| /** |
| ****************************************************************************** |
| * @file stm32g0xx_hal_rcc.c |
| * @author MCD Application Team |
| * @brief RCC HAL module driver. |
| * This file provides firmware functions to manage the following |
| * functionalities of the Reset and Clock Control (RCC) peripheral: |
| * + Initialization and de-initialization functions |
| * + Peripheral Control functions |
| * |
| @verbatim |
| ============================================================================== |
| ##### RCC specific features ##### |
| ============================================================================== |
| [..] |
| After reset the device is running from High Speed Internal oscillator |
| (from 8 MHz to reach 16MHz) with Flash 0 wait state. Flash prefetch buffer, |
| D-Cache and I-Cache are disabled, and all peripherals are off except internal |
| SRAM, Flash and JTAG. |
| |
| (+) There is no prescaler on High speed (AHB) and Low speed (APB) buses: |
| all peripherals mapped on these buses are running at HSI speed. |
| (+) The clock for all peripherals is switched off, except the SRAM and FLASH. |
| (+) All GPIOs are in analog mode, except the JTAG pins which |
| are assigned to be used for debug purpose. |
| |
| [..] |
| Once the device started from reset, the user application has to: |
| (+) Configure the clock source to be used to drive the System clock |
| (if the application needs higher frequency/performance) |
| (+) Configure the System clock frequency and Flash settings |
| (+) Configure the AHB and APB buses prescalers |
| (+) Enable the clock for the peripheral(s) to be used |
| (+) Configure the clock source(s) for peripherals which clocks are not |
| derived from the System clock (RTC, ADC, RNG, HSTIM) |
| |
| @endverbatim |
| ****************************************************************************** |
| * @attention |
| * |
| * Copyright (c) 2018 STMicroelectronics. |
| * All rights reserved. |
| * |
| * This software is licensed under terms that can be found in the LICENSE file in |
| * the root directory of this software component. |
| * If no LICENSE file comes with this software, it is provided AS-IS. |
| ****************************************************************************** |
| */ |
| |
| /* Includes ------------------------------------------------------------------*/ |
| #include "stm32g0xx_hal.h" |
| |
| /** @addtogroup STM32G0xx_HAL_Driver |
| * @{ |
| */ |
| |
| /** @defgroup RCC RCC |
| * @brief RCC HAL module driver |
| * @{ |
| */ |
| |
| #ifdef HAL_RCC_MODULE_ENABLED |
| |
| /* Private typedef -----------------------------------------------------------*/ |
| /* Private define ------------------------------------------------------------*/ |
| /** @defgroup RCC_Private_Constants RCC Private Constants |
| * @{ |
| */ |
| #define HSE_TIMEOUT_VALUE HSE_STARTUP_TIMEOUT |
| #define HSI_TIMEOUT_VALUE (2U) /* 2 ms (minimum Tick + 1) */ |
| #define LSI_TIMEOUT_VALUE (2U) /* 2 ms (minimum Tick + 1) */ |
| #define PLL_TIMEOUT_VALUE (2U) /* 2 ms (minimum Tick + 1) */ |
| |
| #if defined(RCC_HSI48_SUPPORT) |
| #define HSI48_TIMEOUT_VALUE (2U) /* 2 ms (minimum Tick + 1) */ |
| #endif /* RCC_HSI48_SUPPORT */ |
| #define CLOCKSWITCH_TIMEOUT_VALUE (5000U) /* 5 s */ |
| |
| #define PLLSOURCE_NONE (0U) |
| /** |
| * @} |
| */ |
| |
| /* Private macro -------------------------------------------------------------*/ |
| /** @defgroup RCC_Private_Macros RCC Private Macros |
| * @{ |
| */ |
| |
| #define RCC_GET_MCO_GPIO_PIN(__RCC_MCOx__) ((__RCC_MCOx__) & GPIO_PIN_MASK) |
| |
| #define RCC_GET_MCO_GPIO_AF(__RCC_MCOx__) (((__RCC_MCOx__) & RCC_MCO_GPIOAF_MASK) >> RCC_MCO_GPIOAF_POS) |
| |
| #define RCC_GET_MCO_GPIO_INDEX(__RCC_MCOx__) (((__RCC_MCOx__) & RCC_MCO_GPIOPORT_MASK) >> RCC_MCO_GPIOPORT_POS) |
| |
| #define RCC_GET_MCO_GPIO_PORT(__RCC_MCOx__) (IOPORT_BASE + ((0x00000400UL) * RCC_GET_MCO_GPIO_INDEX(__RCC_MCOx__))) |
| |
| #define RCC_PLL_OSCSOURCE_CONFIG(__HAL_RCC_PLLSOURCE__) \ |
| (MODIFY_REG(RCC->PLLCFGR, RCC_PLLCFGR_PLLSRC, (uint32_t)(__HAL_RCC_PLLSOURCE__))) |
| /** |
| * @} |
| */ |
| |
| /* Private variables ---------------------------------------------------------*/ |
| /** @defgroup RCC_Private_Variables RCC Private Variables |
| * @{ |
| */ |
| |
| /** |
| * @} |
| */ |
| |
| /* Private function prototypes -----------------------------------------------*/ |
| /* Exported functions --------------------------------------------------------*/ |
| |
| /** @defgroup RCC_Exported_Functions RCC Exported Functions |
| * @{ |
| */ |
| |
| /** @defgroup RCC_Exported_Functions_Group1 Initialization and de-initialization functions |
| * @brief Initialization and Configuration functions |
| * |
| @verbatim |
| =============================================================================== |
| ##### Initialization and de-initialization functions ##### |
| =============================================================================== |
| [..] |
| This section provides functions allowing to configure the internal and external oscillators |
| (HSE, HSI, LSE, LSI, PLL, CSS and MCO) and the System buses clocks (SYSCLK, AHB, APB) |
| |
| [..] Internal/external clock and PLL configuration |
| (+) HSI (high-speed internal): 16 MHz factory-trimmed RC used directly or through |
| the PLL as System clock source. |
| |
| (+) LSI (low-speed internal): 32 KHz low consumption RC used as IWDG and/or RTC |
| clock source. |
| |
| (+) HSE (high-speed external): 4 to 48 MHz crystal oscillator used directly or |
| through the PLL as System clock source. Can be used also optionally as RTC clock source. |
| |
| (+) LSE (low-speed external): 32.768 KHz oscillator used optionally as RTC clock source. |
| |
| (+) PLL (clocked by HSI, HSE) providing up to three independent output clocks: |
| (++) The first output (R) is used to generate the high speed system clock (up to 64MHz). |
| (++) The second output(Q) is used to generate the clock for the random analog generator and HStim. |
| (++) The Third output (P) is used to generate the clock for the Analog to Digital Converter and I2S. |
| |
| (+) CSS (Clock security system): once enabled, if a HSE or LSE clock failure occurs |
| (HSE used directly or through PLL as System clock source), the System clock |
| is automatically switched respectively to HSI or LSI and an interrupt is generated |
| if enabled. The interrupt is linked to the Cortex-M0+ NMI (Non-Maskable Interrupt) |
| exception vector. |
| |
| (+) MCOx (microcontroller clock output): |
