| /** |
| ****************************************************************************** |
| * @file stm32g4xx_hal_tim.c |
| * @author MCD Application Team |
| * @brief TIM HAL module driver. |
| * This file provides firmware functions to manage the following |
| * functionalities of the Timer (TIM) peripheral: |
| * + TIM Time Base Initialization |
| * + TIM Time Base Start |
| * + TIM Time Base Start Interruption |
| * + TIM Time Base Start DMA |
| * + TIM Output Compare/PWM Initialization |
| * + TIM Output Compare/PWM Channel Configuration |
| * + TIM Output Compare/PWM Start |
| * + TIM Output Compare/PWM Start Interruption |
| * + TIM Output Compare/PWM Start DMA |
| * + TIM Input Capture Initialization |
| * + TIM Input Capture Channel Configuration |
| * + TIM Input Capture Start |
| * + TIM Input Capture Start Interruption |
| * + TIM Input Capture Start DMA |
| * + TIM One Pulse Initialization |
| * + TIM One Pulse Channel Configuration |
| * + TIM One Pulse Start |
| * + TIM Encoder Interface Initialization |
| * + TIM Encoder Interface Start |
| * + TIM Encoder Interface Start Interruption |
| * + TIM Encoder Interface Start DMA |
| * + Commutation Event configuration with Interruption and DMA |
| * + TIM OCRef clear configuration |
| * + TIM External Clock configuration |
| @verbatim |
| ============================================================================== |
| ##### TIMER Generic features ##### |
| ============================================================================== |
| [..] The Timer features include: |
| (#) 16-bit up, down, up/down auto-reload counter. |
| (#) 16-bit programmable prescaler allowing dividing (also on the fly) the |
| counter clock frequency either by any factor between 1 and 65536. |
| (#) Up to 4 independent channels for: |
| (++) Input Capture |
| (++) Output Compare |
| (++) PWM generation (Edge and Center-aligned Mode) |
| (++) One-pulse mode output |
| (#) Synchronization circuit to control the timer with external signals and to interconnect |
| several timers together. |
| (#) Supports incremental encoder for positioning purposes |
| |
| ##### How to use this driver ##### |
| ============================================================================== |
| [..] |
| (#) Initialize the TIM low level resources by implementing the following functions |
| depending on the selected feature: |
| (++) Time Base : HAL_TIM_Base_MspInit() |
| (++) Input Capture : HAL_TIM_IC_MspInit() |
| (++) Output Compare : HAL_TIM_OC_MspInit() |
| (++) PWM generation : HAL_TIM_PWM_MspInit() |
| (++) One-pulse mode output : HAL_TIM_OnePulse_MspInit() |
| (++) Encoder mode output : HAL_TIM_Encoder_MspInit() |
| |
| (#) Initialize the TIM low level resources : |
| (##) Enable the TIM interface clock using __HAL_RCC_TIMx_CLK_ENABLE(); |
| (##) TIM pins configuration |
| (+++) Enable the clock for the TIM GPIOs using the following function: |
| __HAL_RCC_GPIOx_CLK_ENABLE(); |
| (+++) Configure these TIM pins in Alternate function mode using HAL_GPIO_Init(); |
| |
| (#) The external Clock can be configured, if needed (the default clock is the |
| internal clock from the APBx), using the following function: |
| HAL_TIM_ConfigClockSource, the clock configuration should be done before |
| any start function. |
| |
| (#) Configure the TIM in the desired functioning mode using one of the |
| Initialization function of this driver: |
| (++) HAL_TIM_Base_Init: to use the Timer to generate a simple time base |
| (++) HAL_TIM_OC_Init, HAL_TIM_OC_ConfigChannel and optionally HAL_TIMEx_OC_ConfigPulseOnCompare: |
| to use the Timer to generate an Output Compare signal. |
| (++) HAL_TIM_PWM_Init and HAL_TIM_PWM_ConfigChannel: to use the Timer to generate a |
| PWM signal. |
| (++) HAL_TIM_IC_Init and HAL_TIM_IC_ConfigChannel: to use the Timer to measure an |
| external signal. |
| (++) HAL_TIM_OnePulse_Init and HAL_TIM_OnePulse_ConfigChannel: to use the Timer |
| in One Pulse Mode. |
| (++) HAL_TIM_Encoder_Init: to use the Timer Encoder Interface. |
| |
| (#) Activate the TIM peripheral using one of the start functions depending from the feature used: |
| (++) Time Base : HAL_TIM_Base_Start(), HAL_TIM_Base_Start_DMA(), HAL_TIM_Base_Start_IT() |
| (++) Input Capture : HAL_TIM_IC_Start(), HAL_TIM_IC_Start_DMA(), HAL_TIM_IC_Start_IT() |
| (++) Output Compare : HAL_TIM_OC_Start(), HAL_TIM_OC_Start_DMA(), HAL_TIM_OC_Start_IT() |
| (++) PWM generation : HAL_TIM_PWM_Start(), HAL_TIM_PWM_Start_DMA(), HAL_TIM_PWM_Start_IT() |
| (++) One-pulse mode output : HAL_TIM_OnePulse_Start(), HAL_TIM_OnePulse_Start_IT() |
| (++) Encoder mode output : HAL_TIM_Encoder_Start(), HAL_TIM_Encoder_Start_DMA(), HAL_TIM_Encoder_Start_IT(). |
| |
| (#) The DMA Burst is managed with the two following functions: |
| HAL_TIM_DMABurst_WriteStart() |
| HAL_TIM_DMABurst_ReadStart() |
| |
| *** Callback registration *** |
| ============================================= |
| |
| [..] |
| The compilation define USE_HAL_TIM_REGISTER_CALLBACKS when set to 1 |
| allows the user to configure dynamically the driver callbacks. |
| |
| [..] |
| Use Function @ref HAL_TIM_RegisterCallback() to register a callback. |
| @ref HAL_TIM_RegisterCallback() takes as parameters the HAL peripheral handle, |
| the Callback ID and a pointer to the user callback function. |
| |
| [..] |
| Use function @ref HAL_TIM_UnRegisterCallback() to reset a callback to the default |
| weak function. |
| @ref HAL_TIM_UnRegisterCallback takes as parameters the HAL peripheral handle, |
| and the Callback ID. |
| |
| [..] |
| These functions allow to register/unregister following callbacks: |
| (+) Base_MspInitCallback : TIM Base Msp Init Callback. |
| (+) Base_MspDeInitCallback : TIM Base Msp DeInit Callback. |
| (+) IC_MspInitCallback : TIM IC Msp Init Callback. |
| (+) IC_MspDeInitCallback : TIM IC Msp DeInit Callback. |
| (+) OC_MspInitCallback : TIM OC Msp Init Callback. |
| (+) OC_MspDeInitCallback : TIM OC Msp DeInit Callback. |
| (+) PWM_MspInitCallback : TIM PWM Msp Init Callback. |
| (+) PWM_MspDeInitCallback : TIM PWM Msp DeInit Callback. |
| (+) OnePulse_MspInitCallback : TIM One Pulse Msp Init Callback. |
| (+) OnePulse_MspDeInitCallback : TIM One Pulse Msp DeInit Callback. |
| (+) Encoder_MspInitCallback : TIM Encoder Msp Init Callback. |
| (+) Encoder_MspDeInitCallback : TIM Encoder Msp DeInit Callback. |
| (+) HallSensor_MspInitCallback : TIM Hall Sensor Msp Init Callback. |
| (+) HallSensor_MspDeInitCallback : TIM Hall Sensor Msp DeInit Callback. |
| (+) PeriodElapsedCallback : TIM Period Elapsed Callback. |
| (+) PeriodElapsedHalfCpltCallback : TIM Period Elapsed half complete Callback. |
| (+) TriggerCallback : TIM Trigger Callback. |
| (+) TriggerHalfCpltCallback : TIM Trigger half complete Callback. |
| (+) IC_CaptureCallback : TIM Input Capture Callback. |
| (+) IC_CaptureHalfCpltCallback : TIM Input Capture half complete Callback. |
| (+) OC_DelayElapsedCallback : TIM Output Compare Delay Elapsed Callback. |
| (+) PWM_PulseFinishedCallback : TIM PWM Pulse Finished Callback. |
| (+) PWM_PulseFinishedHalfCpltCallback : TIM PWM Pulse Finished half complete Callback. |
| (+) ErrorCallback : TIM Error Callback. |
| (+) CommutationCallback : TIM Commutation Callback. |
| (+) CommutationHalfCpltCallback : TIM Commutation half complete Callback. |
| (+) BreakCallback : TIM Break Callback. |
| (+) Break2Callback : TIM Break2 Callback. |
| (+) EncoderIndexCallback : TIM Encoder Index Callback. |
| (+) DirectionChangeCallback : TIM Direction Change Callback |
| (+) IndexErrorCallback : TIM Index Error Callback. |
| (+) TransitionErrorCallback : TIM Transition Error Callback |
| |
| [..] |
| By default, after the Init and when the state is HAL_TIM_STATE_RESET |
| all interrupt callbacks are set to the corresponding weak functions: |
| examples @ref HAL_TIM_TriggerCallback(), @ref HAL_TIM_ErrorCallback(). |
| |
| [..] |
| Exception done for MspInit and MspDeInit functions that are reset to the legacy weak |
| functionalities in the Init / DeInit only when these callbacks are null |
| (not registered beforehand). If not, MspInit or MspDeInit are not null, the Init / DeInit |
| keep and use the user MspInit / MspDeInit callbacks(registered beforehand) |
| |
| [..] |
| Callbacks can be registered / unregistered in HAL_TIM_STATE_READY state only. |
| Exception done MspInit / MspDeInit that can be registered / unregistered |
| in HAL_TIM_STATE_READY or HAL_TIM_STATE_RESET state, |
| thus registered(user) MspInit / DeInit callbacks can be used during the Init / DeInit. |
| In that case first register the MspInit/MspDeInit user callbacks |
| using @ref HAL_TIM_RegisterCallback() before calling DeInit or Init function. |
| |
| [..] |
| When The compilation define USE_HAL_TIM_REGISTER_CALLBACKS is set to 0 or |
| not defined, the callback registration feature is not available and all callbacks |
| are set to the corresponding weak functions. |
| |
| @endverbatim |
| ****************************************************************************** |
| * @attention |
| * |
| * <h2><center>© Copyright (c) 2019 STMicroelectronics. |
| * All rights reserved.</center></h2> |
| * |
| * This software component is licensed by ST under BSD 3-Clause license, |
| * the "License"; You may not use this file except in compliance with the |
| * License. You may obtain a copy of the License at: |
| * opensource.org/licenses/BSD-3-Clause |
| * |
| ****************************************************************************** |
| */ |
| |
| /* Includes ------------------------------------------------------------------*/ |
| #include "stm32g4xx_hal.h" |
| |
| /** @addtogroup STM32G4xx_HAL_Driver |
| * @{ |
| */ |
| |
| /** @defgroup TIM TIM |
| * @brief TIM HAL module driver |
| * @{ |
| */ |
| |
| #ifdef HAL_TIM_MODULE_ENABLED |
| |
| /* Private typedef -----------------------------------------------------------*/ |
| /* Private define ------------------------------------------------------------*/ |
| #define TIMx_AF2_OCRSEL TIM1_AF2_OCRSEL |
| |
| /* Private macros ------------------------------------------------------------*/ |
| /* Private variables ---------------------------------------------------------*/ |
| /* Private function prototypes -----------------------------------------------*/ |
| /** @addtogroup TIM_Private_Functions |
| * @{ |
| */ |
| static void TIM_OC1_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config); |
| static void TIM_OC3_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config); |
| static void TIM_OC4_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config); |
| static void TIM_OC5_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config); |
| static void TIM_OC6_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config); |
| static void TIM_TI1_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter); |
| static void TIM_TI2_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, |
| uint32_t TIM_ICFilter); |
| static void TIM_TI2_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter); |
| static void TIM_TI3_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, |
| uint32_t TIM_ICFilter); |
| static void TIM_TI4_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, |
| uint32_t TIM_ICFilter); |
| static void TIM_ITRx_SetConfig(TIM_TypeDef *TIMx, uint32_t InputTriggerSource); |
| static void TIM_DMAPeriodElapsedCplt(DMA_HandleTypeDef *hdma); |
| static void TIM_DMAPeriodElapsedHalfCplt(DMA_HandleTypeDef *hdma); |
| static void TIM_DMADelayPulseCplt(DMA_HandleTypeDef *hdma); |
| static void TIM_DMATriggerCplt(DMA_HandleTypeDef *hdma); |
| static void TIM_DMATriggerHalfCplt(DMA_HandleTypeDef *hdma); |
| static HAL_StatusTypeDef TIM_SlaveTimer_SetConfig(TIM_HandleTypeDef *htim, |
| TIM_SlaveConfigTypeDef *sSlaveConfig); |
| /** |
| * @} |
| */ |
| /* Exported functions --------------------------------------------------------*/ |
| |
| /** @defgroup TIM_Exported_Functions TIM Exported Functions |
| * @{ |
| */ |
| |
| /** @defgroup TIM_Exported_Functions_Group1 TIM Time Base functions |
| * @brief Time Base functions |
| * |
| @verbatim |
| ============================================================================== |
| ##### Time Base functions ##### |
| ============================================================================== |
| [..] |
| This section provides functions allowing to: |
| (+) Initialize and configure the TIM base. |
| (+) De-initialize the TIM base. |
| (+) Start the Time Base. |
| (+) Stop the Time Base. |
| (+) Start the Time Base and enable interrupt. |
| (+) Stop the Time Base and disable interrupt. |
| (+) Start the Time Base and enable DMA transfer. |
| (+) Stop the Time Base and disable DMA transfer. |
| |
| @endverbatim |
| * @{ |
| */ |
| /** |
| * @brief Initializes the TIM Time base Unit according to the specified |
| * parameters in the TIM_HandleTypeDef and initialize the associated handle. |
| * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse) |
| * requires a timer reset to avoid unexpected direction |
| * due to DIR bit readonly in center aligned mode. |
| * Ex: call @ref HAL_TIM_Base_DeInit() before HAL_TIM_Base_Init() |
| * @param htim TIM Base handle |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_TIM_Base_Init(TIM_HandleTypeDef *htim) |
| { |
| /* Check the TIM handle allocation */ |
| if (htim == NULL) |
| { |
| return HAL_ERROR; |
| } |
| |
| /* Check the parameters */ |
| assert_param(IS_TIM_INSTANCE(htim->Instance)); |
| assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode)); |
| assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); |
| assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload)); |
| |
| if (htim->State == HAL_TIM_STATE_RESET) |
| { |
| /* Allocate lock resource and initialize it */ |
| htim->Lock = HAL_UNLOCKED; |
| |
| #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
| /* Reset interrupt callbacks to legacy weak callbacks */ |
| TIM_ResetCallback(htim); |
| |
| if (htim->Base_MspInitCallback == NULL) |
| { |
| htim->Base_MspInitCallback = HAL_TIM_Base_MspInit; |
| } |
| /* Init the low level hardware : GPIO, CLOCK, NVIC */ |
| htim->Base_MspInitCallback(htim); |
| #else |
| /* Init the low level hardware : GPIO, CLOCK, NVIC */ |
| HAL_TIM_Base_MspInit(htim); |
| #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
| } |
| |
| /* Set the TIM state */ |
| htim->State = HAL_TIM_STATE_BUSY; |
| |
| /* Set the Time Base configuration */ |
| TIM_Base_SetConfig(htim->Instance, &htim->Init); |
| |
| /* Initialize the DMA burst operation state */ |
| htim->DMABurstState = HAL_DMA_BURST_STATE_READY; |
| |
| /* Initialize the TIM channels state */ |
| TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY); |
| TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY); |
| |
| /* Initialize the TIM state*/ |
| htim->State = HAL_TIM_STATE_READY; |
| |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief DeInitializes the TIM Base peripheral |
| * @param htim TIM Base handle |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_TIM_Base_DeInit(TIM_HandleTypeDef *htim) |
| { |
| /* Check the parameters */ |
| assert_param(IS_TIM_INSTANCE(htim->Instance)); |
| |
| htim->State = HAL_TIM_STATE_BUSY; |
| |
| /* Disable the TIM Peripheral Clock */ |
| __HAL_TIM_DISABLE(htim); |
| |
| #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
| if (htim->Base_MspDeInitCallback == NULL) |
| { |
| htim->Base_MspDeInitCallback = HAL_TIM_Base_MspDeInit; |
| } |
| /* DeInit the low level hardware */ |
| htim->Base_MspDeInitCallback(htim); |
| #else |
| /* DeInit the low level hardware: GPIO, CLOCK, NVIC */ |
| HAL_TIM_Base_MspDeInit(htim); |
| #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
| |
| /* Change the DMA burst operation state */ |
| htim->DMABurstState = HAL_DMA_BURST_STATE_RESET; |
| |
| /* Change the TIM channels state */ |
| TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET); |
| TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET); |
| |
| /* Change TIM state */ |
| htim->State = HAL_TIM_STATE_RESET; |
| |
| /* Release Lock */ |
| __HAL_UNLOCK(htim); |
| |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Initializes the TIM Base MSP. |
| * @param htim TIM Base handle |
| * @retval None |
| */ |
| __weak void HAL_TIM_Base_MspInit(TIM_HandleTypeDef *htim) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(htim); |
| |
| /* NOTE : This function should not be modified, when the callback is needed, |
| the HAL_TIM_Base_MspInit could be implemented in the user file |
| */ |
| } |
| |
| /** |
| * @brief DeInitializes TIM Base MSP. |
| * @param htim TIM Base handle |
| * @retval None |
| */ |
| __weak void HAL_TIM_Base_MspDeInit(TIM_HandleTypeDef *htim) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(htim); |
| |
| /* NOTE : This function should not be modified, when the callback is needed, |
| the HAL_TIM_Base_MspDeInit could be implemented in the user file |
| */ |
| } |
| |
| |
| /** |
| * @brief Starts the TIM Base generation. |
| * @param htim TIM Base handle |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_TIM_Base_Start(TIM_HandleTypeDef *htim) |
| { |
| uint32_t tmpsmcr; |
| |
| /* Check the parameters */ |
| assert_param(IS_TIM_INSTANCE(htim->Instance)); |
| |
| /* Check the TIM state */ |
| if (htim->State != HAL_TIM_STATE_READY) |
| { |
| return HAL_ERROR; |
| } |
| |
| /* Set the TIM state */ |
| htim->State = HAL_TIM_STATE_BUSY; |
| |
| /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
| tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
| if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
| { |
| __HAL_TIM_ENABLE(htim); |
| } |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Stops the TIM Base generation. |
| * @param htim TIM Base handle |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_TIM_Base_Stop(TIM_HandleTypeDef *htim) |
| { |
| /* Check the parameters */ |
| assert_param(IS_TIM_INSTANCE(htim->Instance)); |
| |
| /* Disable the Peripheral */ |
| __HAL_TIM_DISABLE(htim); |
| |
| /* Set the TIM state */ |
| htim->State = HAL_TIM_STATE_READY; |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Starts the TIM Base generation in interrupt mode. |
| * @param htim TIM Base handle |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_TIM_Base_Start_IT(TIM_HandleTypeDef *htim) |
| { |
| uint32_t tmpsmcr; |
| |
| /* Check the parameters */ |
| assert_param(IS_TIM_INSTANCE(htim->Instance)); |
| |
| /* Check the TIM state */ |
| if (htim->State != HAL_TIM_STATE_READY) |
| { |
| return HAL_ERROR; |
| } |
| |
| /* Set the TIM state */ |
| htim->State = HAL_TIM_STATE_BUSY; |
| |
| /* Enable the TIM Update interrupt */ |
| __HAL_TIM_ENABLE_IT(htim, TIM_IT_UPDATE); |
| |
| /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
| tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
| if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
| { |
| __HAL_TIM_ENABLE(htim); |
| } |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Stops the TIM Base generation in interrupt mode. |
| * @param htim TIM Base handle |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_TIM_Base_Stop_IT(TIM_HandleTypeDef *htim) |
| { |
| /* Check the parameters */ |
| assert_param(IS_TIM_INSTANCE(htim->Instance)); |
| |
| /* Disable the TIM Update interrupt */ |
| __HAL_TIM_DISABLE_IT(htim, TIM_IT_UPDATE); |
| |
| /* Disable the Peripheral */ |
| __HAL_TIM_DISABLE(htim); |
| |
| /* Set the TIM state */ |
| htim->State = HAL_TIM_STATE_READY; |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Starts the TIM Base generation in DMA mode. |
| * @param htim TIM Base handle |
| * @param pData The source Buffer address. |
| * @param Length The length of data to be transferred from memory to peripheral. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_TIM_Base_Start_DMA(TIM_HandleTypeDef *htim, uint32_t *pData, uint16_t Length) |
| { |
| uint32_t tmpsmcr; |
| |
| /* Check the parameters */ |
| assert_param(IS_TIM_DMA_INSTANCE(htim->Instance)); |
| |
| /* Set the TIM state */ |
| if (htim->State == HAL_TIM_STATE_BUSY) |
| { |
| return HAL_BUSY; |
| } |
| else if (htim->State == HAL_TIM_STATE_READY) |
| { |
| if ((pData == NULL) && (Length > 0U)) |
| { |
| return HAL_ERROR; |
| } |
| else |
| { |
| htim->State = HAL_TIM_STATE_BUSY; |
| } |
| } |
| else |
| { |
| return HAL_ERROR; |
| } |
| |
| /* Set the DMA Period elapsed callbacks */ |
| htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt; |
| htim->hdma[TIM_DMA_ID_UPDATE]->XferHalfCpltCallback = TIM_DMAPeriodElapsedHalfCplt; |
| |
| /* Set the DMA error callback */ |
| htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = TIM_DMAError ; |
| |
| /* Enable the DMA channel */ |
| if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)pData, (uint32_t)&htim->Instance->ARR, Length) != HAL_OK) |
| { |
| return HAL_ERROR; |
| } |
| |
| /* Enable the TIM Update DMA request */ |
| __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_UPDATE); |
| |
| /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
| tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
| if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
| { |
| __HAL_TIM_ENABLE(htim); |
| } |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Stops the TIM Base generation in DMA mode. |
| * @param htim TIM Base handle |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_TIM_Base_Stop_DMA(TIM_HandleTypeDef *htim) |
| { |
| /* Check the parameters */ |
| assert_param(IS_TIM_DMA_INSTANCE(htim->Instance)); |
| |
| /* Disable the TIM Update DMA request */ |
| __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_UPDATE); |
| |
| (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_UPDATE]); |
| |
| /* Disable the Peripheral */ |
| __HAL_TIM_DISABLE(htim); |
| |
| /* Set the TIM state */ |
| htim->State = HAL_TIM_STATE_READY; |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| |
| /** |
| * @} |
| */ |
| |
| /** @defgroup TIM_Exported_Functions_Group2 TIM Output Compare functions |
| * @brief TIM Output Compare functions |
| * |
| @verbatim |
| ============================================================================== |
| ##### TIM Output Compare functions ##### |
| ============================================================================== |
| [..] |
| This section provides functions allowing to: |
| (+) Initialize and configure the TIM Output Compare. |
| (+) De-initialize the TIM Output Compare. |
| (+) Start the TIM Output Compare. |
| (+) Stop the TIM Output Compare. |
| (+) Start the TIM Output Compare and enable interrupt. |
| (+) Stop the TIM Output Compare and disable interrupt. |
| (+) Start the TIM Output Compare and enable DMA transfer. |
| (+) Stop the TIM Output Compare and disable DMA transfer. |
| |
| @endverbatim |
| * @{ |
| */ |
| /** |
| * @brief Initializes the TIM Output Compare according to the specified |
| * parameters in the TIM_HandleTypeDef and initializes the associated handle. |
| * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse) |
| * requires a timer reset to avoid unexpected direction |
| * due to DIR bit readonly in center aligned mode. |
| * Ex: call @ref HAL_TIM_OC_DeInit() before HAL_TIM_OC_Init() |
| * @param htim TIM Output Compare handle |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_TIM_OC_Init(TIM_HandleTypeDef *htim) |
| { |
| /* Check the TIM handle allocation */ |
| if (htim == NULL) |
| { |
| return HAL_ERROR; |
| } |
| |
| /* Check the parameters */ |
| assert_param(IS_TIM_INSTANCE(htim->Instance)); |
| assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode)); |
| assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); |
| assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload)); |
| |
| if (htim->State == HAL_TIM_STATE_RESET) |
| { |
| /* Allocate lock resource and initialize it */ |
| htim->Lock = HAL_UNLOCKED; |
| |
| #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
| /* Reset interrupt callbacks to legacy weak callbacks */ |
| TIM_ResetCallback(htim); |
| |
| if (htim->OC_MspInitCallback == NULL) |
| { |
| htim->OC_MspInitCallback = HAL_TIM_OC_MspInit; |
| } |
| /* Init the low level hardware : GPIO, CLOCK, NVIC */ |
| htim->OC_MspInitCallback(htim); |
| #else |
| /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */ |
| HAL_TIM_OC_MspInit(htim); |
| #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
| } |
| |
| /* Set the TIM state */ |
| htim->State = HAL_TIM_STATE_BUSY; |
| |
| /* Init the base time for the Output Compare */ |
| TIM_Base_SetConfig(htim->Instance, &htim->Init); |
| |
| /* Initialize the DMA burst operation state */ |
| htim->DMABurstState = HAL_DMA_BURST_STATE_READY; |
| |
| /* Initialize the TIM channels state */ |
| TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY); |
| TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY); |
| |
| /* Initialize the TIM state*/ |
| htim->State = HAL_TIM_STATE_READY; |
| |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief DeInitializes the TIM peripheral |
| * @param htim TIM Output Compare handle |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_TIM_OC_DeInit(TIM_HandleTypeDef *htim) |
| { |
| /* Check the parameters */ |
| assert_param(IS_TIM_INSTANCE(htim->Instance)); |
| |
| htim->State = HAL_TIM_STATE_BUSY; |
| |
| /* Disable the TIM Peripheral Clock */ |
| __HAL_TIM_DISABLE(htim); |
| |
| #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
| if (htim->OC_MspDeInitCallback == NULL) |
| { |
| htim->OC_MspDeInitCallback = HAL_TIM_OC_MspDeInit; |
| } |
| /* DeInit the low level hardware */ |
| htim->OC_MspDeInitCallback(htim); |
| #else |
| /* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */ |
| HAL_TIM_OC_MspDeInit(htim); |
| #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
| |
| /* Change the DMA burst operation state */ |
| htim->DMABurstState = HAL_DMA_BURST_STATE_RESET; |
| |
| /* Change the TIM channels state */ |
| TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET); |
| TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET); |
| |
| /* Change TIM state */ |
| htim->State = HAL_TIM_STATE_RESET; |
| |
| /* Release Lock */ |
| __HAL_UNLOCK(htim); |
| |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Initializes the TIM Output Compare MSP. |
| * @param htim TIM Output Compare handle |
| * @retval None |
| */ |
| __weak void HAL_TIM_OC_MspInit(TIM_HandleTypeDef *htim) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(htim); |
| |
| /* NOTE : This function should not be modified, when the callback is needed, |
| the HAL_TIM_OC_MspInit could be implemented in the user file |
| */ |
| } |
| |
| /** |
| * @brief DeInitializes TIM Output Compare MSP. |
| * @param htim TIM Output Compare handle |
| * @retval None |
| */ |
| __weak void HAL_TIM_OC_MspDeInit(TIM_HandleTypeDef *htim) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(htim); |
| |
| /* NOTE : This function should not be modified, when the callback is needed, |
| the HAL_TIM_OC_MspDeInit could be implemented in the user file |
| */ |
| } |
| |
| /** |
| * @brief Starts the TIM Output Compare signal generation. |
| * @param htim TIM Output Compare handle |
| * @param Channel TIM Channel to be enabled |
| * This parameter can be one of the following values: |
| * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
| * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
| * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
| * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
| * @arg TIM_CHANNEL_5: TIM Channel 5 selected |
| * @arg TIM_CHANNEL_6: TIM Channel 6 selected |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_TIM_OC_Start(TIM_HandleTypeDef *htim, uint32_t Channel) |
| { |
| uint32_t tmpsmcr; |
| |
| /* Check the parameters */ |
| assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
| |
| /* Check the TIM channel state */ |
| if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY) |
| { |
| return HAL_ERROR; |
| } |
| |
| /* Set the TIM channel state */ |
| TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); |
| |
| /* Enable the Output compare channel */ |
| TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); |
| |
| if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) |
| { |
| /* Enable the main output */ |
| __HAL_TIM_MOE_ENABLE(htim); |
| } |
| |
| /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
| tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
| if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
| { |
| __HAL_TIM_ENABLE(htim); |
| } |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Stops the TIM Output Compare signal generation. |
| * @param htim TIM Output Compare handle |
| * @param Channel TIM Channel to be disabled |
| * This parameter can be one of the following values: |
| * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
| * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
| * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
| * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
| * @arg TIM_CHANNEL_5: TIM Channel 5 selected |
| * @arg TIM_CHANNEL_6: TIM Channel 6 selected |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_TIM_OC_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) |
| { |
| /* Check the parameters */ |
| assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
| |
| /* Disable the Output compare channel */ |
| TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); |
| |
| if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) |
| { |
| /* Disable the Main Output */ |
| __HAL_TIM_MOE_DISABLE(htim); |
| } |
| |
| /* Disable the Peripheral */ |
| __HAL_TIM_DISABLE(htim); |
| |
| /* Set the TIM channel state */ |
| TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Starts the TIM Output Compare signal generation in interrupt mode. |
| * @param htim TIM Output Compare handle |
| * @param Channel TIM Channel to be enabled |
| * This parameter can be one of the following values: |
| * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
| * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
| * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
| * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_TIM_OC_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel) |
| { |
| uint32_t tmpsmcr; |
| |
| /* Check the parameters */ |
| assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
| |
| /* Check the TIM channel state */ |
| if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY) |
| { |
| return HAL_ERROR; |
| } |
| |
| /* Set the TIM channel state */ |
| TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); |
| |
| switch (Channel) |
| { |
| case TIM_CHANNEL_1: |
| { |
| /* Enable the TIM Capture/Compare 1 interrupt */ |
| __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); |
| break; |
| } |
| |
| case TIM_CHANNEL_2: |
| { |
| /* Enable the TIM Capture/Compare 2 interrupt */ |
| __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); |
