| /** |
| ****************************************************************************** |
| * @file stm32g4xx_hal_dac_ex.c |
| * @author MCD Application Team |
| * @brief DAC HAL module driver. |
| * This file provides firmware functions to manage the extended |
| * functionalities of the DAC peripheral. |
| * |
| * |
| @verbatim |
| ============================================================================== |
| ##### How to use this driver ##### |
| ============================================================================== |
| [..] |
| *** Dual mode IO operation *** |
| ============================== |
| (+) Use HAL_DACEx_DualStart() to enable both channel and start conversion |
| for dual mode operation. |
| If software trigger is selected, using HAL_DACEx_DualStart() will start |
| the conversion of the value previously set by HAL_DACEx_DualSetValue(). |
| (+) Use HAL_DACEx_DualStop() to disable both channel and stop conversion |
| for dual mode operation. |
| (+) Use HAL_DACEx_DualStart_DMA() to enable both channel and start conversion |
| for dual mode operation using DMA to feed DAC converters. |
| First issued trigger will start the conversion of the value previously |
| set by HAL_DACEx_DualSetValue(). |
| The same callbacks that are used in single mode are called in dual mode to notify |
| transfer completion (half complete or complete), errors or underrun. |
| (+) Use HAL_DACEx_DualStop_DMA() to disable both channel and stop conversion |
| for dual mode operation using DMA to feed DAC converters. |
| (+) When Dual mode is enabled (i.e. DAC Channel1 and Channel2 are used simultaneously) : |
| Use HAL_DACEx_DualGetValue() to get digital data to be converted and use |
| HAL_DACEx_DualSetValue() to set digital value to converted simultaneously in |
| Channel 1 and Channel 2. |
| |
| *** Signal generation operation *** |
| =================================== |
| (+) Use HAL_DACEx_TriangleWaveGenerate() to generate Triangle signal. |
| (+) Use HAL_DACEx_NoiseWaveGenerate() to generate Noise signal. |
| |
| (+) Use HAL_DACEx_SawtoothWaveGenerate() to generate sawtooth signal. |
| (+) Use HAL_DACEx_SawtoothWaveDataReset() to reset sawtooth wave. |
| (+) Use HAL_DACEx_SawtoothWaveDataStep() to step sawtooth wave. |
| |
| (+) HAL_DACEx_SelfCalibrate to calibrate one DAC channel. |
| (+) HAL_DACEx_SetUserTrimming to set user trimming value. |
| (+) HAL_DACEx_GetTrimOffset to retrieve trimming value (factory setting |
| after reset, user setting if HAL_DACEx_SetUserTrimming have been used |
| at least one time after reset). |
| |
| @endverbatim |
| ****************************************************************************** |
| * @attention |
| * |
| * <h2><center>© Copyright (c) 2019 STMicroelectronics. |
| * All rights reserved.</center></h2> |
| * |
| * This software component is licensed by ST under BSD 3-Clause license, |
| * the "License"; You may not use this file except in compliance with the |
| * License. You may obtain a copy of the License at: |
| * opensource.org/licenses/BSD-3-Clause |
| * |
| ****************************************************************************** |
| */ |
| |
| |
| /* Includes ------------------------------------------------------------------*/ |
| #include "stm32g4xx_hal.h" |
| |
| /** @addtogroup STM32G4xx_HAL_Driver |
| * @{ |
| */ |
| |
| #ifdef HAL_DAC_MODULE_ENABLED |
| |
| #if defined(DAC1) || defined(DAC2) || defined(DAC3) ||defined (DAC4) |
| |
| /** @defgroup DACEx DACEx |
| * @brief DAC Extended HAL module driver |
| * @{ |
| */ |
| |
| /* Private typedef -----------------------------------------------------------*/ |
| /* Private define ------------------------------------------------------------*/ |
| /* Private macro -------------------------------------------------------------*/ |
| /* Private variables ---------------------------------------------------------*/ |
| /* Private function prototypes -----------------------------------------------*/ |
| /* Exported functions --------------------------------------------------------*/ |
| |
| /** @defgroup DACEx_Exported_Functions DACEx Exported Functions |
| * @{ |
| */ |
| |
| /** @defgroup DACEx_Exported_Functions_Group2 IO operation functions |
| * @brief Extended IO operation functions |
| * |
| @verbatim |
| ============================================================================== |
| ##### Extended features functions ##### |
| ============================================================================== |
| [..] This section provides functions allowing to: |
| (+) Start conversion. |
| (+) Stop conversion. |
| (+) Start conversion and enable DMA transfer. |
| (+) Stop conversion and disable DMA transfer. |
| (+) Get result of conversion. |