| (++) MCO1 used to output LSI, HSI48(*), HSI, LSE, HSE or main PLL clock (through a configurable prescaler) on PA8 pin. |
| (++) MCO2(*) used to output LSI, HSI48(*), HSI, LSE, HSE, main PLLR clock, PLLQ clock, PLLP clock, RTC clock or RTC_Wakeup (through a configurable prescaler) on PA10 pin. |
| (*) available on certain devices only |
| |
| [..] System, AHB and APB buses clocks configuration |
| (+) Several clock sources can be used to drive the System clock (SYSCLK): HSI, |
| HSE, LSI, LSE and main PLL. |
| The AHB clock (HCLK) is derived from System clock through configurable |
| prescaler and used to clock the CPU, memory and peripherals mapped |
| on AHB bus (DMA, GPIO...).and APB (PCLK1) clock is derived |
| from AHB clock through configurable prescalers and used to clock |
| the peripherals mapped on these buses. You can use |
| "HAL_RCC_GetSysClockFreq()" function to retrieve the frequencies of these clocks. |
| |
| -@- All the peripheral clocks are derived from the System clock (SYSCLK) except: |
| |
| (+@) RTC: the RTC clock can be derived either from the LSI, LSE or HSE clock |
| divided by 2 to 31. |
| You have to use __HAL_RCC_RTC_ENABLE() and HAL_RCCEx_PeriphCLKConfig() function |
| to configure this clock. |
| |
| (+@) RNG(*) requires a frequency equal or lower than 48 MHz. |
| This clock is derived from the main PLL or HSI or System clock. |
| (*) available on certain devices only |
| |
| (+@) IWDG clock which is always the LSI clock. |
| |
| |
| (+) The maximum frequency of the SYSCLK, HCLK, PCLK is 64 MHz. |
| Depending on the device voltage range, the maximum frequency should be |
| adapted accordingly. |
| |
| @endverbatim |
| |
| (++) Table 1. HCLK clock frequency. |
| (++) +-------------------------------------------------------+ |
| (++) | Latency | HCLK clock frequency (MHz) | |
| (++) | |-------------------------------------| |
| (++) | | voltage range 1 | voltage range 2 | |
| (++) | | 1.2 V | 1.0 V | |
| (++) |-----------------|------------------|------------------| |
| (++) |0WS(1 CPU cycles)| HCLK <= 24 | HCLK <= 8 | |
| (++) |-----------------|------------------|------------------| |
| (++) |1WS(2 CPU cycles)| HCLK <= 48 | HCLK <= 16 | |
| (++) |-----------------|------------------|------------------| |
| (++) |2WS(3 CPU cycles)| HCLK <= 64 | - | |
| (++) |-----------------|------------------|------------------| |
| * @{ |
| */ |
| |
| /** |
| * @brief Reset the RCC clock configuration to the default reset state. |
| * @note The default reset state of the clock configuration is given below: |
| * - HSI ON and used as system clock source |
| * - HSE, PLL OFF |
| * - AHB and APB prescaler set to 1. |
| * - CSS, MCO1 OFF |
| * - All interrupts disabled |
| * @note This function does not modify the configuration of the |
| * - Peripheral clocks |
| * - LSI, LSE and RTC clocks |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_RCC_DeInit(void) |
| { |
| uint32_t tickstart; |
| |
| /* Get Start Tick*/ |
| tickstart = HAL_GetTick(); |
| |
| /* Set HSION bit to the reset value */ |
| SET_BIT(RCC->CR, RCC_CR_HSION); |
| |
| /* Wait till HSI is ready */ |
| while (READ_BIT(RCC->CR, RCC_CR_HSIRDY) == 0U) |
| { |
| if ((HAL_GetTick() - tickstart) > HSI_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| |
| /* Set HSITRIM[6:0] bits to the reset value */ |
| RCC->ICSCR = RCC_ICSCR_HSITRIM_6; |
| |
| /* Get Start Tick*/ |
| tickstart = HAL_GetTick(); |
| |
| /* Reset CFGR register (HSI is selected as system clock source) */ |
| RCC->CFGR = 0x00000000u; |
| |
| /* Wait till HSI is ready */ |
| while (READ_BIT(RCC->CFGR, RCC_CFGR_SWS) != 0U) |
| { |
| if ((HAL_GetTick() - tickstart) > CLOCKSWITCH_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| |
| /* Clear CR register in 2 steps: first to clear HSEON in case bypass was enabled */ |
| RCC->CR = RCC_CR_HSION; |
| |
| /* Then again to HSEBYP in case bypass was enabled */ |
| RCC->CR = RCC_CR_HSION; |
| |
| /* Get Start Tick*/ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till PLL is ready */ |
| while (READ_BIT(RCC->CR, RCC_CR_PLLRDY) != 0U) |
| { |
| if ((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| |
| /* once PLL is OFF, reset PLLCFGR register to default value */ |
| RCC->PLLCFGR = RCC_PLLCFGR_PLLN_4; |
| |
| /* Disable all interrupts */ |
| RCC->CIER = 0x00000000u; |
| |
| /* Clear all flags */ |
| RCC->CICR = 0xFFFFFFFFu; |
| |
| /* Update the SystemCoreClock global variable */ |
| SystemCoreClock = HSI_VALUE; |
| |
| /* Adapt Systick interrupt period */ |
| if (HAL_InitTick(uwTickPrio) != HAL_OK) |
| { |
| return HAL_ERROR; |
| } |
| else |
| { |
| return HAL_OK; |
| } |
| } |
| |
| /** |
| * @brief Initialize the RCC Oscillators according to the specified parameters in the |
| * @ref RCC_OscInitTypeDef. |
| * @param RCC_OscInitStruct pointer to a @ref RCC_OscInitTypeDef structure that |
| * contains the configuration information for the RCC Oscillators. |
| * @note The PLL is not disabled when used as system clock. |
| * @note Transition HSE Bypass to HSE On and HSE On to HSE Bypass are not |
| * supported by this function. User should request a transition to HSE Off |
| * first and then to HSE On or HSE Bypass. |
| * @note Transition LSE Bypass to LSE On and LSE On to LSE Bypass are not |
| * supported by this function. User should request a transition to LSE Off |
| * first and then to LSE On or LSE Bypass. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_RCC_OscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct) |
| { |
| uint32_t tickstart; |
| uint32_t temp_sysclksrc; |
| uint32_t temp_pllckcfg; |
| |
| /* Check Null pointer */ |
| if (RCC_OscInitStruct == NULL) |
| { |
| return HAL_ERROR; |
| } |
| |
| /* Check the parameters */ |
| assert_param(IS_RCC_OSCILLATORTYPE(RCC_OscInitStruct->OscillatorType)); |
| |
| /*------------------------------- HSE Configuration ------------------------*/ |
| if (((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSE) == RCC_OSCILLATORTYPE_HSE) |
| { |
| /* Check the parameters */ |
| assert_param(IS_RCC_HSE(RCC_OscInitStruct->HSEState)); |
| |
| temp_sysclksrc = __HAL_RCC_GET_SYSCLK_SOURCE(); |
| temp_pllckcfg = __HAL_RCC_GET_PLL_OSCSOURCE(); |
| |
| /* When the HSE is used as system clock or clock source for PLL in these cases it is not allowed to be disabled */ |
| if (((temp_sysclksrc == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && (temp_pllckcfg == RCC_PLLSOURCE_HSE)) |
| || (temp_sysclksrc == RCC_SYSCLKSOURCE_STATUS_HSE)) |
| { |