| break; |
| } |
| |
| case TIM_CHANNEL_3: |
| { |
| /* Enable the TIM Capture/Compare 3 interrupt */ |
| __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3); |
| break; |
| } |
| |
| case TIM_CHANNEL_4: |
| { |
| /* Enable the TIM Capture/Compare 4 interrupt */ |
| __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4); |
| break; |
| } |
| |
| default: |
| break; |
| } |
| |
| /* Enable the Output compare channel */ |
| TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); |
| |
| if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) |
| { |
| /* Enable the main output */ |
| __HAL_TIM_MOE_ENABLE(htim); |
| } |
| |
| /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
| tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
| if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
| { |
| __HAL_TIM_ENABLE(htim); |
| } |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Stops the TIM Output Compare signal generation in interrupt mode. |
| * @param htim TIM Output Compare handle |
| * @param Channel TIM Channel to be disabled |
| * This parameter can be one of the following values: |
| * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
| * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
| * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
| * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_TIM_OC_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel) |
| { |
| /* Check the parameters */ |
| assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
| |
| switch (Channel) |
| { |
| case TIM_CHANNEL_1: |
| { |
| /* Disable the TIM Capture/Compare 1 interrupt */ |
| __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); |
| break; |
| } |
| |
| case TIM_CHANNEL_2: |
| { |
| /* Disable the TIM Capture/Compare 2 interrupt */ |
| __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); |
| break; |
| } |
| |
| case TIM_CHANNEL_3: |
| { |
| /* Disable the TIM Capture/Compare 3 interrupt */ |
| __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3); |
| break; |
| } |
| |
| case TIM_CHANNEL_4: |
| { |
| /* Disable the TIM Capture/Compare 4 interrupt */ |
| __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4); |
| break; |
| } |
| |
| default: |
| break; |
| } |
| |
| /* Disable the Output compare channel */ |
| TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); |
| |
| if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) |
| { |
| /* Disable the Main Output */ |
| __HAL_TIM_MOE_DISABLE(htim); |
| } |
| |
| /* Disable the Peripheral */ |
| __HAL_TIM_DISABLE(htim); |
| |
| /* Set the TIM channel state */ |
| TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Starts the TIM Output Compare signal generation in DMA mode. |
| * @param htim TIM Output Compare handle |
| * @param Channel TIM Channel to be enabled |
| * This parameter can be one of the following values: |
| * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
| * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
| * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
| * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
| * @param pData The source Buffer address. |
| * @param Length The length of data to be transferred from memory to TIM peripheral |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_TIM_OC_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length) |
| { |
| uint32_t tmpsmcr; |
| |
| /* Check the parameters */ |
| assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
| |
| /* Set the TIM channel state */ |
| if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_BUSY) |
| { |
| return HAL_BUSY; |
| } |
| else if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_READY) |
| { |
| if ((pData == NULL) && (Length > 0U)) |
| { |
| return HAL_ERROR; |
| } |
| else |
| { |
| TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); |
| } |
| } |
| else |
| { |
| return HAL_ERROR; |
| } |
| |
| switch (Channel) |
| { |
| case TIM_CHANNEL_1: |
| { |
| /* Set the DMA compare callbacks */ |
| htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt; |
| htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
| |
| /* Set the DMA error callback */ |
| htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; |
| |
| /* Enable the DMA channel */ |
| if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1, Length) != HAL_OK) |
| { |
| return HAL_ERROR; |
| } |
| |
| /* Enable the TIM Capture/Compare 1 DMA request */ |
| __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); |
| break; |
| } |
| |
| case TIM_CHANNEL_2: |
| { |
| /* Set the DMA compare callbacks */ |
| htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt; |
| htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
| |
| /* Set the DMA error callback */ |
| htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ; |
| |
| /* Enable the DMA channel */ |
| if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2, Length) != HAL_OK) |
| { |
| return HAL_ERROR; |
| } |
| |
| /* Enable the TIM Capture/Compare 2 DMA request */ |
| __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2); |
| break; |
| } |
| |
| case TIM_CHANNEL_3: |
| { |
| /* Set the DMA compare callbacks */ |
| htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt; |
| htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
| |
| /* Set the DMA error callback */ |
| htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ; |
| |
| /* Enable the DMA channel */ |
| if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3, Length) != HAL_OK) |
| { |
| return HAL_ERROR; |
| } |
| /* Enable the TIM Capture/Compare 3 DMA request */ |
| __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3); |
| break; |
| } |
| |
| case TIM_CHANNEL_4: |
| { |
| /* Set the DMA compare callbacks */ |
| htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt; |
| htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
| |
| /* Set the DMA error callback */ |
| htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ; |
| |
| /* Enable the DMA channel */ |
| if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)pData, (uint32_t)&htim->Instance->CCR4, Length) != HAL_OK) |
| { |
| return HAL_ERROR; |
| } |
| /* Enable the TIM Capture/Compare 4 DMA request */ |
| __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4); |
| break; |
| } |
| |
| default: |
| break; |
| } |
| |
| /* Enable the Output compare channel */ |
| TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); |
| |
| if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) |
| { |
| /* Enable the main output */ |
| __HAL_TIM_MOE_ENABLE(htim); |
| } |
| |
| /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
| tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
| if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
| { |
| __HAL_TIM_ENABLE(htim); |
| } |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Stops the TIM Output Compare signal generation in DMA mode. |
| * @param htim TIM Output Compare handle |
| * @param Channel TIM Channel to be disabled |
| * This parameter can be one of the following values: |
| * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
| * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
| * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
| * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_TIM_OC_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel) |
| { |
| /* Check the parameters */ |
| assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
| |
| switch (Channel) |
| { |
| case TIM_CHANNEL_1: |
| { |
| /* Disable the TIM Capture/Compare 1 DMA request */ |
| __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); |
| (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); |
| break; |
| } |
| |
| case TIM_CHANNEL_2: |
| { |
| /* Disable the TIM Capture/Compare 2 DMA request */ |
| __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2); |
| (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); |
| break; |
| } |
| |
| case TIM_CHANNEL_3: |
| { |
| /* Disable the TIM Capture/Compare 3 DMA request */ |
| __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3); |
| (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]); |
| break; |
| } |
| |
| case TIM_CHANNEL_4: |
| { |
| /* Disable the TIM Capture/Compare 4 interrupt */ |
| __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4); |
| (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]); |
| break; |
| } |
| |
| default: |
| break; |
| } |
| |
| /* Disable the Output compare channel */ |
| TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); |
| |
| if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) |
| { |
| /* Disable the Main Output */ |
| __HAL_TIM_MOE_DISABLE(htim); |
| } |
| |
| /* Disable the Peripheral */ |
| __HAL_TIM_DISABLE(htim); |
| |
| /* Set the TIM channel state */ |
| TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| |
| /** |
| * @} |
| */ |
| |
| /** @defgroup TIM_Exported_Functions_Group3 TIM PWM functions |
| * @brief TIM PWM functions |
| * |
| @verbatim |
| ============================================================================== |
| ##### TIM PWM functions ##### |
| ============================================================================== |
| [..] |
| This section provides functions allowing to: |
| (+) Initialize and configure the TIM PWM. |
| (+) De-initialize the TIM PWM. |
| (+) Start the TIM PWM. |
| (+) Stop the TIM PWM. |
| (+) Start the TIM PWM and enable interrupt. |
| (+) Stop the TIM PWM and disable interrupt. |
| (+) Start the TIM PWM and enable DMA transfer. |
| (+) Stop the TIM PWM and disable DMA transfer. |
| |
| @endverbatim |
| * @{ |
| */ |
| /** |
| * @brief Initializes the TIM PWM Time Base according to the specified |
| * parameters in the TIM_HandleTypeDef and initializes the associated handle. |
| * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse) |
| * requires a timer reset to avoid unexpected direction |
| * due to DIR bit readonly in center aligned mode. |
| * Ex: call @ref HAL_TIM_PWM_DeInit() before HAL_TIM_PWM_Init() |
| * @param htim TIM PWM handle |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_TIM_PWM_Init(TIM_HandleTypeDef *htim) |
| { |
| /* Check the TIM handle allocation */ |
| if (htim == NULL) |
| { |
| return HAL_ERROR; |
| } |
| |
| /* Check the parameters */ |
| assert_param(IS_TIM_INSTANCE(htim->Instance)); |
| assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode)); |
| assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); |
| assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload)); |
| |
| if (htim->State == HAL_TIM_STATE_RESET) |
| { |
| /* Allocate lock resource and initialize it */ |
| htim->Lock = HAL_UNLOCKED; |
| |
| #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
| /* Reset interrupt callbacks to legacy weak callbacks */ |
| TIM_ResetCallback(htim); |
| |
| if (htim->PWM_MspInitCallback == NULL) |
| { |
| htim->PWM_MspInitCallback = HAL_TIM_PWM_MspInit; |
| } |
| /* Init the low level hardware : GPIO, CLOCK, NVIC */ |
| htim->PWM_MspInitCallback(htim); |
| #else |
| /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */ |
| HAL_TIM_PWM_MspInit(htim); |
| #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
| } |
| |
| /* Set the TIM state */ |
| htim->State = HAL_TIM_STATE_BUSY; |
| |
| /* Init the base time for the PWM */ |
| TIM_Base_SetConfig(htim->Instance, &htim->Init); |
| |
| /* Initialize the DMA burst operation state */ |
| htim->DMABurstState = HAL_DMA_BURST_STATE_READY; |
| |
| /* Initialize the TIM channels state */ |
| TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY); |
| TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY); |
| |
| /* Initialize the TIM state*/ |
| htim->State = HAL_TIM_STATE_READY; |
| |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief DeInitializes the TIM peripheral |
| * @param htim TIM PWM handle |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_TIM_PWM_DeInit(TIM_HandleTypeDef *htim) |
| { |
| /* Check the parameters */ |
| assert_param(IS_TIM_INSTANCE(htim->Instance)); |
| |
| htim->State = HAL_TIM_STATE_BUSY; |
| |
| /* Disable the TIM Peripheral Clock */ |
| __HAL_TIM_DISABLE(htim); |
| |
| #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
| if (htim->PWM_MspDeInitCallback == NULL) |
| { |
| htim->PWM_MspDeInitCallback = HAL_TIM_PWM_MspDeInit; |
| } |
| /* DeInit the low level hardware */ |
| htim->PWM_MspDeInitCallback(htim); |
| #else |
| /* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */ |
| HAL_TIM_PWM_MspDeInit(htim); |
| #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
| |
| /* Change the DMA burst operation state */ |
| htim->DMABurstState = HAL_DMA_BURST_STATE_RESET; |
| |
| /* Change the TIM channels state */ |
| TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET); |
| TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET); |
| |
| /* Change TIM state */ |
| htim->State = HAL_TIM_STATE_RESET; |
| |
| /* Release Lock */ |
| __HAL_UNLOCK(htim); |
| |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Initializes the TIM PWM MSP. |
| * @param htim TIM PWM handle |
| * @retval None |
| */ |
| __weak void HAL_TIM_PWM_MspInit(TIM_HandleTypeDef *htim) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(htim); |
| |
| /* NOTE : This function should not be modified, when the callback is needed, |
| the HAL_TIM_PWM_MspInit could be implemented in the user file |
| */ |
| } |
| |
| /** |
| * @brief DeInitializes TIM PWM MSP. |
| * @param htim TIM PWM handle |
| * @retval None |
| */ |
| __weak void HAL_TIM_PWM_MspDeInit(TIM_HandleTypeDef *htim) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(htim); |
| |
| /* NOTE : This function should not be modified, when the callback is needed, |
| the HAL_TIM_PWM_MspDeInit could be implemented in the user file |
| */ |
| } |
| |
| /** |
| * @brief Starts the PWM signal generation. |
| * @param htim TIM handle |
| * @param Channel TIM Channels to be enabled |
| * This parameter can be one of the following values: |
| * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
| * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
| * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
| * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
| * @arg TIM_CHANNEL_5: TIM Channel 5 selected |
| * @arg TIM_CHANNEL_6: TIM Channel 6 selected |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_TIM_PWM_Start(TIM_HandleTypeDef *htim, uint32_t Channel) |
| { |
| uint32_t tmpsmcr; |
| |
| /* Check the parameters */ |
| assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
| |
| /* Check the TIM channel state */ |
| if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY) |
| { |
| return HAL_ERROR; |
| } |
| |
| /* Set the TIM channel state */ |
| TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); |
| |
| /* Enable the Capture compare channel */ |
| TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); |
| |
| if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) |
| { |
| /* Enable the main output */ |
| __HAL_TIM_MOE_ENABLE(htim); |
| } |
| |
| /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
| tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
| if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
| { |
| __HAL_TIM_ENABLE(htim); |
| } |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Stops the PWM signal generation. |
| * @param htim TIM PWM handle |
| * @param Channel TIM Channels to be disabled |
| * This parameter can be one of the following values: |
| * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
| * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
| * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
| * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
| * @arg TIM_CHANNEL_5: TIM Channel 5 selected |
| * @arg TIM_CHANNEL_6: TIM Channel 6 selected |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_TIM_PWM_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) |
| { |
| /* Check the parameters */ |
| assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
| |
| /* Disable the Capture compare channel */ |
| TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); |
| |
| if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) |
| { |
| /* Disable the Main Output */ |
| __HAL_TIM_MOE_DISABLE(htim); |
| } |
| |
| /* Disable the Peripheral */ |
| __HAL_TIM_DISABLE(htim); |
| |
| /* Set the TIM channel state */ |
| TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Starts the PWM signal generation in interrupt mode. |
| * @param htim TIM PWM handle |
| * @param Channel TIM Channel to be enabled |
| * This parameter can be one of the following values: |
| * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
| * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
| * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
| * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_TIM_PWM_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel) |
| { |
| uint32_t tmpsmcr; |
| /* Check the parameters */ |
| assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
| |
| /* Check the TIM channel state */ |
| if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY) |
| { |
| return HAL_ERROR; |
| } |
| |
| /* Set the TIM channel state */ |
| TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); |
| |
| switch (Channel) |
| { |
| case TIM_CHANNEL_1: |
| { |
| /* Enable the TIM Capture/Compare 1 interrupt */ |
| __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); |
| break; |
| } |
| |
| case TIM_CHANNEL_2: |
| { |
| /* Enable the TIM Capture/Compare 2 interrupt */ |
| __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); |
| break; |
| } |
| |
| case TIM_CHANNEL_3: |
| { |
| /* Enable the TIM Capture/Compare 3 interrupt */ |
| __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3); |
| break; |
| } |
| |
| case TIM_CHANNEL_4: |
| { |
| /* Enable the TIM Capture/Compare 4 interrupt */ |
| __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4); |
| break; |
| } |
| |
| default: |
| break; |
| } |
| |
| /* Enable the Capture compare channel */ |
| TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); |
| |
| if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) |
| { |
| /* Enable the main output */ |
| __HAL_TIM_MOE_ENABLE(htim); |
| } |
| |
| /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
| tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
| if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
| { |
| __HAL_TIM_ENABLE(htim); |
| } |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Stops the PWM signal generation in interrupt mode. |
| * @param htim TIM PWM handle |
| * @param Channel TIM Channels to be disabled |
| * This parameter can be one of the following values: |
| * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
| * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
| * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
| * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_TIM_PWM_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel) |
| { |
| /* Check the parameters */ |
| assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
| |
| switch (Channel) |
| { |
| case TIM_CHANNEL_1: |
| { |
| /* Disable the TIM Capture/Compare 1 interrupt */ |
| __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); |
| break; |
| } |
| |
| case TIM_CHANNEL_2: |
| { |
| /* Disable the TIM Capture/Compare 2 interrupt */ |
| __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); |
| break; |
| } |
| |
| case TIM_CHANNEL_3: |
| { |
| /* Disable the TIM Capture/Compare 3 interrupt */ |
| __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3); |
| break; |
| } |
| |
| case TIM_CHANNEL_4: |
| { |
| /* Disable the TIM Capture/Compare 4 interrupt */ |
| __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4); |
| break; |
| } |
| |
| default: |
| break; |
| } |
| |
| /* Disable the Capture compare channel */ |
| TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); |
| |
| if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) |
| { |
| /* Disable the Main Output */ |
| __HAL_TIM_MOE_DISABLE(htim); |
| } |
| |
| /* Disable the Peripheral */ |
| __HAL_TIM_DISABLE(htim); |
| |
| /* Set the TIM channel state */ |
| TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Starts the TIM PWM signal generation in DMA mode. |
| * @param htim TIM PWM handle |
| * @param Channel TIM Channels to be enabled |
| * This parameter can be one of the following values: |
| * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
| * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
| * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
| * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
| * @param pData The source Buffer address. |
| * @param Length The length of data to be transferred from memory to TIM peripheral |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_TIM_PWM_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length) |
| { |
| uint32_t tmpsmcr; |
| |
| /* Check the parameters */ |
| assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
| |
| /* Set the TIM channel state */ |
| if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_BUSY) |
| { |
| return HAL_BUSY; |
| } |
| else if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_READY) |
| { |
| if ((pData == NULL) && (Length > 0U)) |
| { |
| return HAL_ERROR; |
| } |
| else |
| { |
| TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); |
| } |
| } |
| else |
| { |
| return HAL_ERROR; |
| } |
| |
| switch (Channel) |
| { |
| case TIM_CHANNEL_1: |
| { |
| /* Set the DMA compare callbacks */ |
| htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt; |
| htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
| |
| /* Set the DMA error callback */ |
| htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; |
| |
| /* Enable the DMA channel */ |
| if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1, Length) != HAL_OK) |
| { |
| return HAL_ERROR; |
| } |
| |
| /* Enable the TIM Capture/Compare 1 DMA request */ |
| __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); |
| break; |
| } |
| |
| case TIM_CHANNEL_2: |
| { |
| /* Set the DMA compare callbacks */ |
| htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt; |
| htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
| |
| /* Set the DMA error callback */ |
| htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ; |
| |
| /* Enable the DMA channel */ |
| if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2, Length) != HAL_OK) |
| { |
| return HAL_ERROR; |
| } |
| /* Enable the TIM Capture/Compare 2 DMA request */ |
| __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2); |
| break; |
| } |
| |
| case TIM_CHANNEL_3: |
| { |
| /* Set the DMA compare callbacks */ |
| htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt; |
| htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
| |
| /* Set the DMA error callback */ |
| htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ; |
| |
| /* Enable the DMA channel */ |
| if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3, Length) != HAL_OK) |
| { |
| return HAL_ERROR; |
| } |
| /* Enable the TIM Output Capture/Compare 3 request */ |
| __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3); |
| break; |
| } |
| |
| case TIM_CHANNEL_4: |
| { |
| /* Set the DMA compare callbacks */ |
| htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt; |
| htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
| |
| /* Set the DMA error callback */ |
| htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ; |
| |
| /* Enable the DMA channel */ |
| if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)pData, (uint32_t)&htim->Instance->CCR4, Length) != HAL_OK) |
| { |
| return HAL_ERROR; |
| } |
| /* Enable the TIM Capture/Compare 4 DMA request */ |
| __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4); |
| break; |
| } |
| |
| default: |
| break; |
| } |
| |
| /* Enable the Capture compare channel */ |
| TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); |
| |
| if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) |
| { |
| /* Enable the main output */ |
| __HAL_TIM_MOE_ENABLE(htim); |
| } |
| |
| /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
| tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
| if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
| { |
| __HAL_TIM_ENABLE(htim); |
| } |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Stops the TIM PWM signal generation in DMA mode. |
| * @param htim TIM PWM handle |
| * @param Channel TIM Channels to be disabled |
| * This parameter can be one of the following values: |
| * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
| * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
| * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
| * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_TIM_PWM_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel) |
| { |
| /* Check the parameters */ |
| assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
| |
| switch (Channel) |
| { |
| case TIM_CHANNEL_1: |
| { |
| /* Disable the TIM Capture/Compare 1 DMA request */ |
| __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); |
| (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); |
| break; |
| } |
| |
| case TIM_CHANNEL_2: |
| { |
| /* Disable the TIM Capture/Compare 2 DMA request */ |
| __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2); |
| (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); |
| break; |
| } |
| |
| case TIM_CHANNEL_3: |
| { |
| /* Disable the TIM Capture/Compare 3 DMA request */ |
| __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3); |
| (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]); |
| break; |
| } |
| |
| case TIM_CHANNEL_4: |
| { |
| /* Disable the TIM Capture/Compare 4 interrupt */ |
| __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4); |
| (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]); |
| break; |
| } |
| |
| default: |
| break; |
| } |
| |
| /* Disable the Capture compare channel */ |
| TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); |
| |
| if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) |
| { |
| /* Disable the Main Output */ |
| __HAL_TIM_MOE_DISABLE(htim); |
| } |
| |
| /* Disable the Peripheral */ |
| __HAL_TIM_DISABLE(htim); |
| |
| /* Set the TIM channel state */ |
| TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| |
| /** |
| * @} |
| */ |
| |
| /** @defgroup TIM_Exported_Functions_Group4 TIM Input Capture functions |
| * @brief TIM Input Capture functions |
| * |
| @verbatim |
| ============================================================================== |
| ##### TIM Input Capture functions ##### |
| ============================================================================== |
| [..] |
| This section provides functions allowing to: |
| (+) Initialize and configure the TIM Input Capture. |
| (+) De-initialize the TIM Input Capture. |
| (+) Start the TIM Input Capture. |
| (+) Stop the TIM Input Capture. |
| (+) Start the TIM Input Capture and enable interrupt. |
| (+) Stop the TIM Input Capture and disable interrupt. |
| (+) Start the TIM Input Capture and enable DMA transfer. |
| (+) Stop the TIM Input Capture and disable DMA transfer. |
| |
| @endverbatim |
| * @{ |
| */ |
| /** |
| * @brief Initializes the TIM Input Capture Time base according to the specified |
| * parameters in the TIM_HandleTypeDef and initializes the associated handle. |
| * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse) |
| * requires a timer reset to avoid unexpected direction |
| * due to DIR bit readonly in center aligned mode. |
| * Ex: call @ref HAL_TIM_IC_DeInit() before HAL_TIM_IC_Init() |
| * @param htim TIM Input Capture handle |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_TIM_IC_Init(TIM_HandleTypeDef *htim) |
| { |
| /* Check the TIM handle allocation */ |
| if (htim == NULL) |
| { |
| return HAL_ERROR; |
| } |
| |
| /* Check the parameters */ |
| assert_param(IS_TIM_INSTANCE(htim->Instance)); |
| assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode)); |
| assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); |
| assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload)); |
| |
| if (htim->State == HAL_TIM_STATE_RESET) |
| { |
| /* Allocate lock resource and initialize it */ |
| htim->Lock = HAL_UNLOCKED; |
| |
| #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
| /* Reset interrupt callbacks to legacy weak callbacks */ |
| TIM_ResetCallback(htim); |
| |
| if (htim->IC_MspInitCallback == NULL) |
| { |
| htim->IC_MspInitCallback = HAL_TIM_IC_MspInit; |
| } |
| /* Init the low level hardware : GPIO, CLOCK, NVIC */ |
| htim->IC_MspInitCallback(htim); |
| #else |
| /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */ |
| HAL_TIM_IC_MspInit(htim); |
| #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
| } |
| |
| /* Set the TIM state */ |
| htim->State = HAL_TIM_STATE_BUSY; |
| |
| /* Init the base time for the input capture */ |
| TIM_Base_SetConfig(htim->Instance, &htim->Init); |
| |
| /* Initialize the DMA burst operation state */ |
| htim->DMABurstState = HAL_DMA_BURST_STATE_READY; |
| |
| /* Initialize the TIM channels state */ |
| TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY); |
| TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY); |
| |
| /* Initialize the TIM state*/ |
| htim->State = HAL_TIM_STATE_READY; |
| |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief DeInitializes the TIM peripheral |
| * @param htim TIM Input Capture handle |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_TIM_IC_DeInit(TIM_HandleTypeDef *htim) |
| { |
| /* Check the parameters */ |
| assert_param(IS_TIM_INSTANCE(htim->Instance)); |
| |
| htim->State = HAL_TIM_STATE_BUSY; |
| |
| /* Disable the TIM Peripheral Clock */ |
| __HAL_TIM_DISABLE(htim); |
| |
| #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
| if (htim->IC_MspDeInitCallback == NULL) |
| { |
| htim->IC_MspDeInitCallback = HAL_TIM_IC_MspDeInit; |
| } |
| /* DeInit the low level hardware */ |
| htim->IC_MspDeInitCallback(htim); |
| #else |
| /* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */ |
| HAL_TIM_IC_MspDeInit(htim); |
| #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
| |
| /* Change the DMA burst operation state */ |
| htim->DMABurstState = HAL_DMA_BURST_STATE_RESET; |
| |
| /* Change the TIM channels state */ |
| TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET); |
| TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET); |
| |
| /* Change TIM state */ |
| htim->State = HAL_TIM_STATE_RESET; |
| |
| /* Release Lock */ |
| __HAL_UNLOCK(htim); |
| |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Initializes the TIM Input Capture MSP. |
| * @param htim TIM Input Capture handle |
| * @retval None |
| */ |
| __weak void HAL_TIM_IC_MspInit(TIM_HandleTypeDef *htim) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(htim); |
