blob: b7672658a5e556ee592c73c15507345a5369fdcf [file] [log] [blame]
/**
******************************************************************************
* @file stm32g4xx_hal_dac_ex.c
* @author MCD Application Team
* @brief DAC HAL module driver.
* This file provides firmware functions to manage the extended
* functionalities of the DAC peripheral.
*
*
@verbatim
==============================================================================
##### How to use this driver #####
==============================================================================
[..]
*** Dual mode IO operation ***
==============================
(+) Use HAL_DACEx_DualStart() to enable both channel and start conversion
for dual mode operation.
If software trigger is selected, using HAL_DACEx_DualStart() will start
the conversion of the value previously set by HAL_DACEx_DualSetValue().
(+) Use HAL_DACEx_DualStop() to disable both channel and stop conversion
for dual mode operation.
(+) Use HAL_DACEx_DualStart_DMA() to enable both channel and start conversion
for dual mode operation using DMA to feed DAC converters.
First issued trigger will start the conversion of the value previously
set by HAL_DACEx_DualSetValue().
The same callbacks that are used in single mode are called in dual mode to notify
transfer completion (half complete or complete), errors or underrun.
(+) Use HAL_DACEx_DualStop_DMA() to disable both channel and stop conversion
for dual mode operation using DMA to feed DAC converters.
(+) When Dual mode is enabled (i.e. DAC Channel1 and Channel2 are used simultaneously) :
Use HAL_DACEx_DualGetValue() to get digital data to be converted and use
HAL_DACEx_DualSetValue() to set digital value to converted simultaneously in
Channel 1 and Channel 2.
*** Signal generation operation ***
===================================
(+) Use HAL_DACEx_TriangleWaveGenerate() to generate Triangle signal.
(+) Use HAL_DACEx_NoiseWaveGenerate() to generate Noise signal.
(+) Use HAL_DACEx_SawtoothWaveGenerate() to generate sawtooth signal.
(+) Use HAL_DACEx_SawtoothWaveDataReset() to reset sawtooth wave.
(+) Use HAL_DACEx_SawtoothWaveDataStep() to step sawtooth wave.
(+) HAL_DACEx_SelfCalibrate to calibrate one DAC channel.
(+) HAL_DACEx_SetUserTrimming to set user trimming value.
(+) HAL_DACEx_GetTrimOffset to retrieve trimming value (factory setting
after reset, user setting if HAL_DACEx_SetUserTrimming have been used
at least one time after reset).
@endverbatim
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2019 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32g4xx_hal.h"
/** @addtogroup STM32G4xx_HAL_Driver
* @{
*/
#ifdef HAL_DAC_MODULE_ENABLED
#if defined(DAC1) || defined(DAC2) || defined(DAC3) ||defined (DAC4)
/** @defgroup DACEx DACEx
* @brief DAC Extended HAL module driver
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Exported functions --------------------------------------------------------*/
/** @defgroup DACEx_Exported_Functions DACEx Exported Functions
* @{
*/
/** @defgroup DACEx_Exported_Functions_Group2 IO operation functions
* @brief Extended IO operation functions
*
@verbatim
==============================================================================
##### Extended features functions #####
==============================================================================
[..] This section provides functions allowing to:
(+) Start conversion.
(+) Stop conversion.
(+) Start conversion and enable DMA transfer.
(+) Stop conversion and disable DMA transfer.
(+) Get result of conversion.
(+) Get result of dual mode conversion.
@endverbatim
* @{
*/
/**
* @brief Enables DAC and starts conversion of both channels.
* @param hdac pointer to a DAC_HandleTypeDef structure that contains
* the configuration information for the specified DAC.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DACEx_DualStart(DAC_HandleTypeDef *hdac)
{
uint32_t tmp_swtrig = 0UL;
/* Check the parameters */
assert_param(IS_DAC_CHANNEL(hdac->Instance, DAC_CHANNEL_2));
/* Process locked */
__HAL_LOCK(hdac);
/* Change DAC state */
hdac->State = HAL_DAC_STATE_BUSY;
/* Enable the Peripheral */
__HAL_DAC_ENABLE(hdac, DAC_CHANNEL_1);
__HAL_DAC_ENABLE(hdac, DAC_CHANNEL_2);
/* Ensure minimum wait before using peripheral after enabling it */
HAL_Delay(1);
/* Check if software trigger enabled */
if ((hdac->Instance->CR & (DAC_CR_TEN1 | DAC_CR_TSEL1)) == DAC_CR_TEN1)
{
tmp_swtrig |= DAC_SWTRIGR_SWTRIG1;
}
if ((hdac->Instance->CR & (DAC_CR_TEN2 | DAC_CR_TSEL2)) == DAC_CR_TEN2)
{
tmp_swtrig |= DAC_SWTRIGR_SWTRIG2;
}
/* Enable the selected DAC software conversion*/
SET_BIT(hdac->Instance->SWTRIGR, tmp_swtrig);
/* Change DAC state */
hdac->State = HAL_DAC_STATE_READY;
/* Process unlocked */
__HAL_UNLOCK(hdac);
/* Return function status */
return HAL_OK;
}
/**
* @brief Disables DAC and stop conversion of both channels.