| if ((READ_BIT(RCC->CR, RCC_CR_HSERDY) != 0U) && (RCC_OscInitStruct->HSEState == RCC_HSE_OFF)) |
| { |
| return HAL_ERROR; |
| } |
| } |
| else |
| { |
| /* Set the new HSE configuration ---------------------------------------*/ |
| __HAL_RCC_HSE_CONFIG(RCC_OscInitStruct->HSEState); |
| |
| /* Check the HSE State */ |
| if (RCC_OscInitStruct->HSEState != RCC_HSE_OFF) |
| { |
| /* Get Start Tick*/ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till HSE is ready */ |
| while (READ_BIT(RCC->CR, RCC_CR_HSERDY) == 0U) |
| { |
| if ((HAL_GetTick() - tickstart) > HSE_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| else |
| { |
| /* Get Start Tick*/ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till HSE is disabled */ |
| while (READ_BIT(RCC->CR, RCC_CR_HSERDY) != 0U) |
| { |
| if ((HAL_GetTick() - tickstart) > HSE_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| } |
| } |
| /*----------------------------- HSI Configuration --------------------------*/ |
| if (((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSI) == RCC_OSCILLATORTYPE_HSI) |
| { |
| /* Check the parameters */ |
| assert_param(IS_RCC_HSI(RCC_OscInitStruct->HSIState)); |
| assert_param(IS_RCC_HSI_CALIBRATION_VALUE(RCC_OscInitStruct->HSICalibrationValue)); |
| assert_param(IS_RCC_HSIDIV(RCC_OscInitStruct->HSIDiv)); |
| |
| /* Check if HSI16 is used as system clock or as PLL source when PLL is selected as system clock */ |
| temp_sysclksrc = __HAL_RCC_GET_SYSCLK_SOURCE(); |
| temp_pllckcfg = __HAL_RCC_GET_PLL_OSCSOURCE(); |
| if (((temp_sysclksrc == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && (temp_pllckcfg == RCC_PLLSOURCE_HSI)) |
| || (temp_sysclksrc == RCC_SYSCLKSOURCE_STATUS_HSI)) |
| { |
| /* When HSI is used as system clock or as PLL input clock it can not be disabled */ |
| if ((READ_BIT(RCC->CR, RCC_CR_HSIRDY) != 0U) && (RCC_OscInitStruct->HSIState == RCC_HSI_OFF)) |
| { |
| return HAL_ERROR; |
| } |
| /* Otherwise, just the calibration is allowed */ |
| else |
| { |
| /* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/ |
| __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue); |
| |
| if (temp_sysclksrc == RCC_SYSCLKSOURCE_STATUS_HSI) |
| { |
| /* Adjust the HSI16 division factor */ |
| __HAL_RCC_HSI_CONFIG(RCC_OscInitStruct->HSIDiv); |
| |
| /* Update the SystemCoreClock global variable with HSISYS value */ |
| SystemCoreClock = (HSI_VALUE / (1UL << ((READ_BIT(RCC->CR, RCC_CR_HSIDIV)) >> RCC_CR_HSIDIV_Pos))); |
| } |
| |
| /* Adapt Systick interrupt period */ |
| if (HAL_InitTick(uwTickPrio) != HAL_OK) |
| { |
| return HAL_ERROR; |
| } |
| } |
| } |
| else |
| { |
| /* Check the HSI State */ |
| if (RCC_OscInitStruct->HSIState != RCC_HSI_OFF) |
| { |
| /* Configure the HSI16 division factor */ |
| __HAL_RCC_HSI_CONFIG(RCC_OscInitStruct->HSIDiv); |
| |
| /* Enable the Internal High Speed oscillator (HSI16). */ |
| __HAL_RCC_HSI_ENABLE(); |
| |
| /* Get Start Tick*/ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till HSI is ready */ |
| while (READ_BIT(RCC->CR, RCC_CR_HSIRDY) == 0U) |
| { |
| if ((HAL_GetTick() - tickstart) > HSI_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| |
| /* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/ |
| __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue); |
| } |
| else |
| { |
| /* Disable the Internal High Speed oscillator (HSI16). */ |
| __HAL_RCC_HSI_DISABLE(); |
| |
| /* Get Start Tick*/ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till HSI is disabled */ |
| while (READ_BIT(RCC->CR, RCC_CR_HSIRDY) != 0U) |
| { |
| if ((HAL_GetTick() - tickstart) > HSI_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| } |
| } |
| /*------------------------------ LSI Configuration -------------------------*/ |
| if (((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSI) == RCC_OSCILLATORTYPE_LSI) |
| { |
| /* Check the parameters */ |
| assert_param(IS_RCC_LSI(RCC_OscInitStruct->LSIState)); |
| |
| /* Check if LSI is used as system clock */ |
| if (__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_LSI) |
| { |
| /* When LSI is used as system clock it will not be disabled */ |
| if ((((RCC->CSR) & RCC_CSR_LSIRDY) != 0U) && (RCC_OscInitStruct->LSIState == RCC_LSI_OFF)) |
| { |
| return HAL_ERROR; |
| } |
| } |
| else |
| { |
| /* Check the LSI State */ |
| if (RCC_OscInitStruct->LSIState != RCC_LSI_OFF) |
| { |
| /* Enable the Internal Low Speed oscillator (LSI). */ |
| __HAL_RCC_LSI_ENABLE(); |
| |
| /* Get Start Tick*/ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till LSI is ready */ |
| while (READ_BIT(RCC->CSR, RCC_CSR_LSIRDY) == 0U) |
| { |
| if ((HAL_GetTick() - tickstart) > LSI_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| else |
| { |
| /* Disable the Internal Low Speed oscillator (LSI). */ |
| __HAL_RCC_LSI_DISABLE(); |
| |
| /* Get Start Tick*/ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till LSI is disabled */ |
| while (READ_BIT(RCC->CSR, RCC_CSR_LSIRDY) != 0U) |
| { |
| if ((HAL_GetTick() - tickstart) > LSI_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| } |
| } |
| /*------------------------------ LSE Configuration -------------------------*/ |
| if (((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSE) == RCC_OSCILLATORTYPE_LSE) |
| { |
| FlagStatus pwrclkchanged = RESET; |
| |
| /* Check the parameters */ |
| assert_param(IS_RCC_LSE(RCC_OscInitStruct->LSEState)); |
| |
| /* When the LSE is used as system clock, it is not allowed disable it */ |
| if (__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_LSE) |
| { |
| if ((((RCC->BDCR) & RCC_BDCR_LSERDY) != 0U) && (RCC_OscInitStruct->LSEState == RCC_LSE_OFF)) |
| { |
| return HAL_ERROR; |
| } |
| } |
| else |
| { |
| /* Update LSE configuration in Backup Domain control register */ |
| /* Requires to enable write access to Backup Domain of necessary */ |
| if (__HAL_RCC_PWR_IS_CLK_DISABLED() != 0U) |
| { |
| __HAL_RCC_PWR_CLK_ENABLE(); |
| pwrclkchanged = SET; |
| } |
| |
| if (HAL_IS_BIT_CLR(PWR->CR1, PWR_CR1_DBP)) |
| { |
| /* Enable write access to Backup domain */ |
| SET_BIT(PWR->CR1, PWR_CR1_DBP); |
| |
| /* Wait for Backup domain Write protection disable */ |
| tickstart = HAL_GetTick(); |
| |
| while (HAL_IS_BIT_CLR(PWR->CR1, PWR_CR1_DBP)) |
| { |
| if ((HAL_GetTick() - tickstart) > RCC_DBP_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| |
| /* Set the new LSE configuration -----------------------------------------*/ |
| __HAL_RCC_LSE_CONFIG(RCC_OscInitStruct->LSEState); |
| |
| /* Check the LSE State */ |
| if (RCC_OscInitStruct->LSEState != RCC_LSE_OFF) |
| { |