| |
| /* NOTE : This function should not be modified, when the callback is needed, |
| the HAL_TIM_IC_MspInit could be implemented in the user file |
| */ |
| } |
| |
| /** |
| * @brief DeInitializes TIM Input Capture MSP. |
| * @param htim TIM handle |
| * @retval None |
| */ |
| __weak void HAL_TIM_IC_MspDeInit(TIM_HandleTypeDef *htim) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(htim); |
| |
| /* NOTE : This function should not be modified, when the callback is needed, |
| the HAL_TIM_IC_MspDeInit could be implemented in the user file |
| */ |
| } |
| |
| /** |
| * @brief Starts the TIM Input Capture measurement. |
| * @param htim TIM Input Capture handle |
| * @param Channel TIM Channels to be enabled |
| * This parameter can be one of the following values: |
| * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
| * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
| * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
| * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_TIM_IC_Start(TIM_HandleTypeDef *htim, uint32_t Channel) |
| { |
| uint32_t tmpsmcr; |
| HAL_TIM_ChannelStateTypeDef channel_state = TIM_CHANNEL_STATE_GET(htim, Channel); |
| HAL_TIM_ChannelStateTypeDef complementary_channel_state = TIM_CHANNEL_N_STATE_GET(htim, Channel); |
| |
| /* Check the parameters */ |
| assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
| |
| /* Check the TIM channel state */ |
| if ((channel_state != HAL_TIM_CHANNEL_STATE_READY) |
| || (complementary_channel_state != HAL_TIM_CHANNEL_STATE_READY)) |
| { |
| return HAL_ERROR; |
| } |
| |
| /* Set the TIM channel state */ |
| TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); |
| TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); |
| |
| /* Enable the Input Capture channel */ |
| TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); |
| |
| /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
| tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
| if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
| { |
| __HAL_TIM_ENABLE(htim); |
| } |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Stops the TIM Input Capture measurement. |
| * @param htim TIM Input Capture handle |
| * @param Channel TIM Channels to be disabled |
| * This parameter can be one of the following values: |
| * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
| * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
| * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
| * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_TIM_IC_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) |
| { |
| /* Check the parameters */ |
| assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
| |
| /* Disable the Input Capture channel */ |
| TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); |
| |
| /* Disable the Peripheral */ |
| __HAL_TIM_DISABLE(htim); |
| |
| /* Set the TIM channel state */ |
| TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
| TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Starts the TIM Input Capture measurement in interrupt mode. |
| * @param htim TIM Input Capture handle |
| * @param Channel TIM Channels to be enabled |
| * This parameter can be one of the following values: |
| * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
| * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
| * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
| * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_TIM_IC_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel) |
| { |
| uint32_t tmpsmcr; |
| HAL_TIM_ChannelStateTypeDef channel_state = TIM_CHANNEL_STATE_GET(htim, Channel); |
| HAL_TIM_ChannelStateTypeDef complementary_channel_state = TIM_CHANNEL_N_STATE_GET(htim, Channel); |
| |
| /* Check the parameters */ |
| assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
| |
| /* Check the TIM channel state */ |
| if ((channel_state != HAL_TIM_CHANNEL_STATE_READY) |
| || (complementary_channel_state != HAL_TIM_CHANNEL_STATE_READY)) |
| { |
| return HAL_ERROR; |
| } |
| |
| /* Set the TIM channel state */ |
| TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); |
| TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); |
| |
| switch (Channel) |
| { |
| case TIM_CHANNEL_1: |
| { |
| /* Enable the TIM Capture/Compare 1 interrupt */ |
| __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); |
| break; |
| } |
| |
| case TIM_CHANNEL_2: |
| { |
| /* Enable the TIM Capture/Compare 2 interrupt */ |
| __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); |
| break; |
| } |
| |
| case TIM_CHANNEL_3: |
| { |
| /* Enable the TIM Capture/Compare 3 interrupt */ |
| __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3); |
| break; |
| } |
| |
| case TIM_CHANNEL_4: |
| { |
| /* Enable the TIM Capture/Compare 4 interrupt */ |
| __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4); |
| break; |
| } |
| |
| default: |
| break; |
| } |
| /* Enable the Input Capture channel */ |
| TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); |
| |
| /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
| tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
| if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
| { |
| __HAL_TIM_ENABLE(htim); |
| } |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Stops the TIM Input Capture measurement in interrupt mode. |
| * @param htim TIM Input Capture handle |
| * @param Channel TIM Channels to be disabled |
| * This parameter can be one of the following values: |
| * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
| * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
| * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
| * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_TIM_IC_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel) |
| { |
| /* Check the parameters */ |
| assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
| |
| switch (Channel) |
| { |
| case TIM_CHANNEL_1: |
| { |
| /* Disable the TIM Capture/Compare 1 interrupt */ |
| __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); |
| break; |
| } |
| |
| case TIM_CHANNEL_2: |
| { |
| /* Disable the TIM Capture/Compare 2 interrupt */ |
| __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); |
| break; |
| } |
| |
| case TIM_CHANNEL_3: |
| { |
| /* Disable the TIM Capture/Compare 3 interrupt */ |
| __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3); |
| break; |
| } |
| |
| case TIM_CHANNEL_4: |
| { |
| /* Disable the TIM Capture/Compare 4 interrupt */ |
| __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4); |
| break; |
| } |
| |
| default: |
| break; |
| } |
| |
| /* Disable the Input Capture channel */ |
| TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); |
| |
| /* Disable the Peripheral */ |
| __HAL_TIM_DISABLE(htim); |
| |
| /* Set the TIM channel state */ |
| TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
| TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Starts the TIM Input Capture measurement in DMA mode. |
| * @param htim TIM Input Capture handle |
| * @param Channel TIM Channels to be enabled |
| * This parameter can be one of the following values: |
| * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
| * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
| * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
| * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
| * @param pData The destination Buffer address. |
| * @param Length The length of data to be transferred from TIM peripheral to memory. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_TIM_IC_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length) |
| { |
| uint32_t tmpsmcr; |
| HAL_TIM_ChannelStateTypeDef channel_state = TIM_CHANNEL_STATE_GET(htim, Channel); |
| HAL_TIM_ChannelStateTypeDef complementary_channel_state = TIM_CHANNEL_N_STATE_GET(htim, Channel); |
| |
| /* Check the parameters */ |
| assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
| assert_param(IS_TIM_DMA_CC_INSTANCE(htim->Instance)); |
| |
| /* Set the TIM channel state */ |
| if ((channel_state == HAL_TIM_CHANNEL_STATE_BUSY) |
| || (complementary_channel_state == HAL_TIM_CHANNEL_STATE_BUSY)) |
| { |
| return HAL_BUSY; |
| } |
| else if ((channel_state == HAL_TIM_CHANNEL_STATE_READY) |
| && (complementary_channel_state == HAL_TIM_CHANNEL_STATE_READY)) |
| { |
| if ((pData == NULL) && (Length > 0U)) |
| { |
| return HAL_ERROR; |
| } |
| else |
| { |
| TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); |
| TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); |
| } |
| } |
| else |
| { |
| return HAL_ERROR; |
| } |
| |
| switch (Channel) |
| { |
| case TIM_CHANNEL_1: |
| { |
| /* Set the DMA capture callbacks */ |
| htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt; |
| htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; |
| |
| /* Set the DMA error callback */ |
| htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; |
| |
| /* Enable the DMA channel */ |
| if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData, Length) != HAL_OK) |
| { |
| return HAL_ERROR; |
| } |
| /* Enable the TIM Capture/Compare 1 DMA request */ |
| __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); |
| break; |
| } |
| |
| case TIM_CHANNEL_2: |
| { |
| /* Set the DMA capture callbacks */ |
| htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt; |
| htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; |
| |
| /* Set the DMA error callback */ |
| htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ; |
| |
| /* Enable the DMA channel */ |
| if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData, Length) != HAL_OK) |
| { |
| return HAL_ERROR; |
| } |
| /* Enable the TIM Capture/Compare 2 DMA request */ |
| __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2); |
| break; |
| } |
| |
| case TIM_CHANNEL_3: |
| { |
| /* Set the DMA capture callbacks */ |
| htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMACaptureCplt; |
| htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; |
| |
| /* Set the DMA error callback */ |
| htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ; |
| |
| /* Enable the DMA channel */ |
| if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)&htim->Instance->CCR3, (uint32_t)pData, Length) != HAL_OK) |
| { |
| return HAL_ERROR; |
| } |
| /* Enable the TIM Capture/Compare 3 DMA request */ |
| __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3); |
| break; |
| } |
| |
| case TIM_CHANNEL_4: |
| { |
| /* Set the DMA capture callbacks */ |
| htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMACaptureCplt; |
| htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; |
| |
| /* Set the DMA error callback */ |
| htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ; |
| |
| /* Enable the DMA channel */ |
| if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)&htim->Instance->CCR4, (uint32_t)pData, Length) != HAL_OK) |
| { |
| return HAL_ERROR; |
| } |
| /* Enable the TIM Capture/Compare 4 DMA request */ |
| __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4); |
| break; |
| } |
| |
| default: |
| break; |
| } |
| |
| /* Enable the Input Capture channel */ |
| TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); |
| |
| /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
| tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
| if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
| { |
| __HAL_TIM_ENABLE(htim); |
| } |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Stops the TIM Input Capture measurement in DMA mode. |
| * @param htim TIM Input Capture handle |
| * @param Channel TIM Channels to be disabled |
| * This parameter can be one of the following values: |
| * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
| * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
| * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
| * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_TIM_IC_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel) |
| { |
| /* Check the parameters */ |
| assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
| assert_param(IS_TIM_DMA_CC_INSTANCE(htim->Instance)); |
| |
| switch (Channel) |
| { |
| case TIM_CHANNEL_1: |
| { |
| /* Disable the TIM Capture/Compare 1 DMA request */ |
| __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); |
| (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); |
| break; |
| } |
| |
| case TIM_CHANNEL_2: |
| { |
| /* Disable the TIM Capture/Compare 2 DMA request */ |
| __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2); |
| (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); |
| break; |
| } |
| |
| case TIM_CHANNEL_3: |
| { |
| /* Disable the TIM Capture/Compare 3 DMA request */ |
| __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3); |
| (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]); |
| break; |
| } |
| |
| case TIM_CHANNEL_4: |
| { |
| /* Disable the TIM Capture/Compare 4 DMA request */ |
| __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4); |
| (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]); |
| break; |
| } |
| |
| default: |
| break; |
| } |
| |
| /* Disable the Input Capture channel */ |
| TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); |
| |
| /* Disable the Peripheral */ |
| __HAL_TIM_DISABLE(htim); |
| |
| /* Set the TIM channel state */ |
| TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
| TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| /** |
| * @} |
| */ |
| |
| /** @defgroup TIM_Exported_Functions_Group5 TIM One Pulse functions |
| * @brief TIM One Pulse functions |
| * |
| @verbatim |
| ============================================================================== |
| ##### TIM One Pulse functions ##### |
| ============================================================================== |
| [..] |
| This section provides functions allowing to: |
| (+) Initialize and configure the TIM One Pulse. |
| (+) De-initialize the TIM One Pulse. |
| (+) Start the TIM One Pulse. |
| (+) Stop the TIM One Pulse. |
| (+) Start the TIM One Pulse and enable interrupt. |
| (+) Stop the TIM One Pulse and disable interrupt. |
| (+) Start the TIM One Pulse and enable DMA transfer. |
| (+) Stop the TIM One Pulse and disable DMA transfer. |
| |
| @endverbatim |
| * @{ |
| */ |
| /** |
| * @brief Initializes the TIM One Pulse Time Base according to the specified |
| * parameters in the TIM_HandleTypeDef and initializes the associated handle. |
| * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse) |
| * requires a timer reset to avoid unexpected direction |
| * due to DIR bit readonly in center aligned mode. |
| * Ex: call @ref HAL_TIM_OnePulse_DeInit() before HAL_TIM_OnePulse_Init() |
| * @note When the timer instance is initialized in One Pulse mode, timer |
| * channels 1 and channel 2 are reserved and cannot be used for other |
| * purpose. |
| * @param htim TIM One Pulse handle |
| * @param OnePulseMode Select the One pulse mode. |
| * This parameter can be one of the following values: |
| * @arg TIM_OPMODE_SINGLE: Only one pulse will be generated. |
| * @arg TIM_OPMODE_REPETITIVE: Repetitive pulses will be generated. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_TIM_OnePulse_Init(TIM_HandleTypeDef *htim, uint32_t OnePulseMode) |
| { |
| /* Check the TIM handle allocation */ |
| if (htim == NULL) |
| { |
| return HAL_ERROR; |
| } |
| |
| /* Check the parameters */ |
| assert_param(IS_TIM_INSTANCE(htim->Instance)); |
| assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode)); |
| assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); |
| assert_param(IS_TIM_OPM_MODE(OnePulseMode)); |
| assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload)); |
| |
| if (htim->State == HAL_TIM_STATE_RESET) |
| { |
| /* Allocate lock resource and initialize it */ |
| htim->Lock = HAL_UNLOCKED; |
| |
| #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
| /* Reset interrupt callbacks to legacy weak callbacks */ |
| TIM_ResetCallback(htim); |
| |
| if (htim->OnePulse_MspInitCallback == NULL) |
| { |
| htim->OnePulse_MspInitCallback = HAL_TIM_OnePulse_MspInit; |
| } |
| /* Init the low level hardware : GPIO, CLOCK, NVIC */ |
| htim->OnePulse_MspInitCallback(htim); |
| #else |
| /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */ |
| HAL_TIM_OnePulse_MspInit(htim); |
| #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
| } |
| |
| /* Set the TIM state */ |
| htim->State = HAL_TIM_STATE_BUSY; |
| |
| /* Configure the Time base in the One Pulse Mode */ |
| TIM_Base_SetConfig(htim->Instance, &htim->Init); |
| |
| /* Reset the OPM Bit */ |
| htim->Instance->CR1 &= ~TIM_CR1_OPM; |
| |
| /* Configure the OPM Mode */ |
| htim->Instance->CR1 |= OnePulseMode; |
| |
| /* Initialize the DMA burst operation state */ |
| htim->DMABurstState = HAL_DMA_BURST_STATE_READY; |
| |
| /* Initialize the TIM channels state */ |
| TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
| TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
| TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
| TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
| |
| /* Initialize the TIM state*/ |
| htim->State = HAL_TIM_STATE_READY; |
| |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief DeInitializes the TIM One Pulse |
| * @param htim TIM One Pulse handle |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_TIM_OnePulse_DeInit(TIM_HandleTypeDef *htim) |
| { |
| /* Check the parameters */ |
| assert_param(IS_TIM_INSTANCE(htim->Instance)); |
| |
| htim->State = HAL_TIM_STATE_BUSY; |
| |
| /* Disable the TIM Peripheral Clock */ |
| __HAL_TIM_DISABLE(htim); |
| |
| #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
| if (htim->OnePulse_MspDeInitCallback == NULL) |
| { |
| htim->OnePulse_MspDeInitCallback = HAL_TIM_OnePulse_MspDeInit; |
| } |
| /* DeInit the low level hardware */ |
| htim->OnePulse_MspDeInitCallback(htim); |
| #else |
| /* DeInit the low level hardware: GPIO, CLOCK, NVIC */ |
| HAL_TIM_OnePulse_MspDeInit(htim); |
| #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
| |
| /* Change the DMA burst operation state */ |
| htim->DMABurstState = HAL_DMA_BURST_STATE_RESET; |
| |
| /* Set the TIM channel state */ |
| TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET); |
| TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET); |
| TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET); |
| TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET); |
| |
| /* Change TIM state */ |
| htim->State = HAL_TIM_STATE_RESET; |
| |
| /* Release Lock */ |
| __HAL_UNLOCK(htim); |
| |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Initializes the TIM One Pulse MSP. |
| * @param htim TIM One Pulse handle |
| * @retval None |
| */ |
| __weak void HAL_TIM_OnePulse_MspInit(TIM_HandleTypeDef *htim) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(htim); |
| |
| /* NOTE : This function should not be modified, when the callback is needed, |
| the HAL_TIM_OnePulse_MspInit could be implemented in the user file |
| */ |
| } |
| |
| /** |
| * @brief DeInitializes TIM One Pulse MSP. |
| * @param htim TIM One Pulse handle |
| * @retval None |
| */ |
| __weak void HAL_TIM_OnePulse_MspDeInit(TIM_HandleTypeDef *htim) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(htim); |
| |
| /* NOTE : This function should not be modified, when the callback is needed, |
| the HAL_TIM_OnePulse_MspDeInit could be implemented in the user file |
| */ |
| } |
| |
| /** |
| * @brief Starts the TIM One Pulse signal generation. |
| * @param htim TIM One Pulse handle |
| * @param OutputChannel TIM Channels to be enabled |
| * This parameter can be one of the following values: |
| * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
| * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_TIM_OnePulse_Start(TIM_HandleTypeDef *htim, uint32_t OutputChannel) |
| { |
| HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1); |
| HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2); |
| HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1); |
| HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2); |
| |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(OutputChannel); |
| |
| /* Check the TIM channels state */ |
| if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY) |
| || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY) |
| || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY) |
| || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY)) |
| { |
| return HAL_ERROR; |
| } |
| |
| /* Set the TIM channels state */ |
| TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
| TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
| TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
| TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
| |
| /* Enable the Capture compare and the Input Capture channels |
| (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) |
| if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and |
| if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output |
| in all combinations, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be enabled together |
| |
| No need to enable the counter, it's enabled automatically by hardware |
| (the counter starts in response to a stimulus and generate a pulse */ |
| |
| TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); |
| TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); |
| |
| if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) |
| { |
| /* Enable the main output */ |
| __HAL_TIM_MOE_ENABLE(htim); |
| } |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Stops the TIM One Pulse signal generation. |
| * @param htim TIM One Pulse handle |
| * @param OutputChannel TIM Channels to be disable |
| * This parameter can be one of the following values: |
| * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
| * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_TIM_OnePulse_Stop(TIM_HandleTypeDef *htim, uint32_t OutputChannel) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(OutputChannel); |
| |
| /* Disable the Capture compare and the Input Capture channels |
| (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) |
| if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and |
| if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output |
| in all combinations, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be disabled together */ |
| |
| TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); |
| TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); |
| |
| if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) |
| { |
| /* Disable the Main Output */ |
| __HAL_TIM_MOE_DISABLE(htim); |
| } |
| |
| /* Disable the Peripheral */ |
| __HAL_TIM_DISABLE(htim); |
| |
| /* Set the TIM channels state */ |
| TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
| TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
| TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
| TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Starts the TIM One Pulse signal generation in interrupt mode. |
| * @param htim TIM One Pulse handle |
| * @param OutputChannel TIM Channels to be enabled |
| * This parameter can be one of the following values: |
| * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
| * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_TIM_OnePulse_Start_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel) |
| { |
| HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1); |
| HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2); |
| HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1); |
| HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2); |
| |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(OutputChannel); |
| |
| /* Check the TIM channels state */ |
| if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY) |
| || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY) |
| || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY) |
| || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY)) |
| { |
| return HAL_ERROR; |
| } |
| |
| /* Set the TIM channels state */ |
| TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
| TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
| TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
| TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
| |
| /* Enable the Capture compare and the Input Capture channels |
| (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) |
| if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and |
| if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output |
| in all combinations, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be enabled together |
| |
| No need to enable the counter, it's enabled automatically by hardware |
| (the counter starts in response to a stimulus and generate a pulse */ |
| |
| /* Enable the TIM Capture/Compare 1 interrupt */ |
| __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); |
| |
| /* Enable the TIM Capture/Compare 2 interrupt */ |
| __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); |
| |
| TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); |
| TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); |
| |
| if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) |
| { |
| /* Enable the main output */ |
| __HAL_TIM_MOE_ENABLE(htim); |
| } |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Stops the TIM One Pulse signal generation in interrupt mode. |
| * @param htim TIM One Pulse handle |
| * @param OutputChannel TIM Channels to be enabled |
| * This parameter can be one of the following values: |
| * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
| * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_TIM_OnePulse_Stop_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(OutputChannel); |
| |
| /* Disable the TIM Capture/Compare 1 interrupt */ |
| __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); |
| |
| /* Disable the TIM Capture/Compare 2 interrupt */ |
| __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); |
| |
| /* Disable the Capture compare and the Input Capture channels |
| (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) |
| if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and |
| if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output |
| in all combinations, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be disabled together */ |
| TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); |
| TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); |
| |
| if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) |
| { |
| /* Disable the Main Output */ |
| __HAL_TIM_MOE_DISABLE(htim); |
| } |
| |
| /* Disable the Peripheral */ |
| __HAL_TIM_DISABLE(htim); |
| |
| /* Set the TIM channels state */ |
| TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
| TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
| TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
| TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| |
| /** |
| * @} |
| */ |
| |
| /** @defgroup TIM_Exported_Functions_Group6 TIM Encoder functions |
| * @brief TIM Encoder functions |
| * |
| @verbatim |
| ============================================================================== |
| ##### TIM Encoder functions ##### |
| ============================================================================== |
| [..] |
| This section provides functions allowing to: |
| (+) Initialize and configure the TIM Encoder. |
| (+) De-initialize the TIM Encoder. |
| (+) Start the TIM Encoder. |
| (+) Stop the TIM Encoder. |
| (+) Start the TIM Encoder and enable interrupt. |
| (+) Stop the TIM Encoder and disable interrupt. |
| (+) Start the TIM Encoder and enable DMA transfer. |
| (+) Stop the TIM Encoder and disable DMA transfer. |
| |
| @endverbatim |
| * @{ |
| */ |
| /** |
| * @brief Initializes the TIM Encoder Interface and initialize the associated handle. |
| * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse) |
| * requires a timer reset to avoid unexpected direction |
| * due to DIR bit readonly in center aligned mode. |
| * Ex: call @ref HAL_TIM_Encoder_DeInit() before HAL_TIM_Encoder_Init() |
| * @note Encoder mode and External clock mode 2 are not compatible and must not be selected together |
| * Ex: A call for @ref HAL_TIM_Encoder_Init will erase the settings of @ref HAL_TIM_ConfigClockSource |
| * using TIM_CLOCKSOURCE_ETRMODE2 and vice versa |
| * @note When the timer instance is initialized in Encoder mode, timer |
| * channels 1 and channel 2 are reserved and cannot be used for other |
| * purpose. |
| * @param htim TIM Encoder Interface handle |
| * @param sConfig TIM Encoder Interface configuration structure |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_TIM_Encoder_Init(TIM_HandleTypeDef *htim, TIM_Encoder_InitTypeDef *sConfig) |
| { |
| uint32_t tmpsmcr; |
| uint32_t tmpccmr1; |
| uint32_t tmpccer; |
| |
| /* Check the TIM handle allocation */ |
| if (htim == NULL) |
| { |
| return HAL_ERROR; |
| } |
| |
| /* Check the parameters */ |
| assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance)); |
| assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode)); |
| assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); |
| assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload)); |
| assert_param(IS_TIM_ENCODER_MODE(sConfig->EncoderMode)); |
| assert_param(IS_TIM_IC_SELECTION(sConfig->IC1Selection)); |
| assert_param(IS_TIM_IC_SELECTION(sConfig->IC2Selection)); |
| assert_param(IS_TIM_ENCODERINPUT_POLARITY(sConfig->IC1Polarity)); |
| assert_param(IS_TIM_ENCODERINPUT_POLARITY(sConfig->IC2Polarity)); |
| assert_param(IS_TIM_IC_PRESCALER(sConfig->IC1Prescaler)); |
| assert_param(IS_TIM_IC_PRESCALER(sConfig->IC2Prescaler)); |
| assert_param(IS_TIM_IC_FILTER(sConfig->IC1Filter)); |
| assert_param(IS_TIM_IC_FILTER(sConfig->IC2Filter)); |
| |
| if (htim->State == HAL_TIM_STATE_RESET) |
| { |
| /* Allocate lock resource and initialize it */ |
| htim->Lock = HAL_UNLOCKED; |
| |
| #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
| /* Reset interrupt callbacks to legacy weak callbacks */ |
| TIM_ResetCallback(htim); |
| |
| if (htim->Encoder_MspInitCallback == NULL) |
| { |
| htim->Encoder_MspInitCallback = HAL_TIM_Encoder_MspInit; |
| } |
| /* Init the low level hardware : GPIO, CLOCK, NVIC */ |
| htim->Encoder_MspInitCallback(htim); |
| #else |
| /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */ |
| HAL_TIM_Encoder_MspInit(htim); |
| #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
| } |
| |
| /* Set the TIM state */ |
| htim->State = HAL_TIM_STATE_BUSY; |
| |
| /* Reset the SMS and ECE bits */ |
| htim->Instance->SMCR &= ~(TIM_SMCR_SMS | TIM_SMCR_ECE); |
| |
| /* Configure the Time base in the Encoder Mode */ |
| TIM_Base_SetConfig(htim->Instance, &htim->Init); |