| (+) Get result of dual mode conversion. |
| |
| @endverbatim |
| * @{ |
| */ |
| |
| /** |
| * @brief Enables DAC and starts conversion of both channels. |
| * @param hdac pointer to a DAC_HandleTypeDef structure that contains |
| * the configuration information for the specified DAC. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_DACEx_DualStart(DAC_HandleTypeDef *hdac) |
| { |
| uint32_t tmp_swtrig = 0UL; |
| |
| /* Check the parameters */ |
| assert_param(IS_DAC_CHANNEL(hdac->Instance, DAC_CHANNEL_2)); |
| |
| /* Process locked */ |
| __HAL_LOCK(hdac); |
| |
| /* Change DAC state */ |
| hdac->State = HAL_DAC_STATE_BUSY; |
| |
| /* Enable the Peripheral */ |
| __HAL_DAC_ENABLE(hdac, DAC_CHANNEL_1); |
| __HAL_DAC_ENABLE(hdac, DAC_CHANNEL_2); |
| /* Ensure minimum wait before using peripheral after enabling it */ |
| HAL_Delay(1); |
| |
| /* Check if software trigger enabled */ |
| if ((hdac->Instance->CR & (DAC_CR_TEN1 | DAC_CR_TSEL1)) == DAC_CR_TEN1) |
| { |
| tmp_swtrig |= DAC_SWTRIGR_SWTRIG1; |
| } |
| if ((hdac->Instance->CR & (DAC_CR_TEN2 | DAC_CR_TSEL2)) == DAC_CR_TEN2) |
| { |
| tmp_swtrig |= DAC_SWTRIGR_SWTRIG2; |
| } |
| /* Enable the selected DAC software conversion*/ |
| SET_BIT(hdac->Instance->SWTRIGR, tmp_swtrig); |
| |
| /* Change DAC state */ |
| hdac->State = HAL_DAC_STATE_READY; |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hdac); |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Disables DAC and stop conversion of both channels. |
| * @param hdac pointer to a DAC_HandleTypeDef structure that contains |
| * the configuration information for the specified DAC. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_DACEx_DualStop(DAC_HandleTypeDef *hdac) |
| { |
| /* Check the parameters */ |
| assert_param(IS_DAC_CHANNEL(hdac->Instance, DAC_CHANNEL_2)); |
| |
| /* Disable the Peripheral */ |
| __HAL_DAC_DISABLE(hdac, DAC_CHANNEL_1); |
| __HAL_DAC_DISABLE(hdac, DAC_CHANNEL_2); |
| /* Ensure minimum wait before enabling peripheral after disabling it */ |
| HAL_Delay(1); |
| |
| /* Change DAC state */ |
| hdac->State = HAL_DAC_STATE_READY; |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Enables DAC and starts conversion of both channel 1 and 2 of the same DAC. |
| * @param hdac pointer to a DAC_HandleTypeDef structure that contains |
| * the configuration information for the specified DAC. |
| * @param Channel The DAC channel that will request data from DMA. |
| * This parameter can be one of the following values: |
| * @arg DAC_CHANNEL_1: DAC Channel1 selected |
| * @arg DAC_CHANNEL_2: DAC Channel2 selected |
| * @param pData The destination peripheral Buffer address. |
| * @param Length The length of data to be transferred from memory to DAC peripheral |
| * @param Alignment Specifies the data alignment for DAC channel. |
| * This parameter can be one of the following values: |
| * @arg DAC_ALIGN_8B_R: 8bit right data alignment selected |
| * @arg DAC_ALIGN_12B_L: 12bit left data alignment selected |
| * @arg DAC_ALIGN_12B_R: 12bit right data alignment selected |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_DACEx_DualStart_DMA(DAC_HandleTypeDef *hdac, uint32_t Channel, uint32_t *pData, uint32_t Length, |
| uint32_t Alignment) |
| { |
| HAL_StatusTypeDef status; |
| uint32_t tmpreg = 0U; |
| |
| /* Check the parameters */ |
| assert_param(IS_DAC_CHANNEL(hdac->Instance, Channel)); |
| /* Ensure Channel 2 exists for this particular DAC instance */ |
| assert_param(IS_DAC_CHANNEL(hdac->Instance, DAC_CHANNEL_2)); |
| assert_param(IS_DAC_ALIGN(Alignment)); |
| |
| /* Process locked */ |
| __HAL_LOCK(hdac); |
| |
| /* Change DAC state */ |
| hdac->State = HAL_DAC_STATE_BUSY; |
| |
| if (Channel == DAC_CHANNEL_1) |
| { |
| /* Set the DMA transfer complete callback for channel1 */ |
| hdac->DMA_Handle1->XferCpltCallback = DAC_DMAConvCpltCh1; |
| |
| /* Set the DMA half transfer complete callback for channel1 */ |
| hdac->DMA_Handle1->XferHalfCpltCallback = DAC_DMAHalfConvCpltCh1; |
| |
| /* Set the DMA error callback for channel1 */ |
| hdac->DMA_Handle1->XferErrorCallback = DAC_DMAErrorCh1; |
| |
| /* Enable the selected DAC channel1 DMA request */ |
| SET_BIT(hdac->Instance->CR, DAC_CR_DMAEN1); |
| } |
| else |
| { |
| /* Set the DMA transfer complete callback for channel2 */ |
| hdac->DMA_Handle2->XferCpltCallback = DAC_DMAConvCpltCh2; |
| |
| /* Set the DMA half transfer complete callback for channel2 */ |
| hdac->DMA_Handle2->XferHalfCpltCallback = DAC_DMAHalfConvCpltCh2; |
| |
| /* Set the DMA error callback for channel2 */ |
| hdac->DMA_Handle2->XferErrorCallback = DAC_DMAErrorCh2; |
| |
| /* Enable the selected DAC channel2 DMA request */ |
| SET_BIT(hdac->Instance->CR, DAC_CR_DMAEN2); |
| } |
| |
| switch (Alignment) |
| { |