| /* Get Start Tick*/ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till LSE is ready */ |
| while (READ_BIT(RCC->BDCR, RCC_BDCR_LSERDY) == 0U) |
| { |
| if ((HAL_GetTick() - tickstart) > RCC_LSE_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| else |
| { |
| /* Get Start Tick*/ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till LSE is disabled */ |
| while (READ_BIT(RCC->BDCR, RCC_BDCR_LSERDY) != 0U) |
| { |
| if ((HAL_GetTick() - tickstart) > RCC_LSE_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| |
| /* Restore clock configuration if changed */ |
| if (pwrclkchanged == SET) |
| { |
| __HAL_RCC_PWR_CLK_DISABLE(); |
| } |
| } |
| } |
| #if defined(RCC_HSI48_SUPPORT) |
| /*------------------------------ HSI48 Configuration -----------------------*/ |
| if (((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSI48) == RCC_OSCILLATORTYPE_HSI48) |
| { |
| /* Check the parameters */ |
| assert_param(IS_RCC_HSI48(RCC_OscInitStruct->HSI48State)); |
| |
| /* Check the LSI State */ |
| if (RCC_OscInitStruct->HSI48State != RCC_HSI48_OFF) |
| { |
| /* Enable the Internal Low Speed oscillator (HSI48). */ |
| __HAL_RCC_HSI48_ENABLE(); |
| |
| /* Get Start Tick*/ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till HSI48 is ready */ |
| while (READ_BIT(RCC->CR, RCC_CR_HSI48RDY) == 0U) |
| { |
| if ((HAL_GetTick() - tickstart) > HSI48_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| else |
| { |
| /* Disable the Internal Low Speed oscillator (HSI48). */ |
| __HAL_RCC_HSI48_DISABLE(); |
| |
| /* Get Start Tick*/ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till HSI48 is disabled */ |
| while (READ_BIT(RCC->CR, RCC_CR_HSI48RDY) != 0U) |
| { |
| if ((HAL_GetTick() - tickstart) > HSI48_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| } |
| #endif /* RCC_HSI48_SUPPORT */ |
| /*-------------------------------- PLL Configuration -----------------------*/ |
| /* Check the parameters */ |
| assert_param(IS_RCC_PLL(RCC_OscInitStruct->PLL.PLLState)); |
| |
| if (RCC_OscInitStruct->PLL.PLLState != RCC_PLL_NONE) |
| { |
| /* Check if the PLL is used as system clock or not */ |
| if (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_PLLCLK) |
| { |
| if (RCC_OscInitStruct->PLL.PLLState == RCC_PLL_ON) |
| { |
| /* Check the parameters */ |
| assert_param(IS_RCC_PLLSOURCE(RCC_OscInitStruct->PLL.PLLSource)); |
| assert_param(IS_RCC_PLLM_VALUE(RCC_OscInitStruct->PLL.PLLM)); |
| assert_param(IS_RCC_PLLN_VALUE(RCC_OscInitStruct->PLL.PLLN)); |
| assert_param(IS_RCC_PLLP_VALUE(RCC_OscInitStruct->PLL.PLLP)); |
| #if defined(RCC_PLLQ_SUPPORT) |
| assert_param(IS_RCC_PLLQ_VALUE(RCC_OscInitStruct->PLL.PLLQ)); |
| #endif /* RCC_PLLQ_SUPPORT */ |
| assert_param(IS_RCC_PLLR_VALUE(RCC_OscInitStruct->PLL.PLLR)); |
| |
| /* Disable the main PLL. */ |
| __HAL_RCC_PLL_DISABLE(); |
| |
| /* Get Start Tick*/ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till PLL is ready */ |
| while (READ_BIT(RCC->CR, RCC_CR_PLLRDY) != 0U) |
| { |
| if ((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| |
| /* Configure the main PLL clock source, multiplication and division factors. */ |
| #if defined(RCC_PLLQ_SUPPORT) |
| __HAL_RCC_PLL_CONFIG(RCC_OscInitStruct->PLL.PLLSource, |
| RCC_OscInitStruct->PLL.PLLM, |
| RCC_OscInitStruct->PLL.PLLN, |
| RCC_OscInitStruct->PLL.PLLP, |
| RCC_OscInitStruct->PLL.PLLQ, |
| RCC_OscInitStruct->PLL.PLLR); |
| #else /* !RCC_PLLQ_SUPPORT */ |
| __HAL_RCC_PLL_CONFIG(RCC_OscInitStruct->PLL.PLLSource, |
| RCC_OscInitStruct->PLL.PLLM, |
| RCC_OscInitStruct->PLL.PLLN, |
| RCC_OscInitStruct->PLL.PLLP, |
| RCC_OscInitStruct->PLL.PLLR); |
| #endif /* RCC_PLLQ_SUPPORT */ |
| |
| /* Enable the main PLL. */ |
| __HAL_RCC_PLL_ENABLE(); |
| |
| /* Enable PLLR Clock output. */ |
| __HAL_RCC_PLLCLKOUT_ENABLE(RCC_PLLRCLK); |
| |
| /* Get Start Tick*/ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till PLL is ready */ |
| while (READ_BIT(RCC->CR, RCC_CR_PLLRDY) == 0U) |
| { |
| if ((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| else |
| { |
| /* Disable the main PLL. */ |
| __HAL_RCC_PLL_DISABLE(); |
| |
| /* Get Start Tick*/ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till PLL is disabled */ |
| while (READ_BIT(RCC->CR, RCC_CR_PLLRDY) != 0U) |
| { |
| if ((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| /* Unselect main PLL clock source and disable main PLL outputs to save power */ |
| #if defined(RCC_PLLQ_SUPPORT) |
| RCC->PLLCFGR &= ~(RCC_PLLCFGR_PLLSRC | RCC_PLLCFGR_PLLPEN | RCC_PLLCFGR_PLLQEN | RCC_PLLCFGR_PLLREN); |
| #else |
| RCC->PLLCFGR &= ~(RCC_PLLCFGR_PLLSRC | RCC_PLLCFGR_PLLPEN | RCC_PLLCFGR_PLLREN); |
| #endif /* RCC_PLLQ_SUPPORT */ |
| } |
| } |
| else |
| { |
| /* Check if there is a request to disable the PLL used as System clock source */ |
| if ((RCC_OscInitStruct->PLL.PLLState) == RCC_PLL_OFF) |
| { |
| return HAL_ERROR; |
| } |
| else |
| { |
| /* Do not return HAL_ERROR if request repeats the current configuration */ |
| temp_pllckcfg = RCC->PLLCFGR; |
| if ((READ_BIT(temp_pllckcfg, RCC_PLLCFGR_PLLSRC) != RCC_OscInitStruct->PLL.PLLSource) || |
| (READ_BIT(temp_pllckcfg, RCC_PLLCFGR_PLLM) != RCC_OscInitStruct->PLL.PLLM) || |
| (READ_BIT(temp_pllckcfg, RCC_PLLCFGR_PLLN) != (RCC_OscInitStruct->PLL.PLLN << RCC_PLLCFGR_PLLN_Pos)) || |
| (READ_BIT(temp_pllckcfg, RCC_PLLCFGR_PLLP) != RCC_OscInitStruct->PLL.PLLP) || |
| #if defined (RCC_PLLQ_SUPPORT) |
| (READ_BIT(temp_pllckcfg, RCC_PLLCFGR_PLLQ) != RCC_OscInitStruct->PLL.PLLQ) || |
| #endif /* RCC_PLLQ_SUPPORT */ |
| (READ_BIT(temp_pllckcfg, RCC_PLLCFGR_PLLR) != RCC_OscInitStruct->PLL.PLLR)) |
| { |
| return HAL_ERROR; |
| } |
| } |
| } |
| } |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Initialize the CPU, AHB and APB buses clocks according to the specified |
| * parameters in the RCC_ClkInitStruct. |
| * @param RCC_ClkInitStruct pointer to a @ref RCC_ClkInitTypeDef structure that |
| * contains the configuration information for the RCC peripheral. |
| * @param FLatency FLASH Latency |
| * This parameter can be one of the following values: |
| * @arg FLASH_LATENCY_0 FLASH 0 Latency cycle |
| * @arg FLASH_LATENCY_1 FLASH 1 Latency cycle |
| * |
| * @note The SystemCoreClock CMSIS variable is used to store System Clock Frequency |
| * and updated by @ref HAL_RCC_GetHCLKFreq() function called within this function |
| * |
| * @note The HSI is used by default as system clock source after |
| * startup from Reset, wake-up from STANDBY mode. After restart from Reset, |
| * the HSI frequency is set to 8 Mhz, then it reaches its default value 16 MHz. |