| |
| /* Get the TIMx SMCR register value */ |
| tmpsmcr = htim->Instance->SMCR; |
| |
| /* Get the TIMx CCMR1 register value */ |
| tmpccmr1 = htim->Instance->CCMR1; |
| |
| /* Get the TIMx CCER register value */ |
| tmpccer = htim->Instance->CCER; |
| |
| /* Set the encoder Mode */ |
| tmpsmcr |= sConfig->EncoderMode; |
| |
| /* Select the Capture Compare 1 and the Capture Compare 2 as input */ |
| tmpccmr1 &= ~(TIM_CCMR1_CC1S | TIM_CCMR1_CC2S); |
| tmpccmr1 |= (sConfig->IC1Selection | (sConfig->IC2Selection << 8U)); |
| |
| /* Set the Capture Compare 1 and the Capture Compare 2 prescalers and filters */ |
| tmpccmr1 &= ~(TIM_CCMR1_IC1PSC | TIM_CCMR1_IC2PSC); |
| tmpccmr1 &= ~(TIM_CCMR1_IC1F | TIM_CCMR1_IC2F); |
| tmpccmr1 |= sConfig->IC1Prescaler | (sConfig->IC2Prescaler << 8U); |
| tmpccmr1 |= (sConfig->IC1Filter << 4U) | (sConfig->IC2Filter << 12U); |
| |
| /* Set the TI1 and the TI2 Polarities */ |
| tmpccer &= ~(TIM_CCER_CC1P | TIM_CCER_CC2P); |
| tmpccer &= ~(TIM_CCER_CC1NP | TIM_CCER_CC2NP); |
| tmpccer |= sConfig->IC1Polarity | (sConfig->IC2Polarity << 4U); |
| |
| /* Write to TIMx SMCR */ |
| htim->Instance->SMCR = tmpsmcr; |
| |
| /* Write to TIMx CCMR1 */ |
| htim->Instance->CCMR1 = tmpccmr1; |
| |
| /* Write to TIMx CCER */ |
| htim->Instance->CCER = tmpccer; |
| |
| /* Initialize the DMA burst operation state */ |
| htim->DMABurstState = HAL_DMA_BURST_STATE_READY; |
| |
| /* Set the TIM channels state */ |
| TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
| TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
| TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
| TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
| |
| /* Initialize the TIM state*/ |
| htim->State = HAL_TIM_STATE_READY; |
| |
| return HAL_OK; |
| } |
| |
| |
| /** |
| * @brief DeInitializes the TIM Encoder interface |
| * @param htim TIM Encoder Interface handle |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_TIM_Encoder_DeInit(TIM_HandleTypeDef *htim) |
| { |
| /* Check the parameters */ |
| assert_param(IS_TIM_INSTANCE(htim->Instance)); |
| |
| htim->State = HAL_TIM_STATE_BUSY; |
| |
| /* Disable the TIM Peripheral Clock */ |
| __HAL_TIM_DISABLE(htim); |
| |
| #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
| if (htim->Encoder_MspDeInitCallback == NULL) |
| { |
| htim->Encoder_MspDeInitCallback = HAL_TIM_Encoder_MspDeInit; |
| } |
| /* DeInit the low level hardware */ |
| htim->Encoder_MspDeInitCallback(htim); |
| #else |
| /* DeInit the low level hardware: GPIO, CLOCK, NVIC */ |
| HAL_TIM_Encoder_MspDeInit(htim); |
| #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
| |
| /* Change the DMA burst operation state */ |
| htim->DMABurstState = HAL_DMA_BURST_STATE_RESET; |
| |
| /* Set the TIM channels state */ |
| TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET); |
| TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET); |
| TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET); |
| TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET); |
| |
| /* Change TIM state */ |
| htim->State = HAL_TIM_STATE_RESET; |
| |
| /* Release Lock */ |
| __HAL_UNLOCK(htim); |
| |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Initializes the TIM Encoder Interface MSP. |
| * @param htim TIM Encoder Interface handle |
| * @retval None |
| */ |
| __weak void HAL_TIM_Encoder_MspInit(TIM_HandleTypeDef *htim) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(htim); |
| |
| /* NOTE : This function should not be modified, when the callback is needed, |
| the HAL_TIM_Encoder_MspInit could be implemented in the user file |
| */ |
| } |
| |
| /** |
| * @brief DeInitializes TIM Encoder Interface MSP. |
| * @param htim TIM Encoder Interface handle |
| * @retval None |
| */ |
| __weak void HAL_TIM_Encoder_MspDeInit(TIM_HandleTypeDef *htim) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(htim); |
| |
| /* NOTE : This function should not be modified, when the callback is needed, |
| the HAL_TIM_Encoder_MspDeInit could be implemented in the user file |
| */ |
| } |
| |
| /** |
| * @brief Starts the TIM Encoder Interface. |
| * @param htim TIM Encoder Interface handle |
| * @param Channel TIM Channels to be enabled |
| * This parameter can be one of the following values: |
| * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
| * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
| * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_TIM_Encoder_Start(TIM_HandleTypeDef *htim, uint32_t Channel) |
| { |
| HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1); |
| HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2); |
| HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1); |
| HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2); |
| |
| /* Check the parameters */ |
| assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance)); |
| |
| /* Set the TIM channel(s) state */ |
| if (Channel == TIM_CHANNEL_1) |
| { |
| if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY) |
| || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY)) |
| { |
| return HAL_ERROR; |
| } |
| else |
| { |
| TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
| TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
| } |
| } |
| else if (Channel == TIM_CHANNEL_2) |
| { |
| if ((channel_2_state != HAL_TIM_CHANNEL_STATE_READY) |
| || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY)) |
| { |
| return HAL_ERROR; |
| } |
| else |
| { |
| TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
| TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
| } |
| } |
| else |
| { |
| if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY) |
| || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY) |
| || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY) |
| || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY)) |
| { |
| return HAL_ERROR; |
| } |
| else |
| { |
| TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
| TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
| TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
| TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
| } |
| } |
| |
| /* Enable the encoder interface channels */ |
| switch (Channel) |
| { |
| case TIM_CHANNEL_1: |
| { |
| TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); |
| break; |
| } |
| |
| case TIM_CHANNEL_2: |
| { |
| TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); |
| break; |
| } |
| |
| default : |
| { |
| TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); |
| TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); |
| break; |
| } |
| } |
| /* Enable the Peripheral */ |
| __HAL_TIM_ENABLE(htim); |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Stops the TIM Encoder Interface. |
| * @param htim TIM Encoder Interface handle |
| * @param Channel TIM Channels to be disabled |
| * This parameter can be one of the following values: |
| * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
| * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
| * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_TIM_Encoder_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) |
| { |
| /* Check the parameters */ |
| assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance)); |
| |
| /* Disable the Input Capture channels 1 and 2 |
| (in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */ |
| switch (Channel) |
| { |
| case TIM_CHANNEL_1: |
| { |
| TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); |
| break; |
| } |
| |
| case TIM_CHANNEL_2: |
| { |
| TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); |
| break; |
| } |
| |
| default : |
| { |
| TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); |
| TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); |
| break; |
| } |
| } |
| |
| /* Disable the Peripheral */ |
| __HAL_TIM_DISABLE(htim); |
| |
| /* Set the TIM channel(s) state */ |
| if ((Channel == TIM_CHANNEL_1) || (Channel == TIM_CHANNEL_2)) |
| { |
| TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
| TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
| } |
| else |
| { |
| TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
| TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
| TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
| TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
| } |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Starts the TIM Encoder Interface in interrupt mode. |
| * @param htim TIM Encoder Interface handle |
| * @param Channel TIM Channels to be enabled |
| * This parameter can be one of the following values: |
| * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
| * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
| * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_TIM_Encoder_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel) |
| { |
| HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1); |
| HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2); |
| HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1); |
| HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2); |
| |
| /* Check the parameters */ |
| assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance)); |
| |
| /* Set the TIM channel(s) state */ |
| if (Channel == TIM_CHANNEL_1) |
| { |
| if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY) |
| || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY)) |
| { |
| return HAL_ERROR; |
| } |
| else |
| { |
| TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
| TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
| } |
| } |
| else if (Channel == TIM_CHANNEL_2) |
| { |
| if ((channel_2_state != HAL_TIM_CHANNEL_STATE_READY) |
| || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY)) |
| { |
| return HAL_ERROR; |
| } |
| else |
| { |
| TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
| TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
| } |
| } |
| else |
| { |
| if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY) |
| || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY) |
| || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY) |
| || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY)) |
| { |
| return HAL_ERROR; |
| } |
| else |
| { |
| TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
| TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
| TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
| TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
| } |
| } |
| |
| /* Enable the encoder interface channels */ |
| /* Enable the capture compare Interrupts 1 and/or 2 */ |
| switch (Channel) |
| { |
| case TIM_CHANNEL_1: |
| { |
| TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); |
| __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); |
| break; |
| } |
| |
| case TIM_CHANNEL_2: |
| { |
| TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); |
| __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); |
| break; |
| } |
| |
| default : |
| { |
| TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); |
| TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); |
| __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); |
| __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); |
| break; |
| } |
| } |
| |
| /* Enable the Peripheral */ |
| __HAL_TIM_ENABLE(htim); |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Stops the TIM Encoder Interface in interrupt mode. |
| * @param htim TIM Encoder Interface handle |
| * @param Channel TIM Channels to be disabled |
| * This parameter can be one of the following values: |
| * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
| * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
| * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_TIM_Encoder_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel) |
| { |
| /* Check the parameters */ |
| assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance)); |
| |
| /* Disable the Input Capture channels 1 and 2 |
| (in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */ |
| if (Channel == TIM_CHANNEL_1) |
| { |
| TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); |
| |
| /* Disable the capture compare Interrupts 1 */ |
| __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); |
| } |
| else if (Channel == TIM_CHANNEL_2) |
| { |
| TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); |
| |
| /* Disable the capture compare Interrupts 2 */ |
| __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); |
| } |
| else |
| { |
| TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); |
| TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); |
| |
| /* Disable the capture compare Interrupts 1 and 2 */ |
| __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); |
| __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); |
| } |
| |
| /* Disable the Peripheral */ |
| __HAL_TIM_DISABLE(htim); |
| |
| /* Set the TIM channel(s) state */ |
| if ((Channel == TIM_CHANNEL_1) || (Channel == TIM_CHANNEL_2)) |
| { |
| TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
| TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
| } |
| else |
| { |
| TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
| TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
| TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
| TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
| } |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Starts the TIM Encoder Interface in DMA mode. |
| * @param htim TIM Encoder Interface handle |
| * @param Channel TIM Channels to be enabled |
| * This parameter can be one of the following values: |
| * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
| * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
| * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected |
| * @param pData1 The destination Buffer address for IC1. |
| * @param pData2 The destination Buffer address for IC2. |
| * @param Length The length of data to be transferred from TIM peripheral to memory. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_TIM_Encoder_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData1, |
| uint32_t *pData2, uint16_t Length) |
| { |
| HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1); |
| HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2); |
| HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1); |
| HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2); |
| |
| /* Check the parameters */ |
| assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance)); |
| |
| /* Set the TIM channel(s) state */ |
| if (Channel == TIM_CHANNEL_1) |
| { |
| if ((channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY) |
| || (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY)) |
| { |
| return HAL_BUSY; |
| } |
| else if ((channel_1_state == HAL_TIM_CHANNEL_STATE_READY) |
| && (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_READY)) |
| { |
| if ((pData1 == NULL) && (Length > 0U)) |
| { |
| return HAL_ERROR; |
| } |
| else |
| { |
| TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
| TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
| } |
| } |
| else |
| { |
| return HAL_ERROR; |
| } |
| } |
| else if (Channel == TIM_CHANNEL_2) |
| { |
| if ((channel_2_state == HAL_TIM_CHANNEL_STATE_BUSY) |
| || (complementary_channel_2_state == HAL_TIM_CHANNEL_STATE_BUSY)) |
| { |
| return HAL_BUSY; |
| } |
| else if ((channel_2_state == HAL_TIM_CHANNEL_STATE_READY) |
| && (complementary_channel_2_state == HAL_TIM_CHANNEL_STATE_READY)) |
| { |
| if ((pData2 == NULL) && (Length > 0U)) |
| { |
| return HAL_ERROR; |
| } |
| else |
| { |
| TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
| TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
| } |
| } |
| else |
| { |
| return HAL_ERROR; |
| } |
| } |
| else |
| { |
| if ((channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY) |
| || (channel_2_state == HAL_TIM_CHANNEL_STATE_BUSY) |
| || (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY) |
| || (complementary_channel_2_state == HAL_TIM_CHANNEL_STATE_BUSY)) |
| { |
| return HAL_BUSY; |
| } |
| else if ((channel_1_state == HAL_TIM_CHANNEL_STATE_READY) |
| && (channel_2_state == HAL_TIM_CHANNEL_STATE_READY) |
| && (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_READY) |
| && (complementary_channel_2_state == HAL_TIM_CHANNEL_STATE_READY)) |
| { |
| if ((((pData1 == NULL) || (pData2 == NULL))) && (Length > 0U)) |
| { |
| return HAL_ERROR; |
| } |
| else |
| { |
| TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
| TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
| TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
| TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
| } |
| } |
| else |
| { |
| return HAL_ERROR; |
| } |
| } |
| |
| switch (Channel) |
| { |
| case TIM_CHANNEL_1: |
| { |
| /* Set the DMA capture callbacks */ |
| htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt; |
| htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; |
| |
| /* Set the DMA error callback */ |
| htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; |
| |
| /* Enable the DMA channel */ |
| if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData1, Length) != HAL_OK) |
| { |
| return HAL_ERROR; |
| } |
| /* Enable the TIM Input Capture DMA request */ |
| __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); |
| |
| /* Enable the Peripheral */ |
| __HAL_TIM_ENABLE(htim); |
| |
| /* Enable the Capture compare channel */ |
| TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); |
| break; |
| } |
| |
| case TIM_CHANNEL_2: |
| { |
| /* Set the DMA capture callbacks */ |
| htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt; |
| htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; |
| |
| /* Set the DMA error callback */ |
| htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError; |
| /* Enable the DMA channel */ |
| if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData2, Length) != HAL_OK) |
| { |
| return HAL_ERROR; |
| } |
| /* Enable the TIM Input Capture DMA request */ |
| __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2); |
| |
| /* Enable the Peripheral */ |
| __HAL_TIM_ENABLE(htim); |
| |
| /* Enable the Capture compare channel */ |
| TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); |
| break; |
| } |
| |
| case TIM_CHANNEL_ALL: |
| { |
| /* Set the DMA capture callbacks */ |
| htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt; |
| htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; |
| |
| /* Set the DMA error callback */ |
| htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; |
| |
| /* Enable the DMA channel */ |
| if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData1, Length) != HAL_OK) |
| { |
| return HAL_ERROR; |
| } |
| |
| /* Set the DMA capture callbacks */ |
| htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt; |
| htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; |
| |
| /* Set the DMA error callback */ |
| htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ; |
| |
| /* Enable the DMA channel */ |
| if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData2, Length) != HAL_OK) |
| { |
| return HAL_ERROR; |
| } |
| /* Enable the Peripheral */ |
| __HAL_TIM_ENABLE(htim); |
| |
| /* Enable the Capture compare channel */ |
| TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); |
| TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); |
| |
| /* Enable the TIM Input Capture DMA request */ |
| __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); |
| /* Enable the TIM Input Capture DMA request */ |
| __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2); |
| break; |
| } |
| |
| default: |
| break; |
| } |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Stops the TIM Encoder Interface in DMA mode. |
| * @param htim TIM Encoder Interface handle |
| * @param Channel TIM Channels to be enabled |
| * This parameter can be one of the following values: |
| * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
| * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
| * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_TIM_Encoder_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel) |
| { |
| /* Check the parameters */ |
| assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance)); |
| |
| /* Disable the Input Capture channels 1 and 2 |
| (in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */ |
| if (Channel == TIM_CHANNEL_1) |
| { |
| TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); |
| |
| /* Disable the capture compare DMA Request 1 */ |
| __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); |
| (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); |
| } |
| else if (Channel == TIM_CHANNEL_2) |
| { |
| TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); |
| |
| /* Disable the capture compare DMA Request 2 */ |
| __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2); |
| (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); |
| } |
| else |
| { |
| TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); |
| TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); |
| |
| /* Disable the capture compare DMA Request 1 and 2 */ |
| __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); |
| __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2); |
| (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); |
| (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); |
| } |
| |
| /* Disable the Peripheral */ |
| __HAL_TIM_DISABLE(htim); |
| |
| /* Set the TIM channel(s) state */ |
| if ((Channel == TIM_CHANNEL_1) || (Channel == TIM_CHANNEL_2)) |
| { |
| TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
| TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
| } |
| else |
| { |
| TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
| TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
| TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
| TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
| } |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| |
| /** |
| * @} |
| */ |
| /** @defgroup TIM_Exported_Functions_Group7 TIM IRQ handler management |
| * @brief TIM IRQ handler management |
| * |
| @verbatim |
| ============================================================================== |
| ##### IRQ handler management ##### |
| ============================================================================== |
| [..] |
| This section provides Timer IRQ handler function. |
| |
| @endverbatim |
| * @{ |
| */ |
| /** |
| * @brief This function handles TIM interrupts requests. |
| * @param htim TIM handle |
| * @retval None |
| */ |
| void HAL_TIM_IRQHandler(TIM_HandleTypeDef *htim) |
| { |
| /* Capture compare 1 event */ |
| if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_CC1) != RESET) |
| { |
| if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_CC1) != RESET) |
| { |
| { |
| __HAL_TIM_CLEAR_IT(htim, TIM_IT_CC1); |
| htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1; |
| |
| /* Input capture event */ |
| if ((htim->Instance->CCMR1 & TIM_CCMR1_CC1S) != 0x00U) |
| { |
| #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
| htim->IC_CaptureCallback(htim); |
| #else |
| HAL_TIM_IC_CaptureCallback(htim); |
| #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
| } |
| /* Output compare event */ |
| else |
| { |
| #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
| htim->OC_DelayElapsedCallback(htim); |
| htim->PWM_PulseFinishedCallback(htim); |
| #else |
| HAL_TIM_OC_DelayElapsedCallback(htim); |
| HAL_TIM_PWM_PulseFinishedCallback(htim); |
| #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
| } |
| htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; |
| } |
| } |
| } |
| /* Capture compare 2 event */ |
| if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_CC2) != RESET) |
| { |
| if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_CC2) != RESET) |
| { |
| __HAL_TIM_CLEAR_IT(htim, TIM_IT_CC2); |
| htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2; |
| /* Input capture event */ |
| if ((htim->Instance->CCMR1 & TIM_CCMR1_CC2S) != 0x00U) |
| { |
| #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
| htim->IC_CaptureCallback(htim); |
| #else |
| HAL_TIM_IC_CaptureCallback(htim); |
| #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
| } |
| /* Output compare event */ |
| else |
| { |
| #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
| htim->OC_DelayElapsedCallback(htim); |
| htim->PWM_PulseFinishedCallback(htim); |
| #else |
| HAL_TIM_OC_DelayElapsedCallback(htim); |
| HAL_TIM_PWM_PulseFinishedCallback(htim); |
| #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
| } |
| htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; |
| } |
| } |
| /* Capture compare 3 event */ |
| if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_CC3) != RESET) |
| { |
| if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_CC3) != RESET) |
| { |
| __HAL_TIM_CLEAR_IT(htim, TIM_IT_CC3); |
| htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3; |
| /* Input capture event */ |
| if ((htim->Instance->CCMR2 & TIM_CCMR2_CC3S) != 0x00U) |
| { |
| #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
| htim->IC_CaptureCallback(htim); |
| #else |
| HAL_TIM_IC_CaptureCallback(htim); |
| #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
| } |
| /* Output compare event */ |
| else |
| { |
| #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
| htim->OC_DelayElapsedCallback(htim); |
| htim->PWM_PulseFinishedCallback(htim); |
| #else |
| HAL_TIM_OC_DelayElapsedCallback(htim); |
| HAL_TIM_PWM_PulseFinishedCallback(htim); |
| #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
| } |
| htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; |
| } |
| } |
| /* Capture compare 4 event */ |
| if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_CC4) != RESET) |
| { |
| if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_CC4) != RESET) |
| { |
| __HAL_TIM_CLEAR_IT(htim, TIM_IT_CC4); |
| htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4; |
| /* Input capture event */ |
| if ((htim->Instance->CCMR2 & TIM_CCMR2_CC4S) != 0x00U) |
| { |
| #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
| htim->IC_CaptureCallback(htim); |
| #else |
| HAL_TIM_IC_CaptureCallback(htim); |
| #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
| } |
| /* Output compare event */ |
| else |
| { |
| #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
| htim->OC_DelayElapsedCallback(htim); |
| htim->PWM_PulseFinishedCallback(htim); |
| #else |
| HAL_TIM_OC_DelayElapsedCallback(htim); |
| HAL_TIM_PWM_PulseFinishedCallback(htim); |
| #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
| } |
| htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; |
| } |
| } |
| /* TIM Update event */ |
| if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_UPDATE) != RESET) |
| { |
| if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_UPDATE) != RESET) |
| { |
| __HAL_TIM_CLEAR_IT(htim, TIM_IT_UPDATE); |
| #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
| htim->PeriodElapsedCallback(htim); |
| #else |
| HAL_TIM_PeriodElapsedCallback(htim); |
| #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
| } |
| } |
| /* TIM Break input event */ |
| if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_BREAK) != RESET) |
| { |
| if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_BREAK) != RESET) |
| { |
| __HAL_TIM_CLEAR_IT(htim, TIM_IT_BREAK); |
| #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
| htim->BreakCallback(htim); |
| #else |
| HAL_TIMEx_BreakCallback(htim); |
| #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
| } |
| } |
| /* TIM Break2 input event */ |
| if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_BREAK2) != RESET) |
| { |
| if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_BREAK) != RESET) |
| { |
| __HAL_TIM_CLEAR_FLAG(htim, TIM_FLAG_BREAK2); |
| #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
| htim->Break2Callback(htim); |
| #else |
| HAL_TIMEx_Break2Callback(htim); |
| #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
| } |
| } |
| /* TIM Trigger detection event */ |
| if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_TRIGGER) != RESET) |
| { |
| if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_TRIGGER) != RESET) |
| { |
| __HAL_TIM_CLEAR_IT(htim, TIM_IT_TRIGGER); |
| #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
| htim->TriggerCallback(htim); |
| #else |
| HAL_TIM_TriggerCallback(htim); |
| #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
| } |
| } |
| /* TIM commutation event */ |
| if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_COM) != RESET) |
| { |
| if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_COM) != RESET) |
| { |
| __HAL_TIM_CLEAR_IT(htim, TIM_FLAG_COM); |
| #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
| htim->CommutationCallback(htim); |
| #else |
| HAL_TIMEx_CommutCallback(htim); |
| #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
| } |
| } |
| /* TIM Encoder index event */ |
| if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_IDX) != RESET) |
| { |
| if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_IDX) != RESET) |
| { |
| __HAL_TIM_CLEAR_IT(htim, TIM_FLAG_IDX); |
| #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
| htim->EncoderIndexCallback(htim); |
| #else |
| HAL_TIMEx_EncoderIndexCallback(htim); |
| #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
| } |
| } |
| /* TIM Direction change event */ |
| if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_DIR) != RESET) |
| { |
| if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_DIR) != RESET) |
| { |
| __HAL_TIM_CLEAR_IT(htim, TIM_FLAG_DIR); |
| #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
| htim->DirectionChangeCallback(htim); |
| #else |
| HAL_TIMEx_DirectionChangeCallback(htim); |
| #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
| } |
| } |
| /* TIM Index error event */ |
| if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_IERR) != RESET) |
| { |
| if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_IERR) != RESET) |
| { |
| __HAL_TIM_CLEAR_IT(htim, TIM_FLAG_IERR); |
| #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
| htim->IndexErrorCallback(htim); |
| #else |
| HAL_TIMEx_IndexErrorCallback(htim); |
| #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
| } |
| } |
| /* TIM Transition error event */ |
| if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_TERR) != RESET) |
| { |
| if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_TERR) != RESET) |
| { |
| __HAL_TIM_CLEAR_IT(htim, TIM_FLAG_TERR); |
| #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
| htim->TransitionErrorCallback(htim); |
| #else |
| HAL_TIMEx_TransitionErrorCallback(htim); |
| #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
| } |
| } |
| } |
| |
| /** |
| * @} |
| */ |
| |