| case DAC_ALIGN_12B_R: |
| /* Get DHR12R1 address */ |
| tmpreg = (uint32_t)&hdac->Instance->DHR12RD; |
| break; |
| case DAC_ALIGN_12B_L: |
| /* Get DHR12L1 address */ |
| tmpreg = (uint32_t)&hdac->Instance->DHR12LD; |
| break; |
| case DAC_ALIGN_8B_R: |
| /* Get DHR8R1 address */ |
| tmpreg = (uint32_t)&hdac->Instance->DHR8RD; |
| break; |
| default: |
| break; |
| } |
| |
| /* Enable the DMA channel */ |
| if (Channel == DAC_CHANNEL_1) |
| { |
| /* Enable the DAC DMA underrun interrupt */ |
| __HAL_DAC_ENABLE_IT(hdac, DAC_IT_DMAUDR1); |
| |
| /* Enable the DMA channel */ |
| status = HAL_DMA_Start_IT(hdac->DMA_Handle1, (uint32_t)pData, tmpreg, Length); |
| } |
| else |
| { |
| /* Enable the DAC DMA underrun interrupt */ |
| __HAL_DAC_ENABLE_IT(hdac, DAC_IT_DMAUDR2); |
| |
| /* Enable the DMA channel */ |
| status = HAL_DMA_Start_IT(hdac->DMA_Handle2, (uint32_t)pData, tmpreg, Length); |
| } |
| |
| /* Process Unlocked */ |
| __HAL_UNLOCK(hdac); |
| |
| if (status == HAL_OK) |
| { |
| /* Enable the Peripheral */ |
| __HAL_DAC_ENABLE(hdac, DAC_CHANNEL_1); |
| __HAL_DAC_ENABLE(hdac, DAC_CHANNEL_2); |
| /* Ensure minimum wait before using peripheral after enabling it */ |
| HAL_Delay(1); |
| } |
| else |
| { |
| hdac->ErrorCode |= HAL_DAC_ERROR_DMA; |
| } |
| |
| /* Return function status */ |
| return status; |
| } |
| |
| /** |
| * @brief Disables DAC and stop conversion both channel. |
| * @param hdac pointer to a DAC_HandleTypeDef structure that contains |
| * the configuration information for the specified DAC. |
| * @param Channel The DAC channel that requests data from DMA. |
| * This parameter can be one of the following values: |
| * @arg DAC_CHANNEL_1: DAC Channel1 selected |
| * @arg DAC_CHANNEL_2: DAC Channel2 selected |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_DACEx_DualStop_DMA(DAC_HandleTypeDef *hdac, uint32_t Channel) |
| { |
| HAL_StatusTypeDef status; |
| |
| /* Ensure Channel 2 exists for this particular DAC instance */ |
| assert_param(IS_DAC_CHANNEL(hdac->Instance, DAC_CHANNEL_2)); |
| |
| /* Disable the selected DAC channel DMA request */ |
| CLEAR_BIT(hdac->Instance->CR, DAC_CR_DMAEN2 | DAC_CR_DMAEN1); |
| |
| /* Disable the Peripheral */ |
| __HAL_DAC_DISABLE(hdac, DAC_CHANNEL_1); |
| __HAL_DAC_DISABLE(hdac, DAC_CHANNEL_2); |
| /* Ensure minimum wait before enabling peripheral after disabling it */ |
| HAL_Delay(1); |
| |
| /* Disable the DMA channel */ |
| |
| /* Channel1 is used */ |
| if (Channel == DAC_CHANNEL_1) |
| { |
| /* Disable the DMA channel */ |
| status = HAL_DMA_Abort(hdac->DMA_Handle1); |
| |
| /* Disable the DAC DMA underrun interrupt */ |
| __HAL_DAC_DISABLE_IT(hdac, DAC_IT_DMAUDR1); |
| } |
| else |
| { |
| /* Disable the DMA channel */ |
| status = HAL_DMA_Abort(hdac->DMA_Handle2); |
| |
| /* Disable the DAC DMA underrun interrupt */ |
| __HAL_DAC_DISABLE_IT(hdac, DAC_IT_DMAUDR2); |
| } |
| |
| /* Check if DMA Channel effectively disabled */ |
| if (status != HAL_OK) |
| { |
| /* Update DAC state machine to error */ |
| hdac->State = HAL_DAC_STATE_ERROR; |
| } |
| else |
| { |
| /* Change DAC state */ |
| hdac->State = HAL_DAC_STATE_READY; |
| } |
| |
| /* Return function status */ |
| return status; |
| } |
| |
| /** |
| * @brief Enable or disable the selected DAC channel wave generation. |
| * @param hdac pointer to a DAC_HandleTypeDef structure that contains |
| * the configuration information for the specified DAC. |
| * @param Channel The selected DAC channel. |
| * This parameter can be one of the following values: |
| * @arg DAC_CHANNEL_1: DAC Channel1 selected |
| * @arg DAC_CHANNEL_2: DAC Channel2 selected (1) |
| * |
| * (1) On this STM32 serie, parameter not available on all instances. |
| * Refer to device datasheet for channels availability. |
| * @param Amplitude Select max triangle amplitude. |
| * This parameter can be one of the following values: |
| * @arg DAC_TRIANGLEAMPLITUDE_1: Select max triangle amplitude of 1 |
| * @arg DAC_TRIANGLEAMPLITUDE_3: Select max triangle amplitude of 3 |
| * @arg DAC_TRIANGLEAMPLITUDE_7: Select max triangle amplitude of 7 |
| * @arg DAC_TRIANGLEAMPLITUDE_15: Select max triangle amplitude of 15 |
| * @arg DAC_TRIANGLEAMPLITUDE_31: Select max triangle amplitude of 31 |
| * @arg DAC_TRIANGLEAMPLITUDE_63: Select max triangle amplitude of 63 |
| * @arg DAC_TRIANGLEAMPLITUDE_127: Select max triangle amplitude of 127 |
| * @arg DAC_TRIANGLEAMPLITUDE_255: Select max triangle amplitude of 255 |
| * @arg DAC_TRIANGLEAMPLITUDE_511: Select max triangle amplitude of 511 |
| * @arg DAC_TRIANGLEAMPLITUDE_1023: Select max triangle amplitude of 1023 |
| * @arg DAC_TRIANGLEAMPLITUDE_2047: Select max triangle amplitude of 2047 |