| * |
| * @note The HSI can be selected as system clock source after |
| * from STOP modes or in case of failure of the HSE used directly or indirectly |
| * as system clock (if the Clock Security System CSS is enabled). |
| * |
| * @note The LSI can be selected as system clock source after |
| * in case of failure of the LSE used directly or indirectly |
| * as system clock (if the Clock Security System LSECSS is enabled). |
| * |
| * @note A switch from one clock source to another occurs only if the target |
| * clock source is ready (clock stable after startup delay or PLL locked). |
| * If a clock source which is not yet ready is selected, the switch will |
| * occur when the clock source is ready. |
| * |
| * @note You can use @ref HAL_RCC_GetClockConfig() function to know which clock is |
| * currently used as system clock source. |
| * |
| * @note Depending on the device voltage range, the software has to set correctly |
| * HPRE[3:0] bits to ensure that HCLK not exceed the maximum allowed frequency |
| * (for more details refer to section above "Initialization/de-initialization functions") |
| * @retval None |
| */ |
| HAL_StatusTypeDef HAL_RCC_ClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t FLatency) |
| { |
| uint32_t tickstart; |
| |
| /* Check Null pointer */ |
| if (RCC_ClkInitStruct == NULL) |
| { |
| return HAL_ERROR; |
| } |
| |
| /* Check the parameters */ |
| assert_param(IS_RCC_CLOCKTYPE(RCC_ClkInitStruct->ClockType)); |
| assert_param(IS_FLASH_LATENCY(FLatency)); |
| |
| /* To correctly read data from FLASH memory, the number of wait states (LATENCY) |
| must be correctly programmed according to the frequency of the FLASH clock |
| (HCLK) and the supply voltage of the device. */ |
| |
| /* Increasing the number of wait states because of higher CPU frequency */ |
| if (FLatency > __HAL_FLASH_GET_LATENCY()) |
| { |
| /* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */ |
| __HAL_FLASH_SET_LATENCY(FLatency); |
| |
| /* Check that the new number of wait states is taken into account to access the Flash |
| memory by polling the FLASH_ACR register */ |
| tickstart = HAL_GetTick(); |
| |
| while ((FLASH->ACR & FLASH_ACR_LATENCY) != FLatency) |
| { |
| if ((HAL_GetTick() - tickstart) > CLOCKSWITCH_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| |
| /*-------------------------- HCLK Configuration --------------------------*/ |
| if (((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_HCLK) == RCC_CLOCKTYPE_HCLK) |
| { |
| /* Set the highest APB divider in order to ensure that we do not go through |
| a non-spec phase whatever we decrease or increase HCLK. */ |
| if (((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK1) == RCC_CLOCKTYPE_PCLK1) |
| { |
| MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE, RCC_HCLK_DIV16); |
| } |
| |
| /* Set the new HCLK clock divider */ |
| assert_param(IS_RCC_HCLK(RCC_ClkInitStruct->AHBCLKDivider)); |
| MODIFY_REG(RCC->CFGR, RCC_CFGR_HPRE, RCC_ClkInitStruct->AHBCLKDivider); |
| } |
| |
| /*------------------------- SYSCLK Configuration ---------------------------*/ |
| if (((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_SYSCLK) == RCC_CLOCKTYPE_SYSCLK) |
| { |
| assert_param(IS_RCC_SYSCLKSOURCE(RCC_ClkInitStruct->SYSCLKSource)); |
| |
| /* HSE is selected as System Clock Source */ |
| if (RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSE) |
| { |
| /* Check the HSE ready flag */ |
| if (READ_BIT(RCC->CR, RCC_CR_HSERDY) == 0U) |
| { |
| return HAL_ERROR; |
| } |
| } |
| /* PLL is selected as System Clock Source */ |
| else if (RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_PLLCLK) |
| { |
| /* Check the PLL ready flag */ |
| if (READ_BIT(RCC->CR, RCC_CR_PLLRDY) == 0U) |
| { |
| return HAL_ERROR; |
| } |
| } |
| /* HSI is selected as System Clock Source */ |
| else if (RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSI) |
| { |
| /* Check the HSI ready flag */ |
| if (READ_BIT(RCC->CR, RCC_CR_HSIRDY) == 0U) |
| { |
| return HAL_ERROR; |
| } |
| } |
| /* LSI is selected as System Clock Source */ |
| else if (RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_LSI) |
| { |
| /* Check the LSI ready flag */ |
| if (READ_BIT(RCC->CSR, RCC_CSR_LSIRDY) == 0U) |
| { |
| return HAL_ERROR; |
| } |
| } |
| /* LSE is selected as System Clock Source */ |
| else |
| { |
| /* Check the LSE ready flag */ |
| if (READ_BIT(RCC->BDCR, RCC_BDCR_LSERDY) == 0U) |
| { |
| return HAL_ERROR; |
| } |
| } |
| MODIFY_REG(RCC->CFGR, RCC_CFGR_SW, RCC_ClkInitStruct->SYSCLKSource); |
| |
| /* Get Start Tick*/ |
| tickstart = HAL_GetTick(); |
| |
| while (__HAL_RCC_GET_SYSCLK_SOURCE() != (RCC_ClkInitStruct->SYSCLKSource << RCC_CFGR_SWS_Pos)) |
| { |
| if ((HAL_GetTick() - tickstart) > CLOCKSWITCH_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| |
| /* Decreasing the number of wait states because of lower CPU frequency */ |
| if (FLatency < __HAL_FLASH_GET_LATENCY()) |
| { |
| /* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */ |
| __HAL_FLASH_SET_LATENCY(FLatency); |
| |
| /* Check that the new number of wait states is taken into account to access the Flash |
| memory by polling the FLASH_ACR register */ |
| tickstart = HAL_GetTick(); |
| |
| while ((FLASH->ACR & FLASH_ACR_LATENCY) != FLatency) |
| { |
| if ((HAL_GetTick() - tickstart) > CLOCKSWITCH_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| |
| /*-------------------------- PCLK1 Configuration ---------------------------*/ |
| if (((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK1) == RCC_CLOCKTYPE_PCLK1) |
| { |
| assert_param(IS_RCC_PCLK(RCC_ClkInitStruct->APB1CLKDivider)); |
| MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE, RCC_ClkInitStruct->APB1CLKDivider); |
| } |
| |
| /* Update the SystemCoreClock global variable */ |
| SystemCoreClock = (HAL_RCC_GetSysClockFreq() >> ((AHBPrescTable[(RCC->CFGR & RCC_CFGR_HPRE) >> RCC_CFGR_HPRE_Pos]) & 0x1FU)); |
| |
| /* Configure the source of time base considering new system clocks settings*/ |
| return HAL_InitTick(uwTickPrio); |
| } |
| |
| /** |
| * @} |
| */ |
| |
| /** @defgroup RCC_Exported_Functions_Group2 Peripheral Control functions |
| * @brief RCC clocks control functions |
| * |
| @verbatim |
| =============================================================================== |
| ##### Peripheral Control functions ##### |
| =============================================================================== |
| [..] |
| This subsection provides a set of functions allowing to: |
| |