| /** @defgroup TIM_Exported_Functions_Group8 TIM Peripheral Control functions |
| * @brief TIM Peripheral Control functions |
| * |
| @verbatim |
| ============================================================================== |
| ##### Peripheral Control functions ##### |
| ============================================================================== |
| [..] |
| This section provides functions allowing to: |
| (+) Configure The Input Output channels for OC, PWM, IC or One Pulse mode. |
| (+) Configure External Clock source. |
| (+) Configure Complementary channels, break features and dead time. |
| (+) Configure Master and the Slave synchronization. |
| (+) Configure the DMA Burst Mode. |
| |
| @endverbatim |
| * @{ |
| */ |
| |
| /** |
| * @brief Initializes the TIM Output Compare Channels according to the specified |
| * parameters in the TIM_OC_InitTypeDef. |
| * @param htim TIM Output Compare handle |
| * @param sConfig TIM Output Compare configuration structure |
| * @param Channel TIM Channels to configure |
| * This parameter can be one of the following values: |
| * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
| * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
| * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
| * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
| * @arg TIM_CHANNEL_5: TIM Channel 5 selected |
| * @arg TIM_CHANNEL_6: TIM Channel 6 selected |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_TIM_OC_ConfigChannel(TIM_HandleTypeDef *htim, |
| TIM_OC_InitTypeDef *sConfig, |
| uint32_t Channel) |
| { |
| /* Check the parameters */ |
| assert_param(IS_TIM_CHANNELS(Channel)); |
| assert_param(IS_TIM_OC_CHANNEL_MODE(sConfig->OCMode, Channel)); |
| assert_param(IS_TIM_OC_POLARITY(sConfig->OCPolarity)); |
| |
| /* Process Locked */ |
| __HAL_LOCK(htim); |
| |
| switch (Channel) |
| { |
| case TIM_CHANNEL_1: |
| { |
| /* Check the parameters */ |
| assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); |
| |
| /* Configure the TIM Channel 1 in Output Compare */ |
| TIM_OC1_SetConfig(htim->Instance, sConfig); |
| break; |
| } |
| |
| case TIM_CHANNEL_2: |
| { |
| /* Check the parameters */ |
| assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); |
| |
| /* Configure the TIM Channel 2 in Output Compare */ |
| TIM_OC2_SetConfig(htim->Instance, sConfig); |
| break; |
| } |
| |
| case TIM_CHANNEL_3: |
| { |
| /* Check the parameters */ |
| assert_param(IS_TIM_CC3_INSTANCE(htim->Instance)); |
| |
| /* Configure the TIM Channel 3 in Output Compare */ |
| TIM_OC3_SetConfig(htim->Instance, sConfig); |
| break; |
| } |
| |
| case TIM_CHANNEL_4: |
| { |
| /* Check the parameters */ |
| assert_param(IS_TIM_CC4_INSTANCE(htim->Instance)); |
| |
| /* Configure the TIM Channel 4 in Output Compare */ |
| TIM_OC4_SetConfig(htim->Instance, sConfig); |
| break; |
| } |
| |
| case TIM_CHANNEL_5: |
| { |
| /* Check the parameters */ |
| assert_param(IS_TIM_CC5_INSTANCE(htim->Instance)); |
| |
| /* Configure the TIM Channel 5 in Output Compare */ |
| TIM_OC5_SetConfig(htim->Instance, sConfig); |
| break; |
| } |
| |
| case TIM_CHANNEL_6: |
| { |
| /* Check the parameters */ |
| assert_param(IS_TIM_CC6_INSTANCE(htim->Instance)); |
| |
| /* Configure the TIM Channel 6 in Output Compare */ |
| TIM_OC6_SetConfig(htim->Instance, sConfig); |
| break; |
| } |
| |
| default: |
| break; |
| } |
| |
| __HAL_UNLOCK(htim); |
| |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Initializes the TIM Input Capture Channels according to the specified |
| * parameters in the TIM_IC_InitTypeDef. |
| * @param htim TIM IC handle |
| * @param sConfig TIM Input Capture configuration structure |
| * @param Channel TIM Channel to configure |
| * This parameter can be one of the following values: |
| * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
| * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
| * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
| * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_TIM_IC_ConfigChannel(TIM_HandleTypeDef *htim, TIM_IC_InitTypeDef *sConfig, uint32_t Channel) |
| { |
| /* Check the parameters */ |
| assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); |
| assert_param(IS_TIM_IC_POLARITY(sConfig->ICPolarity)); |
| assert_param(IS_TIM_IC_SELECTION(sConfig->ICSelection)); |
| assert_param(IS_TIM_IC_PRESCALER(sConfig->ICPrescaler)); |
| assert_param(IS_TIM_IC_FILTER(sConfig->ICFilter)); |
| |
| /* Process Locked */ |
| __HAL_LOCK(htim); |
| |
| if (Channel == TIM_CHANNEL_1) |
| { |
| /* TI1 Configuration */ |
| TIM_TI1_SetConfig(htim->Instance, |
| sConfig->ICPolarity, |
| sConfig->ICSelection, |
| sConfig->ICFilter); |
| |
| /* Reset the IC1PSC Bits */ |
| htim->Instance->CCMR1 &= ~TIM_CCMR1_IC1PSC; |
| |
| /* Set the IC1PSC value */ |
| htim->Instance->CCMR1 |= sConfig->ICPrescaler; |
| } |
| else if (Channel == TIM_CHANNEL_2) |
| { |
| /* TI2 Configuration */ |
| assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); |
| |
| TIM_TI2_SetConfig(htim->Instance, |
| sConfig->ICPolarity, |
| sConfig->ICSelection, |
| sConfig->ICFilter); |
| |
| /* Reset the IC2PSC Bits */ |
| htim->Instance->CCMR1 &= ~TIM_CCMR1_IC2PSC; |
| |
| /* Set the IC2PSC value */ |
| htim->Instance->CCMR1 |= (sConfig->ICPrescaler << 8U); |
| } |
| else if (Channel == TIM_CHANNEL_3) |
| { |
| /* TI3 Configuration */ |
| assert_param(IS_TIM_CC3_INSTANCE(htim->Instance)); |
| |
| TIM_TI3_SetConfig(htim->Instance, |
| sConfig->ICPolarity, |
| sConfig->ICSelection, |
| sConfig->ICFilter); |
| |
| /* Reset the IC3PSC Bits */ |
| htim->Instance->CCMR2 &= ~TIM_CCMR2_IC3PSC; |
| |
| /* Set the IC3PSC value */ |
| htim->Instance->CCMR2 |= sConfig->ICPrescaler; |
| } |
| else |
| { |
| /* TI4 Configuration */ |
| assert_param(IS_TIM_CC4_INSTANCE(htim->Instance)); |
| |
| TIM_TI4_SetConfig(htim->Instance, |
| sConfig->ICPolarity, |
| sConfig->ICSelection, |
| sConfig->ICFilter); |
| |
| /* Reset the IC4PSC Bits */ |
| htim->Instance->CCMR2 &= ~TIM_CCMR2_IC4PSC; |
| |
| /* Set the IC4PSC value */ |
| htim->Instance->CCMR2 |= (sConfig->ICPrescaler << 8U); |
| } |
| |
| __HAL_UNLOCK(htim); |
| |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Initializes the TIM PWM channels according to the specified |
| * parameters in the TIM_OC_InitTypeDef. |
| * @param htim TIM PWM handle |
| * @param sConfig TIM PWM configuration structure |
| * @param Channel TIM Channels to be configured |
| * This parameter can be one of the following values: |
| * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
| * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
| * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
| * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
| * @arg TIM_CHANNEL_5: TIM Channel 5 selected |
| * @arg TIM_CHANNEL_6: TIM Channel 6 selected |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_TIM_PWM_ConfigChannel(TIM_HandleTypeDef *htim, |
| TIM_OC_InitTypeDef *sConfig, |
| uint32_t Channel) |
| { |
| /* Check the parameters */ |
| assert_param(IS_TIM_CHANNELS(Channel)); |
| assert_param(IS_TIM_PWM_MODE(sConfig->OCMode)); |
| assert_param(IS_TIM_OC_POLARITY(sConfig->OCPolarity)); |
| assert_param(IS_TIM_FAST_STATE(sConfig->OCFastMode)); |
| |
| /* Process Locked */ |
| __HAL_LOCK(htim); |
| |
| switch (Channel) |
| { |
| case TIM_CHANNEL_1: |
| { |
| /* Check the parameters */ |
| assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); |
| |
| /* Configure the Channel 1 in PWM mode */ |
| TIM_OC1_SetConfig(htim->Instance, sConfig); |
| |
| /* Set the Preload enable bit for channel1 */ |
| htim->Instance->CCMR1 |= TIM_CCMR1_OC1PE; |
| |
| /* Configure the Output Fast mode */ |
| htim->Instance->CCMR1 &= ~TIM_CCMR1_OC1FE; |
| htim->Instance->CCMR1 |= sConfig->OCFastMode; |
| break; |
| } |
| |
| case TIM_CHANNEL_2: |
| { |
| /* Check the parameters */ |
| assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); |
| |
| /* Configure the Channel 2 in PWM mode */ |
| TIM_OC2_SetConfig(htim->Instance, sConfig); |
| |
| /* Set the Preload enable bit for channel2 */ |
| htim->Instance->CCMR1 |= TIM_CCMR1_OC2PE; |
| |
| /* Configure the Output Fast mode */ |
| htim->Instance->CCMR1 &= ~TIM_CCMR1_OC2FE; |
| htim->Instance->CCMR1 |= sConfig->OCFastMode << 8U; |
| break; |
| } |
| |
| case TIM_CHANNEL_3: |
| { |
| /* Check the parameters */ |
| assert_param(IS_TIM_CC3_INSTANCE(htim->Instance)); |
| |
| /* Configure the Channel 3 in PWM mode */ |
| TIM_OC3_SetConfig(htim->Instance, sConfig); |
| |
| /* Set the Preload enable bit for channel3 */ |
| htim->Instance->CCMR2 |= TIM_CCMR2_OC3PE; |
| |
| /* Configure the Output Fast mode */ |
| htim->Instance->CCMR2 &= ~TIM_CCMR2_OC3FE; |
| htim->Instance->CCMR2 |= sConfig->OCFastMode; |
| break; |
| } |
| |
| case TIM_CHANNEL_4: |
| { |
| /* Check the parameters */ |
| assert_param(IS_TIM_CC4_INSTANCE(htim->Instance)); |
| |
| /* Configure the Channel 4 in PWM mode */ |
| TIM_OC4_SetConfig(htim->Instance, sConfig); |
| |
| /* Set the Preload enable bit for channel4 */ |
| htim->Instance->CCMR2 |= TIM_CCMR2_OC4PE; |
| |
| /* Configure the Output Fast mode */ |
| htim->Instance->CCMR2 &= ~TIM_CCMR2_OC4FE; |
| htim->Instance->CCMR2 |= sConfig->OCFastMode << 8U; |
| break; |
| } |
| |
| case TIM_CHANNEL_5: |
| { |
| /* Check the parameters */ |
| assert_param(IS_TIM_CC5_INSTANCE(htim->Instance)); |
| |
| /* Configure the Channel 5 in PWM mode */ |
| TIM_OC5_SetConfig(htim->Instance, sConfig); |
| |
| /* Set the Preload enable bit for channel5*/ |
| htim->Instance->CCMR3 |= TIM_CCMR3_OC5PE; |
| |
| /* Configure the Output Fast mode */ |
| htim->Instance->CCMR3 &= ~TIM_CCMR3_OC5FE; |
| htim->Instance->CCMR3 |= sConfig->OCFastMode; |
| break; |
| } |
| |
| case TIM_CHANNEL_6: |
| { |
| /* Check the parameters */ |
| assert_param(IS_TIM_CC6_INSTANCE(htim->Instance)); |
| |
| /* Configure the Channel 6 in PWM mode */ |
| TIM_OC6_SetConfig(htim->Instance, sConfig); |
| |
| /* Set the Preload enable bit for channel6 */ |
| htim->Instance->CCMR3 |= TIM_CCMR3_OC6PE; |
| |
| /* Configure the Output Fast mode */ |
| htim->Instance->CCMR3 &= ~TIM_CCMR3_OC6FE; |
| htim->Instance->CCMR3 |= sConfig->OCFastMode << 8U; |
| break; |
| } |
| |
| default: |
| break; |
| } |
| |
| __HAL_UNLOCK(htim); |
| |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Initializes the TIM One Pulse Channels according to the specified |
| * parameters in the TIM_OnePulse_InitTypeDef. |
| * @param htim TIM One Pulse handle |
| * @param sConfig TIM One Pulse configuration structure |
| * @param OutputChannel TIM output channel to configure |
| * This parameter can be one of the following values: |
| * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
| * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
| * @param InputChannel TIM input Channel to configure |
| * This parameter can be one of the following values: |
| * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
| * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
| * @note To output a waveform with a minimum delay user can enable the fast |
| * mode by calling the @ref __HAL_TIM_ENABLE_OCxFAST macro. Then CCx |
| * output is forced in response to the edge detection on TIx input, |
| * without taking in account the comparison. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_TIM_OnePulse_ConfigChannel(TIM_HandleTypeDef *htim, TIM_OnePulse_InitTypeDef *sConfig, |
| uint32_t OutputChannel, uint32_t InputChannel) |
| { |
| TIM_OC_InitTypeDef temp1; |
| |
| /* Check the parameters */ |
| assert_param(IS_TIM_OPM_CHANNELS(OutputChannel)); |
| assert_param(IS_TIM_OPM_CHANNELS(InputChannel)); |
| |
| if (OutputChannel != InputChannel) |
| { |
| /* Process Locked */ |
| __HAL_LOCK(htim); |
| |
| htim->State = HAL_TIM_STATE_BUSY; |
| |
| /* Extract the Output compare configuration from sConfig structure */ |
| temp1.OCMode = sConfig->OCMode; |
| temp1.Pulse = sConfig->Pulse; |
| temp1.OCPolarity = sConfig->OCPolarity; |
| temp1.OCNPolarity = sConfig->OCNPolarity; |
| temp1.OCIdleState = sConfig->OCIdleState; |
| temp1.OCNIdleState = sConfig->OCNIdleState; |
| |
| switch (OutputChannel) |
| { |
| case TIM_CHANNEL_1: |
| { |
| assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); |
| |
| TIM_OC1_SetConfig(htim->Instance, &temp1); |
| break; |
| } |
| case TIM_CHANNEL_2: |
| { |
| assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); |
| |
| TIM_OC2_SetConfig(htim->Instance, &temp1); |
| break; |
| } |
| default: |
| break; |
| } |
| |
| switch (InputChannel) |
| { |
| case TIM_CHANNEL_1: |
| { |
| assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); |
| |
| TIM_TI1_SetConfig(htim->Instance, sConfig->ICPolarity, |
| sConfig->ICSelection, sConfig->ICFilter); |
| |
| /* Reset the IC1PSC Bits */ |
| htim->Instance->CCMR1 &= ~TIM_CCMR1_IC1PSC; |
| |
| /* Select the Trigger source */ |
| htim->Instance->SMCR &= ~TIM_SMCR_TS; |
| htim->Instance->SMCR |= TIM_TS_TI1FP1; |
| |
| /* Select the Slave Mode */ |
| htim->Instance->SMCR &= ~TIM_SMCR_SMS; |
| htim->Instance->SMCR |= TIM_SLAVEMODE_TRIGGER; |
| break; |
| } |
| case TIM_CHANNEL_2: |
| { |
| assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); |
| |
| TIM_TI2_SetConfig(htim->Instance, sConfig->ICPolarity, |
| sConfig->ICSelection, sConfig->ICFilter); |
| |
| /* Reset the IC2PSC Bits */ |
| htim->Instance->CCMR1 &= ~TIM_CCMR1_IC2PSC; |
| |
| /* Select the Trigger source */ |
| htim->Instance->SMCR &= ~TIM_SMCR_TS; |
| htim->Instance->SMCR |= TIM_TS_TI2FP2; |
| |
| /* Select the Slave Mode */ |
| htim->Instance->SMCR &= ~TIM_SMCR_SMS; |
| htim->Instance->SMCR |= TIM_SLAVEMODE_TRIGGER; |
| break; |
| } |
| |
| default: |
| break; |
| } |
| |
| htim->State = HAL_TIM_STATE_READY; |
| |
| __HAL_UNLOCK(htim); |
| |
| return HAL_OK; |
| } |
| else |
| { |
| return HAL_ERROR; |
| } |
| } |
| |
| /** |
| * @brief Configure the DMA Burst to transfer Data from the memory to the TIM peripheral |
| * @param htim TIM handle |
| * @param BurstBaseAddress TIM Base address from where the DMA will start the Data write |
| * This parameter can be one of the following values: |
| * @arg TIM_DMABASE_CR1 |
| * @arg TIM_DMABASE_CR2 |
| * @arg TIM_DMABASE_SMCR |
| * @arg TIM_DMABASE_DIER |
| * @arg TIM_DMABASE_SR |
| * @arg TIM_DMABASE_EGR |
| * @arg TIM_DMABASE_CCMR1 |
| * @arg TIM_DMABASE_CCMR2 |
| * @arg TIM_DMABASE_CCER |
| * @arg TIM_DMABASE_CNT |
| * @arg TIM_DMABASE_PSC |
| * @arg TIM_DMABASE_ARR |
| * @arg TIM_DMABASE_RCR |
| * @arg TIM_DMABASE_CCR1 |
| * @arg TIM_DMABASE_CCR2 |
| * @arg TIM_DMABASE_CCR3 |
| * @arg TIM_DMABASE_CCR4 |
| * @arg TIM_DMABASE_BDTR |
| * @arg TIM_DMABASE_CCMR3 |
| * @arg TIM_DMABASE_CCR5 |
| * @arg TIM_DMABASE_CCR6 |
| * @arg TIM_DMABASE_DTR2 |
| * @arg TIM_DMABASE_ECR |
| * @arg TIM_DMABASE_TISEL |
| * @arg TIM_DMABASE_AF1 |
| * @arg TIM_DMABASE_AF2 |
| * @arg TIM_DMABASE_OR |
| * @param BurstRequestSrc TIM DMA Request sources |
| * This parameter can be one of the following values: |
| * @arg TIM_DMA_UPDATE: TIM update Interrupt source |
| * @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source |
| * @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source |
| * @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source |
| * @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source |
| * @arg TIM_DMA_COM: TIM Commutation DMA source |
| * @arg TIM_DMA_TRIGGER: TIM Trigger DMA source |
| * @param BurstBuffer The Buffer address. |
| * @param BurstLength DMA Burst length. This parameter can be one value |
| * between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_26TRANSFER. |
| * @note This function should be used only when BurstLength is equal to DMA data transfer length. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_TIM_DMABurst_WriteStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress, |
| uint32_t BurstRequestSrc, uint32_t *BurstBuffer, uint32_t BurstLength) |
| { |
| return HAL_TIM_DMABurst_MultiWriteStart(htim, BurstBaseAddress, BurstRequestSrc, BurstBuffer, BurstLength, |
| ((BurstLength) >> 8U) + 1U); |
| } |
| |
| /** |
| * @brief Configure the DMA Burst to transfer multiple Data from the memory to the TIM peripheral |
| * @param htim TIM handle |
| * @param BurstBaseAddress TIM Base address from where the DMA will start the Data write |
| * This parameter can be one of the following values: |
| * @arg TIM_DMABASE_CR1 |
| * @arg TIM_DMABASE_CR2 |
| * @arg TIM_DMABASE_SMCR |
| * @arg TIM_DMABASE_DIER |
| * @arg TIM_DMABASE_SR |
| * @arg TIM_DMABASE_EGR |
| * @arg TIM_DMABASE_CCMR1 |
| * @arg TIM_DMABASE_CCMR2 |
| * @arg TIM_DMABASE_CCER |
| * @arg TIM_DMABASE_CNT |
| * @arg TIM_DMABASE_PSC |
| * @arg TIM_DMABASE_ARR |
| * @arg TIM_DMABASE_RCR |
| * @arg TIM_DMABASE_CCR1 |
| * @arg TIM_DMABASE_CCR2 |
| * @arg TIM_DMABASE_CCR3 |
| * @arg TIM_DMABASE_CCR4 |
| * @arg TIM_DMABASE_BDTR |
| * @arg TIM_DMABASE_CCMR3 |
| * @arg TIM_DMABASE_CCR5 |
| * @arg TIM_DMABASE_CCR6 |
| * @arg TIM_DMABASE_DTR2 |
| * @arg TIM_DMABASE_ECR |
| * @arg TIM_DMABASE_TISEL |
| * @arg TIM_DMABASE_AF1 |
| * @arg TIM_DMABASE_AF2 |
| * @arg TIM_DMABASE_OR |
| * @param BurstRequestSrc TIM DMA Request sources |
| * This parameter can be one of the following values: |
| * @arg TIM_DMA_UPDATE: TIM update Interrupt source |
| * @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source |
| * @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source |
| * @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source |
| * @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source |
| * @arg TIM_DMA_COM: TIM Commutation DMA source |
| * @arg TIM_DMA_TRIGGER: TIM Trigger DMA source |
| * @param BurstBuffer The Buffer address. |
| * @param BurstLength DMA Burst length. This parameter can be one value |
| * between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_26TRANSFER. |
| * @param DataLength Data length. This parameter can be one value |
| * between 1 and 0xFFFF. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_TIM_DMABurst_MultiWriteStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress, |
| uint32_t BurstRequestSrc, uint32_t *BurstBuffer, |
| uint32_t BurstLength, uint32_t DataLength) |
| { |
| /* Check the parameters */ |
| assert_param(IS_TIM_DMABURST_INSTANCE(htim->Instance)); |
| assert_param(IS_TIM_DMA_BASE(BurstBaseAddress)); |
| assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc)); |
| assert_param(IS_TIM_DMA_LENGTH(BurstLength)); |
| assert_param(IS_TIM_DMA_DATA_LENGTH(DataLength)); |
| |
| if (htim->DMABurstState == HAL_DMA_BURST_STATE_BUSY) |
| { |
| return HAL_BUSY; |
| } |
| else if (htim->DMABurstState == HAL_DMA_BURST_STATE_READY) |
| { |
| if ((BurstBuffer == NULL) && (BurstLength > 0U)) |
| { |
| return HAL_ERROR; |
| } |
| else |
| { |
| htim->DMABurstState = HAL_DMA_BURST_STATE_BUSY; |
| } |
| } |
| else |
| { |
| /* nothing to do */ |
| } |
| switch (BurstRequestSrc) |
| { |
| case TIM_DMA_UPDATE: |
| { |
| /* Set the DMA Period elapsed callbacks */ |
| htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt; |
| htim->hdma[TIM_DMA_ID_UPDATE]->XferHalfCpltCallback = TIM_DMAPeriodElapsedHalfCplt; |
| |
| /* Set the DMA error callback */ |
| htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = TIM_DMAError ; |
| |
| /* Enable the DMA channel */ |
| if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)BurstBuffer, |
| (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) |
| { |
| return HAL_ERROR; |
| } |
| break; |
| } |
| case TIM_DMA_CC1: |
| { |
| /* Set the DMA compare callbacks */ |
| htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt; |
| htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
| |
| /* Set the DMA error callback */ |
| htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; |
| |
| /* Enable the DMA channel */ |
| if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)BurstBuffer, |
| (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) |
| { |
| return HAL_ERROR; |
| } |
| break; |
| } |
| case TIM_DMA_CC2: |
| { |
| /* Set the DMA compare callbacks */ |
| htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt; |
| htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
| |
| /* Set the DMA error callback */ |
| htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ; |
| |
| /* Enable the DMA channel */ |
| if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)BurstBuffer, |
| (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) |
| { |
| return HAL_ERROR; |
| } |
| break; |
| } |
| case TIM_DMA_CC3: |
| { |
| /* Set the DMA compare callbacks */ |
| htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt; |
| htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
| |
| /* Set the DMA error callback */ |
| htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ; |
| |
| /* Enable the DMA channel */ |
| if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)BurstBuffer, |
| (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) |
| { |
| return HAL_ERROR; |
| } |
| break; |
| } |
| case TIM_DMA_CC4: |
| { |
| /* Set the DMA compare callbacks */ |
| htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt; |
| htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
| |
| /* Set the DMA error callback */ |
| htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ; |
| |
| /* Enable the DMA channel */ |
| if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)BurstBuffer, |
| (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) |
| { |
| return HAL_ERROR; |
| } |
| break; |
| } |
| case TIM_DMA_COM: |
| { |
| /* Set the DMA commutation callbacks */ |
| htim->hdma[TIM_DMA_ID_COMMUTATION]->XferCpltCallback = TIMEx_DMACommutationCplt; |
| htim->hdma[TIM_DMA_ID_COMMUTATION]->XferHalfCpltCallback = TIMEx_DMACommutationHalfCplt; |
| |
| /* Set the DMA error callback */ |
| htim->hdma[TIM_DMA_ID_COMMUTATION]->XferErrorCallback = TIM_DMAError ; |
| |
| /* Enable the DMA channel */ |
| if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_COMMUTATION], (uint32_t)BurstBuffer, |
| (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) |
| { |
| return HAL_ERROR; |
| } |
| break; |
| } |
| case TIM_DMA_TRIGGER: |
| { |
| /* Set the DMA trigger callbacks */ |
| htim->hdma[TIM_DMA_ID_TRIGGER]->XferCpltCallback = TIM_DMATriggerCplt; |
| htim->hdma[TIM_DMA_ID_TRIGGER]->XferHalfCpltCallback = TIM_DMATriggerHalfCplt; |
| |
| /* Set the DMA error callback */ |
| htim->hdma[TIM_DMA_ID_TRIGGER]->XferErrorCallback = TIM_DMAError ; |
| |
| /* Enable the DMA channel */ |
| if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_TRIGGER], (uint32_t)BurstBuffer, |
| (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) |
| { |
| return HAL_ERROR; |
| } |
| break; |
| } |
| default: |
| break; |
| } |
| |
| /* Configure the DMA Burst Mode */ |
| htim->Instance->DCR = (BurstBaseAddress | BurstLength); |
| /* Enable the TIM DMA Request */ |
| __HAL_TIM_ENABLE_DMA(htim, BurstRequestSrc); |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Stops the TIM DMA Burst mode |
| * @param htim TIM handle |
| * @param BurstRequestSrc TIM DMA Request sources to disable |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_TIM_DMABurst_WriteStop(TIM_HandleTypeDef *htim, uint32_t BurstRequestSrc) |
| { |
| HAL_StatusTypeDef status = HAL_OK; |
| /* Check the parameters */ |
| assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc)); |
| |
| /* Abort the DMA transfer (at least disable the DMA channel) */ |
| switch (BurstRequestSrc) |
| { |
| case TIM_DMA_UPDATE: |
| { |
| status = HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_UPDATE]); |
| break; |
| } |
| case TIM_DMA_CC1: |
| { |
| status = HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); |
| break; |
| } |
| case TIM_DMA_CC2: |
| { |
| status = HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); |
| break; |
| } |
| case TIM_DMA_CC3: |
| { |
| status = HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]); |
| break; |
| } |
| case TIM_DMA_CC4: |
| { |
| status = HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]); |
| break; |
| } |
| case TIM_DMA_COM: |
| { |
| status = HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_COMMUTATION]); |
| break; |
| } |
| case TIM_DMA_TRIGGER: |
| { |
| status = HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_TRIGGER]); |
| break; |
| } |
| default: |
| break; |
| } |
| |
| if (HAL_OK == status) |
| { |
| /* Disable the TIM Update DMA request */ |
| __HAL_TIM_DISABLE_DMA(htim, BurstRequestSrc); |
| } |
| |
| /* Change the DMA burst operation state */ |
| htim->DMABurstState = HAL_DMA_BURST_STATE_READY; |
| |
| /* Return function status */ |
| return status; |
| } |
| |
| /** |
| * @brief Configure the DMA Burst to transfer Data from the TIM peripheral to the memory |
| * @param htim TIM handle |
| * @param BurstBaseAddress TIM Base address from where the DMA will start the Data read |
| * This parameter can be one of the following values: |
| * @arg TIM_DMABASE_CR1 |
| * @arg TIM_DMABASE_CR2 |
| * @arg TIM_DMABASE_SMCR |
| * @arg TIM_DMABASE_DIER |
| * @arg TIM_DMABASE_SR |
| * @arg TIM_DMABASE_EGR |
| * @arg TIM_DMABASE_CCMR1 |
| * @arg TIM_DMABASE_CCMR2 |
| * @arg TIM_DMABASE_CCER |
| * @arg TIM_DMABASE_CNT |
| * @arg TIM_DMABASE_PSC |
| * @arg TIM_DMABASE_ARR |
| * @arg TIM_DMABASE_RCR |
| * @arg TIM_DMABASE_CCR1 |
| * @arg TIM_DMABASE_CCR2 |
| * @arg TIM_DMABASE_CCR3 |
| * @arg TIM_DMABASE_CCR4 |
| * @arg TIM_DMABASE_BDTR |
| * @arg TIM_DMABASE_CCMR3 |
| * @arg TIM_DMABASE_CCR5 |
| * @arg TIM_DMABASE_CCR6 |
| * @arg TIM_DMABASE_DTR2 |
| * @arg TIM_DMABASE_ECR |
| * @arg TIM_DMABASE_TISEL |
| * @arg TIM_DMABASE_AF1 |
| * @arg TIM_DMABASE_AF2 |
| * @arg TIM_DMABASE_OR |
| * @param BurstRequestSrc TIM DMA Request sources |
| * This parameter can be one of the following values: |
| * @arg TIM_DMA_UPDATE: TIM update Interrupt source |
| * @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source |
| * @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source |
| * @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source |
| * @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source |
| * @arg TIM_DMA_COM: TIM Commutation DMA source |
| * @arg TIM_DMA_TRIGGER: TIM Trigger DMA source |
| * @param BurstBuffer The Buffer address. |
| * @param BurstLength DMA Burst length. This parameter can be one value |
| * between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_26TRANSFER. |
| * @note This function should be used only when BurstLength is equal to DMA data transfer length. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_TIM_DMABurst_ReadStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress, |
| uint32_t BurstRequestSrc, uint32_t *BurstBuffer, uint32_t BurstLength) |
| { |
| return HAL_TIM_DMABurst_MultiReadStart(htim, BurstBaseAddress, BurstRequestSrc, BurstBuffer, BurstLength, |
| ((BurstLength) >> 8U) + 1U); |
| } |
| |
| /** |
| * @brief Configure the DMA Burst to transfer Data from the TIM peripheral to the memory |
| * @param htim TIM handle |
| * @param BurstBaseAddress TIM Base address from where the DMA will start the Data read |
| * This parameter can be one of the following values: |
| * @arg TIM_DMABASE_CR1 |
| * @arg TIM_DMABASE_CR2 |
| * @arg TIM_DMABASE_SMCR |
| * @arg TIM_DMABASE_DIER |
| * @arg TIM_DMABASE_SR |
| * @arg TIM_DMABASE_EGR |
| * @arg TIM_DMABASE_CCMR1 |
| * @arg TIM_DMABASE_CCMR2 |
| * @arg TIM_DMABASE_CCER |
| * @arg TIM_DMABASE_CNT |
| * @arg TIM_DMABASE_PSC |
| * @arg TIM_DMABASE_ARR |
| * @arg TIM_DMABASE_RCR |
| * @arg TIM_DMABASE_CCR1 |
| * @arg TIM_DMABASE_CCR2 |
| * @arg TIM_DMABASE_CCR3 |
| * @arg TIM_DMABASE_CCR4 |
| * @arg TIM_DMABASE_BDTR |
| * @arg TIM_DMABASE_CCMR3 |
| * @arg TIM_DMABASE_CCR5 |
| * @arg TIM_DMABASE_CCR6 |
| * @arg TIM_DMABASE_DTR2 |
| * @arg TIM_DMABASE_ECR |
| * @arg TIM_DMABASE_TISEL |
| * @arg TIM_DMABASE_AF1 |
| * @arg TIM_DMABASE_AF2 |
| * @arg TIM_DMABASE_OR |
| * @param BurstRequestSrc TIM DMA Request sources |
| * This parameter can be one of the following values: |
| * @arg TIM_DMA_UPDATE: TIM update Interrupt source |
| * @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source |
| * @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source |
| * @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source |
| * @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source |
| * @arg TIM_DMA_COM: TIM Commutation DMA source |
| * @arg TIM_DMA_TRIGGER: TIM Trigger DMA source |
| * @param BurstBuffer The Buffer address. |
| * @param BurstLength DMA Burst length. This parameter can be one value |
| * between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_26TRANSFER. |
| * @param DataLength Data length. This parameter can be one value |
| * between 1 and 0xFFFF. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_TIM_DMABurst_MultiReadStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress, |
| uint32_t BurstRequestSrc, uint32_t *BurstBuffer, |
| uint32_t BurstLength, uint32_t DataLength) |
| { |
| /* Check the parameters */ |
| assert_param(IS_TIM_DMABURST_INSTANCE(htim->Instance)); |
| assert_param(IS_TIM_DMA_BASE(BurstBaseAddress)); |
| assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc)); |
| assert_param(IS_TIM_DMA_LENGTH(BurstLength)); |
| assert_param(IS_TIM_DMA_DATA_LENGTH(DataLength)); |
| |
| if (htim->DMABurstState == HAL_DMA_BURST_STATE_BUSY) |
| { |
| return HAL_BUSY; |
| } |
| else if (htim->DMABurstState == HAL_DMA_BURST_STATE_READY) |
| { |
| if ((BurstBuffer == NULL) && (BurstLength > 0U)) |
| { |
| return HAL_ERROR; |
| } |
| else |
| { |
| htim->DMABurstState = HAL_DMA_BURST_STATE_BUSY; |
| } |
| } |
| else |
| { |
| /* nothing to do */ |
| } |
| switch (BurstRequestSrc) |
| { |
| case TIM_DMA_UPDATE: |
| { |
| /* Set the DMA Period elapsed callbacks */ |
| htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt; |
| htim->hdma[TIM_DMA_ID_UPDATE]->XferHalfCpltCallback = TIM_DMAPeriodElapsedHalfCplt; |
| |
| /* Set the DMA error callback */ |
| htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = TIM_DMAError ; |
| |
| /* Enable the DMA channel */ |
| if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, |
| DataLength) != HAL_OK) |
| { |
| return HAL_ERROR; |
| } |
| break; |
| } |
| case TIM_DMA_CC1: |
| { |
| /* Set the DMA capture callbacks */ |
| htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt; |
| htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; |
| |
| /* Set the DMA error callback */ |
| htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; |
| |
| /* Enable the DMA channel */ |
| if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, |
| DataLength) != HAL_OK) |
| { |
| return HAL_ERROR; |
| } |
| break; |
| } |
| case TIM_DMA_CC2: |
| { |
| /* Set the DMA capture callbacks */ |
| htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt; |
| htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; |
| |
| /* Set the DMA error callback */ |
| htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ; |
| |
| /* Enable the DMA channel */ |
| if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, |
| DataLength) != HAL_OK) |
| { |
| return HAL_ERROR; |
| } |
| break; |
| } |
| case TIM_DMA_CC3: |
| { |
| /* Set the DMA capture callbacks */ |
| htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMACaptureCplt; |
| htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; |
| |
| /* Set the DMA error callback */ |
| htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ; |
| |
| /* Enable the DMA channel */ |
| if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, |
| DataLength) != HAL_OK) |
| { |
| return HAL_ERROR; |
| } |
| break; |
| } |
| case TIM_DMA_CC4: |
| { |
| /* Set the DMA capture callbacks */ |
| htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMACaptureCplt; |
| htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; |
| |
| /* Set the DMA error callback */ |
| htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ; |
| |
| /* Enable the DMA channel */ |
| if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, |
| DataLength) != HAL_OK) |
| { |
| return HAL_ERROR; |
| } |
| break; |
| } |
| case TIM_DMA_COM: |
| { |
| /* Set the DMA commutation callbacks */ |
| htim->hdma[TIM_DMA_ID_COMMUTATION]->XferCpltCallback = TIMEx_DMACommutationCplt; |
| htim->hdma[TIM_DMA_ID_COMMUTATION]->XferHalfCpltCallback = TIMEx_DMACommutationHalfCplt; |
| |
| /* Set the DMA error callback */ |
| htim->hdma[TIM_DMA_ID_COMMUTATION]->XferErrorCallback = TIM_DMAError ; |
| |
| /* Enable the DMA channel */ |
| if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_COMMUTATION], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, |
| DataLength) != HAL_OK) |
| { |
| return HAL_ERROR; |
| } |
| break; |
| } |
| case TIM_DMA_TRIGGER: |
| { |
| /* Set the DMA trigger callbacks */ |
| htim->hdma[TIM_DMA_ID_TRIGGER]->XferCpltCallback = TIM_DMATriggerCplt; |
| htim->hdma[TIM_DMA_ID_TRIGGER]->XferHalfCpltCallback = TIM_DMATriggerHalfCplt; |
| |
| /* Set the DMA error callback */ |
| htim->hdma[TIM_DMA_ID_TRIGGER]->XferErrorCallback = TIM_DMAError ; |
| |
| /* Enable the DMA channel */ |
| if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_TRIGGER], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, |
| DataLength) != HAL_OK) |
| { |
| return HAL_ERROR; |
| } |
| break; |
| } |
| default: |
| break; |
| } |
| |
| /* Configure the DMA Burst Mode */ |
| htim->Instance->DCR = (BurstBaseAddress | BurstLength); |
| |
| /* Enable the TIM DMA Request */ |
| __HAL_TIM_ENABLE_DMA(htim, BurstRequestSrc); |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Stop the DMA burst reading |
| * @param htim TIM handle |
| * @param BurstRequestSrc TIM DMA Request sources to disable. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_TIM_DMABurst_ReadStop(TIM_HandleTypeDef *htim, uint32_t BurstRequestSrc) |
| { |
| HAL_StatusTypeDef status = HAL_OK; |
| /* Check the parameters */ |
| assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc)); |
| |
| /* Abort the DMA transfer (at least disable the DMA channel) */ |
| switch (BurstRequestSrc) |
| { |
| case TIM_DMA_UPDATE: |
| { |
| status = HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_UPDATE]); |
| break; |
| } |
| case TIM_DMA_CC1: |
| { |
| status = HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); |
| break; |
| } |
| case TIM_DMA_CC2: |
| { |
| status = HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); |
| break; |
| } |
| case TIM_DMA_CC3: |
| { |
| status = HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]); |
| break; |
| } |
| case TIM_DMA_CC4: |
| { |
| status = HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]); |
| break; |
| } |
| case TIM_DMA_COM: |
| { |
| status = HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_COMMUTATION]); |
| break; |
| } |
| case TIM_DMA_TRIGGER: |
| { |
| status = HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_TRIGGER]); |
| break; |
| } |
| default: |
| break; |
| } |
| |
| if (HAL_OK == status) |
| { |
| /* Disable the TIM Update DMA request */ |
| __HAL_TIM_DISABLE_DMA(htim, BurstRequestSrc); |
| } |
| |
| /* Change the DMA burst operation state */ |
| htim->DMABurstState = HAL_DMA_BURST_STATE_READY; |
| |
| /* Return function status */ |
| return status; |
| } |
| |
| /** |
| * @brief Generate a software event |
| * @param htim TIM handle |
| * @param EventSource specifies the event source. |
| * This parameter can be one of the following values: |
| * @arg TIM_EVENTSOURCE_UPDATE: Timer update Event source |
| * @arg TIM_EVENTSOURCE_CC1: Timer Capture Compare 1 Event source |
| * @arg TIM_EVENTSOURCE_CC2: Timer Capture Compare 2 Event source |
| * @arg TIM_EVENTSOURCE_CC3: Timer Capture Compare 3 Event source |
| * @arg TIM_EVENTSOURCE_CC4: Timer Capture Compare 4 Event source |
| * @arg TIM_EVENTSOURCE_COM: Timer COM event source |
| * @arg TIM_EVENTSOURCE_TRIGGER: Timer Trigger Event source |
| * @arg TIM_EVENTSOURCE_BREAK: Timer Break event source |
| * @arg TIM_EVENTSOURCE_BREAK2: Timer Break2 event source |
| * @note Basic timers can only generate an update event. |
| * @note TIM_EVENTSOURCE_COM is relevant only with advanced timer instances. |
| * @note TIM_EVENTSOURCE_BREAK and TIM_EVENTSOURCE_BREAK2 are relevant |
| * only for timer instances supporting break input(s). |
| * @retval HAL status |
| */ |
| |
| HAL_StatusTypeDef HAL_TIM_GenerateEvent(TIM_HandleTypeDef *htim, uint32_t EventSource) |
| { |
| /* Check the parameters */ |
| assert_param(IS_TIM_INSTANCE(htim->Instance)); |
| assert_param(IS_TIM_EVENT_SOURCE(EventSource)); |
| |
| /* Process Locked */ |
| __HAL_LOCK(htim); |
| |
| /* Change the TIM state */ |
| htim->State = HAL_TIM_STATE_BUSY; |
| |
| /* Set the event sources */ |
| htim->Instance->EGR = EventSource; |
| |
| /* Change the TIM state */ |
| htim->State = HAL_TIM_STATE_READY; |
| |
| __HAL_UNLOCK(htim); |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Configures the OCRef clear feature |
| * @param htim TIM handle |
| * @param sClearInputConfig pointer to a TIM_ClearInputConfigTypeDef structure that |
| * contains the OCREF clear feature and parameters for the TIM peripheral. |
| * @param Channel specifies the TIM Channel |
| * This parameter can be one of the following values: |
| * @arg TIM_CHANNEL_1: TIM Channel 1 |
| * @arg TIM_CHANNEL_2: TIM Channel 2 |
| * @arg TIM_CHANNEL_3: TIM Channel 3 |
| * @arg TIM_CHANNEL_4: TIM Channel 4 |
| * @arg TIM_CHANNEL_5: TIM Channel 5 |
| * @arg TIM_CHANNEL_6: TIM Channel 6 |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_TIM_ConfigOCrefClear(TIM_HandleTypeDef *htim, |
| TIM_ClearInputConfigTypeDef *sClearInputConfig, |
| uint32_t Channel) |
| { |
| /* Check the parameters */ |
| assert_param(IS_TIM_OCXREF_CLEAR_INSTANCE(htim->Instance)); |
| assert_param(IS_TIM_CLEARINPUT_SOURCE(sClearInputConfig->ClearInputSource)); |
| |
| /* Process Locked */ |
| __HAL_LOCK(htim); |
| |
| htim->State = HAL_TIM_STATE_BUSY; |
| |
| switch (sClearInputConfig->ClearInputSource) |
| { |
| case TIM_CLEARINPUTSOURCE_NONE: |
| { |
| /* Clear the OCREF clear selection bit and the the ETR Bits */ |
| if (IS_TIM_OCCS_INSTANCE(htim->Instance)) |
| { |
| CLEAR_BIT(htim->Instance->SMCR, (TIM_SMCR_OCCS | TIM_SMCR_ETF | TIM_SMCR_ETPS | TIM_SMCR_ECE | TIM_SMCR_ETP)); |
| |
| /* Clear TIMx_AF2_OCRSEL (reset value) */ |
| CLEAR_BIT(htim->Instance->AF2, TIMx_AF2_OCRSEL); |
| } |
| else |
| { |
| CLEAR_BIT(htim->Instance->SMCR, (TIM_SMCR_ETF | TIM_SMCR_ETPS | TIM_SMCR_ECE | TIM_SMCR_ETP)); |
| } |
| break; |
| } |
| |
| case TIM_CLEARINPUTSOURCE_COMP1: |
| case TIM_CLEARINPUTSOURCE_COMP2: |
| case TIM_CLEARINPUTSOURCE_COMP3: |
| case TIM_CLEARINPUTSOURCE_COMP4: |
| #if defined (COMP5) |
| case TIM_CLEARINPUTSOURCE_COMP5: |
| #endif /* COMP5 */ |
| #if defined (COMP6) |
| case TIM_CLEARINPUTSOURCE_COMP6: |
| #endif /* COMP6 */ |
| #if defined (COMP7) |
| case TIM_CLEARINPUTSOURCE_COMP7: |
| #endif /* COMP7 */ |
| { |
| if (IS_TIM_OCCS_INSTANCE(htim->Instance)) |
| { |
| /* Clear the OCREF clear selection bit */ |
| CLEAR_BIT(htim->Instance->SMCR, TIM_SMCR_OCCS); |
| |
| /* Clear TIM1_AF2_OCRSEL (reset value) */ |
| MODIFY_REG(htim->Instance->AF2, TIMx_AF2_OCRSEL, sClearInputConfig->ClearInputSource); |
| } |
| break; |
| } |
| |
| case TIM_CLEARINPUTSOURCE_ETR: |
| { |
| /* Check the parameters */ |
| assert_param(IS_TIM_CLEARINPUT_POLARITY(sClearInputConfig->ClearInputPolarity)); |
| assert_param(IS_TIM_CLEARINPUT_PRESCALER(sClearInputConfig->ClearInputPrescaler)); |
| assert_param(IS_TIM_CLEARINPUT_FILTER(sClearInputConfig->ClearInputFilter)); |
| |
| /* When OCRef clear feature is used with ETR source, ETR prescaler must be off */ |
| if (sClearInputConfig->ClearInputPrescaler != TIM_CLEARINPUTPRESCALER_DIV1) |
| { |
| htim->State = HAL_TIM_STATE_READY; |
| __HAL_UNLOCK(htim); |
| return HAL_ERROR; |
| } |
| |
| TIM_ETR_SetConfig(htim->Instance, |
| sClearInputConfig->ClearInputPrescaler, |
| sClearInputConfig->ClearInputPolarity, |
| sClearInputConfig->ClearInputFilter); |
| |
| if (IS_TIM_OCCS_INSTANCE(htim->Instance)) |
| { |
| /* Set the OCREF clear selection bit */ |
| SET_BIT(htim->Instance->SMCR, TIM_SMCR_OCCS); |
| |
| /* Clear TIMx_AF2_OCRSEL (reset value) */ |
| CLEAR_BIT(htim->Instance->AF2, TIMx_AF2_OCRSEL); |
| } |
| break; |
| } |
| |
| default: |
| break; |
| } |
| |
| switch (Channel) |
| { |
| case TIM_CHANNEL_1: |
| { |
| if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE) |
| { |
| /* Enable the OCREF clear feature for Channel 1 */ |
| SET_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC1CE); |
| } |
| else |
| { |
| /* Disable the OCREF clear feature for Channel 1 */ |
| CLEAR_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC1CE); |
| } |
| break; |
| } |
| case TIM_CHANNEL_2: |
| { |
| if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE) |
| { |
| /* Enable the OCREF clear feature for Channel 2 */ |
| SET_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC2CE); |
| } |
| else |
| { |
| /* Disable the OCREF clear feature for Channel 2 */ |
| CLEAR_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC2CE); |
| } |
| break; |
| } |
| case TIM_CHANNEL_3: |
| { |
| if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE) |
| { |
| /* Enable the OCREF clear feature for Channel 3 */ |
| SET_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC3CE); |
| } |
| else |
| { |
| /* Disable the OCREF clear feature for Channel 3 */ |
| CLEAR_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC3CE); |
| } |
| break; |
| } |
| case TIM_CHANNEL_4: |
| { |
| if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE) |
| { |
| /* Enable the OCREF clear feature for Channel 4 */ |
| SET_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC4CE); |
| } |
| else |
| { |
| /* Disable the OCREF clear feature for Channel 4 */ |
| CLEAR_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC4CE); |
| } |
| break; |
| } |
| case TIM_CHANNEL_5: |
| { |
| if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE) |
| { |
| /* Enable the OCREF clear feature for Channel 5 */ |
| SET_BIT(htim->Instance->CCMR3, TIM_CCMR3_OC5CE); |
| } |
| else |
| { |
| /* Disable the OCREF clear feature for Channel 5 */ |
| CLEAR_BIT(htim->Instance->CCMR3, TIM_CCMR3_OC5CE); |
| } |
| break; |
| } |
| case TIM_CHANNEL_6: |
| { |
| if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE) |
| { |
| /* Enable the OCREF clear feature for Channel 6 */ |
| SET_BIT(htim->Instance->CCMR3, TIM_CCMR3_OC6CE); |
| } |
| else |
| { |
| /* Disable the OCREF clear feature for Channel 6 */ |
| CLEAR_BIT(htim->Instance->CCMR3, TIM_CCMR3_OC6CE); |
| } |
| break; |
| } |
| default: |
| break; |
| } |
| |
| htim->State = HAL_TIM_STATE_READY; |
| |
| __HAL_UNLOCK(htim); |
| |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Configures the clock source to be used |
| * @param htim TIM handle |
| * @param sClockSourceConfig pointer to a TIM_ClockConfigTypeDef structure that |
| * contains the clock source information for the TIM peripheral. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_TIM_ConfigClockSource(TIM_HandleTypeDef *htim, TIM_ClockConfigTypeDef *sClockSourceConfig) |
| { |
| uint32_t tmpsmcr; |
| |
| /* Process Locked */ |
| __HAL_LOCK(htim); |
| |
| htim->State = HAL_TIM_STATE_BUSY; |
| |
| /* Check the parameters */ |
| assert_param(IS_TIM_CLOCKSOURCE(sClockSourceConfig->ClockSource)); |
| |
| /* Reset the SMS, TS, ECE, ETPS and ETRF bits */ |
| tmpsmcr = htim->Instance->SMCR; |
| tmpsmcr &= ~(TIM_SMCR_SMS | TIM_SMCR_TS); |
| tmpsmcr &= ~(TIM_SMCR_ETF | TIM_SMCR_ETPS | TIM_SMCR_ECE | TIM_SMCR_ETP); |
| htim->Instance->SMCR = tmpsmcr; |
| |
| switch (sClockSourceConfig->ClockSource) |
| { |
| case TIM_CLOCKSOURCE_INTERNAL: |
| { |
| assert_param(IS_TIM_INSTANCE(htim->Instance)); |
| break; |
| } |
| |
| case TIM_CLOCKSOURCE_ETRMODE1: |
| { |
| /* Check whether or not the timer instance supports external trigger input mode 1 (ETRF)*/ |
| assert_param(IS_TIM_CLOCKSOURCE_ETRMODE1_INSTANCE(htim->Instance)); |
| |
| /* Check ETR input conditioning related parameters */ |
| assert_param(IS_TIM_CLOCKPRESCALER(sClockSourceConfig->ClockPrescaler)); |
| assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity)); |
| assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter)); |
| |
| /* Configure the ETR Clock source */ |
| TIM_ETR_SetConfig(htim->Instance, |
| sClockSourceConfig->ClockPrescaler, |
| sClockSourceConfig->ClockPolarity, |
| sClockSourceConfig->ClockFilter); |
| |
| /* Select the External clock mode1 and the ETRF trigger */ |
| tmpsmcr = htim->Instance->SMCR; |
| tmpsmcr |= (TIM_SLAVEMODE_EXTERNAL1 | TIM_CLOCKSOURCE_ETRMODE1); |
| /* Write to TIMx SMCR */ |
| htim->Instance->SMCR = tmpsmcr; |
| break; |
| } |
| |
| case TIM_CLOCKSOURCE_ETRMODE2: |
| { |
| /* Check whether or not the timer instance supports external trigger input mode 2 (ETRF)*/ |
| assert_param(IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(htim->Instance)); |
| |
| /* Check ETR input conditioning related parameters */ |
| assert_param(IS_TIM_CLOCKPRESCALER(sClockSourceConfig->ClockPrescaler)); |
| assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity)); |
| assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter)); |
| |
| /* Configure the ETR Clock source */ |
| TIM_ETR_SetConfig(htim->Instance, |
| sClockSourceConfig->ClockPrescaler, |
| sClockSourceConfig->ClockPolarity, |
| sClockSourceConfig->ClockFilter); |
| /* Enable the External clock mode2 */ |
| htim->Instance->SMCR |= TIM_SMCR_ECE; |
| break; |
| } |
| |
| case TIM_CLOCKSOURCE_TI1: |
| { |
| /* Check whether or not the timer instance supports external clock mode 1 */ |
| assert_param(IS_TIM_CLOCKSOURCE_TIX_INSTANCE(htim->Instance)); |
| |
| /* Check TI1 input conditioning related parameters */ |
| assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity)); |
| assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter)); |
| |
| TIM_TI1_ConfigInputStage(htim->Instance, |
| sClockSourceConfig->ClockPolarity, |
| sClockSourceConfig->ClockFilter); |
| TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI1); |
| break; |
| } |
| |
| case TIM_CLOCKSOURCE_TI2: |
| { |
| /* Check whether or not the timer instance supports external clock mode 1 (ETRF)*/ |
| assert_param(IS_TIM_CLOCKSOURCE_TIX_INSTANCE(htim->Instance)); |
| |
| /* Check TI2 input conditioning related parameters */ |
| assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity)); |
| assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter)); |
| |
| TIM_TI2_ConfigInputStage(htim->Instance, |
| sClockSourceConfig->ClockPolarity, |
| sClockSourceConfig->ClockFilter); |
| TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI2); |
| break; |
| } |
| |
| case TIM_CLOCKSOURCE_TI1ED: |
| { |
| /* Check whether or not the timer instance supports external clock mode 1 */ |
| assert_param(IS_TIM_CLOCKSOURCE_TIX_INSTANCE(htim->Instance)); |
| |
| /* Check TI1 input conditioning related parameters */ |
| assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity)); |
| assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter)); |
| |
| TIM_TI1_ConfigInputStage(htim->Instance, |
| sClockSourceConfig->ClockPolarity, |
| sClockSourceConfig->ClockFilter); |
| TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI1ED); |
| break; |
| } |
| |
| case TIM_CLOCKSOURCE_ITR0: |
| case TIM_CLOCKSOURCE_ITR1: |
| case TIM_CLOCKSOURCE_ITR2: |
| case TIM_CLOCKSOURCE_ITR3: |
| #if defined (TIM5) |
| case TIM_CLOCKSOURCE_ITR4: |
| #endif /* TIM5 */ |
| case TIM_CLOCKSOURCE_ITR5: |
| case TIM_CLOCKSOURCE_ITR6: |
| case TIM_CLOCKSOURCE_ITR7: |
| case TIM_CLOCKSOURCE_ITR8: |
| #if defined (TIM20) |
| case TIM_CLOCKSOURCE_ITR9: |
| #endif /* TIM20 */ |
| case TIM_CLOCKSOURCE_ITR10: |
| case TIM_CLOCKSOURCE_ITR11: |
| { |
| /* Check whether or not the timer instance supports internal trigger input */ |
| assert_param(IS_TIM_CLOCKSOURCE_INSTANCE((htim->Instance), sClockSourceConfig->ClockSource)); |
| |
| TIM_ITRx_SetConfig(htim->Instance, sClockSourceConfig->ClockSource); |
| break; |
| } |
| |
| default: |
| break; |
| } |
| htim->State = HAL_TIM_STATE_READY; |
| |
| __HAL_UNLOCK(htim); |
| |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Selects the signal connected to the TI1 input: direct from CH1_input |
| * or a XOR combination between CH1_input, CH2_input & CH3_input |
| * @param htim TIM handle. |
| * @param TI1_Selection Indicate whether or not channel 1 is connected to the |
| * output of a XOR gate. |
| * This parameter can be one of the following values: |
| * @arg TIM_TI1SELECTION_CH1: The TIMx_CH1 pin is connected to TI1 input |
| * @arg TIM_TI1SELECTION_XORCOMBINATION: The TIMx_CH1, CH2 and CH3 |
| * pins are connected to the TI1 input (XOR combination) |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_TIM_ConfigTI1Input(TIM_HandleTypeDef *htim, uint32_t TI1_Selection) |
| { |
| uint32_t tmpcr2; |
| |
| /* Check the parameters */ |
| assert_param(IS_TIM_XOR_INSTANCE(htim->Instance)); |
| assert_param(IS_TIM_TI1SELECTION(TI1_Selection)); |
| |
| /* Get the TIMx CR2 register value */ |
| tmpcr2 = htim->Instance->CR2; |
| |
| /* Reset the TI1 selection */ |
| tmpcr2 &= ~TIM_CR2_TI1S; |
| |
| /* Set the TI1 selection */ |
| tmpcr2 |= TI1_Selection; |
| |
| /* Write to TIMxCR2 */ |
| htim->Instance->CR2 = tmpcr2; |
| |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Configures the TIM in Slave mode |
| * @param htim TIM handle. |
| * @param sSlaveConfig pointer to a TIM_SlaveConfigTypeDef structure that |
| * contains the selected trigger (internal trigger input, filtered |
| * timer input or external trigger input) and the Slave mode |
| * (Disable, Reset, Gated, Trigger, External clock mode 1, Reset + Trigger, Gated + Reset). |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_TIM_SlaveConfigSynchro(TIM_HandleTypeDef *htim, TIM_SlaveConfigTypeDef *sSlaveConfig) |
| { |
| /* Check the parameters */ |
| assert_param(IS_TIM_SLAVE_INSTANCE(htim->Instance)); |
| assert_param(IS_TIM_SLAVE_MODE(sSlaveConfig->SlaveMode)); |
| assert_param(IS_TIM_TRIGGER_INSTANCE(htim->Instance, sSlaveConfig->InputTrigger)); |
| |
| __HAL_LOCK(htim); |
| |
| htim->State = HAL_TIM_STATE_BUSY; |
| |
| if (TIM_SlaveTimer_SetConfig(htim, sSlaveConfig) != HAL_OK) |
| { |
| htim->State = HAL_TIM_STATE_READY; |
| __HAL_UNLOCK(htim); |
| return HAL_ERROR; |
| } |
| |
| /* Disable Trigger Interrupt */ |
| __HAL_TIM_DISABLE_IT(htim, TIM_IT_TRIGGER); |
| |
| /* Disable Trigger DMA request */ |
| __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_TRIGGER); |
| |
| htim->State = HAL_TIM_STATE_READY; |
| |
| __HAL_UNLOCK(htim); |
| |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Configures the TIM in Slave mode in interrupt mode |
| * @param htim TIM handle. |
| * @param sSlaveConfig pointer to a TIM_SlaveConfigTypeDef structure that |
| * contains the selected trigger (internal trigger input, filtered |
| * timer input or external trigger input) and the Slave mode |
| * (Disable, Reset, Gated, Trigger, External clock mode 1, Reset + Trigger, Gated + Reset). |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_TIM_SlaveConfigSynchro_IT(TIM_HandleTypeDef *htim, |
| TIM_SlaveConfigTypeDef *sSlaveConfig) |
| { |
| /* Check the parameters */ |
| assert_param(IS_TIM_SLAVE_INSTANCE(htim->Instance)); |
| assert_param(IS_TIM_SLAVE_MODE(sSlaveConfig->SlaveMode)); |
| assert_param(IS_TIM_TRIGGER_INSTANCE(htim->Instance, sSlaveConfig->InputTrigger)); |
| |
| __HAL_LOCK(htim); |
| |
| htim->State = HAL_TIM_STATE_BUSY; |
| |
| if (TIM_SlaveTimer_SetConfig(htim, sSlaveConfig) != HAL_OK) |
| { |
| htim->State = HAL_TIM_STATE_READY; |
| __HAL_UNLOCK(htim); |
| return HAL_ERROR; |
| } |
| |
| /* Enable Trigger Interrupt */ |
| __HAL_TIM_ENABLE_IT(htim, TIM_IT_TRIGGER); |
| |
| /* Disable Trigger DMA request */ |
| __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_TRIGGER); |
| |
| htim->State = HAL_TIM_STATE_READY; |
| |
| __HAL_UNLOCK(htim); |
| |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Read the captured value from Capture Compare unit |
| * @param htim TIM handle. |
| * @param Channel TIM Channels to be enabled |
| * This parameter can be one of the following values: |
| * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
| * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
| * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
| * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
| * @retval Captured value |
| */ |
| uint32_t HAL_TIM_ReadCapturedValue(TIM_HandleTypeDef *htim, uint32_t Channel) |
| { |
| uint32_t tmpreg = 0U; |
| |
| switch (Channel) |
| { |
| case TIM_CHANNEL_1: |
| { |
| /* Check the parameters */ |
| assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); |
| |
| /* Return the capture 1 value */ |
| tmpreg = htim->Instance->CCR1; |
| |
| break; |
| } |
| case TIM_CHANNEL_2: |
| { |
| /* Check the parameters */ |
| assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); |
| |
| /* Return the capture 2 value */ |
| tmpreg = htim->Instance->CCR2; |
| |
| break; |
| } |
| |
| case TIM_CHANNEL_3: |
| { |
| /* Check the parameters */ |
| assert_param(IS_TIM_CC3_INSTANCE(htim->Instance)); |
| |
| /* Return the capture 3 value */ |
| tmpreg = htim->Instance->CCR3; |
| |
| break; |
| } |
| |
| case TIM_CHANNEL_4: |
| { |
| /* Check the parameters */ |
| assert_param(IS_TIM_CC4_INSTANCE(htim->Instance)); |
| |
| /* Return the capture 4 value */ |
| tmpreg = htim->Instance->CCR4; |
| |
| break; |
| } |
| |
| default: |
| break; |
| } |
| |
| return tmpreg; |
| } |
| |
| /** |
| * @} |
| */ |
| |
| /** @defgroup TIM_Exported_Functions_Group9 TIM Callbacks functions |
| * @brief TIM Callbacks functions |
| * |
| @verbatim |
| ============================================================================== |
| ##### TIM Callbacks functions ##### |
| ============================================================================== |
| [..] |
| This section provides TIM callback functions: |
| (+) TIM Period elapsed callback |
| (+) TIM Output Compare callback |
| (+) TIM Input capture callback |
| (+) TIM Trigger callback |
| (+) TIM Error callback |
| (+) TIM Index callback |
| (+) TIM Direction change callback |
| (+) TIM Index error callback |
| (+) TIM Transition error callback |
| |
| @endverbatim |
| * @{ |
| */ |
| |
| /** |
| * @brief Period elapsed callback in non-blocking mode |
| * @param htim TIM handle |
| * @retval None |
| */ |
| __weak void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(htim); |
| |
| /* NOTE : This function should not be modified, when the callback is needed, |
| the HAL_TIM_PeriodElapsedCallback could be implemented in the user file |
| */ |
| } |
| |
| /** |
| * @brief Period elapsed half complete callback in non-blocking mode |
| * @param htim TIM handle |
| * @retval None |
| */ |
| __weak void HAL_TIM_PeriodElapsedHalfCpltCallback(TIM_HandleTypeDef *htim) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(htim); |
| |
| /* NOTE : This function should not be modified, when the callback is needed, |
| the HAL_TIM_PeriodElapsedHalfCpltCallback could be implemented in the user file |
| */ |
| } |
| |
| /** |
| * @brief Output Compare callback in non-blocking mode |
| * @param htim TIM OC handle |
| * @retval None |
| */ |
| __weak void HAL_TIM_OC_DelayElapsedCallback(TIM_HandleTypeDef *htim) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(htim); |
| |
| /* NOTE : This function should not be modified, when the callback is needed, |
| the HAL_TIM_OC_DelayElapsedCallback could be implemented in the user file |
| */ |
| } |
| |
| /** |
| * @brief Input Capture callback in non-blocking mode |
| * @param htim TIM IC handle |
| * @retval None |
| */ |
| __weak void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(htim); |
| |
| /* NOTE : This function should not be modified, when the callback is needed, |
| the HAL_TIM_IC_CaptureCallback could be implemented in the user file |
| */ |
| } |
| |
| /** |
| * @brief Input Capture half complete callback in non-blocking mode |
| * @param htim TIM IC handle |
| * @retval None |
| */ |
| __weak void HAL_TIM_IC_CaptureHalfCpltCallback(TIM_HandleTypeDef *htim) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(htim); |
| |
| /* NOTE : This function should not be modified, when the callback is needed, |
| the HAL_TIM_IC_CaptureHalfCpltCallback could be implemented in the user file |
| */ |
| } |
| |
| /** |
| * @brief PWM Pulse finished callback in non-blocking mode |
| * @param htim TIM handle |
| * @retval None |
| */ |
| __weak void HAL_TIM_PWM_PulseFinishedCallback(TIM_HandleTypeDef *htim) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(htim); |
| |
| /* NOTE : This function should not be modified, when the callback is needed, |
| the HAL_TIM_PWM_PulseFinishedCallback could be implemented in the user file |
| */ |
| } |
| |
| /** |
| * @brief PWM Pulse finished half complete callback in non-blocking mode |
| * @param htim TIM handle |
| * @retval None |
| */ |
| __weak void HAL_TIM_PWM_PulseFinishedHalfCpltCallback(TIM_HandleTypeDef *htim) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(htim); |
| |
| /* NOTE : This function should not be modified, when the callback is needed, |
| the HAL_TIM_PWM_PulseFinishedHalfCpltCallback could be implemented in the user file |
| */ |
| } |
| |
| /** |
| * @brief Hall Trigger detection callback in non-blocking mode |
| * @param htim TIM handle |
| * @retval None |
| */ |
| __weak void HAL_TIM_TriggerCallback(TIM_HandleTypeDef *htim) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(htim); |
| |
| /* NOTE : This function should not be modified, when the callback is needed, |
| the HAL_TIM_TriggerCallback could be implemented in the user file |
| */ |
| } |
| |
| /** |
| * @brief Hall Trigger detection half complete callback in non-blocking mode |
| * @param htim TIM handle |
| * @retval None |
| */ |
| __weak void HAL_TIM_TriggerHalfCpltCallback(TIM_HandleTypeDef *htim) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(htim); |
| |
| /* NOTE : This function should not be modified, when the callback is needed, |
| the HAL_TIM_TriggerHalfCpltCallback could be implemented in the user file |
| */ |
| } |
| |
| /** |
| * @brief Timer error callback in non-blocking mode |
| * @param htim TIM handle |
| * @retval None |
| */ |
| __weak void HAL_TIM_ErrorCallback(TIM_HandleTypeDef *htim) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(htim); |
| |
| /* NOTE : This function should not be modified, when the callback is needed, |
| the HAL_TIM_ErrorCallback could be implemented in the user file |
| */ |
| } |
| |
| #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
| /** |
| * @brief Register a User TIM callback to be used instead of the weak predefined callback |
| * @param htim tim handle |
| * @param CallbackID ID of the callback to be registered |
| * This parameter can be one of the following values: |
| * @arg @ref HAL_TIM_BASE_MSPINIT_CB_ID Base MspInit Callback ID |
| * @arg @ref HAL_TIM_BASE_MSPDEINIT_CB_ID Base MspDeInit Callback ID |
| * @arg @ref HAL_TIM_IC_MSPINIT_CB_ID IC MspInit Callback ID |
| * @arg @ref HAL_TIM_IC_MSPDEINIT_CB_ID IC MspDeInit Callback ID |
| * @arg @ref HAL_TIM_OC_MSPINIT_CB_ID OC MspInit Callback ID |
| * @arg @ref HAL_TIM_OC_MSPDEINIT_CB_ID OC MspDeInit Callback ID |
| * @arg @ref HAL_TIM_PWM_MSPINIT_CB_ID PWM MspInit Callback ID |
| * @arg @ref HAL_TIM_PWM_MSPDEINIT_CB_ID PWM MspDeInit Callback ID |
| * @arg @ref HAL_TIM_ONE_PULSE_MSPINIT_CB_ID One Pulse MspInit Callback ID |
| * @arg @ref HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID One Pulse MspDeInit Callback ID |
| * @arg @ref HAL_TIM_ENCODER_MSPINIT_CB_ID Encoder MspInit Callback ID |
| * @arg @ref HAL_TIM_ENCODER_MSPDEINIT_CB_ID Encoder MspDeInit Callback ID |
| * @arg @ref HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID Hall Sensor MspInit Callback ID |
| * @arg @ref HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID Hall Sensor MspDeInit Callback ID |
| * @arg @ref HAL_TIM_PERIOD_ELAPSED_CB_ID Period Elapsed Callback ID |
| * @arg @ref HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID Period Elapsed half complete Callback ID |
| * @arg @ref HAL_TIM_TRIGGER_CB_ID Trigger Callback ID |
| * @arg @ref HAL_TIM_TRIGGER_HALF_CB_ID Trigger half complete Callback ID |
| * @arg @ref HAL_TIM_IC_CAPTURE_CB_ID Input Capture Callback ID |
| * @arg @ref HAL_TIM_IC_CAPTURE_HALF_CB_ID Input Capture half complete Callback ID |
| * @arg @ref HAL_TIM_OC_DELAY_ELAPSED_CB_ID Output Compare Delay Elapsed Callback ID |
| * @arg @ref HAL_TIM_PWM_PULSE_FINISHED_CB_ID PWM Pulse Finished Callback ID |
| * @arg @ref HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID PWM Pulse Finished half complete Callback ID |
| * @arg @ref HAL_TIM_ERROR_CB_ID Error Callback ID |
| * @arg @ref HAL_TIM_COMMUTATION_CB_ID Commutation Callback ID |
| * @arg @ref HAL_TIM_COMMUTATION_HALF_CB_ID Commutation half complete Callback ID |
| * @arg @ref HAL_TIM_BREAK_CB_ID Break Callback ID |
| * @arg @ref HAL_TIM_BREAK2_CB_ID Break2 Callback ID |
| * @arg @ref HAL_TIM_ENCODER_INDEX_CB_ID Encoder Index Callback ID |
| * @arg @ref HAL_TIM_DIRECTION_CHANGE_CB_ID Direction Change Callback ID |
| * @arg @ref HAL_TIM_INDEX_ERROR_CB_ID Index Error Callback ID |
| * @arg @ref HAL_TIM_TRANSITION_ERROR_CB_ID Transition Error Callback ID |
| * @param pCallback pointer to the callback function |
| * @retval status |
| */ |
| HAL_StatusTypeDef HAL_TIM_RegisterCallback(TIM_HandleTypeDef *htim, HAL_TIM_CallbackIDTypeDef CallbackID, |
| pTIM_CallbackTypeDef pCallback) |
| { |
| HAL_StatusTypeDef status = HAL_OK; |
| |
| if (pCallback == NULL) |
| { |
| return HAL_ERROR; |
| } |
| /* Process locked */ |
| __HAL_LOCK(htim); |
| |
| if (htim->State == HAL_TIM_STATE_READY) |
| { |
| switch (CallbackID) |
| { |