* @param hdac pointer to a DAC_HandleTypeDef structure that contains
* the configuration information for the specified DAC.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DACEx_DualStop(DAC_HandleTypeDef *hdac)
{
/* Check the parameters */
assert_param(IS_DAC_CHANNEL(hdac->Instance, DAC_CHANNEL_2));
/* Disable the Peripheral */
__HAL_DAC_DISABLE(hdac, DAC_CHANNEL_1);
__HAL_DAC_DISABLE(hdac, DAC_CHANNEL_2);
/* Ensure minimum wait before enabling peripheral after disabling it */
HAL_Delay(1);
/* Change DAC state */
hdac->State = HAL_DAC_STATE_READY;
/* Return function status */
return HAL_OK;
}
/**
* @brief Enables DAC and starts conversion of both channel 1 and 2 of the same DAC.
* @param hdac pointer to a DAC_HandleTypeDef structure that contains
* the configuration information for the specified DAC.
* @param Channel The DAC channel that will request data from DMA.
* This parameter can be one of the following values:
* @arg DAC_CHANNEL_1: DAC Channel1 selected
* @arg DAC_CHANNEL_2: DAC Channel2 selected
* @param pData The destination peripheral Buffer address.
* @param Length The length of data to be transferred from memory to DAC peripheral
* @param Alignment Specifies the data alignment for DAC channel.
* This parameter can be one of the following values:
* @arg DAC_ALIGN_8B_R: 8bit right data alignment selected
* @arg DAC_ALIGN_12B_L: 12bit left data alignment selected
* @arg DAC_ALIGN_12B_R: 12bit right data alignment selected
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DACEx_DualStart_DMA(DAC_HandleTypeDef *hdac, uint32_t Channel, uint32_t *pData, uint32_t Length,
uint32_t Alignment)
{
HAL_StatusTypeDef status;
uint32_t tmpreg = 0U;
/* Check the parameters */
assert_param(IS_DAC_CHANNEL(hdac->Instance, Channel));
/* Ensure Channel 2 exists for this particular DAC instance */
assert_param(IS_DAC_CHANNEL(hdac->Instance, DAC_CHANNEL_2));
assert_param(IS_DAC_ALIGN(Alignment));
/* Process locked */
__HAL_LOCK(hdac);
/* Change DAC state */
hdac->State = HAL_DAC_STATE_BUSY;
if (Channel == DAC_CHANNEL_1)
{
/* Set the DMA transfer complete callback for channel1 */
hdac->DMA_Handle1->XferCpltCallback = DAC_DMAConvCpltCh1;
/* Set the DMA half transfer complete callback for channel1 */
hdac->DMA_Handle1->XferHalfCpltCallback = DAC_DMAHalfConvCpltCh1;
/* Set the DMA error callback for channel1 */
hdac->DMA_Handle1->XferErrorCallback = DAC_DMAErrorCh1;
/* Enable the selected DAC channel1 DMA request */
SET_BIT(hdac->Instance->CR, DAC_CR_DMAEN1);
}
else
{
/* Set the DMA transfer complete callback for channel2 */
hdac->DMA_Handle2->XferCpltCallback = DAC_DMAConvCpltCh2;
/* Set the DMA half transfer complete callback for channel2 */
hdac->DMA_Handle2->XferHalfCpltCallback = DAC_DMAHalfConvCpltCh2;
/* Set the DMA error callback for channel2 */
hdac->DMA_Handle2->XferErrorCallback = DAC_DMAErrorCh2;
/* Enable the selected DAC channel2 DMA request */
SET_BIT(hdac->Instance->CR, DAC_CR_DMAEN2);
}
switch (Alignment)
{
case DAC_ALIGN_12B_R:
/* Get DHR12R1 address */
tmpreg = (uint32_t)&hdac->Instance->DHR12RD;
break;
case DAC_ALIGN_12B_L:
/* Get DHR12L1 address */
tmpreg = (uint32_t)&hdac->Instance->DHR12LD;
break;
case DAC_ALIGN_8B_R:
/* Get DHR8R1 address */
tmpreg = (uint32_t)&hdac->Instance->DHR8RD;
break;
default:
break;
}
/* Enable the DMA channel */
if (Channel == DAC_CHANNEL_1)
{
/* Enable the DAC DMA underrun interrupt */
__HAL_DAC_ENABLE_IT(hdac, DAC_IT_DMAUDR1);
/* Enable the DMA channel */
status = HAL_DMA_Start_IT(hdac->DMA_Handle1, (uint32_t)pData, tmpreg, Length);
}
else
{
/* Enable the DAC DMA underrun interrupt */
__HAL_DAC_ENABLE_IT(hdac, DAC_IT_DMAUDR2);
/* Enable the DMA channel */
status = HAL_DMA_Start_IT(hdac->DMA_Handle2, (uint32_t)pData, tmpreg, Length);
}
/* Process Unlocked */
__HAL_UNLOCK(hdac);
if (status == HAL_OK)
{
/* Enable the Peripheral */
__HAL_DAC_ENABLE(hdac, DAC_CHANNEL_1);
__HAL_DAC_ENABLE(hdac, DAC_CHANNEL_2);
/* Ensure minimum wait before using peripheral after enabling it */
HAL_Delay(1);
}
else
{
hdac->ErrorCode |= HAL_DAC_ERROR_DMA;
}
/* Return function status */
return status;
}
/**
* @brief Disables DAC and stop conversion both channel.