| (+) Output clock to MCO pin. |
| (+) Retrieve current clock frequencies. |
| (+) Enable the Clock Security System. |
| |
| @endverbatim |
| * @{ |
| */ |
| |
| /** |
| * @brief Select the clock source to output on MCO1 pin(PA8) or MC02 pin (PA10)(*). |
| * @note PA8, PA10(*) should be configured in alternate function mode. |
| * @param RCC_MCOx specifies the output direction for the clock source. |
| * For STM32G0xx family this parameter can have only one value: |
| * @arg @ref RCC_MCO_PA8 Clock source to output on MCO1 pin(PA8). |
| * @arg @ref RCC_MCO_PA9 Clock source to output on MCO1 pin(PA9). |
| * @arg @ref RCC_MCO_PD10 Clock source to output on MCO1 pin(PD10)(*). |
| * @arg @ref RCC_MCO_PF2 Clock source to output on MCO1 pin(PF2)(*). |
| * @arg @ref RCC_MCO_PA10 Clock source to output on MCO2 pin(PA10)(*). |
| * @arg @ref RCC_MCO_PA15 Clock source to output on MCO2 pin(PA15)(*). |
| * @arg @ref RCC_MCO_PB2 Clock source to output on MCO2 pin(PB2)(*). |
| * @arg @ref RCC_MCO_PD7 Clock source to output on MCO2 pin(PD7)(*). |
| * @param RCC_MCOSource specifies the clock source to output. |
| * This parameter can be one of the following values: |
| * @arg @ref RCC_MCO1SOURCE_NOCLOCK MCO output disabled, no clock on MCO |
| * @arg @ref RCC_MCO1SOURCE_SYSCLK system clock selected as MCO source |
| * @arg @ref RCC_MCO1SOURCE_HSI48 HSI48 clock selected as MCO source for devices with HSI48(*) |
| * @arg @ref RCC_MCO1SOURCE_HSI HSI clock selected as MCO source |
| * @arg @ref RCC_MCO1SOURCE_HSE HSE clock selected as MCO source |
| * @arg @ref RCC_MCO1SOURCE_PLLCLK main PLLR clock selected as MCO source |
| * @arg @ref RCC_MCO1SOURCE_LSI LSI clock selected as MCO source |
| * @arg @ref RCC_MCO1SOURCE_LSE LSE clock selected as MCO source |
| * @arg @ref RCC_MCO1SOURCE_PLLPCLK PLLP clock selected as MCO1 source(*) |
| * @arg @ref RCC_MCO1SOURCE_PLLQCLK PLLQ clock selected as MCO1 source(*) |
| * @arg @ref RCC_MCO1SOURCE_RTCCLK RTC clock selected as MCO1 source(*) |
| * @arg @ref RCC_MCO1SOURCE_RTC_WKUP RTC_Wakeup selected as MCO1 source(*) |
| * @arg @ref RCC_MCO2SOURCE_NOCLOCK MCO2 output disabled, no clock on MCO2(*) |
| * @arg @ref RCC_MCO2SOURCE_SYSCLK system clock selected as MCO2 source(*) |
| * @arg @ref RCC_MCO2SOURCE_HSI48 HSI48 clock selected as MCO2 source for devices with HSI48(*) |
| * @arg @ref RCC_MCO2SOURCE_HSI HSI clock selected as MCO2 source(*) |
| * @arg @ref RCC_MCO2SOURCE_HSE HSE clock selected as MCO2 source(*) |
| * @arg @ref RCC_MCO2SOURCE_PLLCLK main PLLR clock selected as MCO2 source(*) |
| * @arg @ref RCC_MCO2SOURCE_LSI LSI clock selected as MCO2 source(*) |
| * @arg @ref RCC_MCO2SOURCE_LSE LSE clock selected as MCO2 source(*) |
| * @arg @ref RCC_MCO2SOURCE_PLLPCLK PLLP clock selected as MCO2 source(*) |
| * @arg @ref RCC_MCO2SOURCE_PLLQCLK PLLQ clock selected as MCO2 source(*) |
| * @arg @ref RCC_MCO2SOURCE_RTCCLK RTC clock selected as MCO2 source(*) |
| * @arg @ref RCC_MCO2SOURCE_RTC_WKUP RTC_Wakeup selected as MCO2 source(*) |
| * @param RCC_MCODiv specifies the MCO prescaler. |
| * This parameter can be one of the following values: |
| * @arg @ref RCC_MCODIV_1 no division applied to MCO clock |
| * @arg @ref RCC_MCODIV_2 division by 2 applied to MCO clock |
| * @arg @ref RCC_MCODIV_4 division by 4 applied to MCO clock |
| * @arg @ref RCC_MCODIV_8 division by 8 applied to MCO clock |
| * @arg @ref RCC_MCODIV_16 division by 16 applied to MCO clock |
| * @arg @ref RCC_MCODIV_32 division by 32 applied to MCO clock |
| * @arg @ref RCC_MCODIV_64 division by 64 applied to MCO clock |
| * @arg @ref RCC_MCODIV_128 division by 128 applied to MCO clock |
| * @arg @ref RCC_MCO2DIV_1 no division applied to MCO2 clock(*) |
| * @arg @ref RCC_MCO2DIV_2 division by 2 applied to MCO2 clock(*) |
| * @arg @ref RCC_MCO2DIV_4 division by 4 applied to MCO2 clock(*) |
| * @arg @ref RCC_MCO2DIV_8 division by 8 applied to MCO2 clock(*) |
| * @arg @ref RCC_MCO2DIV_16 division by 16 applied to MCO2 clock(*) |
| * @arg @ref RCC_MCO2DIV_32 division by 32 applied to MCO2 clock(*) |
| * @arg @ref RCC_MCO2DIV_64 division by 64 applied to MCO2 clock(*) |
| * @arg @ref RCC_MCO2DIV_128 division by 128 applied to MCO2 clock(*) |
| * @arg @ref RCC_MCO2DIV_256 division by 256 applied to MCO2 clock(*) |
| * @arg @ref RCC_MCO2DIV_512 division by 512 applied to MCO2 clock(*) |
| * @arg @ref RCC_MCO2DIV_1024 division by 1024 applied to MCO2 clock(*) |
| * |
| * (*) Feature not available on all devices of the family |
| * @retval None |
| */ |
| void HAL_RCC_MCOConfig(uint32_t RCC_MCOx, uint32_t RCC_MCOSource, uint32_t RCC_MCODiv) |
| { |
| GPIO_InitTypeDef gpio_initstruct; |
| uint32_t mcoindex; |
| uint32_t mco_gpio_index; |
| GPIO_TypeDef * mco_gpio_port; |
| |
| /* Check the parameters */ |
| assert_param(IS_RCC_MCO(RCC_MCOx)); |
| |
| /* Common GPIO init parameters */ |
| gpio_initstruct.Mode = GPIO_MODE_AF_PP; |
| gpio_initstruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH; |
| gpio_initstruct.Pull = GPIO_NOPULL; |
| |
| /* Get MCOx selection */ |
| mcoindex = RCC_MCOx & RCC_MCO_INDEX_MASK; |
| |
| /* Get MCOx GPIO Port */ |
| mco_gpio_port = (GPIO_TypeDef *) RCC_GET_MCO_GPIO_PORT(RCC_MCOx); |
| |
| /* MCOx Clock Enable */ |
| mco_gpio_index = RCC_GET_MCO_GPIO_INDEX(RCC_MCOx); |
| SET_BIT(RCC->IOPENR, (1UL << mco_gpio_index )); |
| |
| /* Configure the MCOx pin in alternate function mode */ |
| gpio_initstruct.Pin = RCC_GET_MCO_GPIO_PIN(RCC_MCOx); |
| gpio_initstruct.Alternate = RCC_GET_MCO_GPIO_AF(RCC_MCOx); |
| HAL_GPIO_Init(mco_gpio_port, &gpio_initstruct); |
| |
| if (mcoindex == RCC_MCO1_INDEX) |
| { |
| assert_param(IS_RCC_MCODIV(RCC_MCODiv)); |
| assert_param(IS_RCC_MCO1SOURCE(RCC_MCOSource)); |
| /* Mask MCOSEL[] and MCOPRE[] bits then set MCO clock source and prescaler */ |
| MODIFY_REG(RCC->CFGR, (RCC_CFGR_MCOSEL | RCC_CFGR_MCOPRE), (RCC_MCOSource | RCC_MCODiv)); |
| } |
| #if defined(RCC_MCO2_SUPPORT) |
| else if (mcoindex == RCC_MCO2_INDEX) |
| { |
| assert_param(IS_RCC_MCO2DIV(RCC_MCODiv)); |
| assert_param(IS_RCC_MCO2SOURCE(RCC_MCOSource)); |
| /* Mask MCOSEL[] and MCOPRE[] bits then set MCO clock source and prescaler */ |
| MODIFY_REG(RCC->CFGR, (RCC_CFGR_MCO2SEL | RCC_CFGR_MCO2PRE), (RCC_MCOSource | RCC_MCODiv)); |
| } |
| #endif /* RCC_MCO2_SUPPORT */ |
| else |
| { |
| /* Nothing to do */ |
| } |
| } |
| |
| /** |
| * @brief Return the SYSCLK frequency. |
| * |
| * @note The system frequency computed by this function is not the real |
| * frequency in the chip. It is calculated based on the predefined |