| case HAL_TIM_BASE_MSPINIT_CB_ID : |
| htim->Base_MspInitCallback = pCallback; |
| break; |
| |
| case HAL_TIM_BASE_MSPDEINIT_CB_ID : |
| htim->Base_MspDeInitCallback = pCallback; |
| break; |
| |
| case HAL_TIM_IC_MSPINIT_CB_ID : |
| htim->IC_MspInitCallback = pCallback; |
| break; |
| |
| case HAL_TIM_IC_MSPDEINIT_CB_ID : |
| htim->IC_MspDeInitCallback = pCallback; |
| break; |
| |
| case HAL_TIM_OC_MSPINIT_CB_ID : |
| htim->OC_MspInitCallback = pCallback; |
| break; |
| |
| case HAL_TIM_OC_MSPDEINIT_CB_ID : |
| htim->OC_MspDeInitCallback = pCallback; |
| break; |
| |
| case HAL_TIM_PWM_MSPINIT_CB_ID : |
| htim->PWM_MspInitCallback = pCallback; |
| break; |
| |
| case HAL_TIM_PWM_MSPDEINIT_CB_ID : |
| htim->PWM_MspDeInitCallback = pCallback; |
| break; |
| |
| case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID : |
| htim->OnePulse_MspInitCallback = pCallback; |
| break; |
| |
| case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID : |
| htim->OnePulse_MspDeInitCallback = pCallback; |
| break; |
| |
| case HAL_TIM_ENCODER_MSPINIT_CB_ID : |
| htim->Encoder_MspInitCallback = pCallback; |
| break; |
| |
| case HAL_TIM_ENCODER_MSPDEINIT_CB_ID : |
| htim->Encoder_MspDeInitCallback = pCallback; |
| break; |
| |
| case HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID : |
| htim->HallSensor_MspInitCallback = pCallback; |
| break; |
| |
| case HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID : |
| htim->HallSensor_MspDeInitCallback = pCallback; |
| break; |
| |
| case HAL_TIM_PERIOD_ELAPSED_CB_ID : |
| htim->PeriodElapsedCallback = pCallback; |
| break; |
| |
| case HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID : |
| htim->PeriodElapsedHalfCpltCallback = pCallback; |
| break; |
| |
| case HAL_TIM_TRIGGER_CB_ID : |
| htim->TriggerCallback = pCallback; |
| break; |
| |
| case HAL_TIM_TRIGGER_HALF_CB_ID : |
| htim->TriggerHalfCpltCallback = pCallback; |
| break; |
| |
| case HAL_TIM_IC_CAPTURE_CB_ID : |
| htim->IC_CaptureCallback = pCallback; |
| break; |
| |
| case HAL_TIM_IC_CAPTURE_HALF_CB_ID : |
| htim->IC_CaptureHalfCpltCallback = pCallback; |
| break; |
| |
| case HAL_TIM_OC_DELAY_ELAPSED_CB_ID : |
| htim->OC_DelayElapsedCallback = pCallback; |
| break; |
| |
| case HAL_TIM_PWM_PULSE_FINISHED_CB_ID : |
| htim->PWM_PulseFinishedCallback = pCallback; |
| break; |
| |
| case HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID : |
| htim->PWM_PulseFinishedHalfCpltCallback = pCallback; |
| break; |
| |
| case HAL_TIM_ERROR_CB_ID : |
| htim->ErrorCallback = pCallback; |
| break; |
| |
| case HAL_TIM_COMMUTATION_CB_ID : |
| htim->CommutationCallback = pCallback; |
| break; |
| |
| case HAL_TIM_COMMUTATION_HALF_CB_ID : |
| htim->CommutationHalfCpltCallback = pCallback; |
| break; |
| |
| case HAL_TIM_BREAK_CB_ID : |
| htim->BreakCallback = pCallback; |
| break; |
| |
| case HAL_TIM_BREAK2_CB_ID : |
| htim->Break2Callback = pCallback; |
| break; |
| |
| case HAL_TIM_ENCODER_INDEX_CB_ID : |
| htim->EncoderIndexCallback = pCallback; |
| break; |
| |
| case HAL_TIM_DIRECTION_CHANGE_CB_ID : |
| htim->DirectionChangeCallback = pCallback; |
| break; |
| |
| case HAL_TIM_INDEX_ERROR_CB_ID : |
| htim->IndexErrorCallback = pCallback; |
| break; |
| |
| case HAL_TIM_TRANSITION_ERROR_CB_ID : |
| htim->TransitionErrorCallback = pCallback; |
| break; |
| |
| default : |
| /* Return error status */ |
| status = HAL_ERROR; |
| break; |
| } |
| } |
| else if (htim->State == HAL_TIM_STATE_RESET) |
| { |
| switch (CallbackID) |
| { |
| case HAL_TIM_BASE_MSPINIT_CB_ID : |
| htim->Base_MspInitCallback = pCallback; |
| break; |
| |
| case HAL_TIM_BASE_MSPDEINIT_CB_ID : |
| htim->Base_MspDeInitCallback = pCallback; |
| break; |
| |
| case HAL_TIM_IC_MSPINIT_CB_ID : |
| htim->IC_MspInitCallback = pCallback; |
| break; |
| |
| case HAL_TIM_IC_MSPDEINIT_CB_ID : |
| htim->IC_MspDeInitCallback = pCallback; |
| break; |
| |
| case HAL_TIM_OC_MSPINIT_CB_ID : |
| htim->OC_MspInitCallback = pCallback; |
| break; |
| |
| case HAL_TIM_OC_MSPDEINIT_CB_ID : |
| htim->OC_MspDeInitCallback = pCallback; |
| break; |
| |
| case HAL_TIM_PWM_MSPINIT_CB_ID : |
| htim->PWM_MspInitCallback = pCallback; |
| break; |
| |
| case HAL_TIM_PWM_MSPDEINIT_CB_ID : |
| htim->PWM_MspDeInitCallback = pCallback; |
| break; |
| |
| case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID : |
| htim->OnePulse_MspInitCallback = pCallback; |
| break; |
| |
| case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID : |
| htim->OnePulse_MspDeInitCallback = pCallback; |
| break; |
| |
| case HAL_TIM_ENCODER_MSPINIT_CB_ID : |
| htim->Encoder_MspInitCallback = pCallback; |
| break; |
| |
| case HAL_TIM_ENCODER_MSPDEINIT_CB_ID : |
| htim->Encoder_MspDeInitCallback = pCallback; |
| break; |
| |
| case HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID : |
| htim->HallSensor_MspInitCallback = pCallback; |
| break; |
| |
| case HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID : |
| htim->HallSensor_MspDeInitCallback = pCallback; |
| break; |
| |
| default : |
| /* Return error status */ |
| status = HAL_ERROR; |
| break; |
| } |
| } |
| else |
| { |
| /* Return error status */ |
| status = HAL_ERROR; |
| } |
| |
| /* Release Lock */ |
| __HAL_UNLOCK(htim); |
| |
| return status; |
| } |
| |
| /** |
| * @brief Unregister a TIM callback |
| * TIM callback is redirected to the weak predefined callback |
| * @param htim tim handle |
| * @param CallbackID ID of the callback to be unregistered |
| * This parameter can be one of the following values: |
| * @arg @ref HAL_TIM_BASE_MSPINIT_CB_ID Base MspInit Callback ID |
| * @arg @ref HAL_TIM_BASE_MSPDEINIT_CB_ID Base MspDeInit Callback ID |
| * @arg @ref HAL_TIM_IC_MSPINIT_CB_ID IC MspInit Callback ID |
| * @arg @ref HAL_TIM_IC_MSPDEINIT_CB_ID IC MspDeInit Callback ID |
| * @arg @ref HAL_TIM_OC_MSPINIT_CB_ID OC MspInit Callback ID |
| * @arg @ref HAL_TIM_OC_MSPDEINIT_CB_ID OC MspDeInit Callback ID |
| * @arg @ref HAL_TIM_PWM_MSPINIT_CB_ID PWM MspInit Callback ID |
| * @arg @ref HAL_TIM_PWM_MSPDEINIT_CB_ID PWM MspDeInit Callback ID |
| * @arg @ref HAL_TIM_ONE_PULSE_MSPINIT_CB_ID One Pulse MspInit Callback ID |
| * @arg @ref HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID One Pulse MspDeInit Callback ID |
| * @arg @ref HAL_TIM_ENCODER_MSPINIT_CB_ID Encoder MspInit Callback ID |
| * @arg @ref HAL_TIM_ENCODER_MSPDEINIT_CB_ID Encoder MspDeInit Callback ID |
| * @arg @ref HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID Hall Sensor MspInit Callback ID |
| * @arg @ref HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID Hall Sensor MspDeInit Callback ID |
| * @arg @ref HAL_TIM_PERIOD_ELAPSED_CB_ID Period Elapsed Callback ID |
| * @arg @ref HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID Period Elapsed half complete Callback ID |
| * @arg @ref HAL_TIM_TRIGGER_CB_ID Trigger Callback ID |
| * @arg @ref HAL_TIM_TRIGGER_HALF_CB_ID Trigger half complete Callback ID |
| * @arg @ref HAL_TIM_IC_CAPTURE_CB_ID Input Capture Callback ID |
| * @arg @ref HAL_TIM_IC_CAPTURE_HALF_CB_ID Input Capture half complete Callback ID |
| * @arg @ref HAL_TIM_OC_DELAY_ELAPSED_CB_ID Output Compare Delay Elapsed Callback ID |
| * @arg @ref HAL_TIM_PWM_PULSE_FINISHED_CB_ID PWM Pulse Finished Callback ID |
| * @arg @ref HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID PWM Pulse Finished half complete Callback ID |
| * @arg @ref HAL_TIM_ERROR_CB_ID Error Callback ID |
| * @arg @ref HAL_TIM_COMMUTATION_CB_ID Commutation Callback ID |
| * @arg @ref HAL_TIM_COMMUTATION_HALF_CB_ID Commutation half complete Callback ID |
| * @arg @ref HAL_TIM_BREAK_CB_ID Break Callback ID |
| * @arg @ref HAL_TIM_BREAK2_CB_ID Break2 Callback ID |
| * @arg @ref HAL_TIM_ENCODER_INDEX_CB_ID Encoder Index Callback ID |
| * @arg @ref HAL_TIM_DIRECTION_CHANGE_CB_ID Direction Change Callback ID |
| * @arg @ref HAL_TIM_INDEX_ERROR_CB_ID Index Error Callback ID |
| * @arg @ref HAL_TIM_TRANSITION_ERROR_CB_ID Transistion Error Callback ID |
| * @retval status |
| */ |
| HAL_StatusTypeDef HAL_TIM_UnRegisterCallback(TIM_HandleTypeDef *htim, HAL_TIM_CallbackIDTypeDef CallbackID) |
| { |
| HAL_StatusTypeDef status = HAL_OK; |
| |
| /* Process locked */ |
| __HAL_LOCK(htim); |
| |
| if (htim->State == HAL_TIM_STATE_READY) |
| { |
| switch (CallbackID) |
| { |
| case HAL_TIM_BASE_MSPINIT_CB_ID : |
| htim->Base_MspInitCallback = HAL_TIM_Base_MspInit; /* Legacy weak Base MspInit Callback */ |
| break; |
| |
| case HAL_TIM_BASE_MSPDEINIT_CB_ID : |
| htim->Base_MspDeInitCallback = HAL_TIM_Base_MspDeInit; /* Legacy weak Base Msp DeInit Callback */ |
| break; |
| |
| case HAL_TIM_IC_MSPINIT_CB_ID : |
| htim->IC_MspInitCallback = HAL_TIM_IC_MspInit; /* Legacy weak IC Msp Init Callback */ |
| break; |
| |
| case HAL_TIM_IC_MSPDEINIT_CB_ID : |
| htim->IC_MspDeInitCallback = HAL_TIM_IC_MspDeInit; /* Legacy weak IC Msp DeInit Callback */ |
| break; |
| |
| case HAL_TIM_OC_MSPINIT_CB_ID : |
| htim->OC_MspInitCallback = HAL_TIM_OC_MspInit; /* Legacy weak OC Msp Init Callback */ |
| break; |
| |
| case HAL_TIM_OC_MSPDEINIT_CB_ID : |
| htim->OC_MspDeInitCallback = HAL_TIM_OC_MspDeInit; /* Legacy weak OC Msp DeInit Callback */ |
| break; |
| |
| case HAL_TIM_PWM_MSPINIT_CB_ID : |
| htim->PWM_MspInitCallback = HAL_TIM_PWM_MspInit; /* Legacy weak PWM Msp Init Callback */ |
| break; |
| |
| case HAL_TIM_PWM_MSPDEINIT_CB_ID : |
| htim->PWM_MspDeInitCallback = HAL_TIM_PWM_MspDeInit; /* Legacy weak PWM Msp DeInit Callback */ |
| break; |
| |
| case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID : |
| htim->OnePulse_MspInitCallback = HAL_TIM_OnePulse_MspInit; /* Legacy weak One Pulse Msp Init Callback */ |
| break; |
| |
| case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID : |
| htim->OnePulse_MspDeInitCallback = HAL_TIM_OnePulse_MspDeInit; /* Legacy weak One Pulse Msp DeInit Callback */ |
| break; |
| |
| case HAL_TIM_ENCODER_MSPINIT_CB_ID : |
| htim->Encoder_MspInitCallback = HAL_TIM_Encoder_MspInit; /* Legacy weak Encoder Msp Init Callback */ |
| break; |
| |
| case HAL_TIM_ENCODER_MSPDEINIT_CB_ID : |
| htim->Encoder_MspDeInitCallback = HAL_TIM_Encoder_MspDeInit; /* Legacy weak Encoder Msp DeInit Callback */ |
| break; |
| |
| case HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID : |
| htim->HallSensor_MspInitCallback = HAL_TIMEx_HallSensor_MspInit; /* Legacy weak Hall Sensor Msp Init Callback */ |
| break; |
| |
| case HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID : |
| htim->HallSensor_MspDeInitCallback = HAL_TIMEx_HallSensor_MspDeInit; /* Legacy weak Hall Sensor Msp DeInit Callback */ |
| break; |
| |
| case HAL_TIM_PERIOD_ELAPSED_CB_ID : |
| htim->PeriodElapsedCallback = HAL_TIM_PeriodElapsedCallback; /* Legacy weak Period Elapsed Callback */ |
| break; |
| |
| case HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID : |
| htim->PeriodElapsedHalfCpltCallback = HAL_TIM_PeriodElapsedHalfCpltCallback; /* Legacy weak Period Elapsed half complete Callback */ |
| break; |
| |
| case HAL_TIM_TRIGGER_CB_ID : |
| htim->TriggerCallback = HAL_TIM_TriggerCallback; /* Legacy weak Trigger Callback */ |
| break; |
| |
| case HAL_TIM_TRIGGER_HALF_CB_ID : |
| htim->TriggerHalfCpltCallback = HAL_TIM_TriggerHalfCpltCallback; /* Legacy weak Trigger half complete Callback */ |
| break; |
| |
| case HAL_TIM_IC_CAPTURE_CB_ID : |
| htim->IC_CaptureCallback = HAL_TIM_IC_CaptureCallback; /* Legacy weak IC Capture Callback */ |
| break; |
| |
| case HAL_TIM_IC_CAPTURE_HALF_CB_ID : |
| htim->IC_CaptureHalfCpltCallback = HAL_TIM_IC_CaptureHalfCpltCallback; /* Legacy weak IC Capture half complete Callback */ |
| break; |
| |
| case HAL_TIM_OC_DELAY_ELAPSED_CB_ID : |
| htim->OC_DelayElapsedCallback = HAL_TIM_OC_DelayElapsedCallback; /* Legacy weak OC Delay Elapsed Callback */ |
| break; |
| |
| case HAL_TIM_PWM_PULSE_FINISHED_CB_ID : |
| htim->PWM_PulseFinishedCallback = HAL_TIM_PWM_PulseFinishedCallback; /* Legacy weak PWM Pulse Finished Callback */ |
| break; |
| |
| case HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID : |
| htim->PWM_PulseFinishedHalfCpltCallback = HAL_TIM_PWM_PulseFinishedHalfCpltCallback; /* Legacy weak PWM Pulse Finished half complete Callback */ |
| break; |
| |
| case HAL_TIM_ERROR_CB_ID : |
| htim->ErrorCallback = HAL_TIM_ErrorCallback; /* Legacy weak Error Callback */ |
| break; |
| |
| case HAL_TIM_COMMUTATION_CB_ID : |
| htim->CommutationCallback = HAL_TIMEx_CommutCallback; /* Legacy weak Commutation Callback */ |
| break; |
| |
| case HAL_TIM_COMMUTATION_HALF_CB_ID : |
| htim->CommutationHalfCpltCallback = HAL_TIMEx_CommutHalfCpltCallback; /* Legacy weak Commutation half complete Callback */ |
| break; |
| |
| case HAL_TIM_BREAK_CB_ID : |
| htim->BreakCallback = HAL_TIMEx_BreakCallback; /* Legacy weak Break Callback */ |
| break; |
| |
| case HAL_TIM_BREAK2_CB_ID : |
| htim->Break2Callback = HAL_TIMEx_Break2Callback; /* Legacy weak Break2 Callback */ |
| break; |
| |
| case HAL_TIM_ENCODER_INDEX_CB_ID : |
| htim->EncoderIndexCallback = HAL_TIMEx_EncoderIndexCallback; /* Legacy weak Encoder Index Callback */ |
| break; |
| |
| case HAL_TIM_DIRECTION_CHANGE_CB_ID : |
| htim->DirectionChangeCallback = HAL_TIMEx_DirectionChangeCallback; /* Legacy weak Direction Change Callback */ |
| break; |
| |
| case HAL_TIM_INDEX_ERROR_CB_ID : |
| htim->IndexErrorCallback = HAL_TIMEx_IndexErrorCallback; /* Legacy weak Index Error Callback */ |
| break; |
| |
| case HAL_TIM_TRANSITION_ERROR_CB_ID : |
| htim->TransitionErrorCallback = HAL_TIMEx_TransitionErrorCallback; /* Legacy weak Transition Error Callback */ |
| break; |
| |
| default : |
| /* Return error status */ |
| status = HAL_ERROR; |
| break; |
| } |
| } |
| else if (htim->State == HAL_TIM_STATE_RESET) |
| { |
| switch (CallbackID) |
| { |
| case HAL_TIM_BASE_MSPINIT_CB_ID : |
| htim->Base_MspInitCallback = HAL_TIM_Base_MspInit; /* Legacy weak Base MspInit Callback */ |
| break; |
| |
| case HAL_TIM_BASE_MSPDEINIT_CB_ID : |
| htim->Base_MspDeInitCallback = HAL_TIM_Base_MspDeInit; /* Legacy weak Base Msp DeInit Callback */ |
| break; |
| |
| case HAL_TIM_IC_MSPINIT_CB_ID : |
| htim->IC_MspInitCallback = HAL_TIM_IC_MspInit; /* Legacy weak IC Msp Init Callback */ |
| break; |
| |
| case HAL_TIM_IC_MSPDEINIT_CB_ID : |
| htim->IC_MspDeInitCallback = HAL_TIM_IC_MspDeInit; /* Legacy weak IC Msp DeInit Callback */ |
| break; |
| |
| case HAL_TIM_OC_MSPINIT_CB_ID : |
| htim->OC_MspInitCallback = HAL_TIM_OC_MspInit; /* Legacy weak OC Msp Init Callback */ |
| break; |
| |
| case HAL_TIM_OC_MSPDEINIT_CB_ID : |
| htim->OC_MspDeInitCallback = HAL_TIM_OC_MspDeInit; /* Legacy weak OC Msp DeInit Callback */ |
| break; |
| |
| case HAL_TIM_PWM_MSPINIT_CB_ID : |
| htim->PWM_MspInitCallback = HAL_TIM_PWM_MspInit; /* Legacy weak PWM Msp Init Callback */ |
| break; |
| |
| case HAL_TIM_PWM_MSPDEINIT_CB_ID : |
| htim->PWM_MspDeInitCallback = HAL_TIM_PWM_MspDeInit; /* Legacy weak PWM Msp DeInit Callback */ |
| break; |
| |
| case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID : |
| htim->OnePulse_MspInitCallback = HAL_TIM_OnePulse_MspInit; /* Legacy weak One Pulse Msp Init Callback */ |
| break; |
| |
| case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID : |
| htim->OnePulse_MspDeInitCallback = HAL_TIM_OnePulse_MspDeInit; /* Legacy weak One Pulse Msp DeInit Callback */ |
| break; |
| |
| case HAL_TIM_ENCODER_MSPINIT_CB_ID : |
| htim->Encoder_MspInitCallback = HAL_TIM_Encoder_MspInit; /* Legacy weak Encoder Msp Init Callback */ |
| break; |
| |
| case HAL_TIM_ENCODER_MSPDEINIT_CB_ID : |
| htim->Encoder_MspDeInitCallback = HAL_TIM_Encoder_MspDeInit; /* Legacy weak Encoder Msp DeInit Callback */ |
| break; |
| |
| case HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID : |
| htim->HallSensor_MspInitCallback = HAL_TIMEx_HallSensor_MspInit; /* Legacy weak Hall Sensor Msp Init Callback */ |
| break; |
| |
| case HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID : |
| htim->HallSensor_MspDeInitCallback = HAL_TIMEx_HallSensor_MspDeInit; /* Legacy weak Hall Sensor Msp DeInit Callback */ |
| break; |
| |
| default : |
| /* Return error status */ |
| status = HAL_ERROR; |
| break; |
| } |
| } |
| else |
| { |
| /* Return error status */ |
| status = HAL_ERROR; |
| } |
| |
| /* Release Lock */ |
| __HAL_UNLOCK(htim); |
| |
| return status; |
| } |
| #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
| |
| /** |
| * @} |
| */ |
| |
| /** @defgroup TIM_Exported_Functions_Group10 TIM Peripheral State functions |
| * @brief TIM Peripheral State functions |
| * |
| @verbatim |
| ============================================================================== |
| ##### Peripheral State functions ##### |
| ============================================================================== |
| [..] |
| This subsection permits to get in run-time the status of the peripheral |
| and the data flow. |
| |
| @endverbatim |
| * @{ |
| */ |
| |
| /** |
| * @brief Return the TIM Base handle state. |
| * @param htim TIM Base handle |
| * @retval HAL state |
| */ |
| HAL_TIM_StateTypeDef HAL_TIM_Base_GetState(TIM_HandleTypeDef *htim) |
| { |
| return htim->State; |
| } |
| |
| /** |
| * @brief Return the TIM OC handle state. |
| * @param htim TIM Output Compare handle |
| * @retval HAL state |
| */ |
| HAL_TIM_StateTypeDef HAL_TIM_OC_GetState(TIM_HandleTypeDef *htim) |
| { |
| return htim->State; |
| } |
| |
| /** |
| * @brief Return the TIM PWM handle state. |
| * @param htim TIM handle |
| * @retval HAL state |
| */ |
| HAL_TIM_StateTypeDef HAL_TIM_PWM_GetState(TIM_HandleTypeDef *htim) |
| { |
| return htim->State; |
| } |
| |
| /** |
| * @brief Return the TIM Input Capture handle state. |
| * @param htim TIM IC handle |
| * @retval HAL state |
| */ |
| HAL_TIM_StateTypeDef HAL_TIM_IC_GetState(TIM_HandleTypeDef *htim) |
| { |
| return htim->State; |
| } |
| |
| /** |
| * @brief Return the TIM One Pulse Mode handle state. |
| * @param htim TIM OPM handle |
| * @retval HAL state |
| */ |
| HAL_TIM_StateTypeDef HAL_TIM_OnePulse_GetState(TIM_HandleTypeDef *htim) |
| { |
| return htim->State; |
| } |
| |
| /** |
| * @brief Return the TIM Encoder Mode handle state. |
| * @param htim TIM Encoder Interface handle |
| * @retval HAL state |
| */ |
| HAL_TIM_StateTypeDef HAL_TIM_Encoder_GetState(TIM_HandleTypeDef *htim) |
| { |
| return htim->State; |
| } |
| |
| /** |
| * @brief Return the TIM Encoder Mode handle state. |
| * @param htim TIM handle |
| * @retval Active channel |
| */ |
| HAL_TIM_ActiveChannel HAL_TIM_GetActiveChannel(TIM_HandleTypeDef *htim) |
| { |
| return htim->Channel; |
| } |
| |
| /** |
| * @brief Return actual state of the TIM channel. |
| * @param htim TIM handle |
| * @param Channel TIM Channel |
| * This parameter can be one of the following values: |
| * @arg TIM_CHANNEL_1: TIM Channel 1 |
| * @arg TIM_CHANNEL_2: TIM Channel 2 |
| * @arg TIM_CHANNEL_3: TIM Channel 3 |
| * @arg TIM_CHANNEL_4: TIM Channel 4 |
| * @arg TIM_CHANNEL_5: TIM Channel 5 |
| * @arg TIM_CHANNEL_6: TIM Channel 6 |
| * @retval TIM Channel state |
| */ |
| HAL_TIM_ChannelStateTypeDef HAL_TIM_GetChannelState(TIM_HandleTypeDef *htim, uint32_t Channel) |
| { |
| HAL_TIM_ChannelStateTypeDef channel_state; |
| |
| /* Check the parameters */ |
| assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
| |
| channel_state = TIM_CHANNEL_STATE_GET(htim, Channel); |
| |
| return channel_state; |
| } |
| |
| /** |
| * @brief Return actual state of a DMA burst operation. |
| * @param htim TIM handle |
| * @retval DMA burst state |
| */ |
| HAL_TIM_DMABurstStateTypeDef HAL_TIM_DMABurstState(TIM_HandleTypeDef *htim) |
| { |
| /* Check the parameters */ |
| assert_param(IS_TIM_DMABURST_INSTANCE(htim->Instance)); |
| |
| return htim->DMABurstState; |
| } |
| |
| /** |
| * @} |
| */ |
| |
| /** |
| * @} |
| */ |
| |
| /** @defgroup TIM_Private_Functions TIM Private Functions |
| * @{ |
| */ |
| |
| /** |
| * @brief TIM DMA error callback |
| * @param hdma pointer to DMA handle. |
| * @retval None |
| */ |
| void TIM_DMAError(DMA_HandleTypeDef *hdma) |
| { |
| TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
| |
| if (hdma == htim->hdma[TIM_DMA_ID_CC1]) |
| { |
| htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1; |
| TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
| } |
| else if (hdma == htim->hdma[TIM_DMA_ID_CC2]) |
| { |
| htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2; |
| TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
| } |
| else if (hdma == htim->hdma[TIM_DMA_ID_CC3]) |
| { |
| htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3; |
| TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY); |
| } |
| else if (hdma == htim->hdma[TIM_DMA_ID_CC4]) |
| { |
| htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4; |
| TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY); |
| } |
| else |
| { |
| htim->State = HAL_TIM_STATE_READY; |
| } |
| |
| #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
| htim->ErrorCallback(htim); |
| #else |
| HAL_TIM_ErrorCallback(htim); |
| #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
| |
| htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; |
| } |
| |
| /** |
| * @brief TIM DMA Delay Pulse complete callback. |
| * @param hdma pointer to DMA handle. |
| * @retval None |
| */ |
| void TIM_DMADelayPulseCplt(DMA_HandleTypeDef *hdma) |
| { |
| TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
| |
| if (hdma == htim->hdma[TIM_DMA_ID_CC1]) |
| { |
| htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1; |
| |
| if (hdma->Init.Mode == DMA_NORMAL) |
| { |
| TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
| } |
| } |
| else if (hdma == htim->hdma[TIM_DMA_ID_CC2]) |
| { |
| htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2; |
| |
| if (hdma->Init.Mode == DMA_NORMAL) |
| { |
| TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
| } |
| } |
| else if (hdma == htim->hdma[TIM_DMA_ID_CC3]) |
| { |
| htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3; |
| |
| if (hdma->Init.Mode == DMA_NORMAL) |
| { |
| TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY); |
| } |
| } |
| else if (hdma == htim->hdma[TIM_DMA_ID_CC4]) |
| { |
| htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4; |
| |
| if (hdma->Init.Mode == DMA_NORMAL) |
| { |
| TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY); |
| } |
| } |
| else |
| { |
| /* nothing to do */ |
| } |
| |
| #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
| htim->PWM_PulseFinishedCallback(htim); |
| #else |
| HAL_TIM_PWM_PulseFinishedCallback(htim); |
| #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
| |
| htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; |
| } |
| |
| /** |
| * @brief TIM DMA Delay Pulse half complete callback. |
| * @param hdma pointer to DMA handle. |
| * @retval None |
| */ |
| void TIM_DMADelayPulseHalfCplt(DMA_HandleTypeDef *hdma) |
| { |
| TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
| |
| if (hdma == htim->hdma[TIM_DMA_ID_CC1]) |
| { |
| htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1; |
| } |
| else if (hdma == htim->hdma[TIM_DMA_ID_CC2]) |
| { |
| htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2; |
| } |
| else if (hdma == htim->hdma[TIM_DMA_ID_CC3]) |
| { |
| htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3; |
| } |
| else if (hdma == htim->hdma[TIM_DMA_ID_CC4]) |
| { |
| htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4; |
| } |
| else |
| { |
| /* nothing to do */ |
| } |
| |
| #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
| htim->PWM_PulseFinishedHalfCpltCallback(htim); |
| #else |
| HAL_TIM_PWM_PulseFinishedHalfCpltCallback(htim); |
| #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
| |
| htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; |
| } |
| |
| /** |
| * @brief TIM DMA Capture complete callback. |
| * @param hdma pointer to DMA handle. |
| * @retval None |
| */ |
| void TIM_DMACaptureCplt(DMA_HandleTypeDef *hdma) |
| { |
| TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
| |
| if (hdma == htim->hdma[TIM_DMA_ID_CC1]) |
| { |
| htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1; |
| |
| if (hdma->Init.Mode == DMA_NORMAL) |
| { |
| TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
| TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
| } |
| } |
| else if (hdma == htim->hdma[TIM_DMA_ID_CC2]) |
| { |
| htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2; |
| |
| if (hdma->Init.Mode == DMA_NORMAL) |
| { |
| TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
| TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
| } |
| } |
| else if (hdma == htim->hdma[TIM_DMA_ID_CC3]) |
| { |
| htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3; |
| |
| if (hdma->Init.Mode == DMA_NORMAL) |
| { |
| TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY); |
| TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY); |
| } |
| } |
| else if (hdma == htim->hdma[TIM_DMA_ID_CC4]) |
| { |
| htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4; |
| |
| if (hdma->Init.Mode == DMA_NORMAL) |
| { |
| TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY); |
| TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY); |
| } |
| } |
| else |
| { |
| /* nothing to do */ |
| } |
| |
| #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
| htim->IC_CaptureCallback(htim); |
| #else |
| HAL_TIM_IC_CaptureCallback(htim); |
| #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
| |
| htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; |
| } |
| |
| /** |
| * @brief TIM DMA Capture half complete callback. |
| * @param hdma pointer to DMA handle. |
| * @retval None |
| */ |
| void TIM_DMACaptureHalfCplt(DMA_HandleTypeDef *hdma) |
| { |
| TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
| |
| if (hdma == htim->hdma[TIM_DMA_ID_CC1]) |
| { |
| htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1; |
| } |
| else if (hdma == htim->hdma[TIM_DMA_ID_CC2]) |
| { |
| htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2; |
| } |
| else if (hdma == htim->hdma[TIM_DMA_ID_CC3]) |
| { |
| htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3; |
| } |
| else if (hdma == htim->hdma[TIM_DMA_ID_CC4]) |
| { |
| htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4; |
| } |
| else |
| { |
| /* nothing to do */ |
| } |
| |
| #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
| htim->IC_CaptureHalfCpltCallback(htim); |
| #else |
| HAL_TIM_IC_CaptureHalfCpltCallback(htim); |
| #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
| |
| htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; |
| } |
| |
| /** |
| * @brief TIM DMA Period Elapse complete callback. |
| * @param hdma pointer to DMA handle. |
| * @retval None |
| */ |
| static void TIM_DMAPeriodElapsedCplt(DMA_HandleTypeDef *hdma) |
| { |
| TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
| |
| if (htim->hdma[TIM_DMA_ID_UPDATE]->Init.Mode == DMA_NORMAL) |
| { |
| htim->State = HAL_TIM_STATE_READY; |
| } |
| |
| #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
| htim->PeriodElapsedCallback(htim); |
| #else |
| HAL_TIM_PeriodElapsedCallback(htim); |
| #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
| } |
| |
| /** |
| * @brief TIM DMA Period Elapse half complete callback. |
| * @param hdma pointer to DMA handle. |
| * @retval None |
| */ |
| static void TIM_DMAPeriodElapsedHalfCplt(DMA_HandleTypeDef *hdma) |
| { |
| TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
| |
| #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
| htim->PeriodElapsedHalfCpltCallback(htim); |
| #else |
| HAL_TIM_PeriodElapsedHalfCpltCallback(htim); |
| #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
| } |
| |
| /** |
| * @brief TIM DMA Trigger callback. |
| * @param hdma pointer to DMA handle. |
| * @retval None |
| */ |
| static void TIM_DMATriggerCplt(DMA_HandleTypeDef *hdma) |
| { |
| TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
| |
| if (htim->hdma[TIM_DMA_ID_TRIGGER]->Init.Mode == DMA_NORMAL) |
| { |
| htim->State = HAL_TIM_STATE_READY; |
| } |
| |
| #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
| htim->TriggerCallback(htim); |
| #else |
| HAL_TIM_TriggerCallback(htim); |
| #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
| } |
| |
| /** |
| * @brief TIM DMA Trigger half complete callback. |
| * @param hdma pointer to DMA handle. |
| * @retval None |
| */ |
| static void TIM_DMATriggerHalfCplt(DMA_HandleTypeDef *hdma) |
| { |
| TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
| |
| #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
| htim->TriggerHalfCpltCallback(htim); |
| #else |
| HAL_TIM_TriggerHalfCpltCallback(htim); |
| #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
| } |
| |
| /** |
| * @brief Time Base configuration |
| * @param TIMx TIM peripheral |
| * @param Structure TIM Base configuration structure |
| * @retval None |
| */ |
| void TIM_Base_SetConfig(TIM_TypeDef *TIMx, TIM_Base_InitTypeDef *Structure) |
| { |
| uint32_t tmpcr1; |
| tmpcr1 = TIMx->CR1; |
| |
| /* Set TIM Time Base Unit parameters ---------------------------------------*/ |
| if (IS_TIM_COUNTER_MODE_SELECT_INSTANCE(TIMx)) |
| { |
| /* Select the Counter Mode */ |
| tmpcr1 &= ~(TIM_CR1_DIR | TIM_CR1_CMS); |
| tmpcr1 |= Structure->CounterMode; |
| } |
| |
| if (IS_TIM_CLOCK_DIVISION_INSTANCE(TIMx)) |
| { |
| /* Set the clock division */ |
| tmpcr1 &= ~TIM_CR1_CKD; |
| tmpcr1 |= (uint32_t)Structure->ClockDivision; |
| } |
| |
| /* Set the auto-reload preload */ |
| MODIFY_REG(tmpcr1, TIM_CR1_ARPE, Structure->AutoReloadPreload); |
| |
| TIMx->CR1 = tmpcr1; |
| |
| /* Set the Autoreload value */ |
| TIMx->ARR = (uint32_t)Structure->Period ; |
| |
| /* Set the Prescaler value */ |
| TIMx->PSC = Structure->Prescaler; |
| |
| if (IS_TIM_REPETITION_COUNTER_INSTANCE(TIMx)) |
| { |
| /* Set the Repetition Counter value */ |
| TIMx->RCR = Structure->RepetitionCounter; |
| } |
| |
| /* Generate an update event to reload the Prescaler |
| and the repetition counter (only for advanced timer) value immediately */ |
| TIMx->EGR = TIM_EGR_UG; |
| } |
| |
| /** |
| * @brief Timer Output Compare 1 configuration |
| * @param TIMx to select the TIM peripheral |
| * @param OC_Config The ouput configuration structure |
| * @retval None |
| */ |
| static void TIM_OC1_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config) |
| { |
| uint32_t tmpccmrx; |
| uint32_t tmpccer; |
| uint32_t tmpcr2; |
| |
| /* Disable the Channel 1: Reset the CC1E Bit */ |
| TIMx->CCER &= ~TIM_CCER_CC1E; |
| |
| /* Get the TIMx CCER register value */ |
| tmpccer = TIMx->CCER; |
| /* Get the TIMx CR2 register value */ |
| tmpcr2 = TIMx->CR2; |
| |
| /* Get the TIMx CCMR1 register value */ |
| tmpccmrx = TIMx->CCMR1; |
| |
| /* Reset the Output Compare Mode Bits */ |
| tmpccmrx &= ~TIM_CCMR1_OC1M; |
| tmpccmrx &= ~TIM_CCMR1_CC1S; |
| /* Select the Output Compare Mode */ |
| tmpccmrx |= OC_Config->OCMode; |