* @param hdac pointer to a DAC_HandleTypeDef structure that contains
* the configuration information for the specified DAC.
* @param Channel The DAC channel that requests data from DMA.
* This parameter can be one of the following values:
* @arg DAC_CHANNEL_1: DAC Channel1 selected
* @arg DAC_CHANNEL_2: DAC Channel2 selected
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DACEx_DualStop_DMA(DAC_HandleTypeDef *hdac, uint32_t Channel)
{
HAL_StatusTypeDef status;
/* Ensure Channel 2 exists for this particular DAC instance */
assert_param(IS_DAC_CHANNEL(hdac->Instance, DAC_CHANNEL_2));
/* Disable the selected DAC channel DMA request */
CLEAR_BIT(hdac->Instance->CR, DAC_CR_DMAEN2 | DAC_CR_DMAEN1);
/* Disable the Peripheral */
__HAL_DAC_DISABLE(hdac, DAC_CHANNEL_1);
__HAL_DAC_DISABLE(hdac, DAC_CHANNEL_2);
/* Ensure minimum wait before enabling peripheral after disabling it */
HAL_Delay(1);
/* Disable the DMA channel */
/* Channel1 is used */
if (Channel == DAC_CHANNEL_1)
{
/* Disable the DMA channel */
status = HAL_DMA_Abort(hdac->DMA_Handle1);
/* Disable the DAC DMA underrun interrupt */
__HAL_DAC_DISABLE_IT(hdac, DAC_IT_DMAUDR1);
}
else
{
/* Disable the DMA channel */
status = HAL_DMA_Abort(hdac->DMA_Handle2);
/* Disable the DAC DMA underrun interrupt */
__HAL_DAC_DISABLE_IT(hdac, DAC_IT_DMAUDR2);
}
/* Check if DMA Channel effectively disabled */
if (status != HAL_OK)
{
/* Update DAC state machine to error */
hdac->State = HAL_DAC_STATE_ERROR;
}
else
{
/* Change DAC state */
hdac->State = HAL_DAC_STATE_READY;
}
/* Return function status */
return status;
}
/**
* @brief Enable or disable the selected DAC channel wave generation.
* @param hdac pointer to a DAC_HandleTypeDef structure that contains
* the configuration information for the specified DAC.
* @param Channel The selected DAC channel.
* This parameter can be one of the following values:
* @arg DAC_CHANNEL_1: DAC Channel1 selected
* @arg DAC_CHANNEL_2: DAC Channel2 selected (1)
*
* (1) On this STM32 serie, parameter not available on all instances.
* Refer to device datasheet for channels availability.
* @param Amplitude Select max triangle amplitude.
* This parameter can be one of the following values:
* @arg DAC_TRIANGLEAMPLITUDE_1: Select max triangle amplitude of 1
* @arg DAC_TRIANGLEAMPLITUDE_3: Select max triangle amplitude of 3
* @arg DAC_TRIANGLEAMPLITUDE_7: Select max triangle amplitude of 7
* @arg DAC_TRIANGLEAMPLITUDE_15: Select max triangle amplitude of 15
* @arg DAC_TRIANGLEAMPLITUDE_31: Select max triangle amplitude of 31
* @arg DAC_TRIANGLEAMPLITUDE_63: Select max triangle amplitude of 63
* @arg DAC_TRIANGLEAMPLITUDE_127: Select max triangle amplitude of 127
* @arg DAC_TRIANGLEAMPLITUDE_255: Select max triangle amplitude of 255
* @arg DAC_TRIANGLEAMPLITUDE_511: Select max triangle amplitude of 511
* @arg DAC_TRIANGLEAMPLITUDE_1023: Select max triangle amplitude of 1023
* @arg DAC_TRIANGLEAMPLITUDE_2047: Select max triangle amplitude of 2047
* @arg DAC_TRIANGLEAMPLITUDE_4095: Select max triangle amplitude of 4095
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DACEx_TriangleWaveGenerate(DAC_HandleTypeDef *hdac, uint32_t Channel, uint32_t Amplitude)
{
/* Check the parameters */
assert_param(IS_DAC_CHANNEL(hdac->Instance, Channel));
assert_param(IS_DAC_LFSR_UNMASK_TRIANGLE_AMPLITUDE(Amplitude));
/* Process locked */
__HAL_LOCK(hdac);
/* Change DAC state */
hdac->State = HAL_DAC_STATE_BUSY;
/* Enable the triangle wave generation for the selected DAC channel */
MODIFY_REG(hdac->Instance->CR, ((DAC_CR_WAVE1) | (DAC_CR_MAMP1)) << (Channel & 0x10UL), (DAC_CR_WAVE1_1 | Amplitude) << (Channel & 0x10UL));
/* Change DAC state */
hdac->State = HAL_DAC_STATE_READY;
/* Process unlocked */
__HAL_UNLOCK(hdac);
/* Return function status */
return HAL_OK;
}
/**
* @brief Enable or disable the selected DAC channel wave generation.
* @param hdac pointer to a DAC_HandleTypeDef structure that contains
* the configuration information for the specified DAC.
* @param Channel The selected DAC channel.
* This parameter can be one of the following values:
* @arg DAC_CHANNEL_1: DAC Channel1 selected
* @arg DAC_CHANNEL_2: DAC Channel2 selected (1)
*
* (1) On this STM32 serie, parameter not available on all instances.
* Refer to device datasheet for channels availability.
* @param Amplitude Unmask DAC channel LFSR for noise wave generation.
* This parameter can be one of the following values:
* @arg DAC_LFSRUNMASK_BIT0: Unmask DAC channel LFSR bit0 for noise wave generation
* @arg DAC_LFSRUNMASK_BITS1_0: Unmask DAC channel LFSR bit[1:0] for noise wave generation
* @arg DAC_LFSRUNMASK_BITS2_0: Unmask DAC channel LFSR bit[2:0] for noise wave generation
* @arg DAC_LFSRUNMASK_BITS3_0: Unmask DAC channel LFSR bit[3:0] for noise wave generation
* @arg DAC_LFSRUNMASK_BITS4_0: Unmask DAC channel LFSR bit[4:0] for noise wave generation
* @arg DAC_LFSRUNMASK_BITS5_0: Unmask DAC channel LFSR bit[5:0] for noise wave generation
* @arg DAC_LFSRUNMASK_BITS6_0: Unmask DAC channel LFSR bit[6:0] for noise wave generation
* @arg DAC_LFSRUNMASK_BITS7_0: Unmask DAC channel LFSR bit[7:0] for noise wave generation
* @arg DAC_LFSRUNMASK_BITS8_0: Unmask DAC channel LFSR bit[8:0] for noise wave generation
* @arg DAC_LFSRUNMASK_BITS9_0: Unmask DAC channel LFSR bit[9:0] for noise wave generation
* @arg DAC_LFSRUNMASK_BITS10_0: Unmask DAC channel LFSR bit[10:0] for noise wave generation
* @arg DAC_LFSRUNMASK_BITS11_0: Unmask DAC channel LFSR bit[11:0] for noise wave generation
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DACEx_NoiseWaveGenerate(DAC_HandleTypeDef *hdac, uint32_t Channel, uint32_t Amplitude)
{
/* Check the parameters */
assert_param(IS_DAC_CHANNEL(hdac->Instance, Channel));
assert_param(IS_DAC_LFSR_UNMASK_TRIANGLE_AMPLITUDE(Amplitude));
/* Process locked */
__HAL_LOCK(hdac);
/* Change DAC state */
hdac->State = HAL_DAC_STATE_BUSY;
/* Enable the noise wave generation for the selected DAC channel */
MODIFY_REG(hdac->Instance->CR, ((DAC_CR_WAVE1) | (DAC_CR_MAMP1)) << (Channel & 0x10UL), (DAC_CR_WAVE1_0 | Amplitude) << (Channel & 0x10UL));
/* Change DAC state */
hdac->State = HAL_DAC_STATE_READY;
/* Process unlocked */
__HAL_UNLOCK(hdac);
/* Return function status */
return HAL_OK;
}
/**
* @brief Enable or disable the selected DAC channel sawtooth wave generation.
* @param hdac pointer to a DAC_HandleTypeDef structure that contains
* the configuration information for the specified DAC.
* @param Channel The selected DAC channel.
* This parameter can be one of the following values:
* @arg DAC_CHANNEL_1: DAC Channel1 selected
* @arg DAC_CHANNEL_2: DAC Channel2 selected (1)
*
* (1) On this STM32 serie, parameter not available on all instances.
* Refer to device datasheet for channels availability.
* @param Polarity polarity to be used for wave generation.
* This parameter can be one of the following values:
* @arg DAC_SAWTOOTH_POLARITY_DECREMENT
* @arg DAC_SAWTOOTH_POLARITY_INCREMENT
* @param ResetData Sawtooth wave reset value.
* Range is from 0 to DAC full range 4095 (0xFFF)
* @param StepData Sawtooth wave step value.
* 12.4 bit format, unsigned: 12 bits exponent / 4 bits mantissa
* Step value step is 1/16 = 0.0625
* Step value range is 0.0000 to 4095.9375 (0xFFF.F)
* @note Sawtooth reset and step triggers are configured by calling @ref HAL_DAC_ConfigChannel
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DACEx_SawtoothWaveGenerate(DAC_HandleTypeDef *hdac, uint32_t Channel, uint32_t Polarity,
uint32_t ResetData, uint32_t StepData)
{
/* Check the parameters */
assert_param(IS_DAC_CHANNEL(hdac->Instance, Channel));
assert_param(IS_DAC_SAWTOOTH_POLARITY(Polarity));
assert_param(IS_DAC_RESET_DATA(ResetData));
assert_param(IS_DAC_STEP_DATA(StepData));
/* Process locked */
__HAL_LOCK(hdac);
/* Change DAC state */
hdac->State = HAL_DAC_STATE_BUSY;
if (Channel == DAC_CHANNEL_1)
{
/* Configure the sawtooth wave generation data parameters */
MODIFY_REG(hdac->Instance->STR1,
DAC_STR1_STINCDATA1 | DAC_STR1_STDIR1 | DAC_STR1_STRSTDATA1,
(StepData << DAC_STR1_STINCDATA1_Pos)
| Polarity
| (ResetData << DAC_STR1_STRSTDATA1_Pos));
}
else
{
/* Configure the sawtooth wave generation data parameters */
MODIFY_REG(hdac->Instance->STR2,
DAC_STR2_STINCDATA2 | DAC_STR2_STDIR2 | DAC_STR2_STRSTDATA2,
(StepData << DAC_STR2_STINCDATA2_Pos)
| Polarity
| (ResetData << DAC_STR2_STRSTDATA2_Pos));
}
/* Enable the sawtooth wave generation for the selected DAC channel */
MODIFY_REG(hdac->Instance->CR, (DAC_CR_WAVE1) << (Channel & 0x10UL), (uint32_t)(DAC_CR_WAVE1_1 | DAC_CR_WAVE1_0) << (Channel & 0x10UL));
/* Change DAC state */
hdac->State = HAL_DAC_STATE_READY;
/* Process unlocked */
__HAL_UNLOCK(hdac);
/* Return function status */
return HAL_OK;
}
/**
* @brief Trig sawtooth wave reset
* @note This function allows to reset sawtooth wave in case of SW trigger
* has been configured for this usage.
* @param hdac pointer to a DAC_HandleTypeDef structure that contains
* the configuration information for the specified DAC.
* @param Channel The selected DAC channel.
* This parameter can be one of the following values:
* @arg DAC_CHANNEL_1: DAC Channel1 selected
* @arg DAC_CHANNEL_2: DAC Channel2 selected (1)
*
* (1) On this STM32 serie, parameter not available on all instances.
* Refer to device datasheet for channels availability.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DACEx_SawtoothWaveDataReset(DAC_HandleTypeDef *hdac, uint32_t Channel)
{
HAL_StatusTypeDef status = HAL_OK;
/* Check the parameters */
assert_param(IS_DAC_CHANNEL(hdac->Instance, Channel));
/* Process locked */
__HAL_LOCK(hdac);
if (((hdac->Instance->STMODR >> (Channel & 0x10UL)) & DAC_STMODR_STRSTTRIGSEL1) == 0U /* SW TRIGGER */)
{
/* Change DAC state */
hdac->State = HAL_DAC_STATE_BUSY;
if (Channel == DAC_CHANNEL_1)
{
/* Enable the selected DAC software conversion */
SET_BIT(hdac->Instance->SWTRIGR, DAC_SWTRIGR_SWTRIG1);
}
else
{
/* Enable the selected DAC software conversion */
SET_BIT(hdac->Instance->SWTRIGR, DAC_SWTRIGR_SWTRIG2);
}
/* Change DAC state */
hdac->State = HAL_DAC_STATE_READY;
}
else
{
status = HAL_ERROR;
}
/* Process unlocked */
__HAL_UNLOCK(hdac);
/* Return function status */
return status;
}
/**
* @brief Trig sawtooth wave step
* @note This function allows to generate step in sawtooth wave in case of
* SW trigger has been configured for this usage.
* @param hdac pointer to a DAC_HandleTypeDef structure that contains
* the configuration information for the specified DAC.
* @param Channel The selected DAC channel.
* This parameter can be one of the following values:
* @arg DAC_CHANNEL_1: DAC Channel1 selected
* @arg DAC_CHANNEL_2: DAC Channel2 selected (1)
*
* (1) On this STM32 serie, parameter not available on all instances.
* Refer to device datasheet for channels availability.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DACEx_SawtoothWaveDataStep(DAC_HandleTypeDef *hdac, uint32_t Channel)
{
HAL_StatusTypeDef status = HAL_OK;
/* Check the parameters */
assert_param(IS_DAC_CHANNEL(hdac->Instance, Channel));
/* Process locked */
__HAL_LOCK(hdac);
if (((hdac->Instance->STMODR >> (Channel & 0x10UL)) & DAC_STMODR_STINCTRIGSEL1) == 0U /* SW TRIGGER */)
{
/* Change DAC state */
hdac->State = HAL_DAC_STATE_BUSY;
if (Channel == DAC_CHANNEL_1)
{
/* Enable the selected DAC software conversion */
SET_BIT(hdac->Instance->SWTRIGR, DAC_SWTRIGR_SWTRIGB1);
}
else
{
/* Enable the selected DAC software conversion */
SET_BIT(hdac->Instance->SWTRIGR, DAC_SWTRIGR_SWTRIGB2);
}
/* Change DAC state */
hdac->State = HAL_DAC_STATE_READY;
}
else
{
status = HAL_ERROR;
}
/* Process unlocked */
__HAL_UNLOCK(hdac);
/* Return function status */
return status;
}
/**
* @brief Set the specified data holding register value for dual DAC channel.
* @param hdac pointer to a DAC_HandleTypeDef structure that contains
* the configuration information for the specified DAC.
* @param Alignment Specifies the data alignment for dual channel DAC.
* This parameter can be one of the following values:
* DAC_ALIGN_8B_R: 8bit right data alignment selected
* DAC_ALIGN_12B_L: 12bit left data alignment selected
* DAC_ALIGN_12B_R: 12bit right data alignment selected
* @param Data1 Data for DAC Channel1 to be loaded in the selected data holding register.
* @param Data2 Data for DAC Channel2 to be loaded in the selected data holding register.
* @note In dual mode, a unique register access is required to write in both
* DAC channels at the same time.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DACEx_DualSetValue(DAC_HandleTypeDef *hdac, uint32_t Alignment, uint32_t Data1, uint32_t Data2)
{
uint32_t data;
uint32_t tmp;
/* Check the parameters */
assert_param(IS_DAC_ALIGN(Alignment));
assert_param(IS_DAC_DATA(Data1));
assert_param(IS_DAC_DATA(Data2));
/* Calculate and set dual DAC data holding register value */
if (Alignment == DAC_ALIGN_8B_R)
{
data = ((uint32_t)Data2 << 8U) | Data1;
}
else
{
data = ((uint32_t)Data2 << 16U) | Data1;
}
tmp = (uint32_t)hdac->Instance;
tmp += DAC_DHR12RD_ALIGNMENT(Alignment);
/* Set the dual DAC selected data holding register */
*(__IO uint32_t *)tmp = data;
/* Return function status */
return HAL_OK;
}
/**
* @brief Conversion complete callback in non-blocking mode for Channel2.
* @param hdac pointer to a DAC_HandleTypeDef structure that contains
* the configuration information for the specified DAC.
* @retval None
*/
__weak void HAL_DACEx_ConvCpltCallbackCh2(DAC_HandleTypeDef *hdac)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hdac);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_DACEx_ConvCpltCallbackCh2 could be implemented in the user file
*/
}
/**
* @brief Conversion half DMA transfer callback in non-blocking mode for Channel2.
* @param hdac pointer to a DAC_HandleTypeDef structure that contains
* the configuration information for the specified DAC.
* @retval None
*/
__weak void HAL_DACEx_ConvHalfCpltCallbackCh2(DAC_HandleTypeDef *hdac)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hdac);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_DACEx_ConvHalfCpltCallbackCh2 could be implemented in the user file
*/
}
/**
* @brief Error DAC callback for Channel2.
* @param hdac pointer to a DAC_HandleTypeDef structure that contains
* the configuration information for the specified DAC.
* @retval None
*/
__weak void HAL_DACEx_ErrorCallbackCh2(DAC_HandleTypeDef *hdac)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hdac);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_DACEx_ErrorCallbackCh2 could be implemented in the user file
*/
}
/**
* @brief DMA underrun DAC callback for Channel2.
* @param hdac pointer to a DAC_HandleTypeDef structure that contains
* the configuration information for the specified DAC.
* @retval None
*/
__weak void HAL_DACEx_DMAUnderrunCallbackCh2(DAC_HandleTypeDef *hdac)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hdac);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_DACEx_DMAUnderrunCallbackCh2 could be implemented in the user file
*/
}
/**
* @brief Run the self calibration of one DAC channel.
* @param hdac pointer to a DAC_HandleTypeDef structure that contains
* the configuration information for the specified DAC.
* @param sConfig DAC channel configuration structure.
* @param Channel The selected DAC channel.
* This parameter can be one of the following values:
* @arg DAC_CHANNEL_1: DAC Channel1 selected
* @arg DAC_CHANNEL_2: DAC Channel2 selected (1)
*
* (1) On this STM32 serie, parameter not available on all instances.
* Refer to device datasheet for channels availability.
* @retval Updates DAC_TrimmingValue. , DAC_UserTrimming set to DAC_UserTrimming
* @retval HAL status
* @note Calibration runs about 7 ms.
*/
HAL_StatusTypeDef HAL_DACEx_SelfCalibrate(DAC_HandleTypeDef *hdac, DAC_ChannelConfTypeDef *sConfig, uint32_t Channel)
{
HAL_StatusTypeDef status = HAL_OK;
__IO uint32_t tmp;
uint32_t trimmingvalue;
uint32_t delta;
/* store/restore channel configuration structure purpose */
uint32_t oldmodeconfiguration;
/* Check the parameters */
assert_param(IS_DAC_CHANNEL(hdac->Instance, Channel));
/* Check the DAC handle allocation */
/* Check if DAC running */
if (hdac == NULL)
{
status = HAL_ERROR;
}
else if (hdac->State == HAL_DAC_STATE_BUSY)
{
status = HAL_ERROR;
}
else
{
/* Process locked */
__HAL_LOCK(hdac);
/* Store configuration */
oldmodeconfiguration = (hdac->Instance->MCR & (DAC_MCR_MODE1 << (Channel & 0x10UL)));
/* Disable the selected DAC channel */
CLEAR_BIT((hdac->Instance->CR), (DAC_CR_EN1 << (Channel & 0x10UL)));
/* Wait for ready bit to be de-asserted */
HAL_Delay(1);
/* Set mode in MCR for calibration */
MODIFY_REG(hdac->Instance->MCR, (DAC_MCR_MODE1 << (Channel & 0x10UL)), 0U);
/* Set DAC Channel1 DHR register to the middle value */
tmp = (uint32_t)hdac->Instance;
if (Channel == DAC_CHANNEL_1)
{
tmp += DAC_DHR12R1_ALIGNMENT(DAC_ALIGN_12B_R);
}
else
{
tmp += DAC_DHR12R2_ALIGNMENT(DAC_ALIGN_12B_R);
}
*(__IO uint32_t *) tmp = 0x0800U;
/* Enable the selected DAC channel calibration */
/* i.e. set DAC_CR_CENx bit */
SET_BIT((hdac->Instance->CR), (DAC_CR_CEN1 << (Channel & 0x10UL)));
/* Init trimming counter */
/* Medium value */
trimmingvalue = 16U;
delta = 8U;
while (delta != 0U)
{
/* Set candidate trimming */
MODIFY_REG(hdac->Instance->CCR, (DAC_CCR_OTRIM1 << (Channel & 0x10UL)), (trimmingvalue << (Channel & 0x10UL)));
/* tOFFTRIMmax delay x ms as per datasheet (electrical characteristics */
/* i.e. minimum time needed between two calibration steps */
HAL_Delay(1);
if ((hdac->Instance->SR & (DAC_SR_CAL_FLAG1 << (Channel & 0x10UL))) == (DAC_SR_CAL_FLAG1 << (Channel & 0x10UL)))
{
/* DAC_SR_CAL_FLAGx is HIGH try higher trimming */
trimmingvalue -= delta;
}
else
{
/* DAC_SR_CAL_FLAGx is LOW try lower trimming */
trimmingvalue += delta;
}
delta >>= 1U;
}
/* Still need to check if right calibration is current value or one step below */
/* Indeed the first value that causes the DAC_SR_CAL_FLAGx bit to change from 0 to 1 */
/* Set candidate trimming */
MODIFY_REG(hdac->Instance->CCR, (DAC_CCR_OTRIM1 << (Channel & 0x10UL)), (trimmingvalue << (Channel & 0x10UL)));
/* tOFFTRIMmax delay x ms as per datasheet (electrical characteristics */
/* i.e. minimum time needed between two calibration steps */
HAL_Delay(1U);
if ((hdac->Instance->SR & (DAC_SR_CAL_FLAG1 << (Channel & 0x10UL))) == 0UL)
{
/* OPAMP_CSR_OUTCAL is actually one value more */
trimmingvalue++;
/* Set right trimming */
MODIFY_REG(hdac->Instance->CCR, (DAC_CCR_OTRIM1 << (Channel & 0x10UL)), (trimmingvalue << (Channel & 0x10UL)));
}
/* Disable the selected DAC channel calibration */
/* i.e. clear DAC_CR_CENx bit */
CLEAR_BIT((hdac->Instance->CR), (DAC_CR_CEN1 << (Channel & 0x10UL)));
sConfig->DAC_TrimmingValue = trimmingvalue;
sConfig->DAC_UserTrimming = DAC_TRIMMING_USER;
/* Restore configuration */
MODIFY_REG(hdac->Instance->MCR, (DAC_MCR_MODE1 << (Channel & 0x10UL)), oldmodeconfiguration);
/* Process unlocked */
__HAL_UNLOCK(hdac);
}
return status;
}
/**
* @brief Set the trimming mode and trimming value (user trimming mode applied).
* @param hdac pointer to a DAC_HandleTypeDef structure that contains
* the configuration information for the specified DAC.
* @param sConfig DAC configuration structure updated with new DAC trimming value.
* @param Channel The selected DAC channel.
* This parameter can be one of the following values:
* @arg DAC_CHANNEL_1: DAC Channel1 selected
* @arg DAC_CHANNEL_2: DAC Channel2 selected (1)
*
* (1) On this STM32 serie, parameter not available on all instances.
* Refer to device datasheet for channels availability.
* @param NewTrimmingValue DAC new trimming value
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DACEx_SetUserTrimming(DAC_HandleTypeDef *hdac, DAC_ChannelConfTypeDef *sConfig, uint32_t Channel,
uint32_t NewTrimmingValue)
{
HAL_StatusTypeDef status = HAL_OK;
/* Check the parameters */
assert_param(IS_DAC_CHANNEL(hdac->Instance, Channel));
assert_param(IS_DAC_NEWTRIMMINGVALUE(NewTrimmingValue));
/* Check the DAC handle allocation */
if (hdac == NULL)
{
status = HAL_ERROR;
}
else
{
/* Process locked */
__HAL_LOCK(hdac);
/* Set new trimming */
MODIFY_REG(hdac->Instance->CCR, (DAC_CCR_OTRIM1 << (Channel & 0x10UL)), (NewTrimmingValue << (Channel & 0x10UL)));
/* Update trimming mode */
sConfig->DAC_UserTrimming = DAC_TRIMMING_USER;
sConfig->DAC_TrimmingValue = NewTrimmingValue;
/* Process unlocked */
__HAL_UNLOCK(hdac);
}
return status;
}
/**
* @brief Return the DAC trimming value.
* @param hdac DAC handle
* @param Channel The selected DAC channel.
* This parameter can be one of the following values:
* @arg DAC_CHANNEL_1: DAC Channel1 selected
* @arg DAC_CHANNEL_2: DAC Channel2 selected (1)
*
* (1) On this STM32 serie, parameter not available on all instances.
* Refer to device datasheet for channels availability.
* @retval Trimming value : range: 0->31
*
*/
uint32_t HAL_DACEx_GetTrimOffset(DAC_HandleTypeDef *hdac, uint32_t Channel)
{
/* Check the parameter */
assert_param(IS_DAC_CHANNEL(hdac->Instance, Channel));
/* Retrieve trimming */
return ((hdac->Instance->CCR & (DAC_CCR_OTRIM1 << (Channel & 0x10UL))) >> (Channel & 0x10UL));
}
/**
* @}
*/
/** @defgroup DACEx_Exported_Functions_Group3 Peripheral Control functions
* @brief Extended Peripheral Control functions
*
@verbatim
==============================================================================
##### Peripheral Control functions #####
==============================================================================
[..] This section provides functions allowing to:
(+) Set the specified data holding register value for DAC channel.
@endverbatim
* @{
*/
/**
* @brief Return the last data output value of the selected DAC channel.
* @param hdac pointer to a DAC_HandleTypeDef structure that contains
* the configuration information for the specified DAC.
* @retval The selected DAC channel data output value.
*/
uint32_t HAL_DACEx_DualGetValue(DAC_HandleTypeDef *hdac)
{
uint32_t tmp = 0U;
tmp |= hdac->Instance->DOR1;
tmp |= hdac->Instance->DOR2 << 16U;
/* Returns the DAC channel data output register value */
return tmp;
}
/**
* @}
*/
/**
* @}
*/
/* Private functions ---------------------------------------------------------*/
/** @defgroup DACEx_Private_Functions DACEx private functions
* @brief Extended private functions
* @{
*/
/**
* @brief DMA conversion complete callback.
* @param hdma pointer to a DMA_HandleTypeDef structure that contains
* the configuration information for the specified DMA module.
* @retval None
*/
void DAC_DMAConvCpltCh2(DMA_HandleTypeDef *hdma)
{
DAC_HandleTypeDef *hdac = (DAC_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
#if (USE_HAL_DAC_REGISTER_CALLBACKS == 1)
hdac->ConvCpltCallbackCh2(hdac);
#else
HAL_DACEx_ConvCpltCallbackCh2(hdac);
#endif /* USE_HAL_DAC_REGISTER_CALLBACKS */
hdac->State = HAL_DAC_STATE_READY;
}
/**
* @brief DMA half transfer complete callback.
* @param hdma pointer to a DMA_HandleTypeDef structure that contains
* the configuration information for the specified DMA module.
* @retval None
*/
void DAC_DMAHalfConvCpltCh2(DMA_HandleTypeDef *hdma)
{
DAC_HandleTypeDef *hdac = (DAC_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
/* Conversion complete callback */
#if (USE_HAL_DAC_REGISTER_CALLBACKS == 1)
hdac->ConvHalfCpltCallbackCh2(hdac);
#else
HAL_DACEx_ConvHalfCpltCallbackCh2(hdac);
#endif /* USE_HAL_DAC_REGISTER_CALLBACKS */
}
/**
* @brief DMA error callback.
* @param hdma pointer to a DMA_HandleTypeDef structure that contains
* the configuration information for the specified DMA module.
* @retval None
*/
void DAC_DMAErrorCh2(DMA_HandleTypeDef *hdma)
{
DAC_HandleTypeDef *hdac = (DAC_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
/* Set DAC error code to DMA error */
hdac->ErrorCode |= HAL_DAC_ERROR_DMA;
#if (USE_HAL_DAC_REGISTER_CALLBACKS == 1)
hdac->ErrorCallbackCh2(hdac);
#else
HAL_DACEx_ErrorCallbackCh2(hdac);
#endif /* USE_HAL_DAC_REGISTER_CALLBACKS */
hdac->State = HAL_DAC_STATE_READY;
}
/**
* @}
*/
/**
* @}
*/
#endif /* DAC1 || DAC2 || DAC3 || DAC4 */
#endif /* HAL_DAC_MODULE_ENABLED */
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/