| * @arg DAC_TRIANGLEAMPLITUDE_4095: Select max triangle amplitude of 4095 |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_DACEx_TriangleWaveGenerate(DAC_HandleTypeDef *hdac, uint32_t Channel, uint32_t Amplitude) |
| { |
| /* Check the parameters */ |
| assert_param(IS_DAC_CHANNEL(hdac->Instance, Channel)); |
| assert_param(IS_DAC_LFSR_UNMASK_TRIANGLE_AMPLITUDE(Amplitude)); |
| |
| /* Process locked */ |
| __HAL_LOCK(hdac); |
| |
| /* Change DAC state */ |
| hdac->State = HAL_DAC_STATE_BUSY; |
| |
| /* Enable the triangle wave generation for the selected DAC channel */ |
| MODIFY_REG(hdac->Instance->CR, ((DAC_CR_WAVE1) | (DAC_CR_MAMP1)) << (Channel & 0x10UL), (DAC_CR_WAVE1_1 | Amplitude) << (Channel & 0x10UL)); |
| |
| /* Change DAC state */ |
| hdac->State = HAL_DAC_STATE_READY; |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hdac); |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Enable or disable the selected DAC channel wave generation. |
| * @param hdac pointer to a DAC_HandleTypeDef structure that contains |
| * the configuration information for the specified DAC. |
| * @param Channel The selected DAC channel. |
| * This parameter can be one of the following values: |
| * @arg DAC_CHANNEL_1: DAC Channel1 selected |
| * @arg DAC_CHANNEL_2: DAC Channel2 selected (1) |
| * |
| * (1) On this STM32 serie, parameter not available on all instances. |
| * Refer to device datasheet for channels availability. |
| * @param Amplitude Unmask DAC channel LFSR for noise wave generation. |
| * This parameter can be one of the following values: |
| * @arg DAC_LFSRUNMASK_BIT0: Unmask DAC channel LFSR bit0 for noise wave generation |
| * @arg DAC_LFSRUNMASK_BITS1_0: Unmask DAC channel LFSR bit[1:0] for noise wave generation |
| * @arg DAC_LFSRUNMASK_BITS2_0: Unmask DAC channel LFSR bit[2:0] for noise wave generation |
| * @arg DAC_LFSRUNMASK_BITS3_0: Unmask DAC channel LFSR bit[3:0] for noise wave generation |
| * @arg DAC_LFSRUNMASK_BITS4_0: Unmask DAC channel LFSR bit[4:0] for noise wave generation |
| * @arg DAC_LFSRUNMASK_BITS5_0: Unmask DAC channel LFSR bit[5:0] for noise wave generation |
| * @arg DAC_LFSRUNMASK_BITS6_0: Unmask DAC channel LFSR bit[6:0] for noise wave generation |
| * @arg DAC_LFSRUNMASK_BITS7_0: Unmask DAC channel LFSR bit[7:0] for noise wave generation |
| * @arg DAC_LFSRUNMASK_BITS8_0: Unmask DAC channel LFSR bit[8:0] for noise wave generation |
| * @arg DAC_LFSRUNMASK_BITS9_0: Unmask DAC channel LFSR bit[9:0] for noise wave generation |
| * @arg DAC_LFSRUNMASK_BITS10_0: Unmask DAC channel LFSR bit[10:0] for noise wave generation |
| * @arg DAC_LFSRUNMASK_BITS11_0: Unmask DAC channel LFSR bit[11:0] for noise wave generation |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_DACEx_NoiseWaveGenerate(DAC_HandleTypeDef *hdac, uint32_t Channel, uint32_t Amplitude) |
| { |
| /* Check the parameters */ |
| assert_param(IS_DAC_CHANNEL(hdac->Instance, Channel)); |
| assert_param(IS_DAC_LFSR_UNMASK_TRIANGLE_AMPLITUDE(Amplitude)); |
| |
| /* Process locked */ |
| __HAL_LOCK(hdac); |
| |
| /* Change DAC state */ |
| hdac->State = HAL_DAC_STATE_BUSY; |
| |
| /* Enable the noise wave generation for the selected DAC channel */ |
| MODIFY_REG(hdac->Instance->CR, ((DAC_CR_WAVE1) | (DAC_CR_MAMP1)) << (Channel & 0x10UL), (DAC_CR_WAVE1_0 | Amplitude) << (Channel & 0x10UL)); |
| |
| /* Change DAC state */ |
| hdac->State = HAL_DAC_STATE_READY; |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hdac); |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Enable or disable the selected DAC channel sawtooth wave generation. |
| * @param hdac pointer to a DAC_HandleTypeDef structure that contains |
| * the configuration information for the specified DAC. |
| * @param Channel The selected DAC channel. |
| * This parameter can be one of the following values: |
| * @arg DAC_CHANNEL_1: DAC Channel1 selected |
| * @arg DAC_CHANNEL_2: DAC Channel2 selected (1) |
| * |
| * (1) On this STM32 serie, parameter not available on all instances. |
| * Refer to device datasheet for channels availability. |
| * @param Polarity polarity to be used for wave generation. |
| * This parameter can be one of the following values: |
| * @arg DAC_SAWTOOTH_POLARITY_DECREMENT |
| * @arg DAC_SAWTOOTH_POLARITY_INCREMENT |
| * @param ResetData Sawtooth wave reset value. |
| * Range is from 0 to DAC full range 4095 (0xFFF) |
| * @param StepData Sawtooth wave step value. |
| * 12.4 bit format, unsigned: 12 bits exponent / 4 bits mantissa |
| * Step value step is 1/16 = 0.0625 |
| * Step value range is 0.0000 to 4095.9375 (0xFFF.F) |
| * @note Sawtooth reset and step triggers are configured by calling @ref HAL_DAC_ConfigChannel |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_DACEx_SawtoothWaveGenerate(DAC_HandleTypeDef *hdac, uint32_t Channel, uint32_t Polarity, |
| uint32_t ResetData, uint32_t StepData) |
| { |
| /* Check the parameters */ |
| assert_param(IS_DAC_CHANNEL(hdac->Instance, Channel)); |
| assert_param(IS_DAC_SAWTOOTH_POLARITY(Polarity)); |
| assert_param(IS_DAC_RESET_DATA(ResetData)); |
| assert_param(IS_DAC_STEP_DATA(StepData)); |
| |
| /* Process locked */ |
| __HAL_LOCK(hdac); |
| |
| /* Change DAC state */ |
| hdac->State = HAL_DAC_STATE_BUSY; |
| |
| if (Channel == DAC_CHANNEL_1) |
| { |
| /* Configure the sawtooth wave generation data parameters */ |
| MODIFY_REG(hdac->Instance->STR1, |
| DAC_STR1_STINCDATA1 | DAC_STR1_STDIR1 | DAC_STR1_STRSTDATA1, |
| (StepData << DAC_STR1_STINCDATA1_Pos) |
| | Polarity |
| | (ResetData << DAC_STR1_STRSTDATA1_Pos)); |
| } |
| else |
| { |
| /* Configure the sawtooth wave generation data parameters */ |
| MODIFY_REG(hdac->Instance->STR2, |
| DAC_STR2_STINCDATA2 | DAC_STR2_STDIR2 | DAC_STR2_STRSTDATA2, |
| (StepData << DAC_STR2_STINCDATA2_Pos) |
| | Polarity |
| | (ResetData << DAC_STR2_STRSTDATA2_Pos)); |
| } |
| |
| /* Enable the sawtooth wave generation for the selected DAC channel */ |
| MODIFY_REG(hdac->Instance->CR, (DAC_CR_WAVE1) << (Channel & 0x10UL), (uint32_t)(DAC_CR_WAVE1_1 | DAC_CR_WAVE1_0) << (Channel & 0x10UL)); |
| |
| /* Change DAC state */ |
| hdac->State = HAL_DAC_STATE_READY; |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hdac); |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Trig sawtooth wave reset |
| * @note This function allows to reset sawtooth wave in case of SW trigger |
| * has been configured for this usage. |
| * @param hdac pointer to a DAC_HandleTypeDef structure that contains |
| * the configuration information for the specified DAC. |
| * @param Channel The selected DAC channel. |
| * This parameter can be one of the following values: |
| * @arg DAC_CHANNEL_1: DAC Channel1 selected |
| * @arg DAC_CHANNEL_2: DAC Channel2 selected (1) |
| * |
| * (1) On this STM32 serie, parameter not available on all instances. |
| * Refer to device datasheet for channels availability. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_DACEx_SawtoothWaveDataReset(DAC_HandleTypeDef *hdac, uint32_t Channel) |
| { |
| HAL_StatusTypeDef status = HAL_OK; |
| |
| /* Check the parameters */ |
| assert_param(IS_DAC_CHANNEL(hdac->Instance, Channel)); |
| |
| /* Process locked */ |
| __HAL_LOCK(hdac); |
| |
| if (((hdac->Instance->STMODR >> (Channel & 0x10UL)) & DAC_STMODR_STRSTTRIGSEL1) == 0U /* SW TRIGGER */) |
| { |
| /* Change DAC state */ |
| hdac->State = HAL_DAC_STATE_BUSY; |
| |
| if (Channel == DAC_CHANNEL_1) |
| { |
| /* Enable the selected DAC software conversion */ |
| SET_BIT(hdac->Instance->SWTRIGR, DAC_SWTRIGR_SWTRIG1); |
| } |
| else |
| { |
| /* Enable the selected DAC software conversion */ |
| SET_BIT(hdac->Instance->SWTRIGR, DAC_SWTRIGR_SWTRIG2); |
| } |
| |
| /* Change DAC state */ |
| hdac->State = HAL_DAC_STATE_READY; |
| } |
| else |
| { |
| status = HAL_ERROR; |
| } |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hdac); |
| |
| /* Return function status */ |
| return status; |
| } |
| |
| /** |
| * @brief Trig sawtooth wave step |
| * @note This function allows to generate step in sawtooth wave in case of |
| * SW trigger has been configured for this usage. |
| * @param hdac pointer to a DAC_HandleTypeDef structure that contains |
| * the configuration information for the specified DAC. |
| * @param Channel The selected DAC channel. |
| * This parameter can be one of the following values: |
| * @arg DAC_CHANNEL_1: DAC Channel1 selected |
| * @arg DAC_CHANNEL_2: DAC Channel2 selected (1) |
| * |
| * (1) On this STM32 serie, parameter not available on all instances. |
| * Refer to device datasheet for channels availability. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_DACEx_SawtoothWaveDataStep(DAC_HandleTypeDef *hdac, uint32_t Channel) |
| { |
| HAL_StatusTypeDef status = HAL_OK; |
| |
| /* Check the parameters */ |
| assert_param(IS_DAC_CHANNEL(hdac->Instance, Channel)); |
| |
| /* Process locked */ |
| __HAL_LOCK(hdac); |
| |
| if (((hdac->Instance->STMODR >> (Channel & 0x10UL)) & DAC_STMODR_STINCTRIGSEL1) == 0U /* SW TRIGGER */) |
| { |
| /* Change DAC state */ |
| hdac->State = HAL_DAC_STATE_BUSY; |
| |
| if (Channel == DAC_CHANNEL_1) |
| { |
| /* Enable the selected DAC software conversion */ |
| SET_BIT(hdac->Instance->SWTRIGR, DAC_SWTRIGR_SWTRIGB1); |
| } |
| else |
| { |
| /* Enable the selected DAC software conversion */ |
| SET_BIT(hdac->Instance->SWTRIGR, DAC_SWTRIGR_SWTRIGB2); |
| } |
| |
| /* Change DAC state */ |
| hdac->State = HAL_DAC_STATE_READY; |
| } |
| else |
| { |
| status = HAL_ERROR; |
| } |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hdac); |
| |
| /* Return function status */ |
| return status; |
| } |
| |
| /** |
| * @brief Set the specified data holding register value for dual DAC channel. |
| * @param hdac pointer to a DAC_HandleTypeDef structure that contains |
| * the configuration information for the specified DAC. |
| * @param Alignment Specifies the data alignment for dual channel DAC. |
| * This parameter can be one of the following values: |
| * DAC_ALIGN_8B_R: 8bit right data alignment selected |
| * DAC_ALIGN_12B_L: 12bit left data alignment selected |
| * DAC_ALIGN_12B_R: 12bit right data alignment selected |
| * @param Data1 Data for DAC Channel1 to be loaded in the selected data holding register. |
| * @param Data2 Data for DAC Channel2 to be loaded in the selected data holding register. |
| * @note In dual mode, a unique register access is required to write in both |
| * DAC channels at the same time. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_DACEx_DualSetValue(DAC_HandleTypeDef *hdac, uint32_t Alignment, uint32_t Data1, uint32_t Data2) |
| { |
| uint32_t data; |
| uint32_t tmp; |
| |
| /* Check the parameters */ |
| assert_param(IS_DAC_ALIGN(Alignment)); |
| assert_param(IS_DAC_DATA(Data1)); |
| assert_param(IS_DAC_DATA(Data2)); |
| |
| /* Calculate and set dual DAC data holding register value */ |
| if (Alignment == DAC_ALIGN_8B_R) |
| { |
| data = ((uint32_t)Data2 << 8U) | Data1; |
| } |
| else |
| { |
| data = ((uint32_t)Data2 << 16U) | Data1; |
| } |
| |
| tmp = (uint32_t)hdac->Instance; |
| tmp += DAC_DHR12RD_ALIGNMENT(Alignment); |
| |
| /* Set the dual DAC selected data holding register */ |
| *(__IO uint32_t *)tmp = data; |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Conversion complete callback in non-blocking mode for Channel2. |
| * @param hdac pointer to a DAC_HandleTypeDef structure that contains |
| * the configuration information for the specified DAC. |
| * @retval None |
| */ |
| __weak void HAL_DACEx_ConvCpltCallbackCh2(DAC_HandleTypeDef *hdac) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(hdac); |
| |
| /* NOTE : This function should not be modified, when the callback is needed, |
| the HAL_DACEx_ConvCpltCallbackCh2 could be implemented in the user file |
| */ |
| } |
| |
| /** |
| * @brief Conversion half DMA transfer callback in non-blocking mode for Channel2. |
| * @param hdac pointer to a DAC_HandleTypeDef structure that contains |
| * the configuration information for the specified DAC. |
| * @retval None |
| */ |
| __weak void HAL_DACEx_ConvHalfCpltCallbackCh2(DAC_HandleTypeDef *hdac) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(hdac); |
| |
| /* NOTE : This function should not be modified, when the callback is needed, |
| the HAL_DACEx_ConvHalfCpltCallbackCh2 could be implemented in the user file |
| */ |
| } |
| |
| /** |
| * @brief Error DAC callback for Channel2. |
| * @param hdac pointer to a DAC_HandleTypeDef structure that contains |
| * the configuration information for the specified DAC. |
| * @retval None |
| */ |
| __weak void HAL_DACEx_ErrorCallbackCh2(DAC_HandleTypeDef *hdac) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(hdac); |
| |
| /* NOTE : This function should not be modified, when the callback is needed, |
| the HAL_DACEx_ErrorCallbackCh2 could be implemented in the user file |
| */ |
| } |
| |
| /** |
| * @brief DMA underrun DAC callback for Channel2. |
| * @param hdac pointer to a DAC_HandleTypeDef structure that contains |
| * the configuration information for the specified DAC. |
| * @retval None |
| */ |
| __weak void HAL_DACEx_DMAUnderrunCallbackCh2(DAC_HandleTypeDef *hdac) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(hdac); |
| |
| /* NOTE : This function should not be modified, when the callback is needed, |
| the HAL_DACEx_DMAUnderrunCallbackCh2 could be implemented in the user file |
| */ |
| } |
| |
| /** |
| * @brief Run the self calibration of one DAC channel. |
| * @param hdac pointer to a DAC_HandleTypeDef structure that contains |
| * the configuration information for the specified DAC. |
| * @param sConfig DAC channel configuration structure. |
| * @param Channel The selected DAC channel. |
| * This parameter can be one of the following values: |
| * @arg DAC_CHANNEL_1: DAC Channel1 selected |
| * @arg DAC_CHANNEL_2: DAC Channel2 selected (1) |
| * |
| * (1) On this STM32 serie, parameter not available on all instances. |
| * Refer to device datasheet for channels availability. |
| * @retval Updates DAC_TrimmingValue. , DAC_UserTrimming set to DAC_UserTrimming |
| * @retval HAL status |
| * @note Calibration runs about 7 ms. |
| */ |
| |
| HAL_StatusTypeDef HAL_DACEx_SelfCalibrate(DAC_HandleTypeDef *hdac, DAC_ChannelConfTypeDef *sConfig, uint32_t Channel) |
| { |
| HAL_StatusTypeDef status = HAL_OK; |
| |
| __IO uint32_t tmp; |
| uint32_t trimmingvalue; |
| uint32_t delta; |
| |
| /* store/restore channel configuration structure purpose */ |
| uint32_t oldmodeconfiguration; |
| |
| /* Check the parameters */ |
| assert_param(IS_DAC_CHANNEL(hdac->Instance, Channel)); |
| |
| /* Check the DAC handle allocation */ |
| /* Check if DAC running */ |
| if (hdac == NULL) |
| { |
| status = HAL_ERROR; |
| } |
| else if (hdac->State == HAL_DAC_STATE_BUSY) |
| { |
| status = HAL_ERROR; |
| } |
| else |
| { |
| /* Process locked */ |
| __HAL_LOCK(hdac); |
| |
| /* Store configuration */ |
| oldmodeconfiguration = (hdac->Instance->MCR & (DAC_MCR_MODE1 << (Channel & 0x10UL))); |
| |
| /* Disable the selected DAC channel */ |
| CLEAR_BIT((hdac->Instance->CR), (DAC_CR_EN1 << (Channel & 0x10UL))); |
| /* Wait for ready bit to be de-asserted */ |
| HAL_Delay(1); |
| |
| /* Set mode in MCR for calibration */ |
| MODIFY_REG(hdac->Instance->MCR, (DAC_MCR_MODE1 << (Channel & 0x10UL)), 0U); |
| |
| /* Set DAC Channel1 DHR register to the middle value */ |
| tmp = (uint32_t)hdac->Instance; |
| |
| if (Channel == DAC_CHANNEL_1) |
| { |
| tmp += DAC_DHR12R1_ALIGNMENT(DAC_ALIGN_12B_R); |
| } |
| else |
| { |
| tmp += DAC_DHR12R2_ALIGNMENT(DAC_ALIGN_12B_R); |
| } |
| |
| *(__IO uint32_t *) tmp = 0x0800U; |
| |
| /* Enable the selected DAC channel calibration */ |
| /* i.e. set DAC_CR_CENx bit */ |
| SET_BIT((hdac->Instance->CR), (DAC_CR_CEN1 << (Channel & 0x10UL))); |
| |
| /* Init trimming counter */ |
| /* Medium value */ |
| trimmingvalue = 16U; |
| delta = 8U; |
| while (delta != 0U) |
| { |
| /* Set candidate trimming */ |
| MODIFY_REG(hdac->Instance->CCR, (DAC_CCR_OTRIM1 << (Channel & 0x10UL)), (trimmingvalue << (Channel & 0x10UL))); |
| |
| /* tOFFTRIMmax delay x ms as per datasheet (electrical characteristics */ |
| /* i.e. minimum time needed between two calibration steps */ |
| HAL_Delay(1); |
| |
| if ((hdac->Instance->SR & (DAC_SR_CAL_FLAG1 << (Channel & 0x10UL))) == (DAC_SR_CAL_FLAG1 << (Channel & 0x10UL))) |
| { |
| /* DAC_SR_CAL_FLAGx is HIGH try higher trimming */ |
| trimmingvalue -= delta; |
| } |
| else |
| { |
| /* DAC_SR_CAL_FLAGx is LOW try lower trimming */ |
| trimmingvalue += delta; |
| } |
| delta >>= 1U; |
| } |
| |
| /* Still need to check if right calibration is current value or one step below */ |
| /* Indeed the first value that causes the DAC_SR_CAL_FLAGx bit to change from 0 to 1 */ |
| /* Set candidate trimming */ |
| MODIFY_REG(hdac->Instance->CCR, (DAC_CCR_OTRIM1 << (Channel & 0x10UL)), (trimmingvalue << (Channel & 0x10UL))); |
| |
| /* tOFFTRIMmax delay x ms as per datasheet (electrical characteristics */ |
| /* i.e. minimum time needed between two calibration steps */ |
| HAL_Delay(1U); |
| |
| if ((hdac->Instance->SR & (DAC_SR_CAL_FLAG1 << (Channel & 0x10UL))) == 0UL) |
| { |
| /* OPAMP_CSR_OUTCAL is actually one value more */ |
| trimmingvalue++; |
| /* Set right trimming */ |
| MODIFY_REG(hdac->Instance->CCR, (DAC_CCR_OTRIM1 << (Channel & 0x10UL)), (trimmingvalue << (Channel & 0x10UL))); |
| } |
| |
| /* Disable the selected DAC channel calibration */ |
| /* i.e. clear DAC_CR_CENx bit */ |
| CLEAR_BIT((hdac->Instance->CR), (DAC_CR_CEN1 << (Channel & 0x10UL))); |
| |
| sConfig->DAC_TrimmingValue = trimmingvalue; |
| sConfig->DAC_UserTrimming = DAC_TRIMMING_USER; |
| |
| /* Restore configuration */ |
| MODIFY_REG(hdac->Instance->MCR, (DAC_MCR_MODE1 << (Channel & 0x10UL)), oldmodeconfiguration); |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hdac); |
| } |
| |
| return status; |
| } |
| |
| /** |
| * @brief Set the trimming mode and trimming value (user trimming mode applied). |
| * @param hdac pointer to a DAC_HandleTypeDef structure that contains |
| * the configuration information for the specified DAC. |
| * @param sConfig DAC configuration structure updated with new DAC trimming value. |
| * @param Channel The selected DAC channel. |
| * This parameter can be one of the following values: |
| * @arg DAC_CHANNEL_1: DAC Channel1 selected |
| * @arg DAC_CHANNEL_2: DAC Channel2 selected (1) |
| * |
| * (1) On this STM32 serie, parameter not available on all instances. |
| * Refer to device datasheet for channels availability. |
| * @param NewTrimmingValue DAC new trimming value |
| * @retval HAL status |
| */ |
| |
| HAL_StatusTypeDef HAL_DACEx_SetUserTrimming(DAC_HandleTypeDef *hdac, DAC_ChannelConfTypeDef *sConfig, uint32_t Channel, |
| uint32_t NewTrimmingValue) |
| { |
| HAL_StatusTypeDef status = HAL_OK; |
| |
| /* Check the parameters */ |
| assert_param(IS_DAC_CHANNEL(hdac->Instance, Channel)); |
| assert_param(IS_DAC_NEWTRIMMINGVALUE(NewTrimmingValue)); |
| |
| /* Check the DAC handle allocation */ |
| if (hdac == NULL) |
| { |