| * constant and the selected clock source: |
| * @note If SYSCLK source is HSI, function returns values based on HSI_VALUE/HSIDIV(*) |
| * @note If SYSCLK source is HSE, function returns values based on HSE_VALUE(**) |
| * @note If SYSCLK source is PLL, function returns values based on HSE_VALUE(**), |
| * or HSI_VALUE(*) multiplied/divided by the PLL factors. |
| * @note If SYSCLK source is LSI, function returns values based on LSI_VALUE(***) |
| * @note If SYSCLK source is LSE, function returns values based on LSE_VALUE(****) |
| * @note (*) HSI_VALUE is a constant defined in stm32g0xx_hal_conf.h file (default value |
| * 16 MHz) but the real value may vary depending on the variations |
| * in voltage and temperature. |
| * @note (**) HSE_VALUE is a constant defined in stm32g0xx_hal_conf.h file (default value |
| * 8 MHz), user has to ensure that HSE_VALUE is same as the real |
| * frequency of the crystal used. Otherwise, this function may |
| * have wrong result. |
| * @note (***) LSE_VALUE is a constant defined in stm32g0xx_hal_conf.h file (default value |
| * 32768 Hz). |
| * @note (****) LSI_VALUE is a constant defined in stm32g0xx_hal_conf.h file (default value |
| * 32000 Hz). |
| * |
| * @note The result of this function could be not correct when using fractional |
| * value for HSE crystal. |
| * |
| * @note This function can be used by the user application to compute the |
| * baudrate for the communication peripherals or configure other parameters. |
| * |
| * @note Each time SYSCLK changes, this function must be called to update the |
| * right SYSCLK value. Otherwise, any configuration based on this function will be incorrect. |
| * |
| * |
| * @retval SYSCLK frequency |
| */ |
| uint32_t HAL_RCC_GetSysClockFreq(void) |
| { |
| uint32_t pllvco, pllsource, pllr, pllm, hsidiv; |
| uint32_t sysclockfreq; |
| |
| if (__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_HSI) |
| { |
| /* HSISYS can be derived for HSI16 */ |
| hsidiv = (1UL << ((READ_BIT(RCC->CR, RCC_CR_HSIDIV)) >> RCC_CR_HSIDIV_Pos)); |
| |
| /* HSI used as system clock source */ |
| sysclockfreq = (HSI_VALUE / hsidiv); |
| } |
| else if (__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_HSE) |
| { |
| /* HSE used as system clock source */ |
| sysclockfreq = HSE_VALUE; |
| } |
| else if (__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_PLLCLK) |
| { |
| /* PLL used as system clock source */ |
| |
| /* PLL_VCO = ((HSE_VALUE or HSI_VALUE)/ PLLM) * PLLN |
| SYSCLK = PLL_VCO / PLLR |
| */ |
| pllsource = (RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC); |
| pllm = ((RCC->PLLCFGR & RCC_PLLCFGR_PLLM) >> RCC_PLLCFGR_PLLM_Pos) + 1U ; |
| |
| switch (pllsource) |
| { |
| case RCC_PLLSOURCE_HSE: /* HSE used as PLL clock source */ |
| pllvco = (HSE_VALUE / pllm) * ((RCC->PLLCFGR & RCC_PLLCFGR_PLLN) >> RCC_PLLCFGR_PLLN_Pos); |
| break; |
| |
| case RCC_PLLSOURCE_HSI: /* HSI16 used as PLL clock source */ |
| default: /* HSI16 used as PLL clock source */ |
| pllvco = (HSI_VALUE / pllm) * ((RCC->PLLCFGR & RCC_PLLCFGR_PLLN) >> RCC_PLLCFGR_PLLN_Pos) ; |
| break; |
| } |
| pllr = (((RCC->PLLCFGR & RCC_PLLCFGR_PLLR) >> RCC_PLLCFGR_PLLR_Pos) + 1U); |
| sysclockfreq = pllvco / pllr; |
| } |
| else if (__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_LSE) |
| { |
| /* LSE used as system clock source */ |
| sysclockfreq = LSE_VALUE; |
| } |
| else if (__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_LSI) |
| { |
| /* LSI used as system clock source */ |
| sysclockfreq = LSI_VALUE; |
| } |
| else |
| { |
| sysclockfreq = 0U; |
| } |
| |
| return sysclockfreq; |
| } |
| |
| /** |
| * @brief Return the HCLK frequency. |
| * @note Each time HCLK changes, this function must be called to update the |
| * right HCLK value. Otherwise, any configuration based on this function will be incorrect. |
| * |
| * @note The SystemCoreClock CMSIS variable is used to store System Clock Frequency. |
| * @retval HCLK frequency in Hz |
| */ |
| uint32_t HAL_RCC_GetHCLKFreq(void) |
| { |
| return SystemCoreClock; |
| } |
| |
| /** |
| * @brief Return the PCLK1 frequency. |
| * @note Each time PCLK1 changes, this function must be called to update the |
| * right PCLK1 value. Otherwise, any configuration based on this function will be incorrect. |
| * @retval PCLK1 frequency in Hz |
| */ |
| uint32_t HAL_RCC_GetPCLK1Freq(void) |
| { |
| /* Get HCLK source and Compute PCLK1 frequency ---------------------------*/ |
| return ((uint32_t)(__LL_RCC_CALC_PCLK1_FREQ(HAL_RCC_GetHCLKFreq(), LL_RCC_GetAPB1Prescaler()))); |
| } |
| |
| /** |
| * @brief Configure the RCC_OscInitStruct according to the internal |
| * RCC configuration registers. |
| * @param RCC_OscInitStruct pointer to an RCC_OscInitTypeDef structure that |
| * will be configured. |
| * @retval None |
| */ |
| void HAL_RCC_GetOscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct) |
| { |
| /* Check the parameters */ |
| assert_param(RCC_OscInitStruct != (void *)NULL); |
| |
| /* Set all possible values for the Oscillator type parameter ---------------*/ |
| #if defined(RCC_HSI48_SUPPORT) |
| RCC_OscInitStruct->OscillatorType = RCC_OSCILLATORTYPE_HSE | RCC_OSCILLATORTYPE_HSI | \ |
| RCC_OSCILLATORTYPE_LSE | RCC_OSCILLATORTYPE_LSI | RCC_OSCILLATORTYPE_HSI48; |
| #else |
| RCC_OscInitStruct->OscillatorType = RCC_OSCILLATORTYPE_HSE | RCC_OSCILLATORTYPE_HSI | \ |
| RCC_OSCILLATORTYPE_LSE | RCC_OSCILLATORTYPE_LSI; |
| #endif /* RCC_HSI48_SUPPORT */ |
| |
| /* Get the HSE configuration -----------------------------------------------*/ |
| if ((RCC->CR & RCC_CR_HSEBYP) == RCC_CR_HSEBYP) |
| { |
| RCC_OscInitStruct->HSEState = RCC_HSE_BYPASS; |
| } |
| else if ((RCC->CR & RCC_CR_HSEON) == RCC_CR_HSEON) |
| { |
| RCC_OscInitStruct->HSEState = RCC_HSE_ON; |
| } |
| else |
| { |
| RCC_OscInitStruct->HSEState = RCC_HSE_OFF; |
| } |
| |
| /* Get the HSI configuration -----------------------------------------------*/ |
| if ((RCC->CR & RCC_CR_HSION) == RCC_CR_HSION) |
| { |
| RCC_OscInitStruct->HSIState = RCC_HSI_ON; |
| } |
| else |
| { |
| RCC_OscInitStruct->HSIState = RCC_HSI_OFF; |
| } |
| RCC_OscInitStruct->HSICalibrationValue = ((RCC->ICSCR & RCC_ICSCR_HSITRIM) >> RCC_ICSCR_HSITRIM_Pos); |
| RCC_OscInitStruct->HSIDiv = (RCC->CR & RCC_CR_HSIDIV); |
| |
| /* Get the LSE configuration -----------------------------------------------*/ |
| if ((RCC->BDCR & RCC_BDCR_LSEBYP) == RCC_BDCR_LSEBYP) |
| { |
| RCC_OscInitStruct->LSEState = RCC_LSE_BYPASS; |
| } |
| else if ((RCC->BDCR & RCC_BDCR_LSEON) == RCC_BDCR_LSEON) |
| { |
| RCC_OscInitStruct->LSEState = RCC_LSE_ON; |
| } |
| else |
| { |
| RCC_OscInitStruct->LSEState = RCC_LSE_OFF; |
| } |
| |
| /* Get the LSI configuration -----------------------------------------------*/ |
| if ((RCC->CSR & RCC_CSR_LSION) == RCC_CSR_LSION) |
| { |
| RCC_OscInitStruct->LSIState = RCC_LSI_ON; |
| } |
| else |
| { |
| RCC_OscInitStruct->LSIState = RCC_LSI_OFF; |
| } |
| |
| #if defined(RCC_HSI48_SUPPORT) |
| /* Get the HSI48 configuration ---------------------------------------------*/ |
| if (READ_BIT(RCC->CR, RCC_CR_HSI48ON) == RCC_CR_HSI48ON) |
| { |
| RCC_OscInitStruct->HSI48State = RCC_HSI48_ON; |
| } |
| else |
| { |
| RCC_OscInitStruct->HSI48State = RCC_HSI48_OFF; |
| } |
| #endif /* RCC_HSI48_SUPPORT */ |
| |
| /* Get the PLL configuration -----------------------------------------------*/ |
| if ((RCC->CR & RCC_CR_PLLON) == RCC_CR_PLLON) |
| { |
| RCC_OscInitStruct->PLL.PLLState = RCC_PLL_ON; |
| } |
| else |
| { |
| RCC_OscInitStruct->PLL.PLLState = RCC_PLL_OFF; |
| } |
| RCC_OscInitStruct->PLL.PLLSource = (RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC); |
| RCC_OscInitStruct->PLL.PLLM = (RCC->PLLCFGR & RCC_PLLCFGR_PLLM); |
| RCC_OscInitStruct->PLL.PLLN = ((RCC->PLLCFGR & RCC_PLLCFGR_PLLN) >> RCC_PLLCFGR_PLLN_Pos); |
| RCC_OscInitStruct->PLL.PLLP = (RCC->PLLCFGR & RCC_PLLCFGR_PLLP); |
| #if defined(RCC_PLLQ_SUPPORT) |
| RCC_OscInitStruct->PLL.PLLQ = (RCC->PLLCFGR & RCC_PLLCFGR_PLLQ); |
| #endif /* RCC_PLLQ_SUPPORT */ |
| RCC_OscInitStruct->PLL.PLLR = (RCC->PLLCFGR & RCC_PLLCFGR_PLLR); |
| } |
| |
| /** |
| * @brief Configure the RCC_ClkInitStruct according to the internal |
| * RCC configuration registers. |
| * @param RCC_ClkInitStruct Pointer to a @ref RCC_ClkInitTypeDef structure that |
| * will be configured. |
| * @param pFLatency Pointer on the Flash Latency. |
| * @retval None |
| */ |
| void HAL_RCC_GetClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t *pFLatency) |
| { |
| /* Check the parameters */ |
| assert_param(RCC_ClkInitStruct != (void *)NULL); |
| assert_param(pFLatency != (void *)NULL); |
| |
| /* Set all possible values for the Clock type parameter --------------------*/ |
| RCC_ClkInitStruct->ClockType = RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1; |
| |
| /* Get the SYSCLK configuration --------------------------------------------*/ |
| RCC_ClkInitStruct->SYSCLKSource = (uint32_t)(RCC->CFGR & RCC_CFGR_SW); |
| |
| /* Get the HCLK configuration ----------------------------------------------*/ |
| RCC_ClkInitStruct->AHBCLKDivider = (uint32_t)(RCC->CFGR & RCC_CFGR_HPRE); |
| |
| /* Get the APB1 configuration ----------------------------------------------*/ |
| RCC_ClkInitStruct->APB1CLKDivider = (uint32_t)(RCC->CFGR & RCC_CFGR_PPRE); |
| |
| |
| /* Get the Flash Wait State (Latency) configuration ------------------------*/ |
| *pFLatency = (uint32_t)(FLASH->ACR & FLASH_ACR_LATENCY); |
| } |
| |
| /** |
| * @brief Enable the Clock Security System. |
| * @note If a failure is detected on the HSE oscillator clock, this oscillator |
| * is automatically disabled and an interrupt is generated to inform the |
| * software about the failure (Clock Security System Interrupt, CSSI), |
| * allowing the MCU to perform rescue operations. The CSSI is linked to |
| * the Cortex-M0+ NMI (Non-Maskable Interrupt) exception vector. |
| * @note The Clock Security System can only be cleared by reset. |
| * @retval None |
| */ |
| void HAL_RCC_EnableCSS(void) |
| { |
| SET_BIT(RCC->CR, RCC_CR_CSSON) ; |
| } |
| |
| /** |
| * @brief Enable the LSE Clock Security System. |
| * @note If a failure is detected on the LSE oscillator clock, this oscillator |
| * is automatically disabled and an interrupt is generated to inform the |
| * software about the failure (Clock Security System Interrupt, CSSI), |
| * allowing the MCU to perform rescue operations. The CSSI is linked to |
| * the Cortex-M0+ NMI (Non-Maskable Interrupt) exception vector. |
| * @note The LSE Clock Security System Detection bit (LSECSSD in BDCR) can only be |
| * cleared by a backup domain reset. |
| * @retval None |
| */ |
| void HAL_RCC_EnableLSECSS(void) |
| { |
| SET_BIT(RCC->BDCR, RCC_BDCR_LSECSSON) ; |
| } |
| |
| /** |
| * @brief Disable the LSE Clock Security System. |
| * @note After LSE failure detection, the software must disable LSECSSON |
| * @note The Clock Security System can only be cleared by reset otherwise. |
| * @retval None |
| */ |
| void HAL_RCC_DisableLSECSS(void) |
| { |
| CLEAR_BIT(RCC->BDCR, RCC_BDCR_LSECSSON) ; |
| } |
| |
| /** |
| * @brief Handle the RCC Clock Security System interrupt request. |
| * @note This API should be called under the NMI_Handler(). |
| * @retval None |
| */ |
| void HAL_RCC_NMI_IRQHandler(void) |
| { |
| uint32_t itflag = RCC->CIFR; |
| |
| /* Clear interrupt flags related to CSS */ |
| RCC->CICR = (itflag & (RCC_CIFR_CSSF | RCC_CIFR_LSECSSF)); |
| |
| /* Check RCC CSSF interrupt flag */ |
| if ((itflag & RCC_CIFR_CSSF) != 0x00u) |
| { |
| /* RCC Clock Security System interrupt user callback */ |
| HAL_RCC_CSSCallback(); |
| } |
| |
| /* Check RCC LSECSSF interrupt flag */ |
| if ((itflag & RCC_CIFR_LSECSSF) != 0x00u) |
| { |
| /* RCC Clock Security System interrupt user callback */ |
| HAL_RCC_LSECSSCallback(); |
| } |
| } |
| |
| /** |
| * @brief Handle the RCC HSE Clock Security System interrupt callback. |
| * @retval none |
| */ |
| __weak void HAL_RCC_CSSCallback(void) |
| { |
| /* NOTE : This function should not be modified, when the callback is needed, |
| the @ref HAL_RCC_CSSCallback should be implemented in the user file |
| */ |
| } |
| |
| /** |
| * @brief RCC LSE Clock Security System interrupt callback. |
| * @retval none |
| */ |
| __weak void HAL_RCC_LSECSSCallback(void) |
| { |
| /* NOTE : This function should not be modified, when the callback is needed, |
| the HAL_RCC_LSECSSCallback should be implemented in the user file |
| */ |
| } |
| |
| /** |
| * @brief Get and clear reset flags |
| * @note Once reset flags are retrieved, this API is clearing them in order |
| * to isolate next reset reason. |
| * @retval can be a combination of @ref RCC_Reset_Flag |
| */ |
| uint32_t HAL_RCC_GetResetSource(void) |
| { |
| uint32_t reset; |
| |
| /* Get all reset flags */ |
| reset = RCC->CSR & RCC_RESET_FLAG_ALL; |
| |
| /* Clear Reset flags */ |
| RCC->CSR |= RCC_CSR_RMVF; |
| |
| return reset; |
| } |
| |
| /** |
| * @} |
| */ |
| |
| /** |
| * @} |
| */ |
| |
| #endif /* HAL_RCC_MODULE_ENABLED */ |
| /** |
| * @} |
| */ |
| |
| /** |
| * @} |
| */ |
| |