeout, tickstart) != HAL_OK)
{
return HAL_ERROR;
}
/* Clear STOP Flag */
__HAL_FMPI2C_CLEAR_FLAG(hfmpi2c, FMPI2C_FLAG_STOPF);
}
/* Increment Trials */
FMPI2C_Trials++;
} while (FMPI2C_Trials < Trials);
/* Update FMPI2C state */
hfmpi2c->State = HAL_FMPI2C_STATE_READY;
/* Update FMPI2C error code */
hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_TIMEOUT;
/* Process Unlocked */
__HAL_UNLOCK(hfmpi2c);
return HAL_ERROR;
}
else
{
return HAL_BUSY;
}
}
/**
* @brief Sequential transmit in master FMPI2C mode an amount of data in non-blocking mode with Interrupt.
* @note This interface allow to manage repeated start condition when a direction change during transfer
* @param hfmpi2c Pointer to a FMPI2C_HandleTypeDef structure that contains
* the configuration information for the specified FMPI2C.
* @param DevAddress Target device address: The device 7 bits address value
* in datasheet must be shifted to the left before calling the interface
* @param pData Pointer to data buffer
* @param Size Amount of data to be sent
* @param XferOptions Options of Transfer, value of @ref FMPI2C_XFEROPTIONS
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FMPI2C_Master_Seq_Transmit_IT(FMPI2C_HandleTypeDef *hfmpi2c, uint16_t DevAddress, uint8_t *pData,
uint16_t Size, uint32_t XferOptions)
{
uint32_t xfermode;
uint32_t xferrequest = FMPI2C_GENERATE_START_WRITE;
/* Check the parameters */
assert_param(IS_FMPI2C_TRANSFER_OPTIONS_REQUEST(XferOptions));
if (hfmpi2c->State == HAL_FMPI2C_STATE_READY)
{
/* Process Locked */
__HAL_LOCK(hfmpi2c);
hfmpi2c->State = HAL_FMPI2C_STATE_BUSY_TX;
hfmpi2c->Mode = HAL_FMPI2C_MODE_MASTER;
hfmpi2c->ErrorCode = HAL_FMPI2C_ERROR_NONE;
/* Prepare transfer parameters */
hfmpi2c->pBuffPtr = pData;
hfmpi2c->XferCount = Size;
hfmpi2c->XferOptions = XferOptions;
hfmpi2c->XferISR = FMPI2C_Master_ISR_IT;
/* If hfmpi2c->XferCount > MAX_NBYTE_SIZE, use reload mode */
if (hfmpi2c->XferCount > MAX_NBYTE_SIZE)
{
hfmpi2c->XferSize = MAX_NBYTE_SIZE;
xfermode = FMPI2C_RELOAD_MODE;
}
else
{
hfmpi2c->XferSize = hfmpi2c->XferCount;
xfermode = hfmpi2c->XferOptions;
}
/* If transfer direction not change and there is no request to start another frame,
do not generate Restart Condition */
/* Mean Previous state is same as current state */
if ((hfmpi2c->PreviousState == FMPI2C_STATE_MASTER_BUSY_TX) && \
(IS_FMPI2C_TRANSFER_OTHER_OPTIONS_REQUEST(XferOptions) == 0))
{
xferrequest = FMPI2C_NO_STARTSTOP;
}
else
{
/* Convert OTHER_xxx XferOptions if any */
FMPI2C_ConvertOtherXferOptions(hfmpi2c);
/* Update xfermode accordingly if no reload is necessary */
if (hfmpi2c->XferCount <= MAX_NBYTE_SIZE)
{
xfermode = hfmpi2c->XferOptions;
}
}
/* Send Slave Address and set NBYTES to write */
FMPI2C_TransferConfig(hfmpi2c, DevAddress, (uint8_t)hfmpi2c->XferSize, xfermode, xferrequest);
/* Process Unlocked */
__HAL_UNLOCK(hfmpi2c);
/* Note : The FMPI2C interrupts must be enabled after unlocking current process
to avoid the risk of FMPI2C interrupt handle execution before current
process unlock */
FMPI2C_Enable_IRQ(hfmpi2c, FMPI2C_XFER_TX_IT);
return HAL_OK;
}
else
{
return HAL_BUSY;
}
}
/**
* @brief Sequential transmit in master FMPI2C mode an amount of data in non-blocking mode with DMA.
* @note This interface allow to manage repeated start condition when a direction change during transfer
* @param hfmpi2c Pointer to a FMPI2C_HandleTypeDef structure that contains
* the configuration information for the specified FMPI2C.
* @param DevAddress Target device address: The device 7 bits address value
* in datasheet must be shifted to the left before calling the interface
* @param pData Pointer to data buffer
* @param Size Amount of data to be sent
* @param XferOptions Options of Transfer, value of @ref FMPI2C_XFEROPTIONS
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FMPI2C_Master_Seq_Transmit_DMA(FMPI2C_HandleTypeDef *hfmpi2c, uint16_t DevAddress, uint8_t *pData,
uint16_t Size, uint32_t XferOptions)
{
uint32_t xfermode;
uint32_t xferrequest = FMPI2C_GENERATE_START_WRITE;
HAL_StatusTypeDef dmaxferstatus;
/* Check the parameters */
assert_param(IS_FMPI2C_TRANSFER_OPTIONS_REQUEST(XferOptions));
if (hfmpi2c->State == HAL_FMPI2C_STATE_READY)
{
/* Process Locked */
__HAL_LOCK(hfmpi2c);
hfmpi2c->State = HAL_FMPI2C_STATE_BUSY_TX;
hfmpi2c->Mode = HAL_FMPI2C_MODE_MASTER;
hfmpi2c->ErrorCode = HAL_FMPI2C_ERROR_NONE;
/* Prepare transfer parameters */
hfmpi2c->pBuffPtr = pData;
hfmpi2c->XferCount = Size;
hfmpi2c->XferOptions = XferOptions;
hfmpi2c->XferISR = FMPI2C_Master_ISR_DMA;
/* If hfmpi2c->XferCount > MAX_NBYTE_SIZE, use reload mode */
if (hfmpi2c->XferCount > MAX_NBYTE_SIZE)
{
hfmpi2c->XferSize = MAX_NBYTE_SIZE;
xfermode = FMPI2C_RELOAD_MODE;
}
else
{
hfmpi2c->XferSize = hfmpi2c->XferCount;
xfermode = hfmpi2c->XferOptions;