| |
| /* Reset the Output Polarity level */ |
| tmpccer &= ~TIM_CCER_CC1P; |
| /* Set the Output Compare Polarity */ |
| tmpccer |= OC_Config->OCPolarity; |
| |
| if (IS_TIM_CCXN_INSTANCE(TIMx, TIM_CHANNEL_1)) |
| { |
| /* Check parameters */ |
| assert_param(IS_TIM_OCN_POLARITY(OC_Config->OCNPolarity)); |
| |
| /* Reset the Output N Polarity level */ |
| tmpccer &= ~TIM_CCER_CC1NP; |
| /* Set the Output N Polarity */ |
| tmpccer |= OC_Config->OCNPolarity; |
| /* Reset the Output N State */ |
| tmpccer &= ~TIM_CCER_CC1NE; |
| } |
| |
| if (IS_TIM_BREAK_INSTANCE(TIMx)) |
| { |
| /* Check parameters */ |
| assert_param(IS_TIM_OCNIDLE_STATE(OC_Config->OCNIdleState)); |
| assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState)); |
| |
| /* Reset the Output Compare and Output Compare N IDLE State */ |
| tmpcr2 &= ~TIM_CR2_OIS1; |
| tmpcr2 &= ~TIM_CR2_OIS1N; |
| /* Set the Output Idle state */ |
| tmpcr2 |= OC_Config->OCIdleState; |
| /* Set the Output N Idle state */ |
| tmpcr2 |= OC_Config->OCNIdleState; |
| } |
| |
| /* Write to TIMx CR2 */ |
| TIMx->CR2 = tmpcr2; |
| |
| /* Write to TIMx CCMR1 */ |
| TIMx->CCMR1 = tmpccmrx; |
| |
| /* Set the Capture Compare Register value */ |
| TIMx->CCR1 = OC_Config->Pulse; |
| |
| /* Write to TIMx CCER */ |
| TIMx->CCER = tmpccer; |
| } |
| |
| /** |
| * @brief Timer Output Compare 2 configuration |
| * @param TIMx to select the TIM peripheral |
| * @param OC_Config The ouput configuration structure |
| * @retval None |
| */ |
| void TIM_OC2_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config) |
| { |
| uint32_t tmpccmrx; |
| uint32_t tmpccer; |
| uint32_t tmpcr2; |
| |
| /* Disable the Channel 2: Reset the CC2E Bit */ |
| TIMx->CCER &= ~TIM_CCER_CC2E; |
| |
| /* Get the TIMx CCER register value */ |
| tmpccer = TIMx->CCER; |
| /* Get the TIMx CR2 register value */ |
| tmpcr2 = TIMx->CR2; |
| |
| /* Get the TIMx CCMR1 register value */ |
| tmpccmrx = TIMx->CCMR1; |
| |
| /* Reset the Output Compare mode and Capture/Compare selection Bits */ |
| tmpccmrx &= ~TIM_CCMR1_OC2M; |
| tmpccmrx &= ~TIM_CCMR1_CC2S; |
| |
| /* Select the Output Compare Mode */ |
| tmpccmrx |= (OC_Config->OCMode << 8U); |
| |
| /* Reset the Output Polarity level */ |
| tmpccer &= ~TIM_CCER_CC2P; |
| /* Set the Output Compare Polarity */ |
| tmpccer |= (OC_Config->OCPolarity << 4U); |
| |
| if (IS_TIM_CCXN_INSTANCE(TIMx, TIM_CHANNEL_2)) |
| { |
| assert_param(IS_TIM_OCN_POLARITY(OC_Config->OCNPolarity)); |
| |
| /* Reset the Output N Polarity level */ |
| tmpccer &= ~TIM_CCER_CC2NP; |
| /* Set the Output N Polarity */ |
| tmpccer |= (OC_Config->OCNPolarity << 4U); |
| /* Reset the Output N State */ |
| tmpccer &= ~TIM_CCER_CC2NE; |
| |
| } |
| |
| if (IS_TIM_BREAK_INSTANCE(TIMx)) |
| { |
| /* Check parameters */ |
| assert_param(IS_TIM_OCNIDLE_STATE(OC_Config->OCNIdleState)); |
| assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState)); |
| |
| /* Reset the Output Compare and Output Compare N IDLE State */ |
| tmpcr2 &= ~TIM_CR2_OIS2; |
| tmpcr2 &= ~TIM_CR2_OIS2N; |
| /* Set the Output Idle state */ |
| tmpcr2 |= (OC_Config->OCIdleState << 2U); |
| /* Set the Output N Idle state */ |
| tmpcr2 |= (OC_Config->OCNIdleState << 2U); |
| } |
| |
| /* Write to TIMx CR2 */ |
| TIMx->CR2 = tmpcr2; |
| |
| /* Write to TIMx CCMR1 */ |
| TIMx->CCMR1 = tmpccmrx; |
| |
| /* Set the Capture Compare Register value */ |
| TIMx->CCR2 = OC_Config->Pulse; |
| |
| /* Write to TIMx CCER */ |
| TIMx->CCER = tmpccer; |
| } |
| |
| /** |
| * @brief Timer Output Compare 3 configuration |
| * @param TIMx to select the TIM peripheral |
| * @param OC_Config The ouput configuration structure |
| * @retval None |
| */ |
| static void TIM_OC3_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config) |
| { |
| uint32_t tmpccmrx; |
| uint32_t tmpccer; |
| uint32_t tmpcr2; |
| |
| /* Disable the Channel 3: Reset the CC2E Bit */ |
| TIMx->CCER &= ~TIM_CCER_CC3E; |
| |
| /* Get the TIMx CCER register value */ |
| tmpccer = TIMx->CCER; |
| /* Get the TIMx CR2 register value */ |
| tmpcr2 = TIMx->CR2; |
| |
| /* Get the TIMx CCMR2 register value */ |
| tmpccmrx = TIMx->CCMR2; |
| |
| /* Reset the Output Compare mode and Capture/Compare selection Bits */ |
| tmpccmrx &= ~TIM_CCMR2_OC3M; |
| tmpccmrx &= ~TIM_CCMR2_CC3S; |
| /* Select the Output Compare Mode */ |
| tmpccmrx |= OC_Config->OCMode; |
| |
| /* Reset the Output Polarity level */ |
| tmpccer &= ~TIM_CCER_CC3P; |
| /* Set the Output Compare Polarity */ |
| tmpccer |= (OC_Config->OCPolarity << 8U); |
| |
| if (IS_TIM_CCXN_INSTANCE(TIMx, TIM_CHANNEL_3)) |
| { |
| assert_param(IS_TIM_OCN_POLARITY(OC_Config->OCNPolarity)); |
| |
| /* Reset the Output N Polarity level */ |
| tmpccer &= ~TIM_CCER_CC3NP; |
| /* Set the Output N Polarity */ |
| tmpccer |= (OC_Config->OCNPolarity << 8U); |
| /* Reset the Output N State */ |
| tmpccer &= ~TIM_CCER_CC3NE; |
| } |
| |
| if (IS_TIM_BREAK_INSTANCE(TIMx)) |
| { |
| /* Check parameters */ |
| assert_param(IS_TIM_OCNIDLE_STATE(OC_Config->OCNIdleState)); |
| assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState)); |
| |
| /* Reset the Output Compare and Output Compare N IDLE State */ |
| tmpcr2 &= ~TIM_CR2_OIS3; |
| tmpcr2 &= ~TIM_CR2_OIS3N; |
| /* Set the Output Idle state */ |
| tmpcr2 |= (OC_Config->OCIdleState << 4U); |
| /* Set the Output N Idle state */ |
| tmpcr2 |= (OC_Config->OCNIdleState << 4U); |
| } |
| |
| /* Write to TIMx CR2 */ |
| TIMx->CR2 = tmpcr2; |
| |
| /* Write to TIMx CCMR2 */ |
| TIMx->CCMR2 = tmpccmrx; |
| |
| /* Set the Capture Compare Register value */ |
| TIMx->CCR3 = OC_Config->Pulse; |
| |
| /* Write to TIMx CCER */ |
| TIMx->CCER = tmpccer; |
| } |
| |
| /** |
| * @brief Timer Output Compare 4 configuration |
| * @param TIMx to select the TIM peripheral |
| * @param OC_Config The ouput configuration structure |
| * @retval None |
| */ |
| static void TIM_OC4_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config) |
| { |
| uint32_t tmpccmrx; |
| uint32_t tmpccer; |
| uint32_t tmpcr2; |
| |
| /* Disable the Channel 4: Reset the CC4E Bit */ |
| TIMx->CCER &= ~TIM_CCER_CC4E; |
| |
| /* Get the TIMx CCER register value */ |
| tmpccer = TIMx->CCER; |
| /* Get the TIMx CR2 register value */ |
| tmpcr2 = TIMx->CR2; |
| |
| /* Get the TIMx CCMR2 register value */ |
| tmpccmrx = TIMx->CCMR2; |
| |
| /* Reset the Output Compare mode and Capture/Compare selection Bits */ |
| tmpccmrx &= ~TIM_CCMR2_OC4M; |
| tmpccmrx &= ~TIM_CCMR2_CC4S; |
| |
| /* Select the Output Compare Mode */ |
| tmpccmrx |= (OC_Config->OCMode << 8U); |
| |
| /* Reset the Output Polarity level */ |
| tmpccer &= ~TIM_CCER_CC4P; |
| /* Set the Output Compare Polarity */ |
| tmpccer |= (OC_Config->OCPolarity << 12U); |
| |
| if (IS_TIM_CCXN_INSTANCE(TIMx, TIM_CHANNEL_4)) |
| { |
| assert_param(IS_TIM_OCN_POLARITY(OC_Config->OCNPolarity)); |
| |
| /* Reset the Output N Polarity level */ |
| tmpccer &= ~TIM_CCER_CC4NP; |
| /* Set the Output N Polarity */ |
| tmpccer |= (OC_Config->OCNPolarity << 12U); |
| /* Reset the Output N State */ |
| tmpccer &= ~TIM_CCER_CC4NE; |
| } |
| |
| if (IS_TIM_BREAK_INSTANCE(TIMx)) |
| { |
| /* Check parameters */ |
| assert_param(IS_TIM_OCNIDLE_STATE(OC_Config->OCNIdleState)); |
| assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState)); |
| |
| /* Reset the Output Compare IDLE State */ |
| tmpcr2 &= ~TIM_CR2_OIS4; |
| /* Reset the Output Compare N IDLE State */ |
| tmpcr2 &= ~TIM_CR2_OIS4N; |
| |
| /* Set the Output Idle state */ |
| tmpcr2 |= (OC_Config->OCIdleState << 6U); |
| /* Set the Output N Idle state */ |
| tmpcr2 |= (OC_Config->OCNIdleState << 6U); |
| } |
| |
| /* Write to TIMx CR2 */ |
| TIMx->CR2 = tmpcr2; |
| |
| /* Write to TIMx CCMR2 */ |
| TIMx->CCMR2 = tmpccmrx; |
| |
| /* Set the Capture Compare Register value */ |
| TIMx->CCR4 = OC_Config->Pulse; |
| |
| /* Write to TIMx CCER */ |
| TIMx->CCER = tmpccer; |
| } |
| |
| /** |
| * @brief Timer Output Compare 5 configuration |
| * @param TIMx to select the TIM peripheral |
| * @param OC_Config The ouput configuration structure |
| * @retval None |
| */ |
| static void TIM_OC5_SetConfig(TIM_TypeDef *TIMx, |
| TIM_OC_InitTypeDef *OC_Config) |
| { |
| uint32_t tmpccmrx; |
| uint32_t tmpccer; |
| uint32_t tmpcr2; |
| |
| /* Disable the output: Reset the CCxE Bit */ |
| TIMx->CCER &= ~TIM_CCER_CC5E; |
| |
| /* Get the TIMx CCER register value */ |
| tmpccer = TIMx->CCER; |
| /* Get the TIMx CR2 register value */ |
| tmpcr2 = TIMx->CR2; |
| /* Get the TIMx CCMR1 register value */ |
| tmpccmrx = TIMx->CCMR3; |
| |
| /* Reset the Output Compare Mode Bits */ |
| tmpccmrx &= ~(TIM_CCMR3_OC5M); |
| /* Select the Output Compare Mode */ |
| tmpccmrx |= OC_Config->OCMode; |
| |
| /* Reset the Output Polarity level */ |
| tmpccer &= ~TIM_CCER_CC5P; |
| /* Set the Output Compare Polarity */ |
| tmpccer |= (OC_Config->OCPolarity << 16U); |
| |
| if (IS_TIM_BREAK_INSTANCE(TIMx)) |
| { |
| /* Reset the Output Compare IDLE State */ |
| tmpcr2 &= ~TIM_CR2_OIS5; |
| /* Set the Output Idle state */ |
| tmpcr2 |= (OC_Config->OCIdleState << 8U); |
| } |
| /* Write to TIMx CR2 */ |
| TIMx->CR2 = tmpcr2; |
| |
| /* Write to TIMx CCMR3 */ |
| TIMx->CCMR3 = tmpccmrx; |
| |
| /* Set the Capture Compare Register value */ |
| TIMx->CCR5 = OC_Config->Pulse; |
| |
| /* Write to TIMx CCER */ |
| TIMx->CCER = tmpccer; |
| } |
| |
| /** |
| * @brief Timer Output Compare 6 configuration |
| * @param TIMx to select the TIM peripheral |
| * @param OC_Config The ouput configuration structure |
| * @retval None |
| */ |
| static void TIM_OC6_SetConfig(TIM_TypeDef *TIMx, |
| TIM_OC_InitTypeDef *OC_Config) |
| { |
| uint32_t tmpccmrx; |
| uint32_t tmpccer; |
| uint32_t tmpcr2; |
| |
| /* Disable the output: Reset the CCxE Bit */ |
| TIMx->CCER &= ~TIM_CCER_CC6E; |
| |
| /* Get the TIMx CCER register value */ |
| tmpccer = TIMx->CCER; |
| /* Get the TIMx CR2 register value */ |
| tmpcr2 = TIMx->CR2; |
| /* Get the TIMx CCMR1 register value */ |
| tmpccmrx = TIMx->CCMR3; |
| |
| /* Reset the Output Compare Mode Bits */ |
| tmpccmrx &= ~(TIM_CCMR3_OC6M); |
| /* Select the Output Compare Mode */ |
| tmpccmrx |= (OC_Config->OCMode << 8U); |
| |
| /* Reset the Output Polarity level */ |
| tmpccer &= (uint32_t)~TIM_CCER_CC6P; |
| /* Set the Output Compare Polarity */ |
| tmpccer |= (OC_Config->OCPolarity << 20U); |
| |
| if (IS_TIM_BREAK_INSTANCE(TIMx)) |
| { |
| /* Reset the Output Compare IDLE State */ |
| tmpcr2 &= ~TIM_CR2_OIS6; |
| /* Set the Output Idle state */ |
| tmpcr2 |= (OC_Config->OCIdleState << 10U); |
| } |
| |
| /* Write to TIMx CR2 */ |
| TIMx->CR2 = tmpcr2; |
| |
| /* Write to TIMx CCMR3 */ |
| TIMx->CCMR3 = tmpccmrx; |
| |
| /* Set the Capture Compare Register value */ |
| TIMx->CCR6 = OC_Config->Pulse; |
| |
| /* Write to TIMx CCER */ |
| TIMx->CCER = tmpccer; |
| } |
| |
| /** |
| * @brief Slave Timer configuration function |
| * @param htim TIM handle |
| * @param sSlaveConfig Slave timer configuration |
| * @retval None |
| */ |
| static HAL_StatusTypeDef TIM_SlaveTimer_SetConfig(TIM_HandleTypeDef *htim, |
| TIM_SlaveConfigTypeDef *sSlaveConfig) |
| { |
| uint32_t tmpsmcr; |
| uint32_t tmpccmr1; |
| uint32_t tmpccer; |
| |
| /* Get the TIMx SMCR register value */ |
| tmpsmcr = htim->Instance->SMCR; |
| |
| /* Reset the Trigger Selection Bits */ |
| tmpsmcr &= ~TIM_SMCR_TS; |
| /* Set the Input Trigger source */ |
| tmpsmcr |= sSlaveConfig->InputTrigger; |
| |
| /* Reset the slave mode Bits */ |
| tmpsmcr &= ~TIM_SMCR_SMS; |
| /* Set the slave mode */ |
| tmpsmcr |= sSlaveConfig->SlaveMode; |
| |
| /* Write to TIMx SMCR */ |
| htim->Instance->SMCR = tmpsmcr; |
| |
| /* Configure the trigger prescaler, filter, and polarity */ |
| switch (sSlaveConfig->InputTrigger) |
| { |
| case TIM_TS_ETRF: |
| { |
| /* Check the parameters */ |
| assert_param(IS_TIM_CLOCKSOURCE_ETRMODE1_INSTANCE(htim->Instance)); |
| assert_param(IS_TIM_TRIGGERPRESCALER(sSlaveConfig->TriggerPrescaler)); |
| assert_param(IS_TIM_TRIGGERPOLARITY(sSlaveConfig->TriggerPolarity)); |
| assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter)); |
| /* Configure the ETR Trigger source */ |
| TIM_ETR_SetConfig(htim->Instance, |
| sSlaveConfig->TriggerPrescaler, |
| sSlaveConfig->TriggerPolarity, |
| sSlaveConfig->TriggerFilter); |
| break; |
| } |
| |
| case TIM_TS_TI1F_ED: |
| { |
| /* Check the parameters */ |
| assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); |
| assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter)); |
| |
| if ((sSlaveConfig->SlaveMode == TIM_SLAVEMODE_GATED) || (sSlaveConfig->SlaveMode == TIM_SLAVEMODE_COMBINED_GATEDRESET)) |
| { |
| return HAL_ERROR; |
| } |
| |
| /* Disable the Channel 1: Reset the CC1E Bit */ |
| tmpccer = htim->Instance->CCER; |
| htim->Instance->CCER &= ~TIM_CCER_CC1E; |
| tmpccmr1 = htim->Instance->CCMR1; |
| |
| /* Set the filter */ |
| tmpccmr1 &= ~TIM_CCMR1_IC1F; |
| tmpccmr1 |= ((sSlaveConfig->TriggerFilter) << 4U); |
| |
| /* Write to TIMx CCMR1 and CCER registers */ |
| htim->Instance->CCMR1 = tmpccmr1; |
| htim->Instance->CCER = tmpccer; |
| break; |
| } |
| |
| case TIM_TS_TI1FP1: |
| { |
| /* Check the parameters */ |
| assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); |
| assert_param(IS_TIM_TRIGGERPOLARITY(sSlaveConfig->TriggerPolarity)); |
| assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter)); |
| |
| /* Configure TI1 Filter and Polarity */ |
| TIM_TI1_ConfigInputStage(htim->Instance, |
| sSlaveConfig->TriggerPolarity, |
| sSlaveConfig->TriggerFilter); |
| break; |
| } |
| |
| case TIM_TS_TI2FP2: |
| { |
| /* Check the parameters */ |
| assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); |
| assert_param(IS_TIM_TRIGGERPOLARITY(sSlaveConfig->TriggerPolarity)); |
| assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter)); |
| |
| /* Configure TI2 Filter and Polarity */ |
| TIM_TI2_ConfigInputStage(htim->Instance, |
| sSlaveConfig->TriggerPolarity, |
| sSlaveConfig->TriggerFilter); |
| break; |
| } |
| |
| case TIM_TS_ITR0: |
| case TIM_TS_ITR1: |
| case TIM_TS_ITR2: |
| case TIM_TS_ITR3: |
| #if defined (TIM5) |
| case TIM_TS_ITR4: |
| #endif /* TIM5 */ |
| case TIM_TS_ITR5: |
| case TIM_TS_ITR6: |
| case TIM_TS_ITR7: |
| case TIM_TS_ITR8: |
| #if defined (TIM20) |
| case TIM_TS_ITR9: |
| #endif /* TIM20 */ |
| case TIM_TS_ITR10: |
| case TIM_TS_ITR11: |
| { |
| /* Check the parameter */ |
| assert_param(IS_TIM_INTERNAL_TRIGGEREVENT_INSTANCE((htim->Instance), sSlaveConfig->InputTrigger)); |
| break; |
| } |
| |
| default: |
| break; |
| } |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Configure the TI1 as Input. |
| * @param TIMx to select the TIM peripheral. |
| * @param TIM_ICPolarity The Input Polarity. |
| * This parameter can be one of the following values: |
| * @arg TIM_ICPOLARITY_RISING |
| * @arg TIM_ICPOLARITY_FALLING |
| * @arg TIM_ICPOLARITY_BOTHEDGE |
| * @param TIM_ICSelection specifies the input to be used. |
| * This parameter can be one of the following values: |
| * @arg TIM_ICSELECTION_DIRECTTI: TIM Input 1 is selected to be connected to IC1. |
| * @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 1 is selected to be connected to IC2. |
| * @arg TIM_ICSELECTION_TRC: TIM Input 1 is selected to be connected to TRC. |
| * @param TIM_ICFilter Specifies the Input Capture Filter. |
| * This parameter must be a value between 0x00 and 0x0F. |
| * @retval None |
| * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI2FP1 |
| * (on channel2 path) is used as the input signal. Therefore CCMR1 must be |
| * protected against un-initialized filter and polarity values. |
| */ |
| void TIM_TI1_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, |
| uint32_t TIM_ICFilter) |
| { |
| uint32_t tmpccmr1; |
| uint32_t tmpccer; |
| |
| /* Disable the Channel 1: Reset the CC1E Bit */ |
| TIMx->CCER &= ~TIM_CCER_CC1E; |
| tmpccmr1 = TIMx->CCMR1; |
| tmpccer = TIMx->CCER; |
| |
| /* Select the Input */ |
| if (IS_TIM_CC2_INSTANCE(TIMx) != RESET) |
| { |
| tmpccmr1 &= ~TIM_CCMR1_CC1S; |
| tmpccmr1 |= TIM_ICSelection; |
| } |
| else |
| { |
| tmpccmr1 |= TIM_CCMR1_CC1S_0; |
| } |
| |
| /* Set the filter */ |
| tmpccmr1 &= ~TIM_CCMR1_IC1F; |
| tmpccmr1 |= ((TIM_ICFilter << 4U) & TIM_CCMR1_IC1F); |
| |
| /* Select the Polarity and set the CC1E Bit */ |
| tmpccer &= ~(TIM_CCER_CC1P | TIM_CCER_CC1NP); |
| tmpccer |= (TIM_ICPolarity & (TIM_CCER_CC1P | TIM_CCER_CC1NP)); |
| |
| /* Write to TIMx CCMR1 and CCER registers */ |
| TIMx->CCMR1 = tmpccmr1; |
| TIMx->CCER = tmpccer; |
| } |
| |
| /** |
| * @brief Configure the Polarity and Filter for TI1. |
| * @param TIMx to select the TIM peripheral. |
| * @param TIM_ICPolarity The Input Polarity. |
| * This parameter can be one of the following values: |
| * @arg TIM_ICPOLARITY_RISING |
| * @arg TIM_ICPOLARITY_FALLING |
| * @arg TIM_ICPOLARITY_BOTHEDGE |
| * @param TIM_ICFilter Specifies the Input Capture Filter. |
| * This parameter must be a value between 0x00 and 0x0F. |
| * @retval None |
| */ |
| static void TIM_TI1_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter) |
| { |
| uint32_t tmpccmr1; |
| uint32_t tmpccer; |
| |
| /* Disable the Channel 1: Reset the CC1E Bit */ |
| tmpccer = TIMx->CCER; |
| TIMx->CCER &= ~TIM_CCER_CC1E; |
| tmpccmr1 = TIMx->CCMR1; |
| |
| /* Set the filter */ |
| tmpccmr1 &= ~TIM_CCMR1_IC1F; |
| tmpccmr1 |= (TIM_ICFilter << 4U); |
| |
| /* Select the Polarity and set the CC1E Bit */ |
| tmpccer &= ~(TIM_CCER_CC1P | TIM_CCER_CC1NP); |
| tmpccer |= TIM_ICPolarity; |
| |
| /* Write to TIMx CCMR1 and CCER registers */ |
| TIMx->CCMR1 = tmpccmr1; |
| TIMx->CCER = tmpccer; |
| } |
| |
| /** |
| * @brief Configure the TI2 as Input. |
| * @param TIMx to select the TIM peripheral |
| * @param TIM_ICPolarity The Input Polarity. |
| * This parameter can be one of the following values: |
| * @arg TIM_ICPOLARITY_RISING |
| * @arg TIM_ICPOLARITY_FALLING |
| * @arg TIM_ICPOLARITY_BOTHEDGE |
| * @param TIM_ICSelection specifies the input to be used. |
| * This parameter can be one of the following values: |
| * @arg TIM_ICSELECTION_DIRECTTI: TIM Input 2 is selected to be connected to IC2. |
| * @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 2 is selected to be connected to IC1. |
| * @arg TIM_ICSELECTION_TRC: TIM Input 2 is selected to be connected to TRC. |
| * @param TIM_ICFilter Specifies the Input Capture Filter. |
| * This parameter must be a value between 0x00 and 0x0F. |
| * @retval None |
| * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI1FP2 |
| * (on channel1 path) is used as the input signal. Therefore CCMR1 must be |
| * protected against un-initialized filter and polarity values. |
| */ |
| static void TIM_TI2_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, |
| uint32_t TIM_ICFilter) |
| { |
| uint32_t tmpccmr1; |
| uint32_t tmpccer; |
| |
| /* Disable the Channel 2: Reset the CC2E Bit */ |
| TIMx->CCER &= ~TIM_CCER_CC2E; |
| tmpccmr1 = TIMx->CCMR1; |
| tmpccer = TIMx->CCER; |
| |
| /* Select the Input */ |
| tmpccmr1 &= ~TIM_CCMR1_CC2S; |
| tmpccmr1 |= (TIM_ICSelection << 8U); |
| |
| /* Set the filter */ |
| tmpccmr1 &= ~TIM_CCMR1_IC2F; |
| tmpccmr1 |= ((TIM_ICFilter << 12U) & TIM_CCMR1_IC2F); |
| |
| /* Select the Polarity and set the CC2E Bit */ |
| tmpccer &= ~(TIM_CCER_CC2P | TIM_CCER_CC2NP); |
| tmpccer |= ((TIM_ICPolarity << 4U) & (TIM_CCER_CC2P | TIM_CCER_CC2NP)); |
| |
| /* Write to TIMx CCMR1 and CCER registers */ |
| TIMx->CCMR1 = tmpccmr1 ; |
| TIMx->CCER = tmpccer; |
| } |
| |
| /** |
| * @brief Configure the Polarity and Filter for TI2. |
| * @param TIMx to select the TIM peripheral. |
| * @param TIM_ICPolarity The Input Polarity. |
| * This parameter can be one of the following values: |
| * @arg TIM_ICPOLARITY_RISING |
| * @arg TIM_ICPOLARITY_FALLING |
| * @arg TIM_ICPOLARITY_BOTHEDGE |
| * @param TIM_ICFilter Specifies the Input Capture Filter. |
| * This parameter must be a value between 0x00 and 0x0F. |
| * @retval None |
| */ |
| static void TIM_TI2_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter) |
| { |
| uint32_t tmpccmr1; |
| uint32_t tmpccer; |
| |
| /* Disable the Channel 2: Reset the CC2E Bit */ |
| TIMx->CCER &= ~TIM_CCER_CC2E; |
| tmpccmr1 = TIMx->CCMR1; |
| tmpccer = TIMx->CCER; |
| |
| /* Set the filter */ |
| tmpccmr1 &= ~TIM_CCMR1_IC2F; |
| tmpccmr1 |= (TIM_ICFilter << 12U); |
| |
| /* Select the Polarity and set the CC2E Bit */ |
| tmpccer &= ~(TIM_CCER_CC2P | TIM_CCER_CC2NP); |
| tmpccer |= (TIM_ICPolarity << 4U); |
| |
| /* Write to TIMx CCMR1 and CCER registers */ |
| TIMx->CCMR1 = tmpccmr1 ; |
| TIMx->CCER = tmpccer; |
| } |
| |
| /** |
| * @brief Configure the TI3 as Input. |
| * @param TIMx to select the TIM peripheral |
| * @param TIM_ICPolarity The Input Polarity. |
| * This parameter can be one of the following values: |
| * @arg TIM_ICPOLARITY_RISING |
| * @arg TIM_ICPOLARITY_FALLING |
| * @arg TIM_ICPOLARITY_BOTHEDGE |
| * @param TIM_ICSelection specifies the input to be used. |
| * This parameter can be one of the following values: |
| * @arg TIM_ICSELECTION_DIRECTTI: TIM Input 3 is selected to be connected to IC3. |
| * @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 3 is selected to be connected to IC4. |
| * @arg TIM_ICSELECTION_TRC: TIM Input 3 is selected to be connected to TRC. |
| * @param TIM_ICFilter Specifies the Input Capture Filter. |
| * This parameter must be a value between 0x00 and 0x0F. |
| * @retval None |
| * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI3FP4 |
| * (on channel1 path) is used as the input signal. Therefore CCMR2 must be |
| * protected against un-initialized filter and polarity values. |
| */ |
| static void TIM_TI3_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, |
| uint32_t TIM_ICFilter) |
| { |
| uint32_t tmpccmr2; |
| uint32_t tmpccer; |
| |
| /* Disable the Channel 3: Reset the CC3E Bit */ |
| TIMx->CCER &= ~TIM_CCER_CC3E; |
| tmpccmr2 = TIMx->CCMR2; |
| tmpccer = TIMx->CCER; |
| |
| /* Select the Input */ |
| tmpccmr2 &= ~TIM_CCMR2_CC3S; |
| tmpccmr2 |= TIM_ICSelection; |
| |
| /* Set the filter */ |
| tmpccmr2 &= ~TIM_CCMR2_IC3F; |
| tmpccmr2 |= ((TIM_ICFilter << 4U) & TIM_CCMR2_IC3F); |
| |
| /* Select the Polarity and set the CC3E Bit */ |
| tmpccer &= ~(TIM_CCER_CC3P | TIM_CCER_CC3NP); |
| tmpccer |= ((TIM_ICPolarity << 8U) & (TIM_CCER_CC3P | TIM_CCER_CC3NP)); |
| |
| /* Write to TIMx CCMR2 and CCER registers */ |
| TIMx->CCMR2 = tmpccmr2; |
| TIMx->CCER = tmpccer; |
| } |
| |
| /** |
| * @brief Configure the TI4 as Input. |
| * @param TIMx to select the TIM peripheral |
| * @param TIM_ICPolarity The Input Polarity. |
| * This parameter can be one of the following values: |
| * @arg TIM_ICPOLARITY_RISING |
| * @arg TIM_ICPOLARITY_FALLING |
| * @arg TIM_ICPOLARITY_BOTHEDGE |
| * @param TIM_ICSelection specifies the input to be used. |
| * This parameter can be one of the following values: |
| * @arg TIM_ICSELECTION_DIRECTTI: TIM Input 4 is selected to be connected to IC4. |
| * @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 4 is selected to be connected to IC3. |
| * @arg TIM_ICSELECTION_TRC: TIM Input 4 is selected to be connected to TRC. |
| * @param TIM_ICFilter Specifies the Input Capture Filter. |
| * This parameter must be a value between 0x00 and 0x0F. |
| * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI4FP3 |
| * (on channel1 path) is used as the input signal. Therefore CCMR2 must be |
| * protected against un-initialized filter and polarity values. |
| * @retval None |
| */ |
| static void TIM_TI4_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, |
| uint32_t TIM_ICFilter) |
| { |
| uint32_t tmpccmr2; |
| uint32_t tmpccer; |
| |
| /* Disable the Channel 4: Reset the CC4E Bit */ |
| TIMx->CCER &= ~TIM_CCER_CC4E; |
| tmpccmr2 = TIMx->CCMR2; |
| tmpccer = TIMx->CCER; |
| |
| /* Select the Input */ |
| tmpccmr2 &= ~TIM_CCMR2_CC4S; |
| tmpccmr2 |= (TIM_ICSelection << 8U); |
| |
| /* Set the filter */ |
| tmpccmr2 &= ~TIM_CCMR2_IC4F; |
| tmpccmr2 |= ((TIM_ICFilter << 12U) & TIM_CCMR2_IC4F); |
| |
| /* Select the Polarity and set the CC4E Bit */ |
| tmpccer &= ~(TIM_CCER_CC4P | TIM_CCER_CC4NP); |
| tmpccer |= ((TIM_ICPolarity << 12U) & (TIM_CCER_CC4P | TIM_CCER_CC4NP)); |
| |
| /* Write to TIMx CCMR2 and CCER registers */ |
| TIMx->CCMR2 = tmpccmr2; |
| TIMx->CCER = tmpccer ; |
| } |
| |
| /** |
| * @brief Selects the Input Trigger source |
| * @param TIMx to select the TIM peripheral |
| * @param InputTriggerSource The Input Trigger source. |
| * This parameter can be one of the following values: |
| * @arg TIM_TS_ITR0: Internal Trigger 0 |
| * @arg TIM_TS_ITR1: Internal Trigger 1 |
| * @arg TIM_TS_ITR2: Internal Trigger 2 |
| * @arg TIM_TS_ITR3: Internal Trigger 3 |
| * @arg TIM_TS_TI1F_ED: TI1 Edge Detector |
| * @arg TIM_TS_TI1FP1: Filtered Timer Input 1 |
| * @arg TIM_TS_TI2FP2: Filtered Timer Input 2 |
| * @arg TIM_TS_ETRF: External Trigger input |
| * @arg TIM_TS_ITR4: Internal Trigger 4 (*) |
| * @arg TIM_TS_ITR5: Internal Trigger 5 |
| * @arg TIM_TS_ITR6: Internal Trigger 6 |
| * @arg TIM_TS_ITR7: Internal Trigger 7 |
| * @arg TIM_TS_ITR8: Internal Trigger 8 |
| * @arg TIM_TS_ITR9: Internal Trigger 9 (*) |
| * @arg TIM_TS_ITR10: Internal Trigger 10 |
| * @arg TIM_TS_ITR11: Internal Trigger 11 |
| * |
| * (*) Value not defined in all devices. |
| * |
| * @retval None |
| */ |
| static void TIM_ITRx_SetConfig(TIM_TypeDef *TIMx, uint32_t InputTriggerSource) |
| { |
| uint32_t tmpsmcr; |
| |
| /* Get the TIMx SMCR register value */ |
| tmpsmcr = TIMx->SMCR; |
| /* Reset the TS Bits */ |
| tmpsmcr &= ~TIM_SMCR_TS; |
| /* Set the Input Trigger source and the slave mode*/ |
| tmpsmcr |= (InputTriggerSource | TIM_SLAVEMODE_EXTERNAL1); |
| /* Write to TIMx SMCR */ |
| TIMx->SMCR = tmpsmcr; |
| } |
| /** |
| * @brief Configures the TIMx External Trigger (ETR). |
| * @param TIMx to select the TIM peripheral |
| * @param TIM_ExtTRGPrescaler The external Trigger Prescaler. |
| * This parameter can be one of the following values: |
| * @arg TIM_ETRPRESCALER_DIV1: ETRP Prescaler OFF. |
| * @arg TIM_ETRPRESCALER_DIV2: ETRP frequency divided by 2. |
| * @arg TIM_ETRPRESCALER_DIV4: ETRP frequency divided by 4. |
| * @arg TIM_ETRPRESCALER_DIV8: ETRP frequency divided by 8. |
| * @param TIM_ExtTRGPolarity The external Trigger Polarity. |
| * This parameter can be one of the following values: |
| * @arg TIM_ETRPOLARITY_INVERTED: active low or falling edge active. |
| * @arg TIM_ETRPOLARITY_NONINVERTED: active high or rising edge active. |
| * @param ExtTRGFilter External Trigger Filter. |
| * This parameter must be a value between 0x00 and 0x0F |
| * @retval None |
| */ |
| void TIM_ETR_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ExtTRGPrescaler, |
| uint32_t TIM_ExtTRGPolarity, uint32_t ExtTRGFilter) |
| { |
| uint32_t tmpsmcr; |
| |
| tmpsmcr = TIMx->SMCR; |
| |
| /* Reset the ETR Bits */ |
| tmpsmcr &= ~(TIM_SMCR_ETF | TIM_SMCR_ETPS | TIM_SMCR_ECE | TIM_SMCR_ETP); |
| |
| /* Set the Prescaler, the Filter value and the Polarity */ |
| tmpsmcr |= (uint32_t)(TIM_ExtTRGPrescaler | (TIM_ExtTRGPolarity | (ExtTRGFilter << 8U))); |
| |
| /* Write to TIMx SMCR */ |
| TIMx->SMCR = tmpsmcr; |
| } |
| |
| /** |
| * @brief Enables or disables the TIM Capture Compare Channel x. |
| * @param TIMx to select the TIM peripheral |
| * @param Channel specifies the TIM Channel |
| * This parameter can be one of the following values: |
| * @arg TIM_CHANNEL_1: TIM Channel 1 |
| * @arg TIM_CHANNEL_2: TIM Channel 2 |
| * @arg TIM_CHANNEL_3: TIM Channel 3 |
| * @arg TIM_CHANNEL_4: TIM Channel 4 |
| * @arg TIM_CHANNEL_5: TIM Channel 5 selected |
| * @arg TIM_CHANNEL_6: TIM Channel 6 selected |
| * @param ChannelState specifies the TIM Channel CCxE bit new state. |
| * This parameter can be: TIM_CCx_ENABLE or TIM_CCx_DISABLE. |
| * @retval None |
| */ |
| void TIM_CCxChannelCmd(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ChannelState) |
| { |
| uint32_t tmp; |
| |
| /* Check the parameters */ |
| assert_param(IS_TIM_CC1_INSTANCE(TIMx)); |
| assert_param(IS_TIM_CHANNELS(Channel)); |
| |
| tmp = TIM_CCER_CC1E << (Channel & 0x1FU); /* 0x1FU = 31 bits max shift */ |
| |
| /* Reset the CCxE Bit */ |
| TIMx->CCER &= ~tmp; |
| |
| /* Set or reset the CCxE Bit */ |
| TIMx->CCER |= (uint32_t)(ChannelState << (Channel & 0x1FU)); /* 0x1FU = 31 bits max shift */ |
| } |
| |
| #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
| /** |
| * @brief Reset interrupt callbacks to the legacy weak callbacks. |
| * @param htim pointer to a TIM_HandleTypeDef structure that contains |
| * the configuration information for TIM module. |
| * @retval None |
| */ |
| void TIM_ResetCallback(TIM_HandleTypeDef *htim) |
| { |
| /* Reset the TIM callback to the legacy weak callbacks */ |
| htim->PeriodElapsedCallback = HAL_TIM_PeriodElapsedCallback; /* Legacy weak PeriodElapsedCallback */ |
| htim->PeriodElapsedHalfCpltCallback = HAL_TIM_PeriodElapsedHalfCpltCallback; /* Legacy weak PeriodElapsedHalfCpltCallback */ |
| htim->TriggerCallback = HAL_TIM_TriggerCallback; /* Legacy weak TriggerCallback */ |
| htim->TriggerHalfCpltCallback = HAL_TIM_TriggerHalfCpltCallback; /* Legacy weak TriggerHalfCpltCallback */ |
| htim->IC_CaptureCallback = HAL_TIM_IC_CaptureCallback; /* Legacy weak IC_CaptureCallback */ |
| htim->IC_CaptureHalfCpltCallback = HAL_TIM_IC_CaptureHalfCpltCallback; /* Legacy weak IC_CaptureHalfCpltCallback */ |
| htim->OC_DelayElapsedCallback = HAL_TIM_OC_DelayElapsedCallback; /* Legacy weak OC_DelayElapsedCallback */ |
| htim->PWM_PulseFinishedCallback = HAL_TIM_PWM_PulseFinishedCallback; /* Legacy weak PWM_PulseFinishedCallback */ |
| htim->PWM_PulseFinishedHalfCpltCallback = HAL_TIM_PWM_PulseFinishedHalfCpltCallback; /* Legacy weak PWM_PulseFinishedHalfCpltCallback */ |
| htim->ErrorCallback = HAL_TIM_ErrorCallback; /* Legacy weak ErrorCallback */ |
| htim->CommutationCallback = HAL_TIMEx_CommutCallback; /* Legacy weak CommutationCallback */ |
| htim->CommutationHalfCpltCallback = HAL_TIMEx_CommutHalfCpltCallback; /* Legacy weak CommutationHalfCpltCallback */ |
| htim->BreakCallback = HAL_TIMEx_BreakCallback; /* Legacy weak BreakCallback */ |
| htim->Break2Callback = HAL_TIMEx_Break2Callback; /* Legacy weak Break2Callback */ |
| htim->EncoderIndexCallback = HAL_TIMEx_EncoderIndexCallback; /* Legacy weak Encoder Index Callback */ |
| htim->DirectionChangeCallback = HAL_TIMEx_DirectionChangeCallback; /* Legacy weak Direction Change Callback */ |
| htim->IndexErrorCallback = HAL_TIMEx_IndexErrorCallback; /* Legacy weak Index Error Callback */ |
| htim->TransitionErrorCallback = HAL_TIMEx_TransitionErrorCallback; /* Legacy weak Transition Error Callback */ |
| } |
| #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
| |
| /** |
| * @} |
| */ |
| |
| #endif /* HAL_TIM_MODULE_ENABLED */ |
| /** |
| * @} |
| */ |
| |
| /** |
| * @} |
| */ |
| /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ |