blob: 6148affbef62edb379fcc930a53c01457fa592c3 [file] [log] [blame]
/**
******************************************************************************
* @file stm32g4xx_hal_tim_ex.c
* @author MCD Application Team
* @brief TIM HAL module driver.
* This file provides firmware functions to manage the following
* functionalities of the Timer Extended peripheral:
* + Time Hall Sensor Interface Initialization
* + Time Hall Sensor Interface Start
* + Time Complementary signal break and dead time configuration
* + Time Master and Slave synchronization configuration
* + Time Output Compare/PWM Channel Configuration (for channels 5 and 6)
* + Time OCRef clear configuration
* + Timer remapping capabilities configuration
* + Timer encoder index configuration
@verbatim
==============================================================================
##### TIMER Extended features #####
==============================================================================
[..]
The Timer Extended features include:
(#) Complementary outputs with programmable dead-time for :
(++) Output Compare
(++) PWM generation (Edge and Center-aligned Mode)
(++) One-pulse mode output
(#) Synchronization circuit to control the timer with external signals and to
interconnect several timers together.
(#) Break input to put the timer output signals in reset state or in a known state.
(#) Supports incremental (quadrature) encoder and hall-sensor circuitry for
positioning purposes
(#) In case of Pulse on compare, configure pulse length and delay
(#) Encoder index configuration
##### How to use this driver #####
==============================================================================
[..]
(#) Initialize the TIM low level resources by implementing the following functions
depending on the selected feature:
(++) Hall Sensor output : HAL_TIMEx_HallSensor_MspInit()
(#) Initialize the TIM low level resources :
(##) Enable the TIM interface clock using __HAL_RCC_TIMx_CLK_ENABLE();
(##) TIM pins configuration
(+++) Enable the clock for the TIM GPIOs using the following function:
__HAL_RCC_GPIOx_CLK_ENABLE();
(+++) Configure these TIM pins in Alternate function mode using HAL_GPIO_Init();
(#) The external Clock can be configured, if needed (the default clock is the
internal clock from the APBx), using the following function:
HAL_TIM_ConfigClockSource, the clock configuration should be done before
any start function.
(#) Configure the TIM in the desired functioning mode using one of the
initialization function of this driver:
(++) HAL_TIMEx_HallSensor_Init() and HAL_TIMEx_ConfigCommutEvent(): to use the
Timer Hall Sensor Interface and the commutation event with the corresponding
Interrupt and DMA request if needed (Note that One Timer is used to interface
with the Hall sensor Interface and another Timer should be used to use
the commutation event).
(#) In case of Pulse On Compare:
(++) HAL_TIMEx_OC_ConfigPulseOnCompare(): to configure pulse width and prescaler
(#) Activate the TIM peripheral using one of the start functions:
(++) Complementary Output Compare : HAL_TIMEx_OCN_Start(), HAL_TIMEx_OCN_Start_DMA(), HAL_TIMEx_OCN_Start_IT()
(++) Complementary PWM generation : HAL_TIMEx_PWMN_Start(), HAL_TIMEx_PWMN_Start_DMA(), HAL_TIMEx_PWMN_Start_IT()
(++) Complementary One-pulse mode output : HAL_TIMEx_OnePulseN_Start(), HAL_TIMEx_OnePulseN_Start_IT()
(++) Hall Sensor output : HAL_TIMEx_HallSensor_Start(), HAL_TIMEx_HallSensor_Start_DMA(), HAL_TIMEx_HallSensor_Start_IT().
@endverbatim
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2019 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32g4xx_hal.h"
/** @addtogroup STM32G4xx_HAL_Driver
* @{
*/
/** @defgroup TIMEx TIMEx
* @brief TIM Extended HAL module driver
* @{
*/
#ifdef HAL_TIM_MODULE_ENABLED
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private constants ---------------------------------------------------------*/
/** @defgroup TIMEx_Private_Constants TIM Extended Private Constants
* @{
*/
/* Timeout for break input rearm */
#define TIM_BREAKINPUT_REARM_TIMEOUT 5UL /* 5 milliseconds */
/**
* @}
*/
/* End of private constants --------------------------------------------------*/
/* Private macros ------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
static void TIM_DMADelayPulseNCplt(DMA_HandleTypeDef *hdma);
static void TIM_DMAErrorCCxN(DMA_HandleTypeDef *hdma);
static void TIM_CCxNChannelCmd(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ChannelNState);
/* Exported functions --------------------------------------------------------*/
/** @defgroup TIMEx_Exported_Functions TIM Extended Exported Functions
* @{
*/
/** @defgroup TIMEx_Exported_Functions_Group1 Extended Timer Hall Sensor functions
* @brief Timer Hall Sensor functions
*
@verbatim
==============================================================================
##### Timer Hall Sensor functions #####
==============================================================================
[..]
This section provides functions allowing to:
(+) Initialize and configure TIM HAL Sensor.
(+) De-initialize TIM HAL Sensor.
(+) Start the Hall Sensor Interface.
(+) Stop the Hall Sensor Interface.
(+) Start the Hall Sensor Interface and enable interrupts.
(+) Stop the Hall Sensor Interface and disable interrupts.
(+) Start the Hall Sensor Interface and enable DMA transfers.
(+) Stop the Hall Sensor Interface and disable DMA transfers.
@endverbatim
* @{
*/
/**
* @brief Initializes the TIM Hall Sensor Interface and initialize the associated handle.
* @note When the timer instance is initialized in Hall Sensor Interface mode,
* timer channels 1 and channel 2 are reserved and cannot be used for
* other purpose.
* @param htim TIM Hall Sensor Interface handle
* @param sConfig TIM Hall Sensor configuration structure
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_HallSensor_Init(TIM_HandleTypeDef *htim, TIM_HallSensor_InitTypeDef *sConfig)
{
TIM_OC_InitTypeDef OC_Config;
/* Check the TIM handle allocation */
if (htim == NULL)
{
return HAL_ERROR;
}
/* Check the parameters */
assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(htim->Instance));
assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
assert_param(IS_TIM_IC_POLARITY(sConfig->IC1Polarity));
assert_param(IS_TIM_IC_PRESCALER(sConfig->IC1Prescaler));
assert_param(IS_TIM_IC_FILTER(sConfig->IC1Filter));
if (htim->State == HAL_TIM_STATE_RESET)
{
/* Allocate lock resource and initialize it */
htim->Lock = HAL_UNLOCKED;
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
/* Reset interrupt callbacks to legacy week callbacks */
TIM_ResetCallback(htim);
if (htim->HallSensor_MspInitCallback == NULL)
{
htim->HallSensor_MspInitCallback = HAL_TIMEx_HallSensor_MspInit;
}
/* Init the low level hardware : GPIO, CLOCK, NVIC */
htim->HallSensor_MspInitCallback(htim);
#else
/* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
HAL_TIMEx_HallSensor_MspInit(htim);
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
}
/* Set the TIM state */
htim->State = HAL_TIM_STATE_BUSY;
/* Configure the Time base in the Encoder Mode */
TIM_Base_SetConfig(htim->Instance, &htim->Init);
/* Configure the Channel 1 as Input Channel to interface with the three Outputs of the Hall sensor */
TIM_TI1_SetConfig(htim->Instance, sConfig->IC1Polarity, TIM_ICSELECTION_TRC, sConfig->IC1Filter);
/* Reset the IC1PSC Bits */
htim->Instance->CCMR1 &= ~TIM_CCMR1_IC1PSC;
/* Set the IC1PSC value */
htim->Instance->CCMR1 |= sConfig->IC1Prescaler;
/* Enable the Hall sensor interface (XOR function of the three inputs) */
htim->Instance->CR2 |= TIM_CR2_TI1S;
/* Select the TIM_TS_TI1F_ED signal as Input trigger for the TIM */
htim->Instance->SMCR &= ~TIM_SMCR_TS;
htim->Instance->SMCR |= TIM_TS_TI1F_ED;
/* Use the TIM_TS_TI1F_ED signal to reset the TIM counter each edge detection */
htim->Instance->SMCR &= ~TIM_SMCR_SMS;
htim->Instance->SMCR |= TIM_SLAVEMODE_RESET;
/* Program channel 2 in PWM 2 mode with the desired Commutation_Delay*/
OC_Config.OCFastMode = TIM_OCFAST_DISABLE;
OC_Config.OCIdleState = TIM_OCIDLESTATE_RESET;
OC_Config.OCMode = TIM_OCMODE_PWM2;
OC_Config.OCNIdleState = TIM_OCNIDLESTATE_RESET;
OC_Config.OCNPolarity = TIM_OCNPOLARITY_HIGH;
OC_Config.OCPolarity = TIM_OCPOLARITY_HIGH;
OC_Config.Pulse = sConfig->Commutation_Delay;
TIM_OC2_SetConfig(htim->Instance, &OC_Config);
/* Select OC2REF as trigger output on TRGO: write the MMS bits in the TIMx_CR2
register to 101 */
htim->Instance->CR2 &= ~TIM_CR2_MMS;
htim->Instance->CR2 |= TIM_TRGO_OC2REF;
/* Initialize the DMA burst operation state */
htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
/* Initialize the TIM channels state */
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
/* Initialize the TIM state*/
htim->State = HAL_TIM_STATE_READY;
return HAL_OK;
}
/**
* @brief DeInitializes the TIM Hall Sensor interface
* @param htim TIM Hall Sensor Interface handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_HallSensor_DeInit(TIM_HandleTypeDef *htim)
{
/* Check the parameters */
assert_param(IS_TIM_INSTANCE(htim->Instance));
htim->State = HAL_TIM_STATE_BUSY;
/* Disable the TIM Peripheral Clock */
__HAL_TIM_DISABLE(htim);
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
if (htim->HallSensor_MspDeInitCallback == NULL)
{
htim->HallSensor_MspDeInitCallback = HAL_TIMEx_HallSensor_MspDeInit;
}
/* DeInit the low level hardware */
htim->HallSensor_MspDeInitCallback(htim);
#else
/* DeInit the low level hardware: GPIO, CLOCK, NVIC */
HAL_TIMEx_HallSensor_MspDeInit(htim);
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
/* Change the DMA burst operation state */
htim->DMABurstState = HAL_DMA_BURST_STATE_RESET;
/* Change the TIM channels state */
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET);
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET);
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET);
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET);
/* Change TIM state */
htim->State = HAL_TIM_STATE_RESET;
/* Release Lock */
__HAL_UNLOCK(htim);
return HAL_OK;
}
/**
* @brief Initializes the TIM Hall Sensor MSP.
* @param htim TIM Hall Sensor Interface handle
* @retval None
*/
__weak void HAL_TIMEx_HallSensor_MspInit(TIM_HandleTypeDef *htim)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(htim);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_TIMEx_HallSensor_MspInit could be implemented in the user file
*/
}
/**
* @brief DeInitializes TIM Hall Sensor MSP.
* @param htim TIM Hall Sensor Interface handle
* @retval None
*/
__weak void HAL_TIMEx_HallSensor_MspDeInit(TIM_HandleTypeDef *htim)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(htim);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_TIMEx_HallSensor_MspDeInit could be implemented in the user file
*/
}
/**
* @brief Starts the TIM Hall Sensor Interface.
* @param htim TIM Hall Sensor Interface handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_HallSensor_Start(TIM_HandleTypeDef *htim)
{
uint32_t tmpsmcr;
HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1);
HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2);
HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1);
HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2);
/* Check the parameters */
assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(htim->Instance));
/* Check the TIM channels state */
if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
|| (channel_2_state != HAL_TIM_CHANNEL_STATE_READY)
|| (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
|| (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY))
{
return HAL_ERROR;
}
/* Set the TIM channels state */
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
/* Enable the Input Capture channel 1
(in the Hall Sensor Interface the three possible channels that can be used are TIM_CHANNEL_1, TIM_CHANNEL_2 and TIM_CHANNEL_3) */
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
/* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
{
tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
{
__HAL_TIM_ENABLE(htim);
}
}
else
{
__HAL_TIM_ENABLE(htim);
}
/* Return function status */
return HAL_OK;
}
/**
* @brief Stops the TIM Hall sensor Interface.
* @param htim TIM Hall Sensor Interface handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_HallSensor_Stop(TIM_HandleTypeDef *htim)
{
/* Check the parameters */
assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(htim->Instance));
/* Disable the Input Capture channels 1, 2 and 3
(in the Hall Sensor Interface the three possible channels that can be used are TIM_CHANNEL_1, TIM_CHANNEL_2 and TIM_CHANNEL_3) */
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
/* Disable the Peripheral */
__HAL_TIM_DISABLE(htim);
/* Set the TIM channels state */
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
/* Return function status */
return HAL_OK;
}
/**
* @brief Starts the TIM Hall Sensor Interface in interrupt mode.
* @param htim TIM Hall Sensor Interface handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_HallSensor_Start_IT(TIM_HandleTypeDef *htim)
{
uint32_t tmpsmcr;
HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1);
HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2);
HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1);
HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2);
/* Check the parameters */
assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(htim->Instance));
/* Check the TIM channels state */
if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
|| (channel_2_state != HAL_TIM_CHANNEL_STATE_READY)
|| (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
|| (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY))
{
return HAL_ERROR;
}
/* Set the TIM channels state */
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
/* Enable the capture compare Interrupts 1 event */
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
/* Enable the Input Capture channel 1
(in the Hall Sensor Interface the three possible channels that can be used are TIM_CHANNEL_1, TIM_CHANNEL_2 and TIM_CHANNEL_3) */
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
/* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
{
tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
{
__HAL_TIM_ENABLE(htim);
}
}
else
{
__HAL_TIM_ENABLE(htim);
}
/* Return function status */
return HAL_OK;
}
/**
* @brief Stops the TIM Hall Sensor Interface in interrupt mode.
* @param htim TIM Hall Sensor Interface handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_HallSensor_Stop_IT(TIM_HandleTypeDef *htim)
{
/* Check the parameters */
assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(htim->Instance));
/* Disable the Input Capture channel 1
(in the Hall Sensor Interface the three possible channels that can be used are TIM_CHANNEL_1, TIM_CHANNEL_2 and TIM_CHANNEL_3) */
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
/* Disable the capture compare Interrupts event */
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
/* Disable the Peripheral */
__HAL_TIM_DISABLE(htim);
/* Set the TIM channels state */
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
/* Return function status */
return HAL_OK;
}
/**
* @brief Starts the TIM Hall Sensor Interface in DMA mode.
* @param htim TIM Hall Sensor Interface handle
* @param pData The destination Buffer address.
* @param Length The length of data to be transferred from TIM peripheral to memory.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_HallSensor_Start_DMA(TIM_HandleTypeDef *htim, uint32_t *pData, uint16_t Length)
{
uint32_t tmpsmcr;
HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1);
HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1);
/* Check the parameters */
assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(htim->Instance));
/* Set the TIM channel state */
if ((channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY)
|| (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY))
{
return HAL_BUSY;
}
else if ((channel_1_state == HAL_TIM_CHANNEL_STATE_READY)
&& (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_READY))
{
if ((pData == NULL) && (Length > 0U))
{
return HAL_ERROR;
}
else
{
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
}
}
else
{
return HAL_ERROR;
}
/* Enable the Input Capture channel 1
(in the Hall Sensor Interface the three possible channels that can be used are TIM_CHANNEL_1, TIM_CHANNEL_2 and TIM_CHANNEL_3) */
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
/* Set the DMA Input Capture 1 Callbacks */
htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt;
htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
/* Enable the DMA channel for Capture 1*/
if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData, Length) != HAL_OK)
{
/* Return error status */
return HAL_ERROR;
}
/* Enable the capture compare 1 Interrupt */
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
/* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
{
tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
{
__HAL_TIM_ENABLE(htim);
}
}
else
{
__HAL_TIM_ENABLE(htim);
}
/* Return function status */
return HAL_OK;
}
/**
* @brief Stops the TIM Hall Sensor Interface in DMA mode.
* @param htim TIM Hall Sensor Interface handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_HallSensor_Stop_DMA(TIM_HandleTypeDef *htim)
{
/* Check the parameters */
assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(htim->Instance));
/* Disable the Input Capture channel 1
(in the Hall Sensor Interface the three possible channels that can be used are TIM_CHANNEL_1, TIM_CHANNEL_2 and TIM_CHANNEL_3) */
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
/* Disable the capture compare Interrupts 1 event */
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
(void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
/* Disable the Peripheral */
__HAL_TIM_DISABLE(htim);
/* Set the TIM channel state */
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
/* Return function status */
return HAL_OK;
}
/**
* @}
*/
/** @defgroup TIMEx_Exported_Functions_Group2 Extended Timer Complementary Output Compare functions
* @brief Timer Complementary Output Compare functions
*
@verbatim
==============================================================================
##### Timer Complementary Output Compare functions #####
==============================================================================
[..]
This section provides functions allowing to:
(+) Start the Complementary Output Compare/PWM.
(+) Stop the Complementary Output Compare/PWM.
(+) Start the Complementary Output Compare/PWM and enable interrupts.
(+) Stop the Complementary Output Compare/PWM and disable interrupts.
(+) Start the Complementary Output Compare/PWM and enable DMA transfers.
(+) Stop the Complementary Output Compare/PWM and disable DMA transfers.
@endverbatim
* @{
*/
/**
* @brief Starts the TIM Output Compare signal generation on the complementary
* output.
* @param htim TIM Output Compare handle
* @param Channel TIM Channel to be enabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @arg TIM_CHANNEL_3: TIM Channel 3 selected
* @arg TIM_CHANNEL_4: TIM Channel 4 selected
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_OCN_Start(TIM_HandleTypeDef *htim, uint32_t Channel)
{
uint32_t tmpsmcr;
/* Check the parameters */
assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));
/* Check the TIM complementary channel state */
if (TIM_CHANNEL_N_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY)
{
return HAL_ERROR;
}
/* Set the TIM complementary channel state */
TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
/* Enable the Capture compare channel N */
TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE);
/* Enable the Main Output */
__HAL_TIM_MOE_ENABLE(htim);
/* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
{
tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
{
__HAL_TIM_ENABLE(htim);
}
}
else
{
__HAL_TIM_ENABLE(htim);
}
/* Return function status */
return HAL_OK;
}
/**
* @brief Stops the TIM Output Compare signal generation on the complementary
* output.
* @param htim TIM handle
* @param Channel TIM Channel to be disabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @arg TIM_CHANNEL_3: TIM Channel 3 selected
* @arg TIM_CHANNEL_4: TIM Channel 4 selected
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_OCN_Stop(TIM_HandleTypeDef *htim, uint32_t Channel)
{
/* Check the parameters */
assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));
/* Disable the Capture compare channel N */
TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE);
/* Disable the Main Output */
__HAL_TIM_MOE_DISABLE(htim);
/* Disable the Peripheral */
__HAL_TIM_DISABLE(htim);
/* Set the TIM complementary channel state */
TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
/* Return function status */
return HAL_OK;
}
/**
* @brief Starts the TIM Output Compare signal generation in interrupt mode
* on the complementary output.
* @param htim TIM OC handle
* @param Channel TIM Channel to be enabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @arg TIM_CHANNEL_3: TIM Channel 3 selected
* @arg TIM_CHANNEL_4: TIM Channel 4 selected
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_OCN_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
{
uint32_t tmpsmcr;
/* Check the parameters */
assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));
/* Check the TIM complementary channel state */
if (TIM_CHANNEL_N_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY)
{
return HAL_ERROR;
}
/* Set the TIM complementary channel state */
TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
switch (Channel)
{
case TIM_CHANNEL_1:
{
/* Enable the TIM Output Compare interrupt */
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
break;
}
case TIM_CHANNEL_2:
{
/* Enable the TIM Output Compare interrupt */
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
break;
}
case TIM_CHANNEL_3:
{
/* Enable the TIM Output Compare interrupt */
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3);
break;
}
case TIM_CHANNEL_4:
{
/* Enable the TIM Output Compare interrupt */
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4);
break;
}
default:
break;
}
/* Enable the TIM Break interrupt */
__HAL_TIM_ENABLE_IT(htim, TIM_IT_BREAK);
/* Enable the Capture compare channel N */
TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE);
/* Enable the Main Output */
__HAL_TIM_MOE_ENABLE(htim);
/* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
{
tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
{
__HAL_TIM_ENABLE(htim);
}
}
else
{
__HAL_TIM_ENABLE(htim);
}
/* Return function status */
return HAL_OK;
}
/**
* @brief Stops the TIM Output Compare signal generation in interrupt mode
* on the complementary output.
* @param htim TIM Output Compare handle
* @param Channel TIM Channel to be disabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @arg TIM_CHANNEL_3: TIM Channel 3 selected
* @arg TIM_CHANNEL_4: TIM Channel 4 selected
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_OCN_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
{
uint32_t tmpccer;
/* Check the parameters */
assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));
switch (Channel)
{
case TIM_CHANNEL_1:
{
/* Disable the TIM Output Compare interrupt */
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
break;
}
case TIM_CHANNEL_2:
{
/* Disable the TIM Output Compare interrupt */
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
break;
}
case TIM_CHANNEL_3:
{
/* Disable the TIM Output Compare interrupt */
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3);
break;
}
case TIM_CHANNEL_4:
{
/* Disable the TIM Output Compare interrupt */
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4);
break;
}
default:
break;
}
/* Disable the Capture compare channel N */
TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE);
/* Disable the TIM Break interrupt (only if no more channel is active) */
tmpccer = htim->Instance->CCER;
if ((tmpccer & (TIM_CCER_CC1NE | TIM_CCER_CC2NE | TIM_CCER_CC3NE | TIM_CCER_CC4NE)) == (uint32_t)RESET)
{
__HAL_TIM_DISABLE_IT(htim, TIM_IT_BREAK);
}
/* Disable the Main Output */
__HAL_TIM_MOE_DISABLE(htim);
/* Disable the Peripheral */
__HAL_TIM_DISABLE(htim);
/* Set the TIM complementary channel state */
TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
/* Return function status */
return HAL_OK;
}
/**
* @brief Starts the TIM Output Compare signal generation in DMA mode
* on the complementary output.
* @param htim TIM Output Compare handle
* @param Channel TIM Channel to be enabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @arg TIM_CHANNEL_3: TIM Channel 3 selected
* @arg TIM_CHANNEL_4: TIM Channel 4 selected
* @param pData The source Buffer address.
* @param Length The length of data to be transferred from memory to TIM peripheral
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_OCN_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length)
{
uint32_t tmpsmcr;
/* Check the parameters */
assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));
/* Set the TIM complementary channel state */
if (TIM_CHANNEL_N_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_BUSY)
{
return HAL_BUSY;
}
else if (TIM_CHANNEL_N_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_READY)
{
if ((pData == NULL) && (Length > 0U))
{
return HAL_ERROR;
}
else
{
TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
}
}
else
{
return HAL_ERROR;
}
switch (Channel)
{
case TIM_CHANNEL_1:
{
/* Set the DMA compare callbacks */
htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseNCplt;
htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAErrorCCxN ;
/* Enable the DMA channel */
if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1, Length) != HAL_OK)
{
/* Return error status */
return HAL_ERROR;
}
/* Enable the TIM Output Compare DMA request */
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
break;
}
case TIM_CHANNEL_2:
{
/* Set the DMA compare callbacks */
htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseNCplt;
htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAErrorCCxN ;
/* Enable the DMA channel */
if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2, Length) != HAL_OK)
{
/* Return error status */
return HAL_ERROR;
}
/* Enable the TIM Output Compare DMA request */
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
break;
}
case TIM_CHANNEL_3:
{
/* Set the DMA compare callbacks */
htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseNCplt;
htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAErrorCCxN ;
/* Enable the DMA channel */
if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3, Length) != HAL_OK)
{
/* Return error status */
return HAL_ERROR;
}
/* Enable the TIM Output Compare DMA request */
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3);
break;
}
case TIM_CHANNEL_4:
{
/* Set the DMA compare callbacks */
htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseNCplt;
htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAErrorCCxN ;
/* Enable the DMA channel */
if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)pData, (uint32_t)&htim->Instance->CCR4, Length) != HAL_OK)
{
/* Return error status */
return HAL_ERROR;
}
/* Enable the TIM Output Compare DMA request */
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4);
break;
}
default:
break;
}
/* Enable the Capture compare channel N */
TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE);
/* Enable the Main Output */
__HAL_TIM_MOE_ENABLE(htim);
/* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
{
tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
{
__HAL_TIM_ENABLE(htim);
}
}
else
{
__HAL_TIM_ENABLE(htim);
}
/* Return function status */
return HAL_OK;
}
/**
* @brief Stops the TIM Output Compare signal generation in DMA mode
* on the complementary output.
* @param htim TIM Output Compare handle
* @param Channel TIM Channel to be disabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @arg TIM_CHANNEL_3: TIM Channel 3 selected
* @arg TIM_CHANNEL_4: TIM Channel 4 selected
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_OCN_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel)
{
/* Check the parameters */
assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));
switch (Channel)
{
case TIM_CHANNEL_1:
{
/* Disable the TIM Output Compare DMA request */
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
(void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
break;
}
case TIM_CHANNEL_2:
{
/* Disable the TIM Output Compare DMA request */
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
(void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
break;
}
case TIM_CHANNEL_3:
{
/* Disable the TIM Output Compare DMA request */
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3);
(void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]);
break;
}
case TIM_CHANNEL_4:
{
/* Disable the TIM Output Compare interrupt */
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4);
(void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]);
break;
}
default:
break;
}
/* Disable the Capture compare channel N */
TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE);
/* Disable the Main Output */
__HAL_TIM_MOE_DISABLE(htim);
/* Disable the Peripheral */
__HAL_TIM_DISABLE(htim);
/* Set the TIM complementary channel state */
TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
/* Return function status */
return HAL_OK;
}
/**
* @}
*/
/** @defgroup TIMEx_Exported_Functions_Group3 Extended Timer Complementary PWM functions
* @brief Timer Complementary PWM functions
*
@verbatim
==============================================================================
##### Timer Complementary PWM functions #####
==============================================================================
[..]
This section provides functions allowing to:
(+) Start the Complementary PWM.
(+) Stop the Complementary PWM.
(+) Start the Complementary PWM and enable interrupts.
(+) Stop the Complementary PWM and disable interrupts.
(+) Start the Complementary PWM and enable DMA transfers.
(+) Stop the Complementary PWM and disable DMA transfers.
(+) Start the Complementary Input Capture measurement.
(+) Stop the Complementary Input Capture.
(+) Start the Complementary Input Capture and enable interrupts.
(+) Stop the Complementary Input Capture and disable interrupts.
(+) Start the Complementary Input Capture and enable DMA transfers.
(+) Stop the Complementary Input Capture and disable DMA transfers.
(+) Start the Complementary One Pulse generation.
(+) Stop the Complementary One Pulse.
(+) Start the Complementary One Pulse and enable interrupts.
(+) Stop the Complementary One Pulse and disable interrupts.
@endverbatim
* @{
*/
/**
* @brief Starts the PWM signal generation on the complementary output.
* @param htim TIM handle
* @param Channel TIM Channel to be enabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @arg TIM_CHANNEL_3: TIM Channel 3 selected
* @arg TIM_CHANNEL_4: TIM Channel 4 selected
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_PWMN_Start(TIM_HandleTypeDef *htim, uint32_t Channel)
{
uint32_t tmpsmcr;
/* Check the parameters */
assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));
/* Check the TIM complementary channel state */
if (TIM_CHANNEL_N_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY)
{
return HAL_ERROR;
}
/* Set the TIM complementary channel state */
TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
/* Enable the complementary PWM output */
TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE);
/* Enable the Main Output */
__HAL_TIM_MOE_ENABLE(htim);
/* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
{
tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
{
__HAL_TIM_ENABLE(htim);
}
}
else
{
__HAL_TIM_ENABLE(htim);
}
/* Return function status */
return HAL_OK;
}
/**
* @brief Stops the PWM signal generation on the complementary output.
* @param htim TIM handle
* @param Channel TIM Channel to be disabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @arg TIM_CHANNEL_3: TIM Channel 3 selected
* @arg TIM_CHANNEL_4: TIM Channel 4 selected
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_PWMN_Stop(TIM_HandleTypeDef *htim, uint32_t Channel)
{
/* Check the parameters */
assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));
/* Disable the complementary PWM output */
TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE);
/* Disable the Main Output */
__HAL_TIM_MOE_DISABLE(htim);
/* Disable the Peripheral */
__HAL_TIM_DISABLE(htim);
/* Set the TIM complementary channel state */
TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
/* Return function status */
return HAL_OK;
}
/**
* @brief Starts the PWM signal generation in interrupt mode on the
* complementary output.
* @param htim TIM handle
* @param Channel TIM Channel to be disabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @arg TIM_CHANNEL_3: TIM Channel 3 selected
* @arg TIM_CHANNEL_4: TIM Channel 4 selected
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_PWMN_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
{
uint32_t tmpsmcr;
/* Check the parameters */
assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));
/* Check the TIM complementary channel state */
if (TIM_CHANNEL_N_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY)
{
return HAL_ERROR;
}
/* Set the TIM complementary channel state */
TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
switch (Channel)
{
case TIM_CHANNEL_1:
{
/* Enable the TIM Capture/Compare 1 interrupt */
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
break;
}
case TIM_CHANNEL_2:
{
/* Enable the TIM Capture/Compare 2 interrupt */
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
break;
}
case TIM_CHANNEL_3:
{
/* Enable the TIM Capture/Compare 3 interrupt */
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3);
break;
}
case TIM_CHANNEL_4:
{
/* Enable the TIM Capture/Compare 4 interrupt */
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4);
break;
}
default:
break;
}
/* Enable the TIM Break interrupt */
__HAL_TIM_ENABLE_IT(htim, TIM_IT_BREAK);
/* Enable the complementary PWM output */
TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE);
/* Enable the Main Output */
__HAL_TIM_MOE_ENABLE(htim);
/* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
{
tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
{
__HAL_TIM_ENABLE(htim);
}
}
else
{
__HAL_TIM_ENABLE(htim);
}
/* Return function status */
return HAL_OK;
}
/**
* @brief Stops the PWM signal generation in interrupt mode on the
* complementary output.
* @param htim TIM handle
* @param Channel TIM Channel to be disabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @arg TIM_CHANNEL_3: TIM Channel 3 selected
* @arg TIM_CHANNEL_4: TIM Channel 4 selected
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_PWMN_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
{
uint32_t tmpccer;
/* Check the parameters */
assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));
switch (Channel)
{
case TIM_CHANNEL_1:
{
/* Disable the TIM Capture/Compare 1 interrupt */
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
break;
}
case TIM_CHANNEL_2:
{
/* Disable the TIM Capture/Compare 2 interrupt */
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
break;
}
case TIM_CHANNEL_3:
{
/* Disable the TIM Capture/Compare 3 interrupt */
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3);
break;
}
case TIM_CHANNEL_4:
{
/* Disable the TIM Capture/Compare 4 interrupt */
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4);
break;
}
default:
break;
}
/* Disable the complementary PWM output */
TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE);
/* Disable the TIM Break interrupt (only if no more channel is active) */
tmpccer = htim->Instance->CCER;
if ((tmpccer & (TIM_CCER_CC1NE | TIM_CCER_CC2NE | TIM_CCER_CC3NE | TIM_CCER_CC4NE)) == (uint32_t)RESET)
{
__HAL_TIM_DISABLE_IT(htim, TIM_IT_BREAK);
}
/* Disable the Main Output */
__HAL_TIM_MOE_DISABLE(htim);
/* Disable the Peripheral */
__HAL_TIM_DISABLE(htim);
/* Set the TIM complementary channel state */
TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
/* Return function status */
return HAL_OK;
}
/**
* @brief Starts the TIM PWM signal generation in DMA mode on the
* complementary output
* @param htim TIM handle
* @param Channel TIM Channel to be enabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @arg TIM_CHANNEL_3: TIM Channel 3 selected
* @arg TIM_CHANNEL_4: TIM Channel 4 selected
* @param pData The source Buffer address.
* @param Length The length of data to be transferred from memory to TIM peripheral
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_PWMN_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length)
{
uint32_t tmpsmcr;
/* Check the parameters */
assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));
/* Set the TIM complementary channel state */
if (TIM_CHANNEL_N_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_BUSY)
{
return HAL_BUSY;
}
else if (TIM_CHANNEL_N_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_READY)
{
if ((pData == NULL) && (Length > 0U))
{
return HAL_ERROR;
}
else
{
TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
}
}
else
{
return HAL_ERROR;
}
switch (Channel)
{
case TIM_CHANNEL_1:
{
/* Set the DMA compare callbacks */
htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseNCplt;
htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAErrorCCxN ;
/* Enable the DMA channel */
if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1, Length) != HAL_OK)
{
/* Return error status */
return HAL_ERROR;
}
/* Enable the TIM Capture/Compare 1 DMA request */
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
break;
}
case TIM_CHANNEL_2:
{
/* Set the DMA compare callbacks */
htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseNCplt;
htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAErrorCCxN ;
/* Enable the DMA channel */
if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2, Length) != HAL_OK)
{
/* Return error status */
return HAL_ERROR;
}
/* Enable the TIM Capture/Compare 2 DMA request */
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
break;
}
case TIM_CHANNEL_3:
{
/* Set the DMA compare callbacks */
htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseNCplt;
htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAErrorCCxN ;
/* Enable the DMA channel */
if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3, Length) != HAL_OK)
{
/* Return error status */
return HAL_ERROR;
}
/* Enable the TIM Capture/Compare 3 DMA request */
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3);
break;
}
case TIM_CHANNEL_4:
{
/* Set the DMA compare callbacks */
htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseNCplt;
htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAErrorCCxN ;
/* Enable the DMA channel */
if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)pData, (uint32_t)&htim->Instance->CCR4, Length) != HAL_OK)
{
/* Return error status */
return HAL_ERROR;
}
/* Enable the TIM Capture/Compare 4 DMA request */
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4);
break;
}
default:
break;
}
/* Enable the complementary PWM output */
TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE);
/* Enable the Main Output */
__HAL_TIM_MOE_ENABLE(htim);
/* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
{
tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
{
__HAL_TIM_ENABLE(htim);
}
}
else
{
__HAL_TIM_ENABLE(htim);
}
/* Return function status */
return HAL_OK;
}
/**
* @brief Stops the TIM PWM signal generation in DMA mode on the complementary
* output
* @param htim TIM handle
* @param Channel TIM Channel to be disabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @arg TIM_CHANNEL_3: TIM Channel 3 selected
* @arg TIM_CHANNEL_4: TIM Channel 4 selected
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_PWMN_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel)
{
/* Check the parameters */
assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));
switch (Channel)
{
case TIM_CHANNEL_1:
{
/* Disable the TIM Capture/Compare 1 DMA request */
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
(void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
break;
}
case TIM_CHANNEL_2:
{
/* Disable the TIM Capture/Compare 2 DMA request */
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
(void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
break;
}
case TIM_CHANNEL_3:
{
/* Disable the TIM Capture/Compare 3 DMA request */
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3);
(void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]);
break;
}
case TIM_CHANNEL_4:
{
/* Disable the TIM Capture/Compare 4 DMA request */
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4);
(void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]);
break;
}
default:
break;
}
/* Disable the complementary PWM output */
TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE);
/* Disable the Main Output */
__HAL_TIM_MOE_DISABLE(htim);
/* Disable the Peripheral */
__HAL_TIM_DISABLE(htim);
/* Set the TIM complementary channel state */
TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
/* Return function status */
return HAL_OK;
}
/**
* @}
*/
/** @defgroup TIMEx_Exported_Functions_Group4 Extended Timer Complementary One Pulse functions
* @brief Timer Complementary One Pulse functions
*
@verbatim
==============================================================================
##### Timer Complementary One Pulse functions #####
==============================================================================
[..]
This section provides functions allowing to:
(+) Start the Complementary One Pulse generation.
(+) Stop the Complementary One Pulse.
(+) Start the Complementary One Pulse and enable interrupts.
(+) Stop the Complementary One Pulse and disable interrupts.
@endverbatim
* @{
*/
/**
* @brief Starts the TIM One Pulse signal generation on the complementary
* output.
* @note OutputChannel must match the pulse output channel chosen when calling
* @ref HAL_TIM_OnePulse_ConfigChannel().
* @param htim TIM One Pulse handle
* @param OutputChannel pulse output channel to enable
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Start(TIM_HandleTypeDef *htim, uint32_t OutputChannel)
{
uint32_t input_channel = (OutputChannel == TIM_CHANNEL_1) ? TIM_CHANNEL_2 : TIM_CHANNEL_1;
HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1);
HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2);
HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1);
HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2);
/* Check the parameters */
assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, OutputChannel));
/* Check the TIM channels state */
if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
|| (channel_2_state != HAL_TIM_CHANNEL_STATE_READY)
|| (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
|| (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY))
{
return HAL_ERROR;
}
/* Set the TIM channels state */
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
/* Enable the complementary One Pulse output channel and the Input Capture channel */
TIM_CCxNChannelCmd(htim->Instance, OutputChannel, TIM_CCxN_ENABLE);
TIM_CCxChannelCmd(htim->Instance, input_channel, TIM_CCx_ENABLE);
/* Enable the Main Output */
__HAL_TIM_MOE_ENABLE(htim);
/* Return function status */
return HAL_OK;
}
/**
* @brief Stops the TIM One Pulse signal generation on the complementary
* output.
* @note OutputChannel must match the pulse output channel chosen when calling
* @ref HAL_TIM_OnePulse_ConfigChannel().
* @param htim TIM One Pulse handle
* @param OutputChannel pulse output channel to disable
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Stop(TIM_HandleTypeDef *htim, uint32_t OutputChannel)
{
uint32_t input_channel = (OutputChannel == TIM_CHANNEL_1) ? TIM_CHANNEL_2 : TIM_CHANNEL_1;
/* Check the parameters */
assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, OutputChannel));
/* Disable the complementary One Pulse output channel and the Input Capture channel */
TIM_CCxNChannelCmd(htim->Instance, OutputChannel, TIM_CCxN_DISABLE);
TIM_CCxChannelCmd(htim->Instance, input_channel, TIM_CCx_DISABLE);
/* Disable the Main Output */
__HAL_TIM_MOE_DISABLE(htim);
/* Disable the Peripheral */
__HAL_TIM_DISABLE(htim);
/* Set the TIM channels state */
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
/* Return function status */
return HAL_OK;
}
/**
* @brief Starts the TIM One Pulse signal generation in interrupt mode on the
* complementary channel.
* @note OutputChannel must match the pulse output channel chosen when calling
* @ref HAL_TIM_OnePulse_ConfigChannel().
* @param htim TIM One Pulse handle
* @param OutputChannel pulse output channel to enable
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Start_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel)
{
uint32_t input_channel = (OutputChannel == TIM_CHANNEL_1) ? TIM_CHANNEL_2 : TIM_CHANNEL_1;
HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1);
HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2);
HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1);
HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2);
/* Check the parameters */
assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, OutputChannel));
/* Check the TIM channels state */
if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
|| (channel_2_state != HAL_TIM_CHANNEL_STATE_READY)
|| (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
|| (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY))
{
return HAL_ERROR;
}
/* Set the TIM channels state */
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
/* Enable the TIM Capture/Compare 1 interrupt */
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
/* Enable the TIM Capture/Compare 2 interrupt */
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
/* Enable the complementary One Pulse output channel and the Input Capture channel */
TIM_CCxNChannelCmd(htim->Instance, OutputChannel, TIM_CCxN_ENABLE);
TIM_CCxChannelCmd(htim->Instance, input_channel, TIM_CCx_ENABLE);
/* Enable the Main Output */
__HAL_TIM_MOE_ENABLE(htim);
/* Return function status */
return HAL_OK;
}
/**
* @brief Stops the TIM One Pulse signal generation in interrupt mode on the
* complementary channel.
* @note OutputChannel must match the pulse output channel chosen when calling
* @ref HAL_TIM_OnePulse_ConfigChannel().
* @param htim TIM One Pulse handle
* @param OutputChannel pulse output channel to disable
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Stop_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel)
{
uint32_t input_channel = (OutputChannel == TIM_CHANNEL_1) ? TIM_CHANNEL_2 : TIM_CHANNEL_1;
/* Check the parameters */
assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, OutputChannel));
/* Disable the TIM Capture/Compare 1 interrupt */
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
/* Disable the TIM Capture/Compare 2 interrupt */
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
/* Disable the complementary One Pulse output channel and the Input Capture channel */
TIM_CCxNChannelCmd(htim->Instance, OutputChannel, TIM_CCxN_DISABLE);
TIM_CCxChannelCmd(htim->Instance, input_channel, TIM_CCx_DISABLE);
/* Disable the Main Output */
__HAL_TIM_MOE_DISABLE(htim);
/* Disable the Peripheral */
__HAL_TIM_DISABLE(htim);
/* Set the TIM channels state */
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
/* Return function status */
return HAL_OK;
}
/**
* @}
*/
/** @defgroup TIMEx_Exported_Functions_Group5 Extended Peripheral Control functions
* @brief Peripheral Control functions
*
@verbatim
==============================================================================
##### Peripheral Control functions #####
==============================================================================
[..]
This section provides functions allowing to:
(+) Configure the commutation event in case of use of the Hall sensor interface.
(+) Configure Output channels for OC and PWM mode.
(+) Configure Complementary channels, break features and dead time.
(+) Configure Master synchronization.
(+) Configure timer remapping capabilities.
(+) Select timer input source.
(+) Enable or disable channel grouping.
(+) Configure Pulse on compare.
(+) Configure Encoder index.
@endverbatim
* @{
*/
/**
* @brief Configure the TIM commutation event sequence.
* @note This function is mandatory to use the commutation event in order to
* update the configuration at each commutation detection on the TRGI input of the Timer,
* the typical use of this feature is with the use of another Timer(interface Timer)
* configured in Hall sensor interface, this interface Timer will generate the
* commutation at its TRGO output (connected to Timer used in this function) each time
* the TI1 of the Interface Timer detect a commutation at its input TI1.
* @param htim TIM handle
* @param InputTrigger the Internal trigger corresponding to the Timer Interfacing with the Hall sensor
* This parameter can be one of the following values:
* @arg TIM_TS_ITR0: Internal trigger 0 selected
* @arg TIM_TS_ITR1: Internal trigger 1 selected
* @arg TIM_TS_ITR2: Internal trigger 2 selected
* @arg TIM_TS_ITR3: Internal trigger 3 selected
* @arg TIM_TS_ITR4: Internal trigger 4 selected (*)
* @arg TIM_TS_ITR5: Internal trigger 5 selected
* @arg TIM_TS_ITR6: Internal trigger 6 selected
* @arg TIM_TS_ITR7: Internal trigger 7 selected
* @arg TIM_TS_ITR8: Internal trigger 8 selected
* @arg TIM_TS_ITR9: Internal trigger 9 selected (*)
* @arg TIM_TS_ITR10: Internal trigger 10 selected
* @arg TIM_TS_ITR11: Internal trigger 11 selected
* @arg TIM_TS_NONE: No trigger is needed
*
* (*) Value not defined in all devices.
*
* @param CommutationSource the Commutation Event source
* This parameter can be one of the following values:
* @arg TIM_COMMUTATION_TRGI: Commutation source is the TRGI of the Interface Timer
* @arg TIM_COMMUTATION_SOFTWARE: Commutation source is set by software using the COMG bit
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_ConfigCommutEvent(TIM_HandleTypeDef *htim, uint32_t InputTrigger,
uint32_t CommutationSource)
{
/* Check the parameters */
assert_param(IS_TIM_COMMUTATION_EVENT_INSTANCE(htim->Instance));
assert_param(IS_TIM_INTERNAL_TRIGGEREVENT_INSTANCE(htim->Instance, InputTrigger));
__HAL_LOCK(htim);
#if defined(TIM5) && defined(TIM20)
if ((InputTrigger == TIM_TS_ITR0) || (InputTrigger == TIM_TS_ITR1) ||
(InputTrigger == TIM_TS_ITR2) || (InputTrigger == TIM_TS_ITR3) ||
(InputTrigger == TIM_TS_ITR4) || (InputTrigger == TIM_TS_ITR5) ||
(InputTrigger == TIM_TS_ITR6) || (InputTrigger == TIM_TS_ITR7) ||
(InputTrigger == TIM_TS_ITR8) || (InputTrigger == TIM_TS_ITR9) ||
(InputTrigger == TIM_TS_ITR10) || (InputTrigger == TIM_TS_ITR11))
#elif defined(TIM5)
if ((InputTrigger == TIM_TS_ITR0) || (InputTrigger == TIM_TS_ITR1) ||
(InputTrigger == TIM_TS_ITR2) || (InputTrigger == TIM_TS_ITR3) ||
(InputTrigger == TIM_TS_ITR4) || (InputTrigger == TIM_TS_ITR5) ||
(InputTrigger == TIM_TS_ITR6) || (InputTrigger == TIM_TS_ITR7) ||
(InputTrigger == TIM_TS_ITR8) || (InputTrigger == TIM_TS_ITR11))
#elif defined(TIM20)
if ((InputTrigger == TIM_TS_ITR0) || (InputTrigger == TIM_TS_ITR1) ||
(InputTrigger == TIM_TS_ITR2) || (InputTrigger == TIM_TS_ITR3) ||
(InputTrigger == TIM_TS_ITR5) || (InputTrigger == TIM_TS_ITR6) ||
(InputTrigger == TIM_TS_ITR7) || (InputTrigger == TIM_TS_ITR8) ||
(InputTrigger == TIM_TS_ITR9) || (InputTrigger == TIM_TS_ITR11))
#else
if ((InputTrigger == TIM_TS_ITR0) || (InputTrigger == TIM_TS_ITR1) ||
(InputTrigger == TIM_TS_ITR2) || (InputTrigger == TIM_TS_ITR3) ||
(InputTrigger == TIM_TS_ITR5) || (InputTrigger == TIM_TS_ITR6) ||
(InputTrigger == TIM_TS_ITR7) || (InputTrigger == TIM_TS_ITR8) ||
(InputTrigger == TIM_TS_ITR11))
#endif /* TIM5 && TIM20 */
{
/* Select the Input trigger */
htim->Instance->SMCR &= ~TIM_SMCR_TS;
htim->Instance->SMCR |= InputTrigger;
}
/* Select the Capture Compare preload feature */
htim->Instance->CR2 |= TIM_CR2_CCPC;
/* Select the Commutation event source */
htim->Instance->CR2 &= ~TIM_CR2_CCUS;
htim->Instance->CR2 |= CommutationSource;
/* Disable Commutation Interrupt */
__HAL_TIM_DISABLE_IT(htim, TIM_IT_COM);
/* Disable Commutation DMA request */
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_COM);
__HAL_UNLOCK(htim);
return HAL_OK;
}
/**
* @brief Configure the TIM commutation event sequence with interrupt.
* @note This function is mandatory to use the commutation event in order to
* update the configuration at each commutation detection on the TRGI input of the Timer,
* the typical use of this feature is with the use of another Timer(interface Timer)
* configured in Hall sensor interface, this interface Timer will generate the
* commutation at its TRGO output (connected to Timer used in this function) each time
* the TI1 of the Interface Timer detect a commutation at its input TI1.
* @param htim TIM handle
* @param InputTrigger the Internal trigger corresponding to the Timer Interfacing with the Hall sensor
* This parameter can be one of the following values:
* @arg TIM_TS_ITR0: Internal trigger 0 selected
* @arg TIM_TS_ITR1: Internal trigger 1 selected
* @arg TIM_TS_ITR2: Internal trigger 2 selected
* @arg TIM_TS_ITR3: Internal trigger 3 selected
* @arg TIM_TS_ITR4: Internal trigger 4 selected (*)
* @arg TIM_TS_ITR5: Internal trigger 5 selected
* @arg TIM_TS_ITR6: Internal trigger 6 selected
* @arg TIM_TS_ITR7: Internal trigger 7 selected
* @arg TIM_TS_ITR8: Internal trigger 8 selected
* @arg TIM_TS_ITR9: Internal trigger 9 selected (*)
* @arg TIM_TS_ITR10: Internal trigger 10 selected
* @arg TIM_TS_ITR11: Internal trigger 11 selected
* @arg TIM_TS_NONE: No trigger is needed
*
* (*) Value not defined in all devices.
*
* @param CommutationSource the Commutation Event source
* This parameter can be one of the following values:
* @arg TIM_COMMUTATION_TRGI: Commutation source is the TRGI of the Interface Timer
* @arg TIM_COMMUTATION_SOFTWARE: Commutation source is set by software using the COMG bit
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_ConfigCommutEvent_IT(TIM_HandleTypeDef *htim, uint32_t InputTrigger,
uint32_t CommutationSource)
{
/* Check the parameters */
assert_param(IS_TIM_COMMUTATION_EVENT_INSTANCE(htim->Instance));
assert_param(IS_TIM_INTERNAL_TRIGGEREVENT_INSTANCE(htim->Instance, InputTrigger));
__HAL_LOCK(htim);
#if defined(TIM5) && defined(TIM20)
if ((InputTrigger == TIM_TS_ITR0) || (InputTrigger == TIM_TS_ITR1) ||
(InputTrigger == TIM_TS_ITR2) || (InputTrigger == TIM_TS_ITR3) ||
(InputTrigger == TIM_TS_ITR4) || (InputTrigger == TIM_TS_ITR5) ||
(InputTrigger == TIM_TS_ITR6) || (InputTrigger == TIM_TS_ITR7) ||
(InputTrigger == TIM_TS_ITR8) || (InputTrigger == TIM_TS_ITR9) ||
(InputTrigger == TIM_TS_ITR10) || (InputTrigger == TIM_TS_ITR11))
#elif defined(TIM5)
if ((InputTrigger == TIM_TS_ITR0) || (InputTrigger == TIM_TS_ITR1) ||
(InputTrigger == TIM_TS_ITR2) || (InputTrigger == TIM_TS_ITR3) ||
(InputTrigger == TIM_TS_ITR4) || (InputTrigger == TIM_TS_ITR5) ||
(InputTrigger == TIM_TS_ITR6) || (InputTrigger == TIM_TS_ITR7) ||
(InputTrigger == TIM_TS_ITR8) || (InputTrigger == TIM_TS_ITR11))
#elif defined(TIM20)
if ((InputTrigger == TIM_TS_ITR0) || (InputTrigger == TIM_TS_ITR1) ||
(InputTrigger == TIM_TS_ITR2) || (InputTrigger == TIM_TS_ITR3) ||
(InputTrigger == TIM_TS_ITR5) || (InputTrigger == TIM_TS_ITR6) ||
(InputTrigger == TIM_TS_ITR7) || (InputTrigger == TIM_TS_ITR8) ||
(InputTrigger == TIM_TS_ITR9) || (InputTrigger == TIM_TS_ITR11))
#else
if ((InputTrigger == TIM_TS_ITR0) || (InputTrigger == TIM_TS_ITR1) ||
(InputTrigger == TIM_TS_ITR2) || (InputTrigger == TIM_TS_ITR3) ||
(InputTrigger == TIM_TS_ITR5) || (InputTrigger == TIM_TS_ITR6) ||
(InputTrigger == TIM_TS_ITR7) || (InputTrigger == TIM_TS_ITR8) ||
(InputTrigger == TIM_TS_ITR11))
#endif /* TIM5 && TIM20 */
{
/* Select the Input trigger */
htim->Instance->SMCR &= ~TIM_SMCR_TS;
htim->Instance->SMCR |= InputTrigger;
}
/* Select the Capture Compare preload feature */
htim->Instance->CR2 |= TIM_CR2_CCPC;
/* Select the Commutation event source */
htim->Instance->CR2 &= ~TIM_CR2_CCUS;
htim->Instance->CR2 |= CommutationSource;
/* Disable Commutation DMA request */
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_COM);
/* Enable the Commutation Interrupt */
__HAL_TIM_ENABLE_IT(htim, TIM_IT_COM);
__HAL_UNLOCK(htim);
return HAL_OK;
}
/**
* @brief Configure the TIM commutation event sequence with DMA.
* @note This function is mandatory to use the commutation event in order to
* update the configuration at each commutation detection on the TRGI input of the Timer,
* the typical use of this feature is with the use of another Timer(interface Timer)
* configured in Hall sensor interface, this interface Timer will generate the
* commutation at its TRGO output (connected to Timer used in this function) each time
* the TI1 of the Interface Timer detect a commutation at its input TI1.
* @note The user should configure the DMA in his own software, in This function only the COMDE bit is set
* @param htim TIM handle
* @param InputTrigger the Internal trigger corresponding to the Timer Interfacing with the Hall sensor
* This parameter can be one of the following values:
* @arg TIM_TS_ITR0: Internal trigger 0 selected
* @arg TIM_TS_ITR1: Internal trigger 1 selected
* @arg TIM_TS_ITR2: Internal trigger 2 selected
* @arg TIM_TS_ITR3: Internal trigger 3 selected
* @arg TIM_TS_ITR4: Internal trigger 4 selected (*)
* @arg TIM_TS_ITR5: Internal trigger 5 selected
* @arg TIM_TS_ITR6: Internal trigger 6 selected
* @arg TIM_TS_ITR7: Internal trigger 7 selected
* @arg TIM_TS_ITR8: Internal trigger 8 selected
* @arg TIM_TS_ITR9: Internal trigger 9 selected (*)
* @arg TIM_TS_ITR10: Internal trigger 10 selected
* @arg TIM_TS_ITR11: Internal trigger 11 selected
* @arg TIM_TS_NONE: No trigger is needed
*
* (*) Value not defined in all devices.
*
* @param CommutationSource the Commutation Event source
* This parameter can be one of the following values:
* @arg TIM_COMMUTATION_TRGI: Commutation source is the TRGI of the Interface Timer
* @arg TIM_COMMUTATION_SOFTWARE: Commutation source is set by software using the COMG bit
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_ConfigCommutEvent_DMA(TIM_HandleTypeDef *htim, uint32_t InputTrigger,
uint32_t CommutationSource)
{
/* Check the parameters */
assert_param(IS_TIM_COMMUTATION_EVENT_INSTANCE(htim->Instance));
assert_param(IS_TIM_INTERNAL_TRIGGEREVENT_INSTANCE(htim->Instance, InputTrigger));
__HAL_LOCK(htim);
#if defined(TIM5) && defined(TIM20)
if ((InputTrigger == TIM_TS_ITR0) || (InputTrigger == TIM_TS_ITR1) ||
(InputTrigger == TIM_TS_ITR2) || (InputTrigger == TIM_TS_ITR3) ||
(InputTrigger == TIM_TS_ITR4) || (InputTrigger == TIM_TS_ITR5) ||
(InputTrigger == TIM_TS_ITR6) || (InputTrigger == TIM_TS_ITR7) ||
(InputTrigger == TIM_TS_ITR8) || (InputTrigger == TIM_TS_ITR9) ||
(InputTrigger == TIM_TS_ITR10) || (InputTrigger == TIM_TS_ITR11))
#elif defined(TIM5)
if ((InputTrigger == TIM_TS_ITR0) || (InputTrigger == TIM_TS_ITR1) ||
(InputTrigger == TIM_TS_ITR2) || (InputTrigger == TIM_TS_ITR3) ||
(InputTrigger == TIM_TS_ITR4) || (InputTrigger == TIM_TS_ITR5) ||
(InputTrigger == TIM_TS_ITR6) || (InputTrigger == TIM_TS_ITR7) ||
(InputTrigger == TIM_TS_ITR8) || (InputTrigger == TIM_TS_ITR11))
#elif defined(TIM20)
if ((InputTrigger == TIM_TS_ITR0) || (InputTrigger == TIM_TS_ITR1) ||
(InputTrigger == TIM_TS_ITR2) || (InputTrigger == TIM_TS_ITR3) ||
(InputTrigger == TIM_TS_ITR5) || (InputTrigger == TIM_TS_ITR6) ||
(InputTrigger == TIM_TS_ITR7) || (InputTrigger == TIM_TS_ITR8) ||
(InputTrigger == TIM_TS_ITR9) || (InputTrigger == TIM_TS_ITR11))
#else
if ((InputTrigger == TIM_TS_ITR0) || (InputTrigger == TIM_TS_ITR1) ||
(InputTrigger == TIM_TS_ITR2) || (InputTrigger == TIM_TS_ITR3) ||
(InputTrigger == TIM_TS_ITR5) || (InputTrigger == TIM_TS_ITR6) ||
(InputTrigger == TIM_TS_ITR7) || (InputTrigger == TIM_TS_ITR8) ||
(InputTrigger == TIM_TS_ITR11))
#endif /* TIM5 && TIM20 */
{
/* Select the Input trigger */
htim->Instance->SMCR &= ~TIM_SMCR_TS;
htim->Instance->SMCR |= InputTrigger;
}
/* Select the Capture Compare preload feature */
htim->Instance->CR2 |= TIM_CR2_CCPC;
/* Select the Commutation event source */
htim->Instance->CR2 &= ~TIM_CR2_CCUS;
htim->Instance->CR2 |= CommutationSource;
/* Enable the Commutation DMA Request */
/* Set the DMA Commutation Callback */
htim->hdma[TIM_DMA_ID_COMMUTATION]->XferCpltCallback = TIMEx_DMACommutationCplt;
htim->hdma[TIM_DMA_ID_COMMUTATION]->XferHalfCpltCallback = TIMEx_DMACommutationHalfCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_COMMUTATION]->XferErrorCallback = TIM_DMAError;
/* Disable Commutation Interrupt */
__HAL_TIM_DISABLE_IT(htim, TIM_IT_COM);
/* Enable the Commutation DMA Request */
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_COM);
__HAL_UNLOCK(htim);
return HAL_OK;
}
/**
* @brief Configures the TIM in master mode.
* @param htim TIM handle.
* @param sMasterConfig pointer to a TIM_MasterConfigTypeDef structure that
* contains the selected trigger output (TRGO) and the Master/Slave
* mode.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_MasterConfigSynchronization(TIM_HandleTypeDef *htim,
TIM_MasterConfigTypeDef *sMasterConfig)
{
uint32_t tmpcr2;
uint32_t tmpsmcr;
/* Check the parameters */
assert_param(IS_TIM_MASTER_INSTANCE(htim->Instance));
assert_param(IS_TIM_TRGO_SOURCE(sMasterConfig->MasterOutputTrigger));
assert_param(IS_TIM_MSM_STATE(sMasterConfig->MasterSlaveMode));
/* Check input state */
__HAL_LOCK(htim);
/* Change the handler state */
htim->State = HAL_TIM_STATE_BUSY;
/* Get the TIMx CR2 register value */
tmpcr2 = htim->Instance->CR2;
/* Get the TIMx SMCR register value */
tmpsmcr = htim->Instance->SMCR;
/* If the timer supports ADC synchronization through TRGO2, set the master mode selection 2 */
if (IS_TIM_TRGO2_INSTANCE(htim->Instance))
{
/* Check the parameters */
assert_param(IS_TIM_TRGO2_SOURCE(sMasterConfig->MasterOutputTrigger2));
/* Clear the MMS2 bits */
tmpcr2 &= ~TIM_CR2_MMS2;
/* Select the TRGO2 source*/
tmpcr2 |= sMasterConfig->MasterOutputTrigger2;
}
/* Reset the MMS Bits */
tmpcr2 &= ~TIM_CR2_MMS;
/* Select the TRGO source */
tmpcr2 |= sMasterConfig->MasterOutputTrigger;
/* Update TIMx CR2 */
htim->Instance->CR2 = tmpcr2;
if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
{
/* Reset the MSM Bit */
tmpsmcr &= ~TIM_SMCR_MSM;
/* Set master mode */
tmpsmcr |= sMasterConfig->MasterSlaveMode;
/* Update TIMx SMCR */
htim->Instance->SMCR = tmpsmcr;
}
/* Change the htim state */
htim->State = HAL_TIM_STATE_READY;
__HAL_UNLOCK(htim);
return HAL_OK;
}
/**
* @brief Configures the Break feature, dead time, Lock level, OSSI/OSSR State
* and the AOE(automatic output enable).
* @param htim TIM handle
* @param sBreakDeadTimeConfig pointer to a TIM_ConfigBreakDeadConfigTypeDef structure that
* contains the BDTR Register configuration information for the TIM peripheral.
* @note Interrupts can be generated when an active level is detected on the
* break input, the break 2 input or the system break input. Break
* interrupt can be enabled by calling the @ref __HAL_TIM_ENABLE_IT macro.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_ConfigBreakDeadTime(TIM_HandleTypeDef *htim,
TIM_BreakDeadTimeConfigTypeDef *sBreakDeadTimeConfig)
{
/* Keep this variable initialized to 0 as it is used to configure BDTR register */
uint32_t tmpbdtr = 0U;
/* Check the parameters */
assert_param(IS_TIM_BREAK_INSTANCE(htim->Instance));
assert_param(IS_TIM_OSSR_STATE(sBreakDeadTimeConfig->OffStateRunMode));
assert_param(IS_TIM_OSSI_STATE(sBreakDeadTimeConfig->OffStateIDLEMode));
assert_param(IS_TIM_LOCK_LEVEL(sBreakDeadTimeConfig->LockLevel));
assert_param(IS_TIM_DEADTIME(sBreakDeadTimeConfig->DeadTime));
assert_param(IS_TIM_BREAK_STATE(sBreakDeadTimeConfig->BreakState));
assert_param(IS_TIM_BREAK_POLARITY(sBreakDeadTimeConfig->BreakPolarity));
assert_param(IS_TIM_BREAK_FILTER(sBreakDeadTimeConfig->BreakFilter));
assert_param(IS_TIM_AUTOMATIC_OUTPUT_STATE(sBreakDeadTimeConfig->AutomaticOutput));
/* Check input state */
__HAL_LOCK(htim);
/* Set the Lock level, the Break enable Bit and the Polarity, the OSSR State,
the OSSI State, the dead time value and the Automatic Output Enable Bit */
/* Set the BDTR bits */
MODIFY_REG(tmpbdtr, TIM_BDTR_DTG, sBreakDeadTimeConfig->DeadTime);
MODIFY_REG(tmpbdtr, TIM_BDTR_LOCK, sBreakDeadTimeConfig->LockLevel);
MODIFY_REG(tmpbdtr, TIM_BDTR_OSSI, sBreakDeadTimeConfig->OffStateIDLEMode);
MODIFY_REG(tmpbdtr, TIM_BDTR_OSSR, sBreakDeadTimeConfig->OffStateRunMode);
MODIFY_REG(tmpbdtr, TIM_BDTR_BKE, sBreakDeadTimeConfig->BreakState);
MODIFY_REG(tmpbdtr, TIM_BDTR_BKP, sBreakDeadTimeConfig->BreakPolarity);
MODIFY_REG(tmpbdtr, TIM_BDTR_AOE, sBreakDeadTimeConfig->AutomaticOutput);
MODIFY_REG(tmpbdtr, TIM_BDTR_BKF, (sBreakDeadTimeConfig->BreakFilter << TIM_BDTR_BKF_Pos));
if (IS_TIM_ADVANCED_INSTANCE(htim->Instance))
{
/* Check the parameters */
assert_param(IS_TIM_BREAK_AFMODE(sBreakDeadTimeConfig->BreakAFMode));
/* Set BREAK AF mode */
MODIFY_REG(tmpbdtr, TIM_BDTR_BKBID, sBreakDeadTimeConfig->BreakAFMode);
}
if (IS_TIM_BKIN2_INSTANCE(htim->Instance))
{
/* Check the parameters */
assert_param(IS_TIM_BREAK2_STATE(sBreakDeadTimeConfig->Break2State));
assert_param(IS_TIM_BREAK2_POLARITY(sBreakDeadTimeConfig->Break2Polarity));
assert_param(IS_TIM_BREAK_FILTER(sBreakDeadTimeConfig->Break2Filter));
/* Set the BREAK2 input related BDTR bits */
MODIFY_REG(tmpbdtr, TIM_BDTR_BK2F, (sBreakDeadTimeConfig->Break2Filter << TIM_BDTR_BK2F_Pos));
MODIFY_REG(tmpbdtr, TIM_BDTR_BK2E, sBreakDeadTimeConfig->Break2State);
MODIFY_REG(tmpbdtr, TIM_BDTR_BK2P, sBreakDeadTimeConfig->Break2Polarity);
if (IS_TIM_ADVANCED_INSTANCE(htim->Instance))
{
/* Check the parameters */
assert_param(IS_TIM_BREAK2_AFMODE(sBreakDeadTimeConfig->Break2AFMode));
/* Set BREAK2 AF mode */
MODIFY_REG(tmpbdtr, TIM_BDTR_BK2BID, sBreakDeadTimeConfig->Break2AFMode);
}
}
/* Set TIMx_BDTR */
htim->Instance->BDTR = tmpbdtr;
__HAL_UNLOCK(htim);
return HAL_OK;
}
/**
* @brief Configures the break input source.
* @param htim TIM handle.
* @param BreakInput Break input to configure
* This parameter can be one of the following values:
* @arg TIM_BREAKINPUT_BRK: Timer break input
* @arg TIM_BREAKINPUT_BRK2: Timer break 2 input
* @param sBreakInputConfig Break input source configuration
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_ConfigBreakInput(TIM_HandleTypeDef *htim,
uint32_t BreakInput,
TIMEx_BreakInputConfigTypeDef *sBreakInputConfig)
{
uint32_t tmporx;
uint32_t bkin_enable_mask;
uint32_t bkin_polarity_mask;
uint32_t bkin_enable_bitpos;
uint32_t bkin_polarity_bitpos;
/* Check the parameters */
assert_param(IS_TIM_BREAK_INSTANCE(htim->Instance));
assert_param(IS_TIM_BREAKINPUT(BreakInput));
assert_param(IS_TIM_BREAKINPUTSOURCE(sBreakInputConfig->Source));
assert_param(IS_TIM_BREAKINPUTSOURCE_STATE(sBreakInputConfig->Enable));
assert_param(IS_TIM_BREAKINPUTSOURCE_POLARITY(sBreakInputConfig->Polarity));
/* Check input state */
__HAL_LOCK(htim);
switch (sBreakInputConfig->Source)
{
case TIM_BREAKINPUTSOURCE_BKIN:
{
bkin_enable_mask = TIM1_AF1_BKINE;
bkin_enable_bitpos = TIM1_AF1_BKINE_Pos;
bkin_polarity_mask = TIM1_AF1_BKINP;
bkin_polarity_bitpos = TIM1_AF1_BKINP_Pos;
break;
}
case TIM_BREAKINPUTSOURCE_COMP1:
{
bkin_enable_mask = TIM1_AF1_BKCMP1E;
bkin_enable_bitpos = TIM1_AF1_BKCMP1E_Pos;
bkin_polarity_mask = TIM1_AF1_BKCMP1P;
bkin_polarity_bitpos = TIM1_AF1_BKCMP1P_Pos;
break;
}
case TIM_BREAKINPUTSOURCE_COMP2:
{
bkin_enable_mask = TIM1_AF1_BKCMP2E;
bkin_enable_bitpos = TIM1_AF1_BKCMP2E_Pos;
bkin_polarity_mask = TIM1_AF1_BKCMP2P;
bkin_polarity_bitpos = TIM1_AF1_BKCMP2P_Pos;
break;
}
case TIM_BREAKINPUTSOURCE_COMP3:
{
bkin_enable_mask = TIM1_AF1_BKCMP3E;
bkin_enable_bitpos = TIM1_AF1_BKCMP3E_Pos;
bkin_polarity_mask = TIM1_AF1_BKCMP3P;
bkin_polarity_bitpos = TIM1_AF1_BKCMP3P_Pos;
break;
}
case TIM_BREAKINPUTSOURCE_COMP4:
{
bkin_enable_mask = TIM1_AF1_BKCMP4E;
bkin_enable_bitpos = TIM1_AF1_BKCMP4E_Pos;
bkin_polarity_mask = TIM1_AF1_BKCMP4P;
bkin_polarity_bitpos = TIM1_AF1_BKCMP4P_Pos;
break;
}
#if defined (COMP5)
case TIM_BREAKINPUTSOURCE_COMP5:
{
bkin_enable_mask = TIM1_AF1_BKCMP5E;
bkin_enable_bitpos = TIM1_AF1_BKCMP5E_Pos;
/* No palarity bit for this COMP. Variable bkin_polarity_mask keeps its default value 0 */
bkin_polarity_mask = 0U;
bkin_polarity_bitpos = 0U;
break;
}
#endif /* COMP5 */
#if defined (COMP6)
case TIM_BREAKINPUTSOURCE_COMP6:
{
bkin_enable_mask = TIM1_AF1_BKCMP6E;
bkin_enable_bitpos = TIM1_AF1_BKCMP6E_Pos;
/* No palarity bit for this COMP. Variable bkin_polarity_mask keeps its default value 0 */
bkin_polarity_mask = 0U;
bkin_polarity_bitpos = 0U;
break;
}
#endif /* COMP7 */
#if defined (COMP7)
case TIM_BREAKINPUTSOURCE_COMP7:
{
bkin_enable_mask = TIM1_AF1_BKCMP7E;
bkin_enable_bitpos = TIM1_AF1_BKCMP7E_Pos;
/* No palarity bit for this COMP. Variable bkin_polarity_mask keeps its default value 0 */
bkin_polarity_mask = 0U;
bkin_polarity_bitpos = 0U;
break;
}
#endif /* COMP7 */
default:
{
bkin_enable_mask = 0U;
bkin_polarity_mask = 0U;
bkin_enable_bitpos = 0U;
bkin_polarity_bitpos = 0U;
break;
}
}
switch (BreakInput)
{
case TIM_BREAKINPUT_BRK:
{
/* Get the TIMx_AF1 register value */
tmporx = htim->Instance->AF1;
/* Enable the break input */
tmporx &= ~bkin_enable_mask;
tmporx |= (sBreakInputConfig->Enable << bkin_enable_bitpos) & bkin_enable_mask;
/* Set the break input polarity */
tmporx &= ~bkin_polarity_mask;
tmporx |= (sBreakInputConfig->Polarity << bkin_polarity_bitpos) & bkin_polarity_mask;
/* Set TIMx_AF1 */
htim->Instance->AF1 = tmporx;
break;
}
case TIM_BREAKINPUT_BRK2:
{
/* Get the TIMx_AF2 register value */
tmporx = htim->Instance->AF2;
/* Enable the break input */
tmporx &= ~bkin_enable_mask;
tmporx |= (sBreakInputConfig->Enable << bkin_enable_bitpos) & bkin_enable_mask;
/* Set the break input polarity */
tmporx &= ~bkin_polarity_mask;
tmporx |= (sBreakInputConfig->Polarity << bkin_polarity_bitpos) & bkin_polarity_mask;
/* Set TIMx_AF2 */
htim->Instance->AF2 = tmporx;
break;
}
default:
break;
}
__HAL_UNLOCK(htim);
return HAL_OK;
}
/**
* @brief Configures the TIMx Remapping input capabilities.
* @param htim TIM handle.
* @param Remap specifies the TIM remapping source.
* For TIM1, the parameter can take one of the following values:
* @arg TIM_TIM1_ETR_GPIO TIM1 ETR is connected to GPIO
* @arg TIM_TIM1_ETR_COMP1 TIM1 ETR is connected to COMP1 output
* @arg TIM_TIM1_ETR_COMP2 TIM1 ETR is connected to COMP2 output
* @arg TIM_TIM1_ETR_COMP3 TIM1 ETR is connected to COMP3 output
* @arg TIM_TIM1_ETR_COMP4 TIM1 ETR is connected to COMP4 output
* @arg TIM_TIM1_ETR_COMP5 TIM1 ETR is connected to COMP5 output (*)
* @arg TIM_TIM1_ETR_COMP6 TIM1 ETR is connected to COMP6 output (*)
* @arg TIM_TIM1_ETR_COMP7 TIM1 ETR is connected to COMP7 output (*)
* @arg TIM_TIM1_ETR_ADC1_AWD1 TIM1 ETR is connected to ADC1 AWD1
* @arg TIM_TIM1_ETR_ADC1_AWD2 TIM1 ETR is connected to ADC1 AWD2
* @arg TIM_TIM1_ETR_ADC1_AWD3 TIM1 ETR is connected to ADC1 AWD3
* @arg TIM_TIM1_ETR_ADC4_AWD1 TIM1 ETR is connected to ADC4 AWD1 (*)
* @arg TIM_TIM1_ETR_ADC4_AWD2 TIM1 ETR is connected to ADC4 AWD2 (*)
* @arg TIM_TIM1_ETR_ADC4_AWD3 TIM1 ETR is connected to ADC4 AWD3 (*)
*
* For TIM2, the parameter can take one of the following values:
* @arg TIM_TIM2_ETR_GPIO TIM2 ETR is connected to GPIO
* @arg TIM_TIM2_ETR_COMP1 TIM2 ETR is connected to COMP1 output
* @arg TIM_TIM2_ETR_COMP2 TIM2 ETR is connected to COMP2 output
* @arg TIM_TIM2_ETR_COMP3 TIM2 ETR is connected to COMP3 output
* @arg TIM_TIM2_ETR_COMP4 TIM2 ETR is connected to COMP4 output
* @arg TIM_TIM2_ETR_COMP5 TIM2 ETR is connected to COMP5 output (*)
* @arg TIM_TIM2_ETR_COMP6 TIM2 ETR is connected to COMP6 output (*)
* @arg TIM_TIM2_ETR_COMP7 TIM2 ETR is connected to COMP7 output (*)
* @arg TIM_TIM2_ETR_TIM3_ETR TIM2 ETR is connected to TIM3 ETR pin
* @arg TIM_TIM2_ETR_TIM4_ETR TIM2 ETR is connected to TIM4 ETR pin
* @arg TIM_TIM2_ETR_TIM5_ETR TIM2 ETR is connected to TIM5 ETR pin (*)
* @arg TIM_TIM2_ETR_LSE
*
* For TIM3, the parameter can take one of the following values:
* @arg TIM_TIM3_ETR_GPIO TIM3 ETR is connected to GPIO
* @arg TIM_TIM3_ETR_COMP1 TIM3 ETR is connected to COMP1 output
* @arg TIM_TIM3_ETR_COMP2 TIM3 ETR is connected to COMP2 output
* @arg TIM_TIM3_ETR_COMP3 TIM3 ETR is connected to COMP3 output
* @arg TIM_TIM3_ETR_COMP4 TIM3 ETR is connected to COMP4 output
* @arg TIM_TIM3_ETR_COMP5 TIM3 ETR is connected to COMP5 output (*)
* @arg TIM_TIM3_ETR_COMP6 TIM3 ETR is connected to COMP6 output (*)
* @arg TIM_TIM3_ETR_COMP7 TIM3 ETR is connected to COMP7 output (*)
* @arg TIM_TIM3_ETR_TIM2_ETR TIM3 ETR is connected to TIM2 ETR pin
* @arg TIM_TIM3_ETR_TIM4_ETR TIM3 ETR is connected to TIM4 ETR pin
* @arg TIM_TIM3_ETR_ADC2_AWD1 TIM3 ETR is connected to ADC2 AWD1
* @arg TIM_TIM3_ETR_ADC2_AWD2 TIM3 ETR is connected to ADC2 AWD2
* @arg TIM_TIM3_ETR_ADC2_AWD3 TIM3 ETR is connected to ADC2 AWD3
*
* For TIM4, the parameter can take one of the following values:
* @arg TIM_TIM4_ETR_GPIO TIM4 ETR is connected to GPIO
* @arg TIM_TIM4_ETR_COMP1 TIM4 ETR is connected to COMP1 output
* @arg TIM_TIM4_ETR_COMP2 TIM4 ETR is connected to COMP2 output
* @arg TIM_TIM4_ETR_COMP3 TIM4 ETR is connected to COMP3 output
* @arg TIM_TIM4_ETR_COMP4 TIM4 ETR is connected to COMP4 output
* @arg TIM_TIM4_ETR_COMP5 TIM4 ETR is connected to COMP5 output (*)
* @arg TIM_TIM4_ETR_COMP6 TIM4 ETR is connected to COMP6 output (*)
* @arg TIM_TIM4_ETR_COMP7 TIM4 ETR is connected to COMP7 output (*)
* @arg TIM_TIM4_ETR_TIM3_ETR TIM4 ETR is connected to TIM3 ETR pin
* @arg TIM_TIM4_ETR_TIM5_ETR TIM4 ETR is connected to TIM5 ETR pin (*)
*
* For TIM5, the parameter can take one of the following values: (**)
* @arg TIM_TIM5_ETR_GPIO TIM5 ETR is connected to GPIO (*)
* @arg TIM_TIM5_ETR_COMP1 TIM5 ETR is connected to COMP1 output (*)
* @arg TIM_TIM5_ETR_COMP2 TIM5 ETR is connected to COMP2 output (*)
* @arg TIM_TIM5_ETR_COMP3 TIM5 ETR is connected to COMP3 output (*)
* @arg TIM_TIM5_ETR_COMP4 TIM5 ETR is connected to COMP4 output (*)
* @arg TIM_TIM5_ETR_COMP5 TIM5 ETR is connected to COMP5 output (*)
* @arg TIM_TIM5_ETR_COMP6 TIM5 ETR is connected to COMP6 output (*)
* @arg TIM_TIM5_ETR_COMP7 TIM5 ETR is connected to COMP7 output (*)
* @arg TIM_TIM5_ETR_TIM2_ETR TIM5 ETR is connected to TIM2 ETR pin (*)
* @arg TIM_TIM5_ETR_TIM3_ETR TIM5 ETR is connected to TIM3 ETR pin (*)
*
* For TIM8, the parameter can take one of the following values:
* @arg TIM_TIM8_ETR_GPIO TIM8 ETR is connected to GPIO
* @arg TIM_TIM8_ETR_COMP1 TIM8 ETR is connected to COMP1 output
* @arg TIM_TIM8_ETR_COMP2 TIM8 ETR is connected to COMP2 output
* @arg TIM_TIM8_ETR_COMP3 TIM8 ETR is connected to COMP3 output
* @arg TIM_TIM8_ETR_COMP4 TIM8 ETR is connected to COMP4 output
* @arg TIM_TIM8_ETR_COMP5 TIM8 ETR is connected to COMP5 output (*)
* @arg TIM_TIM8_ETR_COMP6 TIM8 ETR is connected to COMP6 output (*)
* @arg TIM_TIM8_ETR_COMP7 TIM8 ETR is connected to COMP7 output (*)
* @arg TIM_TIM8_ETR_ADC2_AWD1 TIM8 ETR is connected to ADC2 AWD1
* @arg TIM_TIM8_ETR_ADC2_AWD2 TIM8 ETR is connected to ADC2 AWD2
* @arg TIM_TIM8_ETR_ADC2_AWD3 TIM8 ETR is connected to ADC2 AWD3
* @arg TIM_TIM8_ETR_ADC3_AWD1 TIM8 ETR is connected to ADC3 AWD1 (*)
* @arg TIM_TIM8_ETR_ADC3_AWD2 TIM8 ETR is connected to ADC3 AWD2 (*)
* @arg TIM_TIM8_ETR_ADC3_AWD3 TIM8 ETR is connected to ADC3 AWD3 (*)
*
* For TIM20, the parameter can take one of the following values: (**)
* @arg TIM_TIM20_ETR_GPIO TIM20 ETR is connected to GPIO
* @arg TIM_TIM20_ETR_COMP1 TIM20 ETR is connected to COMP1 output (*)
* @arg TIM_TIM20_ETR_COMP2 TIM20 ETR is connected to COMP2 output (*)
* @arg TIM_TIM20_ETR_COMP3 TIM20 ETR is connected to COMP3 output (*)
* @arg TIM_TIM20_ETR_COMP4 TIM20 ETR is connected to COMP4 output (*)
* @arg TIM_TIM20_ETR_COMP5 TIM20 ETR is connected to COMP5 output (*)
* @arg TIM_TIM20_ETR_COMP6 TIM20 ETR is connected to COMP6 output (*)
* @arg TIM_TIM20_ETR_COMP7 TIM20 ETR is connected to COMP7 output (*)
* @arg TIM_TIM20_ETR_ADC3_AWD1 TIM20 ETR is connected to ADC3 AWD1 (*)
* @arg TIM_TIM20_ETR_ADC3_AWD2 TIM20 ETR is connected to ADC3 AWD2 (*)
* @arg TIM_TIM20_ETR_ADC3_AWD3 TIM20 ETR is connected to ADC3 AWD3 (*)
* @arg TIM_TIM20_ETR_ADC5_AWD1 TIM20 ETR is connected to ADC5 AWD1 (*)
* @arg TIM_TIM20_ETR_ADC5_AWD2 TIM20 ETR is connected to ADC5 AWD2 (*)
* @arg TIM_TIM20_ETR_ADC5_AWD3 TIM20 ETR is connected to ADC5 AWD3 (*)
*
* (*) Value not defined in all devices. \n
* (**) Register not available in all devices.
*
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_RemapConfig(TIM_HandleTypeDef *htim, uint32_t Remap)
{
/* Check parameters */
assert_param(IS_TIM_REMAP_INSTANCE(htim->Instance));
assert_param(IS_TIM_REMAP(Remap));
__HAL_LOCK(htim);
MODIFY_REG(htim->Instance->AF1, TIM1_AF1_ETRSEL_Msk, Remap);
__HAL_UNLOCK(htim);
return HAL_OK;
}
/**
* @brief Select the timer input source
* @param htim TIM handle.
* @param Channel specifies the TIM Channel
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TI1 input channel
* @arg TIM_CHANNEL_2: TI2 input channel
* @arg TIM_CHANNEL_3: TI3 input channel
* @arg TIM_CHANNEL_4: TI4 input channel
* @param TISelection specifies the timer input source
* For TIM1 this parameter can be one of the following values:
* @arg TIM_TIM1_TI1_GPIO: TIM1 TI1 is connected to GPIO
* @arg TIM_TIM1_TI1_COMP1: TIM1 TI1 is connected to COMP1 output
* @arg TIM_TIM1_TI1_COMP2: TIM1 TI1 is connected to COMP2 output
* @arg TIM_TIM1_TI1_COMP3: TIM1 TI1 is connected to COMP3 output
* @arg TIM_TIM1_TI1_COMP4: TIM1 TI1 is connected to COMP4 output
*
* For TIM2 this parameter can be one of the following values:
* @arg TIM_TIM2_TI1_GPIO: TIM2 TI1 is connected to GPIO
* @arg TIM_TIM2_TI1_COMP1: TIM2 TI1 is connected to COMP1 output
* @arg TIM_TIM2_TI1_COMP2: TIM2 TI1 is connected to COMP2 output
* @arg TIM_TIM2_TI1_COMP3: TIM2 TI1 is connected to COMP3 output
* @arg TIM_TIM2_TI1_COMP4: TIM2 TI1 is connected to COMP4 output
* @arg TIM_TIM2_TI1_COMP5: TIM2 TI1 is connected to COMP5 output (*)
*
* @arg TIM_TIM2_TI2_GPIO: TIM1 TI2 is connected to GPIO
* @arg TIM_TIM2_TI2_COMP1: TIM2 TI2 is connected to COMP1 output
* @arg TIM_TIM2_TI2_COMP2: TIM2 TI2 is connected to COMP2 output
* @arg TIM_TIM2_TI2_COMP3: TIM2 TI2 is connected to COMP3 output
* @arg TIM_TIM2_TI2_COMP4: TIM2 TI2 is connected to COMP4 output
* @arg TIM_TIM2_TI2_COMP6: TIM2 TI2 is connected to COMP6 output (*)
*
* @arg TIM_TIM2_TI3_GPIO: TIM2 TI3 is connected to GPIO
* @arg TIM_TIM2_TI3_COMP4: TIM2 TI3 is connected to COMP4 output
*
* @arg TIM_TIM2_TI4_GPIO: TIM2 TI4 is connected to GPIO
* @arg TIM_TIM2_TI4_COMP1: TIM2 TI4 is connected to COMP1 output
* @arg TIM_TIM2_TI4_COMP2: TIM2 TI4 is connected to COMP2 output
*
* For TIM3 this parameter can be one of the following values:
* @arg TIM_TIM3_TI1_GPIO: TIM3 TI1 is connected to GPIO
* @arg TIM_TIM3_TI1_COMP1: TIM3 TI1 is connected to COMP1 output
* @arg TIM_TIM3_TI1_COMP2: TIM3 TI1 is connected to COMP2 output
* @arg TIM_TIM3_TI1_COMP3: TIM3 TI1 is connected to COMP3 output
* @arg TIM_TIM3_TI1_COMP4: TIM3 TI1 is connected to COMP4 output
* @arg TIM_TIM3_TI1_COMP5: TIM3 TI1 is connected to COMP5 output (*)
* @arg TIM_TIM3_TI1_COMP6: TIM3 TI1 is connected to COMP6 output (*)
* @arg TIM_TIM3_TI1_COMP7: TIM3 TI1 is connected to COMP7 output (*)
*
* @arg TIM_TIM3_TI2_GPIO: TIM3 TI2 is connected to GPIO
* @arg TIM_TIM3_TI2_COMP1: TIM3 TI2 is connected to COMP1 output
* @arg TIM_TIM3_TI2_COMP2: TIM3 TI2 is connected to COMP2 output
* @arg TIM_TIM3_TI2_COMP3: TIM3 TI2 is connected to COMP3 output
* @arg TIM_TIM3_TI2_COMP4: TIM3 TI2 is connected to COMP4 output
* @arg TIM_TIM3_TI2_COMP5: TIM3 TI2 is connected to COMP5 output (*)
* @arg TIM_TIM3_TI2_COMP6: TIM3 TI2 is connected to COMP6 output (*)
* @arg TIM_TIM3_TI2_COMP7: TIM3 TI2 is connected to COMP7 output (*)
*
* @arg TIM_TIM3_TI3_GPIO: TIM3 TI3 is connected to GPIO
* @arg TIM_TIM3_TI3_COMP3: TIM3 TI3 is connected to COMP3 output
* For TIM4 this parameter can be one of the following values:
* @arg TIM_TIM4_TI1_GPIO: TIM4 TI1 is connected to GPIO
* @arg TIM_TIM4_TI1_COMP1: TIM4 TI1 is connected to COMP1 output
* @arg TIM_TIM4_TI1_COMP2: TIM4 TI1 is connected to COMP2 output
* @arg TIM_TIM4_TI1_COMP3: TIM4 TI1 is connected to COMP3 output
* @arg TIM_TIM4_TI1_COMP4: TIM4 TI1 is connected to COMP4 output
* @arg TIM_TIM4_TI1_COMP5: TIM4 TI1 is connected to COMP5 output (*)
* @arg TIM_TIM4_TI1_COMP6: TIM4 TI1 is connected to COMP6 output (*)
* @arg TIM_TIM4_TI1_COMP7: TIM4 TI1 is connected to COMP7 output (*)
*
* @arg TIM_TIM4_TI2_GPIO: TIM4 TI2 is connected to GPIO
* @arg TIM_TIM4_TI2_COMP1: TIM4 TI2 is connected to COMP1 output
* @arg TIM_TIM4_TI2_COMP2: TIM4 TI2 is connected to COMP2 output
* @arg TIM_TIM4_TI2_COMP3: TIM4 TI2 is connected to COMP3 output
* @arg TIM_TIM4_TI2_COMP4: TIM4 TI2 is connected to COMP4 output
* @arg TIM_TIM4_TI2_COMP5: TIM4 TI2 is connected to COMP5 output (*)
* @arg TIM_TIM4_TI2_COMP6: TIM4 TI2 is connected to COMP6 output (*)
* @arg TIM_TIM4_TI2_COMP7: TIM4 TI2 is connected to COMP7 output (*)
*
* @arg TIM_TIM4_TI3_GPIO: TIM4 TI3 is connected to GPIO
* @arg TIM_TIM4_TI3_COMP5: TIM4 TI3 is connected to COMP5 output (*)
*
* @arg TIM_TIM4_TI4_GPIO: TIM4 TI4 is connected to GPIO
* @arg TIM_TIM4_TI4_COMP6: TIM4 TI4 is connected to COMP6 output (*)
*
* For TIM5 this parameter can be one of the following values: (**)
* @arg TIM_TIM5_TI1_GPIO: TIM5 TI1 is connected to GPIO
* @arg TIM_TIM5_TI1_LSI: TIM5 TI1 is connected to LSI clock (*)
* @arg TIM_TIM5_TI1_LSE: TIM5 TI1 is connected to LSE clock (*)
* @arg TIM_TIM5_TI1_RTC_WK: TIM5 TI1 is connected to RTC Wakeup (*)
* @arg TIM_TIM5_TI1_COMP1: TIM5 TI1 is connected to COMP1 output (*)
* @arg TIM_TIM5_TI1_COMP2: TIM5 TI1 is connected to COMP2 output (*)
* @arg TIM_TIM5_TI1_COMP3: TIM5 TI1 is connected to COMP3 output (*)
* @arg TIM_TIM5_TI1_COMP4: TIM5 TI1 is connected to COMP4 output (*)
* @arg TIM_TIM5_TI1_COMP5: TIM5 TI1 is connected to COMP5 output (*)
* @arg TIM_TIM5_TI1_COMP6: TIM5 TI1 is connected to COMP6 output (*)
* @arg TIM_TIM5_TI1_COMP7: TIM5 TI1 is connected to COMP7 output (*)
*
* @arg TIM_TIM5_TI2_GPIO: TIM5 TI2 is connected to GPIO
* @arg TIM_TIM5_TI2_COMP1: TIM5 TI2 is connected to COMP1 output
* @arg TIM_TIM5_TI2_COMP2: TIM5 TI2 is connected to COMP2 output
* @arg TIM_TIM5_TI2_COMP3: TIM5 TI2 is connected to COMP3 output
* @arg TIM_TIM5_TI2_COMP4: TIM5 TI2 is connected to COMP4 output
* @arg TIM_TIM5_TI2_COMP5: TIM5 TI2 is connected to COMP5 output (*)
* @arg TIM_TIM5_TI2_COMP6: TIM5 TI2 is connected to COMP6 output (*)
* @arg TIM_TIM5_TI2_COMP7: TIM5 TI2 is connected to COMP7 output (*)
*
* For TIM8 this parameter can be one of the following values:
* @arg TIM_TIM8_TI1_GPIO: TIM8 TI1 is connected to GPIO
* @arg TIM_TIM8_TI1_COMP1: TIM8 TI1 is connected to COMP1 output
* @arg TIM_TIM8_TI1_COMP2: TIM8 TI1 is connected to COMP2 output
* @arg TIM_TIM8_TI1_COMP3: TIM8 TI1 is connected to COMP3 output
* @arg TIM_TIM8_TI1_COMP4: TIM8 TI1 is connected to COMP4 output
*
* For TIM15 this parameter can be one of the following values:
* @arg TIM_TIM15_TI1_GPIO: TIM15 TI1 is connected to GPIO
* @arg TIM_TIM15_TI1_LSE: TIM15 TI1 is connected to LSE clock
* @arg TIM_TIM15_TI1_COMP1: TIM15 TI1 is connected to COMP1 output
* @arg TIM_TIM15_TI1_COMP2: TIM15 TI1 is connected to COMP2 output
* @arg TIM_TIM15_TI1_COMP5: TIM15 TI1 is connected to COMP5 output (*)
* @arg TIM_TIM15_TI1_COMP7: TIM15 TI1 is connected to COMP7 output (*)
*
* @arg TIM_TIM15_TI2_GPIO: TIM15 TI2 is connected to GPIO
* @arg TIM_TIM15_TI2_COMP2: TIM15 TI2 is connected to COMP2 output
* @arg TIM_TIM15_TI2_COMP3: TIM15 TI2 is connected to COMP3 output
* @arg TIM_TIM15_TI2_COMP6: TIM15 TI2 is connected to COMP6 output (*)
* @arg TIM_TIM15_TI2_COMP7: TIM15 TI2 is connected to COMP7 output (*)
*
* For TIM16 this parameter can be one of the following values:
* @arg TIM_TIM16_TI1_GPIO: TIM16 TI1 is connected to GPIO
* @arg TIM_TIM16_TI1_COMP6: TIM16 TI1 is connected to COMP6 output (*)
* @arg TIM_TIM16_TI1_MCO: TIM15 TI1 is connected to MCO output
* @arg TIM_TIM16_TI1_HSE_32: TIM15 TI1 is connected to HSE div 32
* @arg TIM_TIM16_TI1_RTC_WK: TIM15 TI1 is connected to RTC wakeup
* @arg TIM_TIM16_TI1_LSE: TIM15 TI1 is connected to LSE clock
* @arg TIM_TIM16_TI1_LSI: TIM15 TI1 is connected to LSI clock
*
* For TIM17 this parameter can be one of the following values:
* @arg TIM_TIM17_TI1_GPIO: TIM17 TI1 is connected to GPIO
* @arg TIM_TIM17_TI1_COMP5: TIM17 TI1 is connected to COMP5 output (*)
* @arg TIM_TIM17_TI1_MCO: TIM17 TI1 is connected to MCO output
* @arg TIM_TIM17_TI1_HSE_32: TIM17 TI1 is connected to HSE div 32
* @arg TIM_TIM17_TI1_RTC_WK: TIM17 TI1 is connected to RTC wakeup
* @arg TIM_TIM17_TI1_LSE: TIM17 TI1 is connected to LSE clock
* @arg TIM_TIM17_TI1_LSI: TIM17 TI1 is connected to LSI clock
* For TIM20 this parameter can be one of the following values: (**)
* @arg TIM_TIM20_TI1_GPIO: TIM20 TI1 is connected to GPIO
* @arg TIM_TIM20_TI1_COMP1: TIM20 TI1 is connected to COMP1 output (*)
* @arg TIM_TIM20_TI1_COMP2: TIM20 TI1 is connected to COMP2 output (*)
* @arg TIM_TIM20_TI1_COMP3: TIM20 TI1 is connected to COMP3 output (*)
* @arg TIM_TIM20_TI1_COMP4: TIM20 TI1 is connected to COMP4 output (*)
*
* (*) Value not defined in all devices. \n
* (**) Register not available in all devices.
*
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_TISelection(TIM_HandleTypeDef *htim, uint32_t TISelection, uint32_t Channel)
{
HAL_StatusTypeDef status = HAL_OK;
/* Check parameters */
assert_param(IS_TIM_TISEL_TIX_INSTANCE(htim->Instance, Channel));
assert_param(IS_TIM_TISEL(TISelection));
__HAL_LOCK(htim);
switch (Channel)
{
case TIM_CHANNEL_1:
MODIFY_REG(htim->Instance->TISEL, TIM_TISEL_TI1SEL, TISelection);
/* If required, set OR bit to request HSE/32 clock */
if (IS_TIM_HSE32_INSTANCE(htim->Instance))
{
SET_BIT(htim->Instance->OR, TIM_OR_HSE32EN);
}
else
{
CLEAR_BIT(htim->Instance->OR, TIM_OR_HSE32EN);
}
break;
case TIM_CHANNEL_2:
MODIFY_REG(htim->Instance->TISEL, TIM_TISEL_TI2SEL, TISelection);
break;
case TIM_CHANNEL_3:
MODIFY_REG(htim->Instance->TISEL, TIM_TISEL_TI3SEL, TISelection);
break;
case TIM_CHANNEL_4:
MODIFY_REG(htim->Instance->TISEL, TIM_TISEL_TI4SEL, TISelection);
break;
default:
status = HAL_ERROR;
break;
}
__HAL_UNLOCK(htim);
return status;
}
/**
* @brief Group channel 5 and channel 1, 2 or 3
* @param htim TIM handle.
* @param Channels specifies the reference signal(s) the OC5REF is combined with.
* This parameter can be any combination of the following values:
* TIM_GROUPCH5_NONE: No effect of OC5REF on OC1REFC, OC2REFC and OC3REFC
* TIM_GROUPCH5_OC1REFC: OC1REFC is the logical AND of OC1REFC and OC5REF
* TIM_GROUPCH5_OC2REFC: OC2REFC is the logical AND of OC2REFC and OC5REF
* TIM_GROUPCH5_OC3REFC: OC3REFC is the logical AND of OC3REFC and OC5REF
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_GroupChannel5(TIM_HandleTypeDef *htim, uint32_t Channels)
{
/* Check parameters */
assert_param(IS_TIM_COMBINED3PHASEPWM_INSTANCE(htim->Instance));
assert_param(IS_TIM_GROUPCH5(Channels));
/* Process Locked */
__HAL_LOCK(htim);
htim->State = HAL_TIM_STATE_BUSY;
/* Clear GC5Cx bit fields */
htim->Instance->CCR5 &= ~(TIM_CCR5_GC5C3 | TIM_CCR5_GC5C2 | TIM_CCR5_GC5C1);
/* Set GC5Cx bit fields */
htim->Instance->CCR5 |= Channels;
/* Change the htim state */
htim->State = HAL_TIM_STATE_READY;
__HAL_UNLOCK(htim);
return HAL_OK;
}
/**
* @brief Disarm the designated break input (when it operates in bidirectional mode).
* @param htim TIM handle.
* @param BreakInput Break input to disarm
* This parameter can be one of the following values:
* @arg TIM_BREAKINPUT_BRK: Timer break input
* @arg TIM_BREAKINPUT_BRK2: Timer break 2 input
* @note The break input can be disarmed only when it is configured in
* bidirectional mode and when when MOE is reset.
* @note Purpose is to be able to have the input voltage back to high-state,
* whatever the time constant on the output .
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_DisarmBreakInput(TIM_HandleTypeDef *htim, uint32_t BreakInput)
{
uint32_t tmpbdtr;
/* Check the parameters */
assert_param(IS_TIM_ADVANCED_INSTANCE(htim->Instance));
assert_param(IS_TIM_BREAKINPUT(BreakInput));
switch (BreakInput)
{
case TIM_BREAKINPUT_BRK:
{
/* Check initial conditions */
tmpbdtr = READ_REG(htim->Instance->BDTR);
if ((READ_BIT(tmpbdtr, TIM_BDTR_BKBID) == TIM_BDTR_BKBID) &&
(READ_BIT(tmpbdtr, TIM_BDTR_MOE) == 0U))
{
/* Break input BRK is disarmed */
SET_BIT(htim->Instance->BDTR, TIM_BDTR_BKDSRM);
}
break;
}
case TIM_BREAKINPUT_BRK2:
{
/* Check initial conditions */
tmpbdtr = READ_REG(htim->Instance->BDTR);
if ((READ_BIT(tmpbdtr, TIM_BDTR_BK2BID) == TIM_BDTR_BK2BID) &&
(READ_BIT(tmpbdtr, TIM_BDTR_MOE) == 0U))
{
/* Break input BRK is disarmed */
SET_BIT(htim->Instance->BDTR, TIM_BDTR_BK2DSRM);
}
break;
}
default:
break;
}
return HAL_OK;
}
/**
* @brief Arm the designated break input (when it operates in bidirectional mode).
* @param htim TIM handle.
* @param BreakInput Break input to arm
* This parameter can be one of the following values:
* @arg TIM_BREAKINPUT_BRK: Timer break input
* @arg TIM_BREAKINPUT_BRK2: Timer break 2 input
* @note Arming is possible at anytime, even if fault is present.
* @note Break input is automatically armed as soon as MOE bit is set.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_ReArmBreakInput(TIM_HandleTypeDef *htim, uint32_t BreakInput)
{
uint32_t tickstart;
/* Check the parameters */
assert_param(IS_TIM_ADVANCED_INSTANCE(htim->Instance));
assert_param(IS_TIM_BREAKINPUT(BreakInput));
switch (BreakInput)
{
case TIM_BREAKINPUT_BRK:
{
/* Check initial conditions */
if (READ_BIT(htim->Instance->BDTR, TIM_BDTR_BKBID) == TIM_BDTR_BKBID)
{
/* Break input BRK is re-armed automatically by hardware. Poll to check whether fault condition disappeared */
/* Init tickstart for timeout management */
tickstart = HAL_GetTick();
do
{
if (READ_BIT(htim->Instance->BDTR, TIM_BDTR_BKDSRM) != TIM_BDTR_BKDSRM)
{
return HAL_OK;
}
} while ((HAL_GetTick() - tickstart) <= TIM_BREAKINPUT_REARM_TIMEOUT);
return HAL_TIMEOUT;
}
break;
}
case TIM_BREAKINPUT_BRK2:
{
/* Check initial conditions */
if (READ_BIT(htim->Instance->BDTR, TIM_BDTR_BK2BID) == TIM_BDTR_BK2BID)
{
/* Break input BRK2 is re-armed automatically by hardware. Poll to check whether fault condition disappeared */
/* Init tickstart for timeout management */
tickstart = HAL_GetTick();
do
{
if (READ_BIT(htim->Instance->BDTR, TIM_BDTR_BK2DSRM) != TIM_BDTR_BK2DSRM)
{
return HAL_OK;
}
} while ((HAL_GetTick() - tickstart) <= TIM_BREAKINPUT_REARM_TIMEOUT);
return HAL_TIMEOUT;
}
break;
}
default:
break;
}
return HAL_OK;
}
/**
* @brief Enable dithering
* @param htim TIM handle
* @note Main usage is PWM mode
* @note This function must be called when timer is stopped or disabled (CEN =0)
* @note If dithering is activated, pay attention to ARR, CCRx, CNT interpretation:
* - CNT: only CNT[11:0] holds the non-dithered part for 16b timers (or CNT[26:0] for 32b timers)
* - ARR: ARR[15:4] holds the non-dithered part, and ARR[3:0] the dither part for 16b timers
* - CCRx: CCRx[15:4] holds the non-dithered part, and CCRx[3:0] the dither part for 16b timers
* - ARR and CCRx values are limited to 0xFFEF in dithering mode for 16b timers
* (corresponds to 4094 for the integer part and 15 for the dithered part).
* @note Macros @ref __HAL_TIM_CALC_PERIOD_DITHER() __HAL_TIM_CALC_DELAY_DITHER() __HAL_TIM_CALC_PULSE_DITHER()
* can be used to calculate period (ARR) and delay (CCRx) value.
* @note Enabling dithering, modifies automatically values of registers ARR/CCRx to keep the same integer part.
* So it may be necessary to read ARR value or CCRx value with macros @ref __HAL_TIM_GET_AUTORELOAD() __HAL_TIM_GET_COMPARE()
* and if necessary update Init structure field htim->Init.Period .
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_DitheringEnable(TIM_HandleTypeDef *htim)
{
/* Check the parameters */
assert_param(IS_TIM_INSTANCE(htim->Instance));
SET_BIT(htim->Instance->CR1, TIM_CR1_DITHEN);
return HAL_OK;
}
/**
* @brief Disable dithering
* @param htim TIM handle
* @note This function must be called when timer is stopped or disabled (CEN =0)
* @note If dithering is activated, pay attention to ARR, CCRx, CNT interpretation:
* - CNT: only CNT[11:0] holds the non-dithered part for 16b timers (or CNT[26:0] for 32b timers)
* - ARR: ARR[15:4] holds the non-dithered part, and ARR[3:0] the dither part for 16b timers
* - CCRx: CCRx[15:4] holds the non-dithered part, and CCRx[3:0] the dither part for 16b timers
* - ARR and CCRx values are limited to 0xFFEF in dithering mode
* (corresponds to 4094 for the integer part and 15 for the dithered part).
* @note Disabling dithering, modifies automatically values of registers ARR/CCRx to keep the same integer part.
* So it may be necessary to read ARR value or CCRx value with macros @ref __HAL_TIM_GET_AUTORELOAD() __HAL_TIM_GET_COMPARE()
* and if necessary update Init structure field htim->Init.Period .
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_DitheringDisable(TIM_HandleTypeDef *htim)
{
/* Check the parameters */
assert_param(IS_TIM_INSTANCE(htim->Instance));
CLEAR_BIT(htim->Instance->CR1, TIM_CR1_DITHEN);
return HAL_OK;
}
/**
* @brief Initializes the pulse on compare pulse width and pulse prescaler
* @param htim TIM Output Compare handle
* @param PulseWidthPrescaler Pulse width prescaler
* This parameter can be a number between Min_Data = 0x0 and Max_Data = 0x7
* @param PulseWidth Pulse width
* This parameter can be a number between Min_Data = 0x00 and Max_Data = 0xFF
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_OC_ConfigPulseOnCompare(TIM_HandleTypeDef *htim,
uint32_t PulseWidthPrescaler,
uint32_t PulseWidth)
{
uint32_t tmpecr;
/* Check the parameters */
assert_param(IS_TIM_PULSEONCOMPARE_INSTANCE(htim->Instance));
assert_param(IS_TIM_PULSEONCOMPARE_WIDTH(PulseWidth));
assert_param(IS_TIM_PULSEONCOMPARE_WIDTHPRESCALER(PulseWidthPrescaler));
/* Process Locked */
__HAL_LOCK(htim);
/* Set the TIM state */
htim->State = HAL_TIM_STATE_BUSY;
/* Get the TIMx ECR register value */
tmpecr = htim->Instance->ECR;
/* Reset the Pulse width prescaler and the Pulse width */
tmpecr &= ~(TIM_ECR_PWPRSC | TIM_ECR_PW);
/* Set the Pulse width prescaler and Pulse width*/
tmpecr |= PulseWidthPrescaler << TIM_ECR_PWPRSC_Pos;
tmpecr |= PulseWidth << TIM_ECR_PW_Pos;
/* Write to TIMx ECR */
htim->Instance->ECR = tmpecr;
/* Change the TIM state */
htim->State = HAL_TIM_STATE_READY;
/* Release Lock */
__HAL_UNLOCK(htim);
return HAL_OK;
}
/**
* @brief Configure preload source of Slave Mode Selection bitfield (SMS in SMCR register)
* @param htim TIM handle
* @param Source Source of slave mode selection preload
* This parameter can be one of the following values:
* @arg TIM_SMS_PRELOAD_SOURCE_UPDATE: Timer update event is used as source of Slave Mode Selection preload
* @arg TIM_SMS_PRELOAD_SOURCE_INDEX: Timer index event is used as source of Slave Mode Selection preload
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_ConfigSlaveModePreload(TIM_HandleTypeDef *htim, uint32_t Source)
{
/* Check the parameters */
assert_param(IS_TIM_SLAVE_INSTANCE(htim->Instance));
assert_param(IS_TIM_SLAVE_PRELOAD_SOURCE(Source));
MODIFY_REG(htim->Instance->SMCR, TIM_SMCR_SMSPS, Source);
return HAL_OK;
}
/**
* @brief Enable preload of Slave Mode Selection bitfield (SMS in SMCR register)
* @param htim TIM handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_EnableSlaveModePreload(TIM_HandleTypeDef *htim)
{
/* Check the parameters */
assert_param(IS_TIM_SLAVE_INSTANCE(htim->Instance));
SET_BIT(htim->Instance->SMCR, TIM_SMCR_SMSPE);
return HAL_OK;
}
/**
* @brief Disable preload of Slave Mode Selection bitfield (SMS in SMCR register)
* @param htim TIM handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_DisableSlaveModePreload(TIM_HandleTypeDef *htim)
{
/* Check the parameters */
assert_param(IS_TIM_SLAVE_INSTANCE(htim->Instance));
CLEAR_BIT(htim->Instance->SMCR, TIM_SMCR_SMSPE);
return HAL_OK;
}
/**
* @brief Enable deadtime preload
* @param htim TIM handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_EnableDeadTimePreload(TIM_HandleTypeDef *htim)
{
/* Check the parameters */
assert_param(IS_TIM_BREAK_INSTANCE(htim->Instance));
SET_BIT(htim->Instance->DTR2, TIM_DTR2_DTPE);
return HAL_OK;
}
/**
* @brief Disable deadtime preload
* @param htim TIM handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_DisableDeadTimePreload(TIM_HandleTypeDef *htim)
{
/* Check the parameters */
assert_param(IS_TIM_BREAK_INSTANCE(htim->Instance));
CLEAR_BIT(htim->Instance->DTR2, TIM_DTR2_DTPE);
return HAL_OK;
}
/**
* @brief Configure deadtime
* @param htim TIM handle
* @param Deadtime Deadtime value
* @note This parameter can be a number between Min_Data = 0x00 and Max_Data = 0xFF
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_ConfigDeadTime(TIM_HandleTypeDef *htim, uint32_t Deadtime)
{
/* Check the parameters */
assert_param(IS_TIM_BREAK_INSTANCE(htim->Instance));
assert_param(IS_TIM_DEADTIME(Deadtime));
MODIFY_REG(htim->Instance->BDTR, TIM_BDTR_DTG, Deadtime);
return HAL_OK;
}
/**
* @brief Configure asymmetrical deadtime
* @param htim TIM handle
* @param FallingDeadtime Falling edge deadtime value
* @note This parameter can be a number between Min_Data = 0x00 and Max_Data = 0xFF
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_ConfigAsymmetricalDeadTime(TIM_HandleTypeDef *htim, uint32_t FallingDeadtime)
{
/* Check the parameters */
assert_param(IS_TIM_BREAK_INSTANCE(htim->Instance));
assert_param(IS_TIM_DEADTIME(FallingDeadtime));
MODIFY_REG(htim->Instance->DTR2, TIM_DTR2_DTGF, FallingDeadtime);
return HAL_OK;
}
/**
* @brief Enable asymmetrical deadtime
* @param htim TIM handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_EnableAsymmetricalDeadTime(TIM_HandleTypeDef *htim)
{
/* Check the parameters */
assert_param(IS_TIM_BREAK_INSTANCE(htim->Instance));
SET_BIT(htim->Instance->DTR2, TIM_DTR2_DTAE);
return HAL_OK;
}
/**
* @brief Disable asymmetrical deadtime
* @param htim TIM handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_DisableAsymmetricalDeadTime(TIM_HandleTypeDef *htim)
{
/* Check the parameters */
assert_param(IS_TIM_BREAK_INSTANCE(htim->Instance));
CLEAR_BIT(htim->Instance->DTR2, TIM_DTR2_DTAE);
return HAL_OK;
}
/**
* @brief Configures the encoder index.
* @note warning in case of encoder mode clock plus direction
* @ref TIM_ENCODERMODE_CLOCKPLUSDIRECTION_X1 or @ref TIM_ENCODERMODE_CLOCKPLUSDIRECTION_X2
* Direction must be set to @ref TIM_ENCODERINDEX_DIRECTION_UP_DOWN
* @param htim TIM handle.
* @param sEncoderIndexConfig Encoder index configuration
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_ConfigEncoderIndex(TIM_HandleTypeDef *htim,
TIMEx_EncoderIndexConfigTypeDef *sEncoderIndexConfig)
{
/* Check the parameters */
assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
assert_param(IS_TIM_ENCODERINDEX_POLARITY(sEncoderIndexConfig->Polarity));
assert_param(IS_TIM_ENCODERINDEX_PRESCALER(sEncoderIndexConfig->Prescaler));
assert_param(IS_TIM_ENCODERINDEX_FILTER(sEncoderIndexConfig->Filter));
assert_param(IS_FUNCTIONAL_STATE(sEncoderIndexConfig->FirstIndexEnable));
assert_param(IS_TIM_ENCODERINDEX_POSITION(sEncoderIndexConfig->Position));
assert_param(IS_TIM_ENCODERINDEX_DIRECTION(sEncoderIndexConfig->Direction));
/* Process Locked */
__HAL_LOCK(htim);
/* Configures the TIMx External Trigger (ETR) which is used as Index input */
TIM_ETR_SetConfig(htim->Instance,
sEncoderIndexConfig->Prescaler,
sEncoderIndexConfig->Polarity,
sEncoderIndexConfig->Filter);
/* Configures the encoder index */
MODIFY_REG(htim->Instance->ECR,
TIM_ECR_IDIR_Msk | TIM_ECR_FIDX_Msk | TIM_ECR_IPOS_Msk,
(sEncoderIndexConfig->Direction |
((sEncoderIndexConfig->FirstIndexEnable == ENABLE) ? (0x1U << TIM_ECR_FIDX_Pos) : 0U) |
sEncoderIndexConfig->Position |
TIM_ECR_IE));
__HAL_UNLOCK(htim);
return HAL_OK;
}
/**
* @brief Enable encoder index
* @param htim TIM handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_EnableEncoderIndex(TIM_HandleTypeDef *htim)
{
/* Check the parameters */
assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
SET_BIT(htim->Instance->ECR, TIM_ECR_IE);
return HAL_OK;
}
/**
* @brief Disable encoder index
* @param htim TIM handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_DisableEncoderIndex(TIM_HandleTypeDef *htim)
{
/* Check the parameters */
assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
CLEAR_BIT(htim->Instance->ECR, TIM_ECR_IE);
return HAL_OK;
}
/**
* @brief Enable encoder first index
* @param htim TIM handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_EnableEncoderFirstIndex(TIM_HandleTypeDef *htim)
{
/* Check the parameters */
assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
SET_BIT(htim->Instance->ECR, TIM_ECR_FIDX);
return HAL_OK;
}
/**
* @brief Disable encoder first index
* @param htim TIM handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_DisableEncoderFirstIndex(TIM_HandleTypeDef *htim)
{
/* Check the parameters */
assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
CLEAR_BIT(htim->Instance->ECR, TIM_ECR_FIDX);
return HAL_OK;
}
/**
* @}
*/
/** @defgroup TIMEx_Exported_Functions_Group6 Extended Callbacks functions
* @brief Extended Callbacks functions
*
@verbatim
==============================================================================
##### Extended Callbacks functions #####
==============================================================================
[..]
This section provides Extended TIM callback functions:
(+) Timer Commutation callback
(+) Timer Break callback
@endverbatim
* @{
*/
/**
* @brief Hall commutation changed callback in non-blocking mode
* @param htim TIM handle
* @retval None
*/
__weak void HAL_TIMEx_CommutCallback(TIM_HandleTypeDef *htim)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(htim);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_TIMEx_CommutCallback could be implemented in the user file
*/
}
/**
* @brief Hall commutation changed half complete callback in non-blocking mode
* @param htim TIM handle
* @retval None
*/
__weak void HAL_TIMEx_CommutHalfCpltCallback(TIM_HandleTypeDef *htim)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(htim);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_TIMEx_CommutHalfCpltCallback could be implemented in the user file
*/
}
/**
* @brief Hall Break detection callback in non-blocking mode
* @param htim TIM handle
* @retval None
*/
__weak void HAL_TIMEx_BreakCallback(TIM_HandleTypeDef *htim)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(htim);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_TIMEx_BreakCallback could be implemented in the user file
*/
}
/**
* @brief Hall Break2 detection callback in non blocking mode
* @param htim: TIM handle
* @retval None
*/
__weak void HAL_TIMEx_Break2Callback(TIM_HandleTypeDef *htim)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(htim);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_TIMEx_Break2Callback could be implemented in the user file
*/
}
/**
* @brief Encoder index callback in non-blocking mode
* @param htim TIM handle
* @retval None
*/
__weak void HAL_TIMEx_EncoderIndexCallback(TIM_HandleTypeDef *htim)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(htim);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_TIMEx_EncoderIndexCallback could be implemented in the user file
*/
}
/**
* @brief Direction change callback in non-blocking mode
* @param htim TIM handle
* @retval None
*/
__weak void HAL_TIMEx_DirectionChangeCallback(TIM_HandleTypeDef *htim)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(htim);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_TIMEx_DirectionChangeCallback could be implemented in the user file
*/
}
/**
* @brief Index error callback in non-blocking mode
* @param htim TIM handle
* @retval None
*/
__weak void HAL_TIMEx_IndexErrorCallback(TIM_HandleTypeDef *htim)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(htim);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_TIMEx_IndexErrorCallback could be implemented in the user file
*/
}
/**
* @brief Transition error callback in non-blocking mode
* @param htim TIM handle
* @retval None
*/
__weak void HAL_TIMEx_TransitionErrorCallback(TIM_HandleTypeDef *htim)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(htim);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_TIMEx_TransitionErrorCallback could be implemented in the user file
*/
}
/**
* @}
*/
/** @defgroup TIMEx_Exported_Functions_Group7 Extended Peripheral State functions
* @brief Extended Peripheral State functions
*
@verbatim
==============================================================================
##### Extended Peripheral State functions #####
==============================================================================
[..]
This subsection permits to get in run-time the status of the peripheral
and the data flow.
@endverbatim
* @{
*/
/**
* @brief Return the TIM Hall Sensor interface handle state.
* @param htim TIM Hall Sensor handle
* @retval HAL state
*/
HAL_TIM_StateTypeDef HAL_TIMEx_HallSensor_GetState(TIM_HandleTypeDef *htim)
{
return htim->State;
}
/**
* @brief Return actual state of the TIM complementary channel.
* @param htim TIM handle
* @param ChannelN TIM Complementary channel
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1
* @arg TIM_CHANNEL_2: TIM Channel 2
* @arg TIM_CHANNEL_3: TIM Channel 3
* @arg TIM_CHANNEL_4: TIM Channel 4
* @retval TIM Complementary channel state
*/
HAL_TIM_ChannelStateTypeDef HAL_TIMEx_GetChannelNState(TIM_HandleTypeDef *htim, uint32_t ChannelN)
{
HAL_TIM_ChannelStateTypeDef channel_state;
/* Check the parameters */
assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, ChannelN));
channel_state = TIM_CHANNEL_N_STATE_GET(htim, ChannelN);
return channel_state;
}
/**
* @}
*/
/**
* @}
*/
/* Private functions ---------------------------------------------------------*/
/** @defgroup TIMEx_Private_Functions TIMEx Private Functions
* @{
*/
/**
* @brief TIM DMA Commutation callback.
* @param hdma pointer to DMA handle.
* @retval None
*/
void TIMEx_DMACommutationCplt(DMA_HandleTypeDef *hdma)
{
TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
/* Change the htim state */
htim->State = HAL_TIM_STATE_READY;
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
htim->CommutationCallback(htim);
#else
HAL_TIMEx_CommutCallback(htim);
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
}
/**
* @brief TIM DMA Commutation half complete callback.
* @param hdma pointer to DMA handle.
* @retval None
*/
void TIMEx_DMACommutationHalfCplt(DMA_HandleTypeDef *hdma)
{
TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
/* Change the htim state */
htim->State = HAL_TIM_STATE_READY;
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
htim->CommutationHalfCpltCallback(htim);
#else
HAL_TIMEx_CommutHalfCpltCallback(htim);
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
}
/**
* @brief TIM DMA Delay Pulse complete callback (complementary channel).
* @param hdma pointer to DMA handle.
* @retval None
*/
static void TIM_DMADelayPulseNCplt(DMA_HandleTypeDef *hdma)
{
TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
if (hdma == htim->hdma[TIM_DMA_ID_CC1])
{
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
if (hdma->Init.Mode == DMA_NORMAL)
{
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
}
}
else if (hdma == htim->hdma[TIM_DMA_ID_CC2])
{
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
if (hdma->Init.Mode == DMA_NORMAL)
{
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
}
}
else if (hdma == htim->hdma[TIM_DMA_ID_CC3])
{
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
if (hdma->Init.Mode == DMA_NORMAL)
{
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY);
}
}
else if (hdma == htim->hdma[TIM_DMA_ID_CC4])
{
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
if (hdma->Init.Mode == DMA_NORMAL)
{
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY);
}
}
else
{
/* nothing to do */
}
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
htim->PWM_PulseFinishedCallback(htim);
#else
HAL_TIM_PWM_PulseFinishedCallback(htim);
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
}
/**
* @brief TIM DMA error callback (complementary channel)
* @param hdma pointer to DMA handle.
* @retval None
*/
static void TIM_DMAErrorCCxN(DMA_HandleTypeDef *hdma)
{
TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
if (hdma == htim->hdma[TIM_DMA_ID_CC1])
{
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
}
else if (hdma == htim->hdma[TIM_DMA_ID_CC2])
{
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
}
else if (hdma == htim->hdma[TIM_DMA_ID_CC3])
{
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY);
}
else
{
/* nothing to do */
}
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
htim->ErrorCallback(htim);
#else
HAL_TIM_ErrorCallback(htim);
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
}
/**
* @brief Enables or disables the TIM Capture Compare Channel xN.
* @param TIMx to select the TIM peripheral
* @param Channel specifies the TIM Channel
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1
* @arg TIM_CHANNEL_2: TIM Channel 2
* @arg TIM_CHANNEL_3: TIM Channel 3
* @arg TIM_CHANNEL_4: TIM Channel 4
* @param ChannelNState specifies the TIM Channel CCxNE bit new state.
* This parameter can be: TIM_CCxN_ENABLE or TIM_CCxN_Disable.
* @retval None
*/
static void TIM_CCxNChannelCmd(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ChannelNState)
{
uint32_t tmp;
tmp = TIM_CCER_CC1NE << (Channel & 0x1FU); /* 0x1FU = 31 bits max shift */
/* Reset the CCxNE Bit */
TIMx->CCER &= ~tmp;
/* Set or reset the CCxNE Bit */
TIMx->CCER |= (uint32_t)(ChannelNState << (Channel & 0x1FU)); /* 0x1FU = 31 bits max shift */
}
/**
* @}
*/
#endif /* HAL_TIM_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/