| status = HAL_ERROR; |
| } |
| else |
| { |
| /* Process locked */ |
| __HAL_LOCK(hdac); |
| |
| /* Set new trimming */ |
| MODIFY_REG(hdac->Instance->CCR, (DAC_CCR_OTRIM1 << (Channel & 0x10UL)), (NewTrimmingValue << (Channel & 0x10UL))); |
| |
| /* Update trimming mode */ |
| sConfig->DAC_UserTrimming = DAC_TRIMMING_USER; |
| sConfig->DAC_TrimmingValue = NewTrimmingValue; |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hdac); |
| } |
| return status; |
| } |
| |
| /** |
| * @brief Return the DAC trimming value. |
| * @param hdac DAC handle |
| * @param Channel The selected DAC channel. |
| * This parameter can be one of the following values: |
| * @arg DAC_CHANNEL_1: DAC Channel1 selected |
| * @arg DAC_CHANNEL_2: DAC Channel2 selected (1) |
| * |
| * (1) On this STM32 serie, parameter not available on all instances. |
| * Refer to device datasheet for channels availability. |
| * @retval Trimming value : range: 0->31 |
| * |
| */ |
| |
| uint32_t HAL_DACEx_GetTrimOffset(DAC_HandleTypeDef *hdac, uint32_t Channel) |
| { |
| /* Check the parameter */ |
| assert_param(IS_DAC_CHANNEL(hdac->Instance, Channel)); |
| |
| /* Retrieve trimming */ |
| return ((hdac->Instance->CCR & (DAC_CCR_OTRIM1 << (Channel & 0x10UL))) >> (Channel & 0x10UL)); |
| } |
| |
| /** |
| * @} |
| */ |
| |
| /** @defgroup DACEx_Exported_Functions_Group3 Peripheral Control functions |
| * @brief Extended Peripheral Control functions |
| * |
| @verbatim |
| ============================================================================== |
| ##### Peripheral Control functions ##### |
| ============================================================================== |
| [..] This section provides functions allowing to: |
| (+) Set the specified data holding register value for DAC channel. |
| |
| @endverbatim |
| * @{ |
| */ |
| |
| /** |
| * @brief Return the last data output value of the selected DAC channel. |
| * @param hdac pointer to a DAC_HandleTypeDef structure that contains |
| * the configuration information for the specified DAC. |
| * @retval The selected DAC channel data output value. |
| */ |
| uint32_t HAL_DACEx_DualGetValue(DAC_HandleTypeDef *hdac) |
| { |
| uint32_t tmp = 0U; |
| |
| tmp |= hdac->Instance->DOR1; |
| |
| tmp |= hdac->Instance->DOR2 << 16U; |
| |
| /* Returns the DAC channel data output register value */ |
| return tmp; |
| } |
| |
| /** |
| * @} |
| */ |
| |
| /** |
| * @} |
| */ |
| |
| /* Private functions ---------------------------------------------------------*/ |
| /** @defgroup DACEx_Private_Functions DACEx private functions |
| * @brief Extended private functions |
| * @{ |
| */ |
| |
| /** |
| * @brief DMA conversion complete callback. |
| * @param hdma pointer to a DMA_HandleTypeDef structure that contains |
| * the configuration information for the specified DMA module. |
| * @retval None |
| */ |
| void DAC_DMAConvCpltCh2(DMA_HandleTypeDef *hdma) |
| { |
| DAC_HandleTypeDef *hdac = (DAC_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
| |
| #if (USE_HAL_DAC_REGISTER_CALLBACKS == 1) |
| hdac->ConvCpltCallbackCh2(hdac); |
| #else |
| HAL_DACEx_ConvCpltCallbackCh2(hdac); |
| #endif /* USE_HAL_DAC_REGISTER_CALLBACKS */ |
| |
| hdac->State = HAL_DAC_STATE_READY; |
| } |
| |
| /** |
| * @brief DMA half transfer complete callback. |
| * @param hdma pointer to a DMA_HandleTypeDef structure that contains |
| * the configuration information for the specified DMA module. |
| * @retval None |
| */ |
| void DAC_DMAHalfConvCpltCh2(DMA_HandleTypeDef *hdma) |
| { |
| DAC_HandleTypeDef *hdac = (DAC_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
| /* Conversion complete callback */ |
| #if (USE_HAL_DAC_REGISTER_CALLBACKS == 1) |
| hdac->ConvHalfCpltCallbackCh2(hdac); |
| #else |
| HAL_DACEx_ConvHalfCpltCallbackCh2(hdac); |
| #endif /* USE_HAL_DAC_REGISTER_CALLBACKS */ |
| } |
| |
| /** |
| * @brief DMA error callback. |
| * @param hdma pointer to a DMA_HandleTypeDef structure that contains |
| * the configuration information for the specified DMA module. |
| * @retval None |
| */ |
| void DAC_DMAErrorCh2(DMA_HandleTypeDef *hdma) |
| { |
| DAC_HandleTypeDef *hdac = (DAC_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
| |
| /* Set DAC error code to DMA error */ |
| hdac->ErrorCode |= HAL_DAC_ERROR_DMA; |
| |
| #if (USE_HAL_DAC_REGISTER_CALLBACKS == 1) |
| hdac->ErrorCallbackCh2(hdac); |
| #else |
| HAL_DACEx_ErrorCallbackCh2(hdac); |
| #endif /* USE_HAL_DAC_REGISTER_CALLBACKS */ |
| |
| hdac->State = HAL_DAC_STATE_READY; |
| } |
| |
| /** |
| * @} |
| */ |
| |
| /** |
| * @} |
| */ |
| |
| #endif /* DAC1 || DAC2 || DAC3 || DAC4 */ |
| |
| #endif /* HAL_DAC_MODULE_ENABLED */ |
| |
| /** |
| * @} |
| */ |
| |
| /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ |