blob: 3575197894eb2c15d427f823b10fa502a489c92f [file] [log] [blame]
/**
******************************************************************************
* @file stm32g0xx_ll_rcc.c
* @author MCD Application Team
* @brief RCC LL module driver.
******************************************************************************
* @attention
*
* Copyright (c) 2018 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file in
* the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
******************************************************************************
*/
#if defined(USE_FULL_LL_DRIVER)
/* Includes ------------------------------------------------------------------*/
#include "stm32g0xx_ll_rcc.h"
#ifdef USE_FULL_ASSERT
#include "stm32_assert.h"
#else
#define assert_param(expr) ((void)0U)
#endif /* USE_FULL_ASSERT */
/** @addtogroup STM32G0xx_LL_Driver
* @{
*/
#if defined(RCC)
/** @addtogroup RCC_LL
* @{
*/
/* Private types -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private constants ---------------------------------------------------------*/
/* Private macros ------------------------------------------------------------*/
/** @addtogroup RCC_LL_Private_Macros
* @{
*/
#if defined(STM32G0C1xx) || defined(STM32G0B1xx) || defined(STM32G0B0xx)
#define IS_LL_RCC_USART_CLKSOURCE(__VALUE__) (((__VALUE__) == LL_RCC_USART1_CLKSOURCE) \
|| ((__VALUE__) == LL_RCC_USART2_CLKSOURCE) \
|| ((__VALUE__) == LL_RCC_USART3_CLKSOURCE))
#elif defined(STM32G081xx) || defined(STM32G071xx) || defined(STM32G070xx)
#define IS_LL_RCC_USART_CLKSOURCE(__VALUE__) (((__VALUE__) == LL_RCC_USART1_CLKSOURCE) \
|| ((__VALUE__) == LL_RCC_USART2_CLKSOURCE))
#else
#define IS_LL_RCC_USART_CLKSOURCE(__VALUE__) ((__VALUE__) == LL_RCC_USART1_CLKSOURCE)
#endif /* STM32G0C1xx || STM32G0B1xx || STM32G0B0xx */
#if defined(LPUART1) && defined(LPUART2)
#define IS_LL_RCC_LPUART_CLKSOURCE(__VALUE__) (((__VALUE__) == LL_RCC_LPUART1_CLKSOURCE) \
|| ((__VALUE__) == LL_RCC_LPUART2_CLKSOURCE))
#elif defined(LPUART1)
#define IS_LL_RCC_LPUART_CLKSOURCE(__VALUE__) ((__VALUE__) == LL_RCC_LPUART1_CLKSOURCE)
#endif /* LPUART1 && LPUART2 */
#if defined(STM32G0C1xx) || defined(STM32G0B1xx) || defined(STM32G0B0xx)
#define IS_LL_RCC_I2C_CLKSOURCE(__VALUE__) (((__VALUE__) == LL_RCC_I2C1_CLKSOURCE) \
|| ((__VALUE__) == LL_RCC_I2C2_CLKSOURCE))
#else
#define IS_LL_RCC_I2C_CLKSOURCE(__VALUE__) ((__VALUE__) == LL_RCC_I2C1_CLKSOURCE)
#endif /* STM32G0C1xx || STM32G0B1xx || STM32G0B0xx */
#if defined(LPTIM1) || defined(LPTIM2)
#define IS_LL_RCC_LPTIM_CLKSOURCE(__VALUE__) (((__VALUE__) == LL_RCC_LPTIM1_CLKSOURCE) \
|| ((__VALUE__) == LL_RCC_LPTIM2_CLKSOURCE))
#endif /* LPTIM1 || LPTIM2 */
#if defined(RNG)
#define IS_LL_RCC_RNG_CLKSOURCE(__VALUE__) (((__VALUE__) == LL_RCC_RNG_CLKSOURCE))
#endif /* RNG */
#define IS_LL_RCC_ADC_CLKSOURCE(__VALUE__) (((__VALUE__) == LL_RCC_ADC_CLKSOURCE))
#if defined(STM32G0C1xx) || defined(STM32G0B1xx) || defined(STM32G0B0xx)
#define IS_LL_RCC_I2S_CLKSOURCE(__VALUE__) (((__VALUE__) == LL_RCC_I2S1_CLKSOURCE) \
|| ((__VALUE__) == LL_RCC_I2S2_CLKSOURCE))
#else
#define IS_LL_RCC_I2S_CLKSOURCE(__VALUE__) (((__VALUE__) == LL_RCC_I2S1_CLKSOURCE))
#endif /* STM32G0C1xx || STM32G0B1xx || STM32G0B0xx */
#if defined(CEC)
#define IS_LL_RCC_CEC_CLKSOURCE(__VALUE__) (((__VALUE__) == LL_RCC_CEC_CLKSOURCE))
#endif /* CEC */
#if defined(STM32G0C1xx) || defined(STM32G0B1xx) || defined(STM32G0B0xx)
#define IS_LL_RCC_USB_CLKSOURCE(__VALUE__) (((__VALUE__) == LL_RCC_USB_CLKSOURCE))
#endif /* STM32G0C1xx || STM32G0B1xx || STM32G0B0xx */
#if defined(FDCAN1) || defined(FDCAN2)
#define IS_LL_RCC_FDCAN_CLKSOURCE(__VALUE__) (((__VALUE__) == LL_RCC_FDCAN_CLKSOURCE))
#endif /* FDCAN1 || FDCAN2 */
#if defined(RCC_CCIPR_TIM1SEL) && defined(RCC_CCIPR_TIM15SEL)
#define IS_LL_RCC_TIM_CLKSOURCE(__VALUE__) (((__VALUE__) == LL_RCC_TIM1_CLKSOURCE) \
|| ((__VALUE__) == LL_RCC_TIM15_CLKSOURCE))
#elif defined(RCC_CCIPR_TIM1SEL)
#define IS_LL_RCC_TIM_CLKSOURCE(__VALUE__) (((__VALUE__) == LL_RCC_TIM1_CLKSOURCE))
#endif /* RCC_CCIPR_TIM1SEL */
/**
* @}
*/
/* Private function prototypes -----------------------------------------------*/
/** @defgroup RCC_LL_Private_Functions RCC Private functions
* @{
*/
static uint32_t RCC_GetSystemClockFreq(void);
static uint32_t RCC_GetHCLKClockFreq(uint32_t SYSCLK_Frequency);
static uint32_t RCC_GetPCLK1ClockFreq(uint32_t HCLK_Frequency);
static uint32_t RCC_PLL_GetFreqDomain_SYS(void);
static uint32_t RCC_PLL_GetFreqDomain_ADC(void);
static uint32_t RCC_PLL_GetFreqDomain_I2S1(void);
#if defined(STM32G0C1xx) || defined(STM32G0B1xx) || defined(STM32G0B0xx)
static uint32_t RCC_PLL_GetFreqDomain_I2S2(void);
static uint32_t RCC_PLL_GetFreqDomain_USB(void);
#endif /* STM32G0C1xx || STM32G0B1xx || STM32G0B0xx */
#if defined(FDCAN1) || defined(FDCAN2)
static uint32_t RCC_PLL_GetFreqDomain_FDCAN(void);
#endif /* FDCAN1 || FDCAN2 */
#if defined(RNG)
static uint32_t RCC_PLL_GetFreqDomain_RNG(void);
#endif /* RNG */
#if defined(RCC_PLLQ_SUPPORT) && defined(RCC_CCIPR_TIM1SEL)
static uint32_t RCC_PLL_GetFreqDomain_TIM1(void);
#endif /* RCC_PLLQ_SUPPORT && RCC_CCIPR_TIM1SEL */
#if defined(RCC_CCIPR_TIM15SEL)
static uint32_t RCC_PLL_GetFreqDomain_TIM15(void);
#endif /* RCC_CCIPR_TIM15SEL */
/**
* @}
*/
/* Exported functions --------------------------------------------------------*/
/** @addtogroup RCC_LL_Exported_Functions
* @{
*/
/** @addtogroup RCC_LL_EF_Init
* @{
*/
/**
* @brief Reset the RCC clock configuration to the default reset state.
* @note The default reset state of the clock configuration is given below:
* - HSI ON and used as system clock source
* - HSE and PLL OFF
* - AHB and APB1 prescaler set to 1.
* - CSS, MCO OFF
* - All interrupts disabled
* @note This function does not modify the configuration of the
* - Peripheral clocks
* - LSI, LSE and RTC clocks
* @retval An ErrorStatus enumeration value:
* - SUCCESS: RCC registers are de-initialized
* - ERROR: not applicable
*/
ErrorStatus LL_RCC_DeInit(void)
{
/* Set HSION bit and wait for HSI READY bit */
LL_RCC_HSI_Enable();
while (LL_RCC_HSI_IsReady() != 1U)
{}
/* Set HSITRIM bits to reset value*/
LL_RCC_HSI_SetCalibTrimming(0x40U);
/* Reset CFGR register */
LL_RCC_WriteReg(CFGR, 0x00000000U);
/* Reset whole CR register but HSI in 2 steps in case HSEBYP is set */
LL_RCC_WriteReg(CR, RCC_CR_HSION);
while (LL_RCC_HSE_IsReady() != 0U)
{}
LL_RCC_WriteReg(CR, RCC_CR_HSION);
/* Wait for PLL READY bit to be reset */
while (LL_RCC_PLL_IsReady() != 0U)
{}
/* Reset PLLCFGR register */
LL_RCC_WriteReg(PLLCFGR, 16U << RCC_PLLCFGR_PLLN_Pos);
/* Disable all interrupts */
LL_RCC_WriteReg(CIER, 0x00000000U);
/* Clear all interrupts flags */
LL_RCC_WriteReg(CICR, 0xFFFFFFFFU);
return SUCCESS;
}
/**
* @}
*/
/** @addtogroup RCC_LL_EF_Get_Freq
* @brief Return the frequencies of different on chip clocks; System, AHB and APB1 buses clocks
* and different peripheral clocks available on the device.
* @note If SYSCLK source is HSI, function returns values based on HSI_VALUE divided by HSI division factor(**)
* @note If SYSCLK source is HSE, function returns values based on HSE_VALUE(***)
* @note If SYSCLK source is PLL, function returns values based on HSE_VALUE(***)
* or HSI_VALUE(**) multiplied/divided by the PLL factors.
* @note (**) HSI_VALUE is a constant defined in this file (default value
* 16 MHz) but the real value may vary depending on the variations
* in voltage and temperature.
* @note (***) HSE_VALUE is a constant defined in this file (default value
* 8 MHz), user has to ensure that HSE_VALUE is same as the real
* frequency of the crystal used. Otherwise, this function may
* have wrong result.
* @note The result of this function could be incorrect when using fractional
* value for HSE crystal.
* @note This function can be used by the user application to compute the
* baud-rate for the communication peripherals or configure other parameters.
* @{
*/
/**
* @brief Return the frequencies of different on chip clocks; System, AHB and APB1 buses clocks
* @note Each time SYSCLK, HCLK and/or PCLK1 clock changes, this function
* must be called to update structure fields. Otherwise, any
* configuration based on this function will be incorrect.
* @param RCC_Clocks pointer to a @ref LL_RCC_ClocksTypeDef structure which will hold the clocks frequencies
* @retval None
*/
void LL_RCC_GetSystemClocksFreq(LL_RCC_ClocksTypeDef *RCC_Clocks)
{
/* Get SYSCLK frequency */
RCC_Clocks->SYSCLK_Frequency = RCC_GetSystemClockFreq();
/* HCLK clock frequency */
RCC_Clocks->HCLK_Frequency = RCC_GetHCLKClockFreq(RCC_Clocks->SYSCLK_Frequency);
/* PCLK1 clock frequency */
RCC_Clocks->PCLK1_Frequency = RCC_GetPCLK1ClockFreq(RCC_Clocks->HCLK_Frequency);
}
/**
* @brief Return USARTx clock frequency
* @param USARTxSource This parameter can be one of the following values:
* @arg @ref LL_RCC_USART1_CLKSOURCE
* @arg @ref LL_RCC_USART2_CLKSOURCE
* @arg @ref LL_RCC_USART3_CLKSOURCE
* @retval USART clock frequency (in Hz)
* - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that oscillator (HSI or LSE) is not ready
*/
uint32_t LL_RCC_GetUSARTClockFreq(uint32_t USARTxSource)
{
uint32_t usart_frequency = LL_RCC_PERIPH_FREQUENCY_NO;
/* Check parameter */
assert_param(IS_LL_RCC_USART_CLKSOURCE(USARTxSource));
if (USARTxSource == LL_RCC_USART1_CLKSOURCE)
{
/* USART1CLK clock frequency */
switch (LL_RCC_GetUSARTClockSource(USARTxSource))
{
case LL_RCC_USART1_CLKSOURCE_SYSCLK: /* USART1 Clock is System Clock */
usart_frequency = RCC_GetSystemClockFreq();
break;
case LL_RCC_USART1_CLKSOURCE_HSI: /* USART1 Clock is HSI Osc. */
if (LL_RCC_HSI_IsReady() == 1U)
{
usart_frequency = HSI_VALUE;
}
break;
case LL_RCC_USART1_CLKSOURCE_LSE: /* USART1 Clock is LSE Osc. */
if (LL_RCC_LSE_IsReady() == 1U)
{
usart_frequency = LSE_VALUE;
}
break;
case LL_RCC_USART1_CLKSOURCE_PCLK1: /* USART1 Clock is PCLK1 */
default:
usart_frequency = RCC_GetPCLK1ClockFreq(RCC_GetHCLKClockFreq(RCC_GetSystemClockFreq()));
break;
}
}
#if defined(RCC_CCIPR_USART2SEL)
else if (USARTxSource == LL_RCC_USART2_CLKSOURCE)
{
/* USART2CLK clock frequency */
switch (LL_RCC_GetUSARTClockSource(USARTxSource))
{
case LL_RCC_USART2_CLKSOURCE_SYSCLK: /* USART2 Clock is System Clock */
usart_frequency = RCC_GetSystemClockFreq();
break;
case LL_RCC_USART2_CLKSOURCE_HSI: /* USART2 Clock is HSI Osc. */
if (LL_RCC_HSI_IsReady() == 1U)
{
usart_frequency = HSI_VALUE;
}
break;
case LL_RCC_USART2_CLKSOURCE_LSE: /* USART2 Clock is LSE Osc. */
if (LL_RCC_LSE_IsReady() == 1U)
{
usart_frequency = LSE_VALUE;
}
break;
case LL_RCC_USART2_CLKSOURCE_PCLK1: /* USART2 Clock is PCLK1 */
default:
usart_frequency = RCC_GetPCLK1ClockFreq(RCC_GetHCLKClockFreq(RCC_GetSystemClockFreq()));
break;
}
}
#endif /* RCC_CCIPR_USART2SEL */
#if defined(RCC_CCIPR_USART3SEL)
else if (USARTxSource == LL_RCC_USART3_CLKSOURCE)
{
/* USART3CLK clock frequency */
switch (LL_RCC_GetUSARTClockSource(USARTxSource))
{
case LL_RCC_USART3_CLKSOURCE_SYSCLK: /* USART3 Clock is System Clock */
usart_frequency = RCC_GetSystemClockFreq();
break;
case LL_RCC_USART3_CLKSOURCE_HSI: /* USART3 Clock is HSI Osc. */
if (LL_RCC_HSI_IsReady() == 1U)
{
usart_frequency = HSI_VALUE;
}
break;
case LL_RCC_USART3_CLKSOURCE_LSE: /* USART3 Clock is LSE Osc. */
if (LL_RCC_LSE_IsReady() == 1U)
{
usart_frequency = LSE_VALUE;
}
break;
case LL_RCC_USART3_CLKSOURCE_PCLK1: /* USART3 Clock is PCLK1 */
default:
usart_frequency = RCC_GetPCLK1ClockFreq(RCC_GetHCLKClockFreq(RCC_GetSystemClockFreq()));
break;
}
}
#endif /* RCC_CCIPR_USART3SEL */
else
{
/* nothing to do */
}
return usart_frequency;
}
/**
* @brief Return I2Cx clock frequency
* @param I2CxSource This parameter can be one of the following values:
* @arg @ref LL_RCC_I2C1_CLKSOURCE
* @retval I2C clock frequency (in Hz)
* - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that HSI oscillator is not ready
*/
uint32_t LL_RCC_GetI2CClockFreq(uint32_t I2CxSource)
{
uint32_t i2c_frequency = LL_RCC_PERIPH_FREQUENCY_NO;
/* Check parameter */
assert_param(IS_LL_RCC_I2C_CLKSOURCE(I2CxSource));
if (I2CxSource == LL_RCC_I2C1_CLKSOURCE)
{
/* I2C1 CLK clock frequency */
switch (LL_RCC_GetI2CClockSource(I2CxSource))
{
case LL_RCC_I2C1_CLKSOURCE_SYSCLK: /* I2C1 Clock is System Clock */
i2c_frequency = RCC_GetSystemClockFreq();
break;
case LL_RCC_I2C1_CLKSOURCE_HSI: /* I2C1 Clock is HSI Osc. */
if (LL_RCC_HSI_IsReady() == 1U)
{
i2c_frequency = HSI_VALUE;
}
break;
case LL_RCC_I2C1_CLKSOURCE_PCLK1: /* I2C1 Clock is PCLK1 */
default:
i2c_frequency = RCC_GetPCLK1ClockFreq(RCC_GetHCLKClockFreq(RCC_GetSystemClockFreq()));
break;
}
}
#if defined(RCC_CCIPR_I2C2SEL)
else if (I2CxSource == LL_RCC_I2C2_CLKSOURCE)
{
/* I2C2 CLK clock frequency */
switch (LL_RCC_GetI2CClockSource(I2CxSource))
{
case LL_RCC_I2C2_CLKSOURCE_SYSCLK: /* I2C2 Clock is System Clock */
i2c_frequency = RCC_GetSystemClockFreq();
break;
case LL_RCC_I2C2_CLKSOURCE_HSI: /* I2C2 Clock is HSI Osc. */
if (LL_RCC_HSI_IsReady() == 1U)
{
i2c_frequency = HSI_VALUE;
}
break;
case LL_RCC_I2C2_CLKSOURCE_PCLK1: /* I2C2 Clock is PCLK1 */
default:
i2c_frequency = RCC_GetPCLK1ClockFreq(RCC_GetHCLKClockFreq(RCC_GetSystemClockFreq()));
break;
}
}
#endif /* RCC_CCIPR_I2C2SEL */
else
{
/* nothing to do */
}
return i2c_frequency;
}
/**
* @brief Return I2Sx clock frequency
* @param I2SxSource This parameter can be one of the following values:
* @arg @ref LL_RCC_I2S1_CLKSOURCE
* @retval I2S clock frequency (in Hz)
* @arg @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that oscillator is not ready
*/
uint32_t LL_RCC_GetI2SClockFreq(uint32_t I2SxSource)
{
uint32_t i2s_frequency = LL_RCC_PERIPH_FREQUENCY_NO;
/* Check parameter */
assert_param(IS_LL_RCC_I2S_CLKSOURCE(I2SxSource));
if (I2SxSource == LL_RCC_I2S1_CLKSOURCE)
{
/* I2S1 CLK clock frequency */
switch (LL_RCC_GetI2SClockSource(I2SxSource))
{
case LL_RCC_I2S1_CLKSOURCE_HSI: /* I2S1 Clock is HSI */
i2s_frequency = HSI_VALUE;
break;
case LL_RCC_I2S1_CLKSOURCE_PLL: /* I2S1 Clock is PLL"P" */
if (LL_RCC_PLL_IsReady() == 1U)
{
if (LL_RCC_PLL_IsEnabledDomain_I2S1() == 1U)
{
i2s_frequency = RCC_PLL_GetFreqDomain_I2S1();
}
}
break;
case LL_RCC_I2S1_CLKSOURCE_PIN: /* I2S1 Clock is External clock */
i2s_frequency = EXTERNAL_CLOCK_VALUE;
break;
case LL_RCC_I2S1_CLKSOURCE_SYSCLK: /* I2S1 Clock is System Clock */
default:
i2s_frequency = RCC_GetSystemClockFreq();
break;
}
}
#if defined(RCC_CCIPR2_I2S2SEL)
else if (I2SxSource == LL_RCC_I2S2_CLKSOURCE)
{
/* I2S2 CLK clock frequency */
switch (LL_RCC_GetI2SClockSource(I2SxSource))
{
case LL_RCC_I2S2_CLKSOURCE_HSI: /* I2S2 Clock is HSI */
i2s_frequency = HSI_VALUE;
break;
case LL_RCC_I2S2_CLKSOURCE_PLL: /* I2S2 Clock is PLL"P" */
if (LL_RCC_PLL_IsReady() == 1U)
{
if (LL_RCC_PLL_IsEnabledDomain_I2S2() == 1U)
{
i2s_frequency = RCC_PLL_GetFreqDomain_I2S2();
}
}
break;
case LL_RCC_I2S2_CLKSOURCE_PIN: /* I2S2 Clock is External clock */
i2s_frequency = EXTERNAL_CLOCK_VALUE;
break;
case LL_RCC_I2S2_CLKSOURCE_SYSCLK: /* I2S2 Clock is System Clock */
default:
i2s_frequency = RCC_GetSystemClockFreq();
break;
}
}
#endif /* RCC_CCIPR2_I2S2SEL */
else
{
}
return i2s_frequency;
}
#if defined(LPUART1) || defined(LPUART2)
/**
* @brief Return LPUARTx clock frequency
* @param LPUARTxSource This parameter can be one of the following values:
* @arg @ref LL_RCC_LPUART1_CLKSOURCE
* @arg @ref LL_RCC_LPUART2_CLKSOURCE (*)
* @retval LPUART clock frequency (in Hz)
* @arg @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that oscillator (HSI or LSE) is not ready
* (*) feature not available on all devices
*/
uint32_t LL_RCC_GetLPUARTClockFreq(uint32_t LPUARTxSource)
{
uint32_t lpuart_frequency = LL_RCC_PERIPH_FREQUENCY_NO;
/* Check parameter */
assert_param(IS_LL_RCC_LPUART_CLKSOURCE(LPUARTxSource));
if (LPUARTxSource == LL_RCC_LPUART1_CLKSOURCE)
{
/* LPUART1CLK clock frequency */
switch (LL_RCC_GetLPUARTClockSource(LPUARTxSource))
{
case LL_RCC_LPUART1_CLKSOURCE_SYSCLK: /* LPUART1 Clock is System Clock */
lpuart_frequency = RCC_GetSystemClockFreq();
break;
case LL_RCC_LPUART1_CLKSOURCE_HSI: /* LPUART1 Clock is HSI Osc. */
if (LL_RCC_HSI_IsReady() == 1U)
{
lpuart_frequency = HSI_VALUE;
}
break;
case LL_RCC_LPUART1_CLKSOURCE_LSE: /* LPUART1 Clock is LSE Osc. */
if (LL_RCC_LSE_IsReady() == 1U)
{
lpuart_frequency = LSE_VALUE;
}
break;
case LL_RCC_LPUART1_CLKSOURCE_PCLK1: /* LPUART1 Clock is PCLK1 */
default:
lpuart_frequency = RCC_GetPCLK1ClockFreq(RCC_GetHCLKClockFreq(RCC_GetSystemClockFreq()));
break;
}
}
#if defined(LPUART2)
else if (LPUARTxSource == LL_RCC_LPUART2_CLKSOURCE)
{
/* LPUART2CLK clock frequency */
switch (LL_RCC_GetLPUARTClockSource(LPUARTxSource))
{
case LL_RCC_LPUART2_CLKSOURCE_SYSCLK: /* LPUART2 Clock is System Clock */
lpuart_frequency = RCC_GetSystemClockFreq();
break;
case LL_RCC_LPUART2_CLKSOURCE_HSI: /* LPUART2 Clock is HSI Osc. */
if (LL_RCC_HSI_IsReady() == 1U)
{
lpuart_frequency = HSI_VALUE;
}
break;
case LL_RCC_LPUART2_CLKSOURCE_LSE: /* LPUART2 Clock is LSE Osc. */
if (LL_RCC_LSE_IsReady() == 1U)
{
lpuart_frequency = LSE_VALUE;
}
break;
case LL_RCC_LPUART2_CLKSOURCE_PCLK1: /* LPUART2 Clock is PCLK1 */
default:
lpuart_frequency = RCC_GetPCLK1ClockFreq(RCC_GetHCLKClockFreq(RCC_GetSystemClockFreq()));
break;
}
}
#endif /* LPUART2 */
else
{
/*nothing to do*/
}
return lpuart_frequency;
}
#endif /* LPUART1 */
#if defined(LPTIM1) && defined(LPTIM2)
/**
* @brief Return LPTIMx clock frequency
* @param LPTIMxSource This parameter can be one of the following values:
* @arg @ref LL_RCC_LPTIM1_CLKSOURCE
* @arg @ref LL_RCC_LPTIM2_CLKSOURCE
* @retval LPTIM clock frequency (in Hz)
* - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that oscillator (HSI, LSI or LSE) is not ready
*/
uint32_t LL_RCC_GetLPTIMClockFreq(uint32_t LPTIMxSource)
{
uint32_t lptim_frequency = LL_RCC_PERIPH_FREQUENCY_NO;
/* Check parameter */
assert_param(IS_LL_RCC_LPTIM_CLKSOURCE(LPTIMxSource));
if (LPTIMxSource == LL_RCC_LPTIM1_CLKSOURCE)
{
/* LPTIM1CLK clock frequency */
switch (LL_RCC_GetLPTIMClockSource(LPTIMxSource))
{
case LL_RCC_LPTIM1_CLKSOURCE_LSI: /* LPTIM1 Clock is LSI Osc. */
if (LL_RCC_LSI_IsReady() == 1U)
{
lptim_frequency = LSI_VALUE;
}
break;
case LL_RCC_LPTIM1_CLKSOURCE_HSI: /* LPTIM1 Clock is HSI Osc. */
if (LL_RCC_HSI_IsReady() == 1U)
{
lptim_frequency = HSI_VALUE;
}
break;
case LL_RCC_LPTIM1_CLKSOURCE_LSE: /* LPTIM1 Clock is LSE Osc. */
if (LL_RCC_LSE_IsReady() == 1U)
{
lptim_frequency = LSE_VALUE;
}
break;
case LL_RCC_LPTIM1_CLKSOURCE_PCLK1: /* LPTIM1 Clock is PCLK1 */
default:
lptim_frequency = RCC_GetPCLK1ClockFreq(RCC_GetHCLKClockFreq(RCC_GetSystemClockFreq()));
break;
}
}
else
{
/* LPTIM2CLK clock frequency */
switch (LL_RCC_GetLPTIMClockSource(LPTIMxSource))
{
case LL_RCC_LPTIM2_CLKSOURCE_LSI: /* LPTIM2 Clock is LSI Osc. */
if (LL_RCC_LSI_IsReady() == 1U)
{
lptim_frequency = LSI_VALUE;
}
break;
case LL_RCC_LPTIM2_CLKSOURCE_HSI: /* LPTIM2 Clock is HSI Osc. */
if (LL_RCC_HSI_IsReady() == 1U)
{
lptim_frequency = HSI_VALUE;
}
break;
case LL_RCC_LPTIM2_CLKSOURCE_LSE: /* LPTIM2 Clock is LSE Osc. */
if (LL_RCC_LSE_IsReady() == 1U)
{
lptim_frequency = LSE_VALUE;
}
break;
case LL_RCC_LPTIM2_CLKSOURCE_PCLK1: /* LPTIM2 Clock is PCLK1 */
default:
lptim_frequency = RCC_GetPCLK1ClockFreq(RCC_GetHCLKClockFreq(RCC_GetSystemClockFreq()));
break;
}
}
return lptim_frequency;
}
#endif /* LPTIM1 && LPTIM2 */
#if defined(RCC_CCIPR_TIM1SEL) || defined(RCC_CCIPR_TIM15SEL)
/**
* @brief Return TIMx clock frequency
* @param TIMxSource This parameter can be one of the following values:
* @arg @ref LL_RCC_TIM1_CLKSOURCE
* @if defined(STM32G081xx)
* @arg @ref LL_RCC_TIM15_CLKSOURCE
* @endif
* @retval TIMx clock frequency (in Hz)
* - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that oscillator (HSI or LSE) is not ready
*/
uint32_t LL_RCC_GetTIMClockFreq(uint32_t TIMxSource)
{
uint32_t tim_frequency = LL_RCC_PERIPH_FREQUENCY_NO;
/* Check parameter */
assert_param(IS_LL_RCC_TIM_CLKSOURCE(TIMxSource));
if (TIMxSource == LL_RCC_TIM1_CLKSOURCE)
{
/* TIM1CLK clock frequency */
switch (LL_RCC_GetTIMClockSource(TIMxSource))
{
case LL_RCC_TIM1_CLKSOURCE_PLL: /* TIM1 Clock is PLLQ */
if (LL_RCC_PLL_IsReady() == 1U)
{
if (LL_RCC_PLL_IsEnabledDomain_TIM1() == 1U)
{
tim_frequency = RCC_PLL_GetFreqDomain_TIM1();
}
}
break;
case LL_RCC_TIM1_CLKSOURCE_PCLK1: /* TIM1 Clock is PCLK1 */
default:
tim_frequency = RCC_GetPCLK1ClockFreq(RCC_GetHCLKClockFreq(RCC_GetSystemClockFreq()));
break;
}
}
#if defined(TIM15)
else
{
if (TIMxSource == LL_RCC_TIM15_CLKSOURCE)
{
/* TIM15CLK clock frequency */
switch (LL_RCC_GetTIMClockSource(TIMxSource))
{
case LL_RCC_TIM15_CLKSOURCE_PLL: /* TIM1 Clock is PLLQ */
if (LL_RCC_PLL_IsReady() == 1U)
{
if (LL_RCC_PLL_IsEnabledDomain_TIM15() == 1U)
{
tim_frequency = RCC_PLL_GetFreqDomain_TIM15();
}
}
break;
case LL_RCC_TIM15_CLKSOURCE_PCLK1: /* TIM15 Clock is PCLK1 */
default:
tim_frequency = RCC_GetPCLK1ClockFreq(RCC_GetHCLKClockFreq(RCC_GetSystemClockFreq()));
break;
}
}
}
#endif /* TIM15 */
return tim_frequency;
}
#endif /* RCC_CCIPR_TIM1SEL && RCC_CCIPR_TIM15SEL */
#if defined(RNG)
/**
* @brief Return RNGx clock frequency
* @param RNGxSource This parameter can be one of the following values:
* @arg @ref LL_RCC_RNG_CLKSOURCE
* @retval RNG clock frequency (in Hz)
* - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that oscillator (HSI) or PLL is not ready
* - @ref LL_RCC_PERIPH_FREQUENCY_NA indicates that no clock source selected
*/
uint32_t LL_RCC_GetRNGClockFreq(uint32_t RNGxSource)
{
uint32_t rng_frequency = LL_RCC_PERIPH_FREQUENCY_NO;
uint32_t rngdiv;
/* Check parameter */
assert_param(IS_LL_RCC_RNG_CLKSOURCE(RNGxSource));
/* RNGCLK clock frequency */
switch (LL_RCC_GetRNGClockSource(RNGxSource))
{
case LL_RCC_RNG_CLKSOURCE_PLL: /* PLL clock used as RNG clock source */
if (LL_RCC_PLL_IsReady() == 1U)
{
if (LL_RCC_PLL_IsEnabledDomain_RNG() == 1U)
{
rng_frequency = RCC_PLL_GetFreqDomain_RNG();
rngdiv = (1UL << ((READ_BIT(RCC->CCIPR, RCC_CCIPR_RNGDIV)) >> RCC_CCIPR_RNGDIV_Pos));
rng_frequency = (rng_frequency / rngdiv);
}
}
break;
case LL_RCC_RNG_CLKSOURCE_HSI_DIV8: /* HSI clock divided by 8 used as RNG clock source */
rng_frequency = HSI_VALUE / 8U;
rngdiv = (1UL << ((READ_BIT(RCC->CCIPR, RCC_CCIPR_RNGDIV)) >> RCC_CCIPR_RNGDIV_Pos));
rng_frequency = (rng_frequency / rngdiv);
break;
case LL_RCC_RNG_CLKSOURCE_SYSCLK: /* SYSCLK clock used as RNG clock source */
rng_frequency = RCC_GetSystemClockFreq();
rngdiv = (1UL << ((READ_BIT(RCC->CCIPR, RCC_CCIPR_RNGDIV)) >> RCC_CCIPR_RNGDIV_Pos));
rng_frequency = (rng_frequency / rngdiv);
break;
case LL_RCC_RNG_CLKSOURCE_NONE: /* No clock used as RNG clock source */
default:
rng_frequency = LL_RCC_PERIPH_FREQUENCY_NA;
break;
}
return rng_frequency;
}
#endif /* RNG */
#if defined(CEC)
/**
* @brief Return CEC clock frequency
* @param CECxSource This parameter can be one of the following values:
* @arg @ref LL_RCC_CEC_CLKSOURCE
* @retval CEC clock frequency (in Hz)
* - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that oscillator (HSI or LSE) is not ready
*/
uint32_t LL_RCC_GetCECClockFreq(uint32_t CECxSource)
{
uint32_t cec_frequency = LL_RCC_PERIPH_FREQUENCY_NO;
/* Check parameter */
assert_param(IS_LL_RCC_CEC_CLKSOURCE(CECxSource));
/* CECCLK clock frequency */
switch (LL_RCC_GetCECClockSource(CECxSource))
{
case LL_RCC_CEC_CLKSOURCE_LSE: /* CEC Clock is LSE Osc. */
if (LL_RCC_LSE_IsReady() == 1U)
{
cec_frequency = LSE_VALUE;
}
break;
case LL_RCC_CEC_CLKSOURCE_HSI_DIV488: /* CEC Clock is HSI Osc. */
default:
if (LL_RCC_HSI_IsReady() == 1U)
{
cec_frequency = (HSI_VALUE / 488U);
}
break;
}
return cec_frequency;
}
#endif /* CEC */
#if defined(FDCAN1) || defined(FDCAN2)
/**
* @brief Return FDCANx clock frequency
* @param FDCANxSource This parameter can be one of the following values:
* @arg @ref LL_RCC_FDCAN_CLKSOURCE
* @retval FDCANx clock frequency (in Hz)
* - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that oscillator (HSI, LSI or LSE) is not ready
*/
uint32_t LL_RCC_GetFDCANClockFreq(uint32_t FDCANxSource)
{
uint32_t fdcan_frequency = LL_RCC_PERIPH_FREQUENCY_NO;
/* Check parameter */
assert_param(IS_LL_RCC_FDCAN_CLKSOURCE(FDCANxSource));
/* FDCANCLK clock frequency */
switch (LL_RCC_GetFDCANClockSource(FDCANxSource))
{
case LL_RCC_FDCAN_CLKSOURCE_PLL: /* FDCAN Clock is PLL "Q" Osc. */
if (LL_RCC_PLL_IsReady() == 1U)
{
if (LL_RCC_PLL_IsEnabledDomain_FDCAN() == 1U)
{
fdcan_frequency = RCC_PLL_GetFreqDomain_FDCAN();
}
}
break;
case LL_RCC_FDCAN_CLKSOURCE_HSE: /* FDCAN Clock is HSE Osc. */
if (LL_RCC_HSE_IsReady() == 1U)
{
fdcan_frequency = HSE_VALUE;
}
break;
case LL_RCC_FDCAN_CLKSOURCE_PCLK1: /* FDCAN Clock is PCLK1 */
default:
fdcan_frequency = RCC_GetPCLK1ClockFreq(RCC_GetHCLKClockFreq(RCC_GetSystemClockFreq()));
break;
}
return fdcan_frequency;
}
#endif /* FDCAN1 || FDCAN2 */
/**
* @brief Return ADCx clock frequency
* @param ADCxSource This parameter can be one of the following values:
* @arg @ref LL_RCC_ADC_CLKSOURCE
* @retval ADC clock frequency (in Hz)
* - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that oscillator (HSI) or PLL is not ready
* - @ref LL_RCC_PERIPH_FREQUENCY_NA indicates that no clock source selected
*/
uint32_t LL_RCC_GetADCClockFreq(uint32_t ADCxSource)
{
uint32_t adc_frequency = LL_RCC_PERIPH_FREQUENCY_NO;
/* Check parameter */
assert_param(IS_LL_RCC_ADC_CLKSOURCE(ADCxSource));
/* ADCCLK clock frequency */
switch (LL_RCC_GetADCClockSource(ADCxSource))
{
case LL_RCC_ADC_CLKSOURCE_SYSCLK: /* SYSCLK clock used as ADC clock source */
adc_frequency = RCC_GetSystemClockFreq();
break;
case LL_RCC_ADC_CLKSOURCE_HSI : /* HSI clock used as ADC clock source */
adc_frequency = HSI_VALUE;
break;
case LL_RCC_ADC_CLKSOURCE_PLL: /* PLLP clock used as ADC clock source */
if (LL_RCC_PLL_IsReady() == 1U)
{
if (LL_RCC_PLL_IsEnabledDomain_ADC() == 1U)
{
adc_frequency = RCC_PLL_GetFreqDomain_ADC();
}
}
break;
default:
adc_frequency = LL_RCC_PERIPH_FREQUENCY_NA;
break;
}
return adc_frequency;
}
/**
* @brief Return RTC clock frequency
* @retval RTC clock frequency (in Hz)
* - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that oscillators (LSI, LSE or HSE) are not ready
* - @ref LL_RCC_PERIPH_FREQUENCY_NA indicates that no clock source selected
*/
uint32_t LL_RCC_GetRTCClockFreq(void)
{
uint32_t rtc_frequency = LL_RCC_PERIPH_FREQUENCY_NO;
/* RTCCLK clock frequency */
switch (LL_RCC_GetRTCClockSource())
{
case LL_RCC_RTC_CLKSOURCE_LSE: /* LSE clock used as RTC clock source */
if (LL_RCC_LSE_IsReady() == 1U)
{
rtc_frequency = LSE_VALUE;
}
break;
case LL_RCC_RTC_CLKSOURCE_LSI: /* LSI clock used as RTC clock source */
if (LL_RCC_LSI_IsReady() == 1U)
{
rtc_frequency = LSI_VALUE;
}
break;
case LL_RCC_RTC_CLKSOURCE_HSE_DIV32: /* HSE clock used as ADC clock source */
rtc_frequency = HSE_VALUE / 32U;
break;
case LL_RCC_RTC_CLKSOURCE_NONE: /* No clock used as RTC clock source */
default:
rtc_frequency = LL_RCC_PERIPH_FREQUENCY_NA;
break;
}
return rtc_frequency;
}
#if defined(STM32G0C1xx) || defined(STM32G0B1xx) || defined(STM32G0B0xx)
/**
* @brief Return USBx clock frequency
* @param USBxSource This parameter can be one of the following values:
* @arg @ref LL_RCC_USB_CLKSOURCE
* @retval USB clock frequency (in Hz)
* - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that oscillator (HSI48) or PLL is not ready
* - @ref LL_RCC_PERIPH_FREQUENCY_NA indicates that no clock source selected
*/
uint32_t LL_RCC_GetUSBClockFreq(uint32_t USBxSource)
{
uint32_t usb_frequency = LL_RCC_PERIPH_FREQUENCY_NO;
/* Check parameter */
assert_param(IS_LL_RCC_USB_CLKSOURCE(USBxSource));
/* USBCLK clock frequency */
switch (LL_RCC_GetUSBClockSource(USBxSource))
{
#if defined(RCC_HSI48_SUPPORT)
case LL_RCC_USB_CLKSOURCE_HSI48: /* HSI48 used as USB clock source */
if (LL_RCC_HSI48_IsReady() != 0U)
{
usb_frequency = HSI48_VALUE;
}
break;
#endif /* RCC_HSI48_SUPPORT */
case LL_RCC_USB_CLKSOURCE_HSE: /* HSE used as USB clock source */
if (LL_RCC_HSE_IsReady() != 0U)
{
usb_frequency = HSE_VALUE;
}
break;
case LL_RCC_USB_CLKSOURCE_PLL: /* PLL clock used as USB clock source */
if (LL_RCC_PLL_IsReady() != 0U)
{
if (LL_RCC_PLL_IsEnabledDomain_USB() != 0U)
{
usb_frequency = RCC_PLL_GetFreqDomain_USB();
}
}
break;
default:
usb_frequency = LL_RCC_PERIPH_FREQUENCY_NA;
break;
}
return usb_frequency;
}
#endif /* STM32G0C1xx || STM32G0B1xx || STM32G0B0xx) */
/**
* @}
*/
/**
* @}
*/
/** @addtogroup RCC_LL_Private_Functions
* @{
*/
/**
* @brief Return SYSTEM clock frequency
* @retval SYSTEM clock frequency (in Hz)
*/
static uint32_t RCC_GetSystemClockFreq(void)
{
uint32_t frequency;
uint32_t hsidiv;
/* Get SYSCLK source -------------------------------------------------------*/
switch (LL_RCC_GetSysClkSource())
{
case LL_RCC_SYS_CLKSOURCE_STATUS_HSE: /* HSE used as system clock source */
frequency = HSE_VALUE;
break;
case LL_RCC_SYS_CLKSOURCE_STATUS_PLL: /* PLL used as system clock source */
frequency = RCC_PLL_GetFreqDomain_SYS();
break;
case LL_RCC_SYS_CLKSOURCE_STATUS_HSI: /* HSI used as system clock source */
default:
hsidiv = (1UL << ((READ_BIT(RCC->CR, RCC_CR_HSIDIV)) >> RCC_CR_HSIDIV_Pos));
frequency = (HSI_VALUE / hsidiv);
break;
}
return frequency;
}
/**
* @brief Return HCLK clock frequency
* @param SYSCLK_Frequency SYSCLK clock frequency
* @retval HCLK clock frequency (in Hz)
*/
static uint32_t RCC_GetHCLKClockFreq(uint32_t SYSCLK_Frequency)
{
/* HCLK clock frequency */
return __LL_RCC_CALC_HCLK_FREQ(SYSCLK_Frequency, LL_RCC_GetAHBPrescaler());
}
/**
* @brief Return PCLK1 clock frequency
* @param HCLK_Frequency HCLK clock frequency
* @retval PCLK1 clock frequency (in Hz)
*/
static uint32_t RCC_GetPCLK1ClockFreq(uint32_t HCLK_Frequency)
{
/* PCLK1 clock frequency */
return __LL_RCC_CALC_PCLK1_FREQ(HCLK_Frequency, LL_RCC_GetAPB1Prescaler());
}
/**
* @brief Return PLL clock frequency used for system domain
* @retval PLL clock frequency (in Hz)
*/
static uint32_t RCC_PLL_GetFreqDomain_SYS(void)
{
uint32_t pllinputfreq;
uint32_t pllsource;
/* PLL_VCO = (HSE_VALUE or HSI_VALUE / PLLM) * PLLN
SYSCLK = PLL_VCO / PLLR
*/
pllsource = LL_RCC_PLL_GetMainSource();
switch (pllsource)
{
case LL_RCC_PLLSOURCE_HSI: /* HSI used as PLL clock source */
pllinputfreq = HSI_VALUE;
break;
case LL_RCC_PLLSOURCE_HSE: /* HSE used as PLL clock source */
pllinputfreq = HSE_VALUE;
break;
default:
pllinputfreq = HSI_VALUE;
break;
}
return __LL_RCC_CALC_PLLCLK_FREQ(pllinputfreq, LL_RCC_PLL_GetDivider(),
LL_RCC_PLL_GetN(), LL_RCC_PLL_GetR());
}
/**
* @brief Return PLL clock frequency used for ADC domain
* @retval PLL clock frequency (in Hz)
*/
static uint32_t RCC_PLL_GetFreqDomain_ADC(void)
{
uint32_t pllinputfreq;
uint32_t pllsource;
/* PLL_VCO = (HSE_VALUE or HSI_VALUE / PLLM) * PLLN
ADC Domain clock = PLL_VCO / PLLP
*/
pllsource = LL_RCC_PLL_GetMainSource();
switch (pllsource)
{
case LL_RCC_PLLSOURCE_HSE: /* HSE used as PLL clock source */
pllinputfreq = HSE_VALUE;
break;
case LL_RCC_PLLSOURCE_HSI: /* HSI used as PLL clock source */
default:
pllinputfreq = HSI_VALUE;
break;
}
return __LL_RCC_CALC_PLLCLK_ADC_FREQ(pllinputfreq, LL_RCC_PLL_GetDivider(),
LL_RCC_PLL_GetN(), LL_RCC_PLL_GetP());
}
#if defined(FDCAN1) || defined(FDCAN2)
/**
* @brief Return PLL clock frequency used for FDCAN domain
* @retval PLL clock frequency (in Hz)
*/
static uint32_t RCC_PLL_GetFreqDomain_FDCAN(void)
{
uint32_t pllinputfreq;
uint32_t pllsource;
/* PLL_VCO = (HSE_VALUE or HSI_VALUE / PLLM ) * PLLN
FDCAN Domain clock = PLL_VCO / PLLQ
*/
pllsource = LL_RCC_PLL_GetMainSource();
switch (pllsource)
{
case LL_RCC_PLLSOURCE_HSE: /* HSE used as PLL clock source */
pllinputfreq = HSE_VALUE;
break;
case LL_RCC_PLLSOURCE_HSI: /* HSI used as PLL clock source */
default:
pllinputfreq = HSI_VALUE;
break;
}
return __LL_RCC_CALC_PLLCLK_FDCAN_FREQ(pllinputfreq, LL_RCC_PLL_GetDivider(),
LL_RCC_PLL_GetN(), LL_RCC_PLL_GetQ());
}
#endif /* FDCAN1 || FDCAN2 */
/**
* @brief Return PLL clock frequency used for I2S1 domain
* @retval PLL clock frequency (in Hz)
*/
static uint32_t RCC_PLL_GetFreqDomain_I2S1(void)
{
uint32_t pllinputfreq;
uint32_t pllsource;
/* PLL_VCO = (HSE_VALUE or HSI_VALUE / PLLM) * PLLN
I2S1 Domain clock = PLL_VCO / PLLP
*/
pllsource = LL_RCC_PLL_GetMainSource();
switch (pllsource)
{
case LL_RCC_PLLSOURCE_HSE: /* HSE used as PLL clock source */
pllinputfreq = HSE_VALUE;
break;
case LL_RCC_PLLSOURCE_HSI: /* HSI used as PLL clock source */
default:
pllinputfreq = HSI_VALUE;
break;
}
return __LL_RCC_CALC_PLLCLK_I2S1_FREQ(pllinputfreq, LL_RCC_PLL_GetDivider(),
LL_RCC_PLL_GetN(), LL_RCC_PLL_GetP());
}
#if defined(RCC_CCIPR2_I2S2SEL)
/**
* @brief Return PLL clock frequency used for I2S2 domain
* @retval PLL clock frequency (in Hz)
*/
static uint32_t RCC_PLL_GetFreqDomain_I2S2(void)
{
uint32_t pllinputfreq;
uint32_t pllsource;
/* PLL_VCO = (HSE_VALUE or HSI_VALUE / PLLM) * PLLN
I2S2 Domain clock = PLL_VCO / PLLP
*/
pllsource = LL_RCC_PLL_GetMainSource();
switch (pllsource)
{
case LL_RCC_PLLSOURCE_HSE: /* HSE used as PLL clock source */
pllinputfreq = HSE_VALUE;
break;
case LL_RCC_PLLSOURCE_HSI: /* HSI used as PLL clock source */
default:
pllinputfreq = HSI_VALUE;
break;
}
return __LL_RCC_CALC_PLLCLK_I2S2_FREQ(pllinputfreq, LL_RCC_PLL_GetDivider(),
LL_RCC_PLL_GetN(), LL_RCC_PLL_GetP());
}
#endif /* RCC_CCIPR2_I2S2SEL */
#if defined(RNG)
/**
* @brief Return PLL clock frequency used for RNG domain
* @retval PLL clock frequency (in Hz)
*/
static uint32_t RCC_PLL_GetFreqDomain_RNG(void)
{
uint32_t pllinputfreq;
uint32_t pllsource;
/* PLL_VCO = (HSE_VALUE or HSI_VALUE / PLLM ) * PLLN
RNG Domain clock = PLL_VCO / PLLQ
*/
pllsource = LL_RCC_PLL_GetMainSource();
switch (pllsource)
{
case LL_RCC_PLLSOURCE_HSE: /* HSE used as PLL clock source */
pllinputfreq = HSE_VALUE;
break;
case LL_RCC_PLLSOURCE_HSI: /* HSI used as PLL clock source */
default:
pllinputfreq = HSI_VALUE;
break;
}
return __LL_RCC_CALC_PLLCLK_RNG_FREQ(pllinputfreq, LL_RCC_PLL_GetDivider(),
LL_RCC_PLL_GetN(), LL_RCC_PLL_GetQ());
}
#endif /* RNG */
#if defined(STM32G0C1xx) || defined(STM32G0B1xx) || defined(STM32G0B0xx)
/**
* @brief Return PLL clock frequency used for USB domain
* @retval PLL clock frequency (in Hz)
*/
static uint32_t RCC_PLL_GetFreqDomain_USB(void)
{
uint32_t pllinputfreq;
uint32_t pllsource;
/* PLL_VCO = (HSE_VALUE or HSI_VALUE / PLLM ) * PLLN
RNG Domain clock = PLL_VCO / PLLQ
*/
pllsource = LL_RCC_PLL_GetMainSource();
switch (pllsource)
{
case LL_RCC_PLLSOURCE_HSE: /* HSE used as PLL clock source */
pllinputfreq = HSE_VALUE;
break;
case LL_RCC_PLLSOURCE_HSI: /* HSI used as PLL clock source */
default:
pllinputfreq = HSI_VALUE;
break;
}
return __LL_RCC_CALC_PLLCLK_USB_FREQ(pllinputfreq, LL_RCC_PLL_GetDivider(),
LL_RCC_PLL_GetN(), LL_RCC_PLL_GetQ());
}
#endif /* STM32G0C1xx || STM32G0B1xx || STM32G0B0xx */
#if defined(RCC_PLLQ_SUPPORT) && defined(RCC_CCIPR_TIM1SEL)
/**
* @brief Return PLL clock frequency used for TIM1 domain
* @retval PLL clock frequency (in Hz)
*/
static uint32_t RCC_PLL_GetFreqDomain_TIM1(void)
{
uint32_t pllinputfreq;
uint32_t pllsource;
/* PLL_VCO = (HSE_VALUE or HSI_VALUE / PLLM ) * PLLN
TIM1 Domain clock = PLL_VCO / PLLQ
*/
pllsource = LL_RCC_PLL_GetMainSource();
switch (pllsource)
{
case LL_RCC_PLLSOURCE_HSE: /* HSE used as PLL clock source */
pllinputfreq = HSE_VALUE;
break;
case LL_RCC_PLLSOURCE_HSI: /* HSI used as PLL clock source */
default:
pllinputfreq = HSI_VALUE;
break;
}
return __LL_RCC_CALC_PLLCLK_TIM1_FREQ(pllinputfreq, LL_RCC_PLL_GetDivider(),
LL_RCC_PLL_GetN(), LL_RCC_PLL_GetQ());
}
#endif /* RCC_PLLQ_SUPPORT */
#if defined(RCC_CCIPR_TIM15SEL)
/**
* @brief Return PLL clock frequency used for TIM15 domain
* @retval PLL clock frequency (in Hz)
*/
static uint32_t RCC_PLL_GetFreqDomain_TIM15(void)
{
uint32_t pllinputfreq;
uint32_t pllsource;
/* PLL_VCO = (HSE_VALUE or HSI_VALUE / PLLM ) * PLLN
TIM15 Domain clock = PLL_VCO / PLLQ
*/
pllsource = LL_RCC_PLL_GetMainSource();
switch (pllsource)
{
case LL_RCC_PLLSOURCE_HSE: /* HSE used as PLL clock source */
pllinputfreq = HSE_VALUE;
break;
case LL_RCC_PLLSOURCE_HSI: /* HSI used as PLL clock source */
default:
pllinputfreq = HSI_VALUE;
break;
}
return __LL_RCC_CALC_PLLCLK_TIM15_FREQ(pllinputfreq, LL_RCC_PLL_GetDivider(),
LL_RCC_PLL_GetN(), LL_RCC_PLL_GetQ());
}
#endif /* RCC_CCIPR_TIM15SEL */
/**
* @}
*/
/**
* @}
*/
#endif /* RCC */
/**
* @}
*/
#endif /* USE_FULL_LL_DRIVER */