blob: e8bdc1f681ed9c701df4cd2c2c67cf6c6ad62089 [file] [log] [blame]
/**
******************************************************************************
* @file stm32h7xx_ll_spi.h
* @author MCD Application Team
* @brief Header file of SPI LL module.
******************************************************************************
* @attention
*
* Copyright (c) 2017 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef STM32H7xx_LL_SPI_H
#define STM32H7xx_LL_SPI_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32h7xx.h"
/** @addtogroup STM32H7xx_LL_Driver
* @{
*/
#if defined(SPI1) || defined(SPI2) || defined(SPI3) || defined(SPI4) || defined(SPI5) || defined(SPI6)
/** @defgroup SPI_LL SPI
* @{
*/
/* Private variables ---------------------------------------------------------*/
/* Private constants ---------------------------------------------------------*/
/* Private macros ------------------------------------------------------------*/
/** @defgroup SPI_LL_Private_Macros SPI Private Macros
* @{
*/
/**
* @}
*/
/* Exported types ------------------------------------------------------------*/
#if defined(USE_FULL_LL_DRIVER)
/** @defgroup SPI_LL_Exported_Types SPI Exported Types
* @{
*/
/**
* @brief SPI Init structures definition
*/
typedef struct
{
uint32_t TransferDirection; /*!< Specifies the SPI unidirectional or bidirectional data mode.
This parameter can be a value of @ref SPI_LL_EC_TRANSFER_MODE.
This feature can be modified afterwards using unitary function
@ref LL_SPI_SetTransferDirection().*/
uint32_t Mode; /*!< Specifies the SPI mode (Master/Slave).
This parameter can be a value of @ref SPI_LL_EC_MODE.
This feature can be modified afterwards using unitary function
@ref LL_SPI_SetMode().*/
uint32_t DataWidth; /*!< Specifies the SPI data width.
This parameter can be a value of @ref SPI_LL_EC_DATAWIDTH.
This feature can be modified afterwards using unitary function
@ref LL_SPI_SetDataWidth().*/
uint32_t ClockPolarity; /*!< Specifies the serial clock steady state.
This parameter can be a value of @ref SPI_LL_EC_POLARITY.
This feature can be modified afterwards using unitary function
@ref LL_SPI_SetClockPolarity().*/
uint32_t ClockPhase; /*!< Specifies the clock active edge for the bit capture.
This parameter can be a value of @ref SPI_LL_EC_PHASE.
This feature can be modified afterwards using unitary function
@ref LL_SPI_SetClockPhase().*/
uint32_t NSS; /*!< Specifies whether the NSS signal is managed by hardware (NSS pin)
or by software using the SSI bit.
This parameter can be a value of @ref SPI_LL_EC_NSS_MODE.
This feature can be modified afterwards using unitary function
@ref LL_SPI_SetNSSMode().*/
uint32_t BaudRate; /*!< Specifies the BaudRate prescaler value which will be used to configure
the transmit and receive SCK clock.
This parameter can be a value of @ref SPI_LL_EC_BAUDRATEPRESCALER.
@note The communication clock is derived from the master clock.
The slave clock does not need to be set.
This feature can be modified afterwards using unitary function
@ref LL_SPI_SetBaudRatePrescaler().*/
uint32_t BitOrder; /*!< Specifies whether data transfers start from MSB or LSB bit.
This parameter can be a value of @ref SPI_LL_EC_BIT_ORDER.
This feature can be modified afterwards using unitary function
@ref LL_SPI_SetTransferBitOrder().*/
uint32_t CRCCalculation; /*!< Specifies if the CRC calculation is enabled or not.
This parameter can be a value of @ref SPI_LL_EC_CRC_CALCULATION.
This feature can be modified afterwards using unitary functions
@ref LL_SPI_EnableCRC() and @ref LL_SPI_DisableCRC().*/
uint32_t CRCPoly; /*!< Specifies the polynomial used for the CRC calculation.
This parameter must be a number between Min_Data = 0x00
and Max_Data = 0xFFFFFFFF.
This feature can be modified afterwards using unitary function
@ref LL_SPI_SetCRCPolynomial().*/
} LL_SPI_InitTypeDef;
/**
* @}
*/
#endif /*USE_FULL_LL_DRIVER*/
/* Exported types ------------------------------------------------------------*/
/* Exported constants --------------------------------------------------------*/
/** @defgroup SPI_LL_Exported_Constants SPI Exported Constants
* @{
*/
/** @defgroup SPI_LL_EC_GET_FLAG Get Flags Defines
* @brief Flags defines which can be used with LL_SPI_ReadReg function
* @{
*/
#define LL_SPI_SR_RXP (SPI_SR_RXP)
#define LL_SPI_SR_TXP (SPI_SR_TXP)
#define LL_SPI_SR_DXP (SPI_SR_DXP)
#define LL_SPI_SR_EOT (SPI_SR_EOT)
#define LL_SPI_SR_TXTF (SPI_SR_TXTF)
#define LL_SPI_SR_UDR (SPI_SR_UDR)
#define LL_SPI_SR_CRCE (SPI_SR_CRCE)
#define LL_SPI_SR_MODF (SPI_SR_MODF)
#define LL_SPI_SR_OVR (SPI_SR_OVR)
#define LL_SPI_SR_TIFRE (SPI_SR_TIFRE)
#define LL_SPI_SR_TSERF (SPI_SR_TSERF)
#define LL_SPI_SR_SUSP (SPI_SR_SUSP)
#define LL_SPI_SR_TXC (SPI_SR_TXC)
#define LL_SPI_SR_RXWNE (SPI_SR_RXWNE)
/**
* @}
*/
/** @defgroup SPI_LL_EC_IT IT Defines
* @brief IT defines which can be used with LL_SPI_ReadReg and LL_SPI_WriteReg functions
* @{
*/
#define LL_SPI_IER_RXPIE (SPI_IER_RXPIE)
#define LL_SPI_IER_TXPIE (SPI_IER_TXPIE)
#define LL_SPI_IER_DXPIE (SPI_IER_DXPIE)
#define LL_SPI_IER_EOTIE (SPI_IER_EOTIE)
#define LL_SPI_IER_TXTFIE (SPI_IER_TXTFIE)
#define LL_SPI_IER_UDRIE (SPI_IER_UDRIE)
#define LL_SPI_IER_OVRIE (SPI_IER_OVRIE)
#define LL_SPI_IER_CRCEIE (SPI_IER_CRCEIE)
#define LL_SPI_IER_TIFREIE (SPI_IER_TIFREIE)
#define LL_SPI_IER_MODFIE (SPI_IER_MODFIE)
#define LL_SPI_IER_TSERFIE (SPI_IER_TSERFIE)
/**
* @}
*/
/** @defgroup SPI_LL_EC_MODE Mode
* @{
*/
#define LL_SPI_MODE_MASTER (SPI_CFG2_MASTER)
#define LL_SPI_MODE_SLAVE (0x00000000UL)
/**
* @}
*/
/** @defgroup SPI_LL_EC_SS_LEVEL SS Level
* @{
*/
#define LL_SPI_SS_LEVEL_HIGH (SPI_CR1_SSI)
#define LL_SPI_SS_LEVEL_LOW (0x00000000UL)
/**
* @}
*/
/** @defgroup SPI_LL_EC_SS_IDLENESS SS Idleness
* @{
*/
#define LL_SPI_SS_IDLENESS_00CYCLE (0x00000000UL)
#define LL_SPI_SS_IDLENESS_01CYCLE (SPI_CFG2_MSSI_0)
#define LL_SPI_SS_IDLENESS_02CYCLE (SPI_CFG2_MSSI_1)
#define LL_SPI_SS_IDLENESS_03CYCLE (SPI_CFG2_MSSI_0 | SPI_CFG2_MSSI_1)
#define LL_SPI_SS_IDLENESS_04CYCLE (SPI_CFG2_MSSI_2)
#define LL_SPI_SS_IDLENESS_05CYCLE (SPI_CFG2_MSSI_2 | SPI_CFG2_MSSI_0)
#define LL_SPI_SS_IDLENESS_06CYCLE (SPI_CFG2_MSSI_2 | SPI_CFG2_MSSI_1)
#define LL_SPI_SS_IDLENESS_07CYCLE (SPI_CFG2_MSSI_2 | SPI_CFG2_MSSI_1 | SPI_CFG2_MSSI_0)
#define LL_SPI_SS_IDLENESS_08CYCLE (SPI_CFG2_MSSI_3)
#define LL_SPI_SS_IDLENESS_09CYCLE (SPI_CFG2_MSSI_3 | SPI_CFG2_MSSI_0)
#define LL_SPI_SS_IDLENESS_10CYCLE (SPI_CFG2_MSSI_3 | SPI_CFG2_MSSI_1)
#define LL_SPI_SS_IDLENESS_11CYCLE (SPI_CFG2_MSSI_3 | SPI_CFG2_MSSI_1 | SPI_CFG2_MSSI_0)
#define LL_SPI_SS_IDLENESS_12CYCLE (SPI_CFG2_MSSI_3 | SPI_CFG2_MSSI_2)
#define LL_SPI_SS_IDLENESS_13CYCLE (SPI_CFG2_MSSI_3 | SPI_CFG2_MSSI_2 | SPI_CFG2_MSSI_0)
#define LL_SPI_SS_IDLENESS_14CYCLE (SPI_CFG2_MSSI_3 | SPI_CFG2_MSSI_2 | SPI_CFG2_MSSI_1)
#define LL_SPI_SS_IDLENESS_15CYCLE (SPI_CFG2_MSSI_3\
| SPI_CFG2_MSSI_2 | SPI_CFG2_MSSI_1 | SPI_CFG2_MSSI_0)
/**
* @}
*/
/** @defgroup SPI_LL_EC_ID_IDLENESS Master Inter-Data Idleness
* @{
*/
#define LL_SPI_ID_IDLENESS_00CYCLE (0x00000000UL)
#define LL_SPI_ID_IDLENESS_01CYCLE (SPI_CFG2_MIDI_0)
#define LL_SPI_ID_IDLENESS_02CYCLE (SPI_CFG2_MIDI_1)
#define LL_SPI_ID_IDLENESS_03CYCLE (SPI_CFG2_MIDI_0 | SPI_CFG2_MIDI_1)
#define LL_SPI_ID_IDLENESS_04CYCLE (SPI_CFG2_MIDI_2)
#define LL_SPI_ID_IDLENESS_05CYCLE (SPI_CFG2_MIDI_2 | SPI_CFG2_MIDI_0)
#define LL_SPI_ID_IDLENESS_06CYCLE (SPI_CFG2_MIDI_2 | SPI_CFG2_MIDI_1)
#define LL_SPI_ID_IDLENESS_07CYCLE (SPI_CFG2_MIDI_2 | SPI_CFG2_MIDI_1 | SPI_CFG2_MIDI_0)
#define LL_SPI_ID_IDLENESS_08CYCLE (SPI_CFG2_MIDI_3)
#define LL_SPI_ID_IDLENESS_09CYCLE (SPI_CFG2_MIDI_3 | SPI_CFG2_MIDI_0)
#define LL_SPI_ID_IDLENESS_10CYCLE (SPI_CFG2_MIDI_3 | SPI_CFG2_MIDI_1)
#define LL_SPI_ID_IDLENESS_11CYCLE (SPI_CFG2_MIDI_3 | SPI_CFG2_MIDI_1 | SPI_CFG2_MIDI_0)
#define LL_SPI_ID_IDLENESS_12CYCLE (SPI_CFG2_MIDI_3 | SPI_CFG2_MIDI_2)
#define LL_SPI_ID_IDLENESS_13CYCLE (SPI_CFG2_MIDI_3 | SPI_CFG2_MIDI_2 | SPI_CFG2_MIDI_0)
#define LL_SPI_ID_IDLENESS_14CYCLE (SPI_CFG2_MIDI_3 | SPI_CFG2_MIDI_2 | SPI_CFG2_MIDI_1)
#define LL_SPI_ID_IDLENESS_15CYCLE (SPI_CFG2_MIDI_3\
| SPI_CFG2_MIDI_2 | SPI_CFG2_MIDI_1 | SPI_CFG2_MIDI_0)
/**
* @}
*/
/** @defgroup SPI_LL_EC_TXCRCINIT_ALL TXCRC Init All
* @{
*/
#define LL_SPI_TXCRCINIT_ALL_ZERO_PATTERN (0x00000000UL)
#define LL_SPI_TXCRCINIT_ALL_ONES_PATTERN (SPI_CR1_TCRCINI)
/**
* @}
*/
/** @defgroup SPI_LL_EC_RXCRCINIT_ALL RXCRC Init All
* @{
*/
#define LL_SPI_RXCRCINIT_ALL_ZERO_PATTERN (0x00000000UL)
#define LL_SPI_RXCRCINIT_ALL_ONES_PATTERN (SPI_CR1_RCRCINI)
/**
* @}
*/
/** @defgroup SPI_LL_EC_UDR_CONFIG_REGISTER UDR Config Register
* @{
*/
#define LL_SPI_UDR_CONFIG_REGISTER_PATTERN (0x00000000UL)
#define LL_SPI_UDR_CONFIG_LAST_RECEIVED (SPI_CFG1_UDRCFG_0)
#define LL_SPI_UDR_CONFIG_LAST_TRANSMITTED (SPI_CFG1_UDRCFG_1)
/**
* @}
*/
/** @defgroup SPI_LL_EC_UDR_DETECT_BEGIN_DATA UDR Detect Begin Data
* @{
*/
#define LL_SPI_UDR_DETECT_BEGIN_DATA_FRAME (0x00000000UL)
#define LL_SPI_UDR_DETECT_END_DATA_FRAME (SPI_CFG1_UDRDET_0)
#define LL_SPI_UDR_DETECT_BEGIN_ACTIVE_NSS (SPI_CFG1_UDRDET_1)
/**
* @}
*/
/** @defgroup SPI_LL_EC_PROTOCOL Protocol
* @{
*/
#define LL_SPI_PROTOCOL_MOTOROLA (0x00000000UL)
#define LL_SPI_PROTOCOL_TI (SPI_CFG2_SP_0)
/**
* @}
*/
/** @defgroup SPI_LL_EC_PHASE Phase
* @{
*/
#define LL_SPI_PHASE_1EDGE (0x00000000UL)
#define LL_SPI_PHASE_2EDGE (SPI_CFG2_CPHA)
/**
* @}
*/
/** @defgroup SPI_LL_EC_POLARITY Polarity
* @{
*/
#define LL_SPI_POLARITY_LOW (0x00000000UL)
#define LL_SPI_POLARITY_HIGH (SPI_CFG2_CPOL)
/**
* @}
*/
/** @defgroup SPI_LL_EC_NSS_POLARITY NSS Polarity
* @{
*/
#define LL_SPI_NSS_POLARITY_LOW (0x00000000UL)
#define LL_SPI_NSS_POLARITY_HIGH (SPI_CFG2_SSIOP)
/**
* @}
*/
/** @defgroup SPI_LL_EC_BAUDRATEPRESCALER Baud Rate Prescaler
* @{
*/
#define LL_SPI_BAUDRATEPRESCALER_DIV2 (0x00000000UL)
#define LL_SPI_BAUDRATEPRESCALER_DIV4 (SPI_CFG1_MBR_0)
#define LL_SPI_BAUDRATEPRESCALER_DIV8 (SPI_CFG1_MBR_1)
#define LL_SPI_BAUDRATEPRESCALER_DIV16 (SPI_CFG1_MBR_1 | SPI_CFG1_MBR_0)
#define LL_SPI_BAUDRATEPRESCALER_DIV32 (SPI_CFG1_MBR_2)
#define LL_SPI_BAUDRATEPRESCALER_DIV64 (SPI_CFG1_MBR_2 | SPI_CFG1_MBR_0)
#define LL_SPI_BAUDRATEPRESCALER_DIV128 (SPI_CFG1_MBR_2 | SPI_CFG1_MBR_1)
#define LL_SPI_BAUDRATEPRESCALER_DIV256 (SPI_CFG1_MBR_2 | SPI_CFG1_MBR_1 | SPI_CFG1_MBR_0)
/**
* @}
*/
/** @defgroup SPI_LL_EC_BIT_ORDER Bit Order
* @{
*/
#define LL_SPI_LSB_FIRST (SPI_CFG2_LSBFRST)
#define LL_SPI_MSB_FIRST (0x00000000UL)
/**
* @}
*/
/** @defgroup SPI_LL_EC_TRANSFER_MODE Transfer Mode
* @{
*/
#define LL_SPI_FULL_DUPLEX (0x00000000UL)
#define LL_SPI_SIMPLEX_TX (SPI_CFG2_COMM_0)
#define LL_SPI_SIMPLEX_RX (SPI_CFG2_COMM_1)
#define LL_SPI_HALF_DUPLEX_RX (SPI_CFG2_COMM_0|SPI_CFG2_COMM_1)
#define LL_SPI_HALF_DUPLEX_TX (SPI_CFG2_COMM_0|SPI_CFG2_COMM_1|SPI_CR1_HDDIR)
/**
* @}
*/
/** @defgroup SPI_LL_EC_DATAWIDTH Data Width
* @{
*/
#define LL_SPI_DATAWIDTH_4BIT (SPI_CFG1_DSIZE_0 | SPI_CFG1_DSIZE_1)
#define LL_SPI_DATAWIDTH_5BIT (SPI_CFG1_DSIZE_2)
#define LL_SPI_DATAWIDTH_6BIT (SPI_CFG1_DSIZE_2 | SPI_CFG1_DSIZE_0)
#define LL_SPI_DATAWIDTH_7BIT (SPI_CFG1_DSIZE_2 | SPI_CFG1_DSIZE_1)
#define LL_SPI_DATAWIDTH_8BIT (SPI_CFG1_DSIZE_2 | SPI_CFG1_DSIZE_1 | SPI_CFG1_DSIZE_0)
#define LL_SPI_DATAWIDTH_9BIT (SPI_CFG1_DSIZE_3)
#define LL_SPI_DATAWIDTH_10BIT (SPI_CFG1_DSIZE_3 | SPI_CFG1_DSIZE_0)
#define LL_SPI_DATAWIDTH_11BIT (SPI_CFG1_DSIZE_3 | SPI_CFG1_DSIZE_1)
#define LL_SPI_DATAWIDTH_12BIT (SPI_CFG1_DSIZE_3 | SPI_CFG1_DSIZE_1 | SPI_CFG1_DSIZE_0)
#define LL_SPI_DATAWIDTH_13BIT (SPI_CFG1_DSIZE_3 | SPI_CFG1_DSIZE_2)
#define LL_SPI_DATAWIDTH_14BIT (SPI_CFG1_DSIZE_3 | SPI_CFG1_DSIZE_2 | SPI_CFG1_DSIZE_0)
#define LL_SPI_DATAWIDTH_15BIT (SPI_CFG1_DSIZE_3 | SPI_CFG1_DSIZE_2 | SPI_CFG1_DSIZE_1)
#define LL_SPI_DATAWIDTH_16BIT (SPI_CFG1_DSIZE_3\
| SPI_CFG1_DSIZE_2 | SPI_CFG1_DSIZE_1 | SPI_CFG1_DSIZE_0)
#define LL_SPI_DATAWIDTH_17BIT (SPI_CFG1_DSIZE_4)
#define LL_SPI_DATAWIDTH_18BIT (SPI_CFG1_DSIZE_4 | SPI_CFG1_DSIZE_0)
#define LL_SPI_DATAWIDTH_19BIT (SPI_CFG1_DSIZE_4 | SPI_CFG1_DSIZE_1)
#define LL_SPI_DATAWIDTH_20BIT (SPI_CFG1_DSIZE_4 | SPI_CFG1_DSIZE_0 | SPI_CFG1_DSIZE_1)
#define LL_SPI_DATAWIDTH_21BIT (SPI_CFG1_DSIZE_4 | SPI_CFG1_DSIZE_2)
#define LL_SPI_DATAWIDTH_22BIT (SPI_CFG1_DSIZE_4 | SPI_CFG1_DSIZE_2 | SPI_CFG1_DSIZE_0)
#define LL_SPI_DATAWIDTH_23BIT (SPI_CFG1_DSIZE_4 | SPI_CFG1_DSIZE_2 | SPI_CFG1_DSIZE_1)
#define LL_SPI_DATAWIDTH_24BIT (SPI_CFG1_DSIZE_4\
| SPI_CFG1_DSIZE_2 | SPI_CFG1_DSIZE_1 | SPI_CFG1_DSIZE_0)
#define LL_SPI_DATAWIDTH_25BIT (SPI_CFG1_DSIZE_4 | SPI_CFG1_DSIZE_3)
#define LL_SPI_DATAWIDTH_26BIT (SPI_CFG1_DSIZE_4 | SPI_CFG1_DSIZE_3 | SPI_CFG1_DSIZE_0)
#define LL_SPI_DATAWIDTH_27BIT (SPI_CFG1_DSIZE_4 | SPI_CFG1_DSIZE_3 | SPI_CFG1_DSIZE_1)
#define LL_SPI_DATAWIDTH_28BIT (SPI_CFG1_DSIZE_4\
| SPI_CFG1_DSIZE_3 | SPI_CFG1_DSIZE_1 | SPI_CFG1_DSIZE_0)
#define LL_SPI_DATAWIDTH_29BIT (SPI_CFG1_DSIZE_4 | SPI_CFG1_DSIZE_3 | SPI_CFG1_DSIZE_2)
#define LL_SPI_DATAWIDTH_30BIT (SPI_CFG1_DSIZE_4\
| SPI_CFG1_DSIZE_3 | SPI_CFG1_DSIZE_2 | SPI_CFG1_DSIZE_0)
#define LL_SPI_DATAWIDTH_31BIT (SPI_CFG1_DSIZE_4\
| SPI_CFG1_DSIZE_3 | SPI_CFG1_DSIZE_2 | SPI_CFG1_DSIZE_1)
#define LL_SPI_DATAWIDTH_32BIT (SPI_CFG1_DSIZE_4 | SPI_CFG1_DSIZE_3\
| SPI_CFG1_DSIZE_2 | SPI_CFG1_DSIZE_1 | SPI_CFG1_DSIZE_0)
/**
* @}
*/
/** @defgroup SPI_LL_EC_FIFO_TH FIFO Threshold
* @{
*/
#define LL_SPI_FIFO_TH_01DATA (0x00000000UL)
#define LL_SPI_FIFO_TH_02DATA (SPI_CFG1_FTHLV_0)
#define LL_SPI_FIFO_TH_03DATA (SPI_CFG1_FTHLV_1)
#define LL_SPI_FIFO_TH_04DATA (SPI_CFG1_FTHLV_0 | SPI_CFG1_FTHLV_1)
#define LL_SPI_FIFO_TH_05DATA (SPI_CFG1_FTHLV_2)
#define LL_SPI_FIFO_TH_06DATA (SPI_CFG1_FTHLV_2 | SPI_CFG1_FTHLV_0)
#define LL_SPI_FIFO_TH_07DATA (SPI_CFG1_FTHLV_2 | SPI_CFG1_FTHLV_1)
#define LL_SPI_FIFO_TH_08DATA (SPI_CFG1_FTHLV_2 | SPI_CFG1_FTHLV_1 | SPI_CFG1_FTHLV_0)
#define LL_SPI_FIFO_TH_09DATA (SPI_CFG1_FTHLV_3)
#define LL_SPI_FIFO_TH_10DATA (SPI_CFG1_FTHLV_3 | SPI_CFG1_FTHLV_0)
#define LL_SPI_FIFO_TH_11DATA (SPI_CFG1_FTHLV_3 | SPI_CFG1_FTHLV_1)
#define LL_SPI_FIFO_TH_12DATA (SPI_CFG1_FTHLV_3 | SPI_CFG1_FTHLV_1 | SPI_CFG1_FTHLV_0)
#define LL_SPI_FIFO_TH_13DATA (SPI_CFG1_FTHLV_3 | SPI_CFG1_FTHLV_2)
#define LL_SPI_FIFO_TH_14DATA (SPI_CFG1_FTHLV_3 | SPI_CFG1_FTHLV_2 | SPI_CFG1_FTHLV_0)
#define LL_SPI_FIFO_TH_15DATA (SPI_CFG1_FTHLV_3 | SPI_CFG1_FTHLV_2 | SPI_CFG1_FTHLV_1)
#define LL_SPI_FIFO_TH_16DATA (SPI_CFG1_FTHLV_3\
| SPI_CFG1_FTHLV_2 | SPI_CFG1_FTHLV_1 | SPI_CFG1_FTHLV_0)
/**
* @}
*/
#if defined(USE_FULL_LL_DRIVER)
/** @defgroup SPI_LL_EC_CRC_CALCULATION CRC Calculation
* @{
*/
#define LL_SPI_CRCCALCULATION_DISABLE (0x00000000UL) /*!< CRC calculation disabled */
#define LL_SPI_CRCCALCULATION_ENABLE (SPI_CFG1_CRCEN) /*!< CRC calculation enabled */
/**
* @}
*/
#endif /* USE_FULL_LL_DRIVER */
/** @defgroup SPI_LL_EC_CRC CRC
* @{
*/
#define LL_SPI_CRC_4BIT (SPI_CFG1_CRCSIZE_0 | SPI_CFG1_CRCSIZE_1)
#define LL_SPI_CRC_5BIT (SPI_CFG1_CRCSIZE_2)
#define LL_SPI_CRC_6BIT (SPI_CFG1_CRCSIZE_2 | SPI_CFG1_CRCSIZE_0)
#define LL_SPI_CRC_7BIT (SPI_CFG1_CRCSIZE_2 | SPI_CFG1_CRCSIZE_1)
#define LL_SPI_CRC_8BIT (SPI_CFG1_CRCSIZE_2 | SPI_CFG1_CRCSIZE_1 | SPI_CFG1_CRCSIZE_0)
#define LL_SPI_CRC_9BIT (SPI_CFG1_CRCSIZE_3)
#define LL_SPI_CRC_10BIT (SPI_CFG1_CRCSIZE_3 | SPI_CFG1_CRCSIZE_0)
#define LL_SPI_CRC_11BIT (SPI_CFG1_CRCSIZE_3 | SPI_CFG1_CRCSIZE_1)
#define LL_SPI_CRC_12BIT (SPI_CFG1_CRCSIZE_3 | SPI_CFG1_CRCSIZE_1 | SPI_CFG1_CRCSIZE_0)
#define LL_SPI_CRC_13BIT (SPI_CFG1_CRCSIZE_3 | SPI_CFG1_CRCSIZE_2)
#define LL_SPI_CRC_14BIT (SPI_CFG1_CRCSIZE_3 | SPI_CFG1_CRCSIZE_2 | SPI_CFG1_CRCSIZE_0)
#define LL_SPI_CRC_15BIT (SPI_CFG1_CRCSIZE_3 | SPI_CFG1_CRCSIZE_2 | SPI_CFG1_CRCSIZE_1)
#define LL_SPI_CRC_16BIT (SPI_CFG1_CRCSIZE_3\
| SPI_CFG1_CRCSIZE_2 | SPI_CFG1_CRCSIZE_1 | SPI_CFG1_CRCSIZE_0)
#define LL_SPI_CRC_17BIT (SPI_CFG1_CRCSIZE_4)
#define LL_SPI_CRC_18BIT (SPI_CFG1_CRCSIZE_4 | SPI_CFG1_CRCSIZE_0)
#define LL_SPI_CRC_19BIT (SPI_CFG1_CRCSIZE_4 | SPI_CFG1_CRCSIZE_1)
#define LL_SPI_CRC_20BIT (SPI_CFG1_CRCSIZE_4 | SPI_CFG1_CRCSIZE_0 | SPI_CFG1_CRCSIZE_1)
#define LL_SPI_CRC_21BIT (SPI_CFG1_CRCSIZE_4 | SPI_CFG1_CRCSIZE_2)
#define LL_SPI_CRC_22BIT (SPI_CFG1_CRCSIZE_4 | SPI_CFG1_CRCSIZE_2 | SPI_CFG1_CRCSIZE_0)
#define LL_SPI_CRC_23BIT (SPI_CFG1_CRCSIZE_4 | SPI_CFG1_CRCSIZE_2 | SPI_CFG1_CRCSIZE_1)
#define LL_SPI_CRC_24BIT (SPI_CFG1_CRCSIZE_4\
| SPI_CFG1_CRCSIZE_2 | SPI_CFG1_CRCSIZE_1 | SPI_CFG1_CRCSIZE_0)
#define LL_SPI_CRC_25BIT (SPI_CFG1_CRCSIZE_4 | SPI_CFG1_CRCSIZE_3)
#define LL_SPI_CRC_26BIT (SPI_CFG1_CRCSIZE_4 | SPI_CFG1_CRCSIZE_3 | SPI_CFG1_CRCSIZE_0)
#define LL_SPI_CRC_27BIT (SPI_CFG1_CRCSIZE_4 | SPI_CFG1_CRCSIZE_3 | SPI_CFG1_CRCSIZE_1)
#define LL_SPI_CRC_28BIT (SPI_CFG1_CRCSIZE_4\
| SPI_CFG1_CRCSIZE_3 | SPI_CFG1_CRCSIZE_1 | SPI_CFG1_CRCSIZE_0)
#define LL_SPI_CRC_29BIT (SPI_CFG1_CRCSIZE_4 | SPI_CFG1_CRCSIZE_3 | SPI_CFG1_CRCSIZE_2)
#define LL_SPI_CRC_30BIT (SPI_CFG1_CRCSIZE_4\
| SPI_CFG1_CRCSIZE_3 | SPI_CFG1_CRCSIZE_2 | SPI_CFG1_CRCSIZE_0)
#define LL_SPI_CRC_31BIT (SPI_CFG1_CRCSIZE_4\
| SPI_CFG1_CRCSIZE_3 | SPI_CFG1_CRCSIZE_2 | SPI_CFG1_CRCSIZE_1)
#define LL_SPI_CRC_32BIT (SPI_CFG1_CRCSIZE_4 | SPI_CFG1_CRCSIZE_3\
| SPI_CFG1_CRCSIZE_2 | SPI_CFG1_CRCSIZE_1 | SPI_CFG1_CRCSIZE_0)
/**
* @}
*/
/** @defgroup SPI_LL_EC_NSS_MODE NSS Mode
* @{
*/
#define LL_SPI_NSS_SOFT (SPI_CFG2_SSM)
#define LL_SPI_NSS_HARD_INPUT (0x00000000UL)
#define LL_SPI_NSS_HARD_OUTPUT (SPI_CFG2_SSOE)
/**
* @}
*/
/** @defgroup SPI_LL_EC_RX_FIFO RxFIFO Packing LeVel
* @{
*/
#define LL_SPI_RX_FIFO_0PACKET (0x00000000UL) /* 0 or multiple of 4 packet available is the RxFIFO */
#define LL_SPI_RX_FIFO_1PACKET (SPI_SR_RXPLVL_0)
#define LL_SPI_RX_FIFO_2PACKET (SPI_SR_RXPLVL_1)
#define LL_SPI_RX_FIFO_3PACKET (SPI_SR_RXPLVL_1 | SPI_SR_RXPLVL_0)
/**
* @}
*/
/**
* @}
*/
/* Exported macro ------------------------------------------------------------*/
/** @defgroup SPI_LL_Exported_Macros SPI Exported Macros
* @{
*/
/** @defgroup SPI_LL_EM_WRITE_READ Common Write and read registers Macros
* @{
*/
/**
* @brief Write a value in SPI register
* @param __INSTANCE__ SPI Instance
* @param __REG__ Register to be written
* @param __VALUE__ Value to be written in the register
* @retval None
*/
#define LL_SPI_WriteReg(__INSTANCE__, __REG__, __VALUE__) WRITE_REG(__INSTANCE__->__REG__, (__VALUE__))
/**
* @brief Read a value in SPI register
* @param __INSTANCE__ SPI Instance
* @param __REG__ Register to be read
* @retval Register value
*/
#define LL_SPI_ReadReg(__INSTANCE__, __REG__) READ_REG(__INSTANCE__->__REG__)
/**
* @}
*/
/**
* @}
*/
/* Exported functions --------------------------------------------------------*/
/** @defgroup SPI_LL_Exported_Functions SPI Exported Functions
* @{
*/
/** @defgroup SPI_LL_EF_Configuration Configuration
* @{
*/
/**
* @brief Enable SPI peripheral
* @rmtoll CR1 SPE LL_SPI_Enable
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_SPI_Enable(SPI_TypeDef *SPIx)
{
SET_BIT(SPIx->CR1, SPI_CR1_SPE);
}
/**
* @brief Disable SPI peripheral
* @note When disabling the SPI, follow the procedure described in the Reference Manual.
* @rmtoll CR1 SPE LL_SPI_Disable
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_SPI_Disable(SPI_TypeDef *SPIx)
{
CLEAR_BIT(SPIx->CR1, SPI_CR1_SPE);
}
/**
* @brief Check if SPI peripheral is enabled
* @rmtoll CR1 SPE LL_SPI_IsEnabled
* @param SPIx SPI Instance
* @retval State of bit (1 or 0)
*/
__STATIC_INLINE uint32_t LL_SPI_IsEnabled(SPI_TypeDef *SPIx)
{
return ((READ_BIT(SPIx->CR1, SPI_CR1_SPE) == (SPI_CR1_SPE)) ? 1UL : 0UL);
}
/**
* @brief Swap the MOSI and MISO pin
* @note This configuration can not be changed when SPI is enabled.
* @rmtoll CFG2 IOSWP LL_SPI_EnableIOSwap
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_SPI_EnableIOSwap(SPI_TypeDef *SPIx)
{
SET_BIT(SPIx->CFG2, SPI_CFG2_IOSWP);
}
/**
* @brief Restore default function for MOSI and MISO pin
* @note This configuration can not be changed when SPI is enabled.
* @rmtoll CFG2 IOSWP LL_SPI_DisableIOSwap
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_SPI_DisableIOSwap(SPI_TypeDef *SPIx)
{
CLEAR_BIT(SPIx->CFG2, SPI_CFG2_IOSWP);
}
/**
* @brief Check if MOSI and MISO pin are swapped
* @rmtoll CFG2 IOSWP LL_SPI_IsEnabledIOSwap
* @param SPIx SPI Instance
* @retval State of bit (1 or 0)
*/
__STATIC_INLINE uint32_t LL_SPI_IsEnabledIOSwap(SPI_TypeDef *SPIx)
{
return ((READ_BIT(SPIx->CFG2, SPI_CFG2_IOSWP) == (SPI_CFG2_IOSWP)) ? 1UL : 0UL);
}
/**
* @brief Enable GPIO control
* @note This configuration can not be changed when SPI is enabled.
* @rmtoll CFG2 AFCNTR LL_SPI_EnableGPIOControl
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_SPI_EnableGPIOControl(SPI_TypeDef *SPIx)
{
SET_BIT(SPIx->CFG2, SPI_CFG2_AFCNTR);
}
/**
* @brief Disable GPIO control
* @note This configuration can not be changed when SPI is enabled.
* @rmtoll CFG2 AFCNTR LL_SPI_DisableGPIOControl
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_SPI_DisableGPIOControl(SPI_TypeDef *SPIx)
{
CLEAR_BIT(SPIx->CFG2, SPI_CFG2_AFCNTR);
}
/**
* @brief Check if GPIO control is active
* @rmtoll CFG2 AFCNTR LL_SPI_IsEnabledGPIOControl
* @param SPIx SPI Instance
* @retval State of bit (1 or 0)
*/
__STATIC_INLINE uint32_t LL_SPI_IsEnabledGPIOControl(SPI_TypeDef *SPIx)
{
return ((READ_BIT(SPIx->CFG2, SPI_CFG2_AFCNTR) == (SPI_CFG2_AFCNTR)) ? 1UL : 0UL);
}
/**
* @brief Set SPI Mode to Master or Slave
* @note This configuration can not be changed when SPI is enabled.
* @rmtoll CFG2 MASTER LL_SPI_SetMode
* @param SPIx SPI Instance
* @param Mode This parameter can be one of the following values:
* @arg @ref LL_SPI_MODE_MASTER
* @arg @ref LL_SPI_MODE_SLAVE
* @retval None
*/
__STATIC_INLINE void LL_SPI_SetMode(SPI_TypeDef *SPIx, uint32_t Mode)
{
MODIFY_REG(SPIx->CFG2, SPI_CFG2_MASTER, Mode);
}
/**
* @brief Get SPI Mode (Master or Slave)
* @rmtoll CFG2 MASTER LL_SPI_GetMode
* @param SPIx SPI Instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_SPI_MODE_MASTER
* @arg @ref LL_SPI_MODE_SLAVE
*/
__STATIC_INLINE uint32_t LL_SPI_GetMode(SPI_TypeDef *SPIx)
{
return (uint32_t)(READ_BIT(SPIx->CFG2, SPI_CFG2_MASTER));
}
/**
* @brief Configure the Idleness applied by master between active edge of SS and first send data
* @rmtoll CFG2 MSSI LL_SPI_SetMasterSSIdleness
* @param SPIx SPI Instance
* @param MasterSSIdleness This parameter can be one of the following values:
* @arg @ref LL_SPI_SS_IDLENESS_00CYCLE
* @arg @ref LL_SPI_SS_IDLENESS_01CYCLE
* @arg @ref LL_SPI_SS_IDLENESS_02CYCLE
* @arg @ref LL_SPI_SS_IDLENESS_03CYCLE
* @arg @ref LL_SPI_SS_IDLENESS_04CYCLE
* @arg @ref LL_SPI_SS_IDLENESS_05CYCLE
* @arg @ref LL_SPI_SS_IDLENESS_06CYCLE
* @arg @ref LL_SPI_SS_IDLENESS_07CYCLE
* @arg @ref LL_SPI_SS_IDLENESS_08CYCLE
* @arg @ref LL_SPI_SS_IDLENESS_09CYCLE
* @arg @ref LL_SPI_SS_IDLENESS_10CYCLE
* @arg @ref LL_SPI_SS_IDLENESS_11CYCLE
* @arg @ref LL_SPI_SS_IDLENESS_12CYCLE
* @arg @ref LL_SPI_SS_IDLENESS_13CYCLE
* @arg @ref LL_SPI_SS_IDLENESS_14CYCLE
* @arg @ref LL_SPI_SS_IDLENESS_15CYCLE
* @retval None
*/
__STATIC_INLINE void LL_SPI_SetMasterSSIdleness(SPI_TypeDef *SPIx, uint32_t MasterSSIdleness)
{
MODIFY_REG(SPIx->CFG2, SPI_CFG2_MSSI, MasterSSIdleness);
}
/**
* @brief Get the configured Idleness applied by master
* @rmtoll CFG2 MSSI LL_SPI_GetMasterSSIdleness
* @param SPIx SPI Instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_SPI_SS_IDLENESS_00CYCLE
* @arg @ref LL_SPI_SS_IDLENESS_01CYCLE
* @arg @ref LL_SPI_SS_IDLENESS_02CYCLE
* @arg @ref LL_SPI_SS_IDLENESS_03CYCLE
* @arg @ref LL_SPI_SS_IDLENESS_04CYCLE
* @arg @ref LL_SPI_SS_IDLENESS_05CYCLE
* @arg @ref LL_SPI_SS_IDLENESS_06CYCLE
* @arg @ref LL_SPI_SS_IDLENESS_07CYCLE
* @arg @ref LL_SPI_SS_IDLENESS_08CYCLE
* @arg @ref LL_SPI_SS_IDLENESS_09CYCLE
* @arg @ref LL_SPI_SS_IDLENESS_10CYCLE
* @arg @ref LL_SPI_SS_IDLENESS_11CYCLE
* @arg @ref LL_SPI_SS_IDLENESS_12CYCLE
* @arg @ref LL_SPI_SS_IDLENESS_13CYCLE
* @arg @ref LL_SPI_SS_IDLENESS_14CYCLE
* @arg @ref LL_SPI_SS_IDLENESS_15CYCLE
*/
__STATIC_INLINE uint32_t LL_SPI_GetMasterSSIdleness(SPI_TypeDef *SPIx)
{
return (uint32_t)(READ_BIT(SPIx->CFG2, SPI_CFG2_MSSI));
}
/**
* @brief Configure the idleness applied by master between data frame
* @rmtoll CFG2 MIDI LL_SPI_SetInterDataIdleness
* @param SPIx SPI Instance
* @param MasterInterDataIdleness This parameter can be one of the following values:
* @arg @ref LL_SPI_ID_IDLENESS_00CYCLE
* @arg @ref LL_SPI_ID_IDLENESS_01CYCLE
* @arg @ref LL_SPI_ID_IDLENESS_02CYCLE
* @arg @ref LL_SPI_ID_IDLENESS_03CYCLE
* @arg @ref LL_SPI_ID_IDLENESS_04CYCLE
* @arg @ref LL_SPI_ID_IDLENESS_05CYCLE
* @arg @ref LL_SPI_ID_IDLENESS_06CYCLE
* @arg @ref LL_SPI_ID_IDLENESS_07CYCLE
* @arg @ref LL_SPI_ID_IDLENESS_08CYCLE
* @arg @ref LL_SPI_ID_IDLENESS_09CYCLE
* @arg @ref LL_SPI_ID_IDLENESS_10CYCLE
* @arg @ref LL_SPI_ID_IDLENESS_11CYCLE
* @arg @ref LL_SPI_ID_IDLENESS_12CYCLE
* @arg @ref LL_SPI_ID_IDLENESS_13CYCLE
* @arg @ref LL_SPI_ID_IDLENESS_14CYCLE
* @arg @ref LL_SPI_ID_IDLENESS_15CYCLE
* @retval None
*/
__STATIC_INLINE void LL_SPI_SetInterDataIdleness(SPI_TypeDef *SPIx, uint32_t MasterInterDataIdleness)
{
MODIFY_REG(SPIx->CFG2, SPI_CFG2_MIDI, MasterInterDataIdleness);
}
/**
* @brief Get the configured inter data idleness
* @rmtoll CFG2 MIDI LL_SPI_SetInterDataIdleness
* @param SPIx SPI Instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_SPI_ID_IDLENESS_00CYCLE
* @arg @ref LL_SPI_ID_IDLENESS_01CYCLE
* @arg @ref LL_SPI_ID_IDLENESS_02CYCLE
* @arg @ref LL_SPI_ID_IDLENESS_03CYCLE
* @arg @ref LL_SPI_ID_IDLENESS_04CYCLE
* @arg @ref LL_SPI_ID_IDLENESS_05CYCLE
* @arg @ref LL_SPI_ID_IDLENESS_06CYCLE
* @arg @ref LL_SPI_ID_IDLENESS_07CYCLE
* @arg @ref LL_SPI_ID_IDLENESS_08CYCLE
* @arg @ref LL_SPI_ID_IDLENESS_09CYCLE
* @arg @ref LL_SPI_ID_IDLENESS_10CYCLE
* @arg @ref LL_SPI_ID_IDLENESS_11CYCLE
* @arg @ref LL_SPI_ID_IDLENESS_12CYCLE
* @arg @ref LL_SPI_ID_IDLENESS_13CYCLE
* @arg @ref LL_SPI_ID_IDLENESS_14CYCLE
* @arg @ref LL_SPI_ID_IDLENESS_15CYCLE
*/
__STATIC_INLINE uint32_t LL_SPI_GetInterDataIdleness(SPI_TypeDef *SPIx)
{
return (uint32_t)(READ_BIT(SPIx->CFG2, SPI_CFG2_MIDI));
}
/**
* @brief Set transfer size
* @note Count is the number of frame to be transferred
* @rmtoll CR2 TSIZE LL_SPI_SetTransferSize
* @param SPIx SPI Instance
* @param Count 0..0xFFFF
* @retval None
*/
__STATIC_INLINE void LL_SPI_SetTransferSize(SPI_TypeDef *SPIx, uint32_t Count)
{
MODIFY_REG(SPIx->CR2, SPI_CR2_TSIZE, Count);
}
/**
* @brief Get transfer size
* @note Count is the number of frame to be transferred
* @rmtoll CR2 TSIZE LL_SPI_GetTransferSize
* @param SPIx SPI Instance
* @retval 0..0xFFFF
*/
__STATIC_INLINE uint32_t LL_SPI_GetTransferSize(SPI_TypeDef *SPIx)
{
return (uint32_t)(READ_BIT(SPIx->CR2, SPI_CR2_TSIZE));
}
/**
* @brief Set reload transfer size
* @note Count is the number of frame to be transferred
* @rmtoll CR2 TSER LL_SPI_SetReloadSize
* @param SPIx SPI Instance
* @param Count 0..0xFFFF
* @retval None
*/
__STATIC_INLINE void LL_SPI_SetReloadSize(SPI_TypeDef *SPIx, uint32_t Count)
{
MODIFY_REG(SPIx->CR2, SPI_CR2_TSER, Count << SPI_CR2_TSER_Pos);
}
/**
* @brief Get reload transfer size
* @note Count is the number of frame to be transferred
* @rmtoll CR2 TSER LL_SPI_GetReloadSize
* @param SPIx SPI Instance
* @retval 0..0xFFFF
*/
__STATIC_INLINE uint32_t LL_SPI_GetReloadSize(SPI_TypeDef *SPIx)
{
return (uint32_t)(READ_BIT(SPIx->CR2, SPI_CR2_TSER) >> SPI_CR2_TSER_Pos);
}
/**
* @brief Lock the AF configuration of associated IOs
* @note Once this bit is set, the AF configuration remains locked until a hardware reset occurs.
* the reset of the IOLock bit is done by hardware. for that, LL_SPI_DisableIOLock can not exist.
* @rmtoll CR1 IOLOCK LL_SPI_EnableIOLock
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_SPI_EnableIOLock(SPI_TypeDef *SPIx)
{
SET_BIT(SPIx->CR1, SPI_CR1_IOLOCK);
}
/**
* @brief Check if the AF configuration is locked.
* @rmtoll CR1 IOLOCK LL_SPI_IsEnabledIOLock
* @param SPIx SPI Instance
* @retval State of bit (1 or 0)
*/
__STATIC_INLINE uint32_t LL_SPI_IsEnabledIOLock(SPI_TypeDef *SPIx)
{
return ((READ_BIT(SPIx->CR1, SPI_CR1_IOLOCK) == (SPI_CR1_IOLOCK)) ? 1UL : 0UL);
}
/**
* @brief Set Tx CRC Initialization Pattern
* @rmtoll CR1 TCRCINI LL_SPI_SetTxCRCInitPattern
* @param SPIx SPI Instance
* @param TXCRCInitAll This parameter can be one of the following values:
* @arg @ref LL_SPI_TXCRCINIT_ALL_ZERO_PATTERN
* @arg @ref LL_SPI_TXCRCINIT_ALL_ONES_PATTERN
* @retval None
*/
__STATIC_INLINE void LL_SPI_SetTxCRCInitPattern(SPI_TypeDef *SPIx, uint32_t TXCRCInitAll)
{
MODIFY_REG(SPIx->CR1, SPI_CR1_TCRCINI, TXCRCInitAll);
}
/**
* @brief Get Tx CRC Initialization Pattern
* @rmtoll CR1 TCRCINI LL_SPI_GetTxCRCInitPattern
* @param SPIx SPI Instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_SPI_TXCRCINIT_ALL_ZERO_PATTERN
* @arg @ref LL_SPI_TXCRCINIT_ALL_ONES_PATTERN
*/
__STATIC_INLINE uint32_t LL_SPI_GetTxCRCInitPattern(SPI_TypeDef *SPIx)
{
return (uint32_t)(READ_BIT(SPIx->CR1, SPI_CR1_TCRCINI));
}
/**
* @brief Set Rx CRC Initialization Pattern
* @rmtoll CR1 RCRCINI LL_SPI_SetRxCRCInitPattern
* @param SPIx SPI Instance
* @param RXCRCInitAll This parameter can be one of the following values:
* @arg @ref LL_SPI_RXCRCINIT_ALL_ZERO_PATTERN
* @arg @ref LL_SPI_RXCRCINIT_ALL_ONES_PATTERN
* @retval None
*/
__STATIC_INLINE void LL_SPI_SetRxCRCInitPattern(SPI_TypeDef *SPIx, uint32_t RXCRCInitAll)
{
MODIFY_REG(SPIx->CR1, SPI_CR1_RCRCINI, RXCRCInitAll);
}
/**
* @brief Get Rx CRC Initialization Pattern
* @rmtoll CR1 RCRCINI LL_SPI_GetRxCRCInitPattern
* @param SPIx SPI Instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_SPI_RXCRCINIT_ALL_ZERO_PATTERN
* @arg @ref LL_SPI_RXCRCINIT_ALL_ONES_PATTERN
*/
__STATIC_INLINE uint32_t LL_SPI_GetRxCRCInitPattern(SPI_TypeDef *SPIx)
{
return (uint32_t)(READ_BIT(SPIx->CR1, SPI_CR1_RCRCINI));
}
/**
* @brief Set internal SS input level ignoring what comes from PIN.
* @note This configuration has effect only with config LL_SPI_NSS_SOFT
* @rmtoll CR1 SSI LL_SPI_SetInternalSSLevel
* @param SPIx SPI Instance
* @param SSLevel This parameter can be one of the following values:
* @arg @ref LL_SPI_SS_LEVEL_HIGH
* @arg @ref LL_SPI_SS_LEVEL_LOW
* @retval None
*/
__STATIC_INLINE void LL_SPI_SetInternalSSLevel(SPI_TypeDef *SPIx, uint32_t SSLevel)
{
MODIFY_REG(SPIx->CR1, SPI_CR1_SSI, SSLevel);
}
/**
* @brief Get internal SS input level
* @rmtoll CR1 SSI LL_SPI_GetInternalSSLevel
* @param SPIx SPI Instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_SPI_SS_LEVEL_HIGH
* @arg @ref LL_SPI_SS_LEVEL_LOW
*/
__STATIC_INLINE uint32_t LL_SPI_GetInternalSSLevel(SPI_TypeDef *SPIx)
{
return (uint32_t)(READ_BIT(SPIx->CR1, SPI_CR1_SSI));
}
/**
* @brief Enable CRC computation on 33/17 bits
* @rmtoll CR1 CRC33_17 LL_SPI_EnableFullSizeCRC
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_SPI_EnableFullSizeCRC(SPI_TypeDef *SPIx)
{
SET_BIT(SPIx->CR1, SPI_CR1_CRC33_17);
}
/**
* @brief Disable CRC computation on 33/17 bits
* @rmtoll CR1 CRC33_17 LL_SPI_DisableFullSizeCRC
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_SPI_DisableFullSizeCRC(SPI_TypeDef *SPIx)
{
CLEAR_BIT(SPIx->CR1, SPI_CR1_CRC33_17);
}
/**
* @brief Check if Enable CRC computation on 33/17 bits is enabled
* @rmtoll CR1 CRC33_17 LL_SPI_IsEnabledFullSizeCRC
* @param SPIx SPI Instance
* @retval State of bit (1 or 0)
*/
__STATIC_INLINE uint32_t LL_SPI_IsEnabledFullSizeCRC(SPI_TypeDef *SPIx)
{
return ((READ_BIT(SPIx->CR1, SPI_CR1_CRC33_17) == (SPI_CR1_CRC33_17)) ? 1UL : 0UL);
}
/**
* @brief Suspend an ongoing transfer for Master configuration
* @rmtoll CR1 CSUSP LL_SPI_SuspendMasterTransfer
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_SPI_SuspendMasterTransfer(SPI_TypeDef *SPIx)
{
SET_BIT(SPIx->CR1, SPI_CR1_CSUSP);
}
/**
* @brief Start effective transfer on wire for Master configuration
* @rmtoll CR1 CSTART LL_SPI_StartMasterTransfer
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_SPI_StartMasterTransfer(SPI_TypeDef *SPIx)
{
SET_BIT(SPIx->CR1, SPI_CR1_CSTART);
}
/**
* @brief Check if there is an unfinished master transfer
* @rmtoll CR1 CSTART LL_SPI_IsActiveMasterTransfer
* @param SPIx SPI Instance
* @retval State of bit (1 or 0)
*/
__STATIC_INLINE uint32_t LL_SPI_IsActiveMasterTransfer(SPI_TypeDef *SPIx)
{
return ((READ_BIT(SPIx->CR1, SPI_CR1_CSTART) == (SPI_CR1_CSTART)) ? 1UL : 0UL);
}
/**
* @brief Enable Master Rx auto suspend in case of overrun
* @rmtoll CR1 MASRX LL_SPI_EnableMasterRxAutoSuspend
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_SPI_EnableMasterRxAutoSuspend(SPI_TypeDef *SPIx)
{
SET_BIT(SPIx->CR1, SPI_CR1_MASRX);
}
/**
* @brief Disable Master Rx auto suspend in case of overrun
* @rmtoll CR1 MASRX LL_SPI_DisableMasterRxAutoSuspend
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_SPI_DisableMasterRxAutoSuspend(SPI_TypeDef *SPIx)
{
CLEAR_BIT(SPIx->CR1, SPI_CR1_MASRX);
}
/**
* @brief Check if Master Rx auto suspend is activated
* @rmtoll CR1 MASRX LL_SPI_IsEnabledMasterRxAutoSuspend
* @param SPIx SPI Instance
* @retval State of bit (1 or 0)
*/
__STATIC_INLINE uint32_t LL_SPI_IsEnabledMasterRxAutoSuspend(SPI_TypeDef *SPIx)
{
return ((READ_BIT(SPIx->CR1, SPI_CR1_MASRX) == (SPI_CR1_MASRX)) ? 1UL : 0UL);
}
/**
* @brief Set Underrun behavior
* @note This configuration can not be changed when SPI is enabled.
* @rmtoll CFG1 UDRCFG LL_SPI_SetUDRConfiguration
* @param SPIx SPI Instance
* @param UDRConfig This parameter can be one of the following values:
* @arg @ref LL_SPI_UDR_CONFIG_REGISTER_PATTERN
* @arg @ref LL_SPI_UDR_CONFIG_LAST_RECEIVED
* @arg @ref LL_SPI_UDR_CONFIG_LAST_TRANSMITTED
* @retval None
*/
__STATIC_INLINE void LL_SPI_SetUDRConfiguration(SPI_TypeDef *SPIx, uint32_t UDRConfig)
{
MODIFY_REG(SPIx->CFG1, SPI_CFG1_UDRCFG, UDRConfig);
}
/**
* @brief Get Underrun behavior
* @rmtoll CFG1 UDRCFG LL_SPI_GetUDRConfiguration
* @param SPIx SPI Instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_SPI_UDR_CONFIG_REGISTER_PATTERN
* @arg @ref LL_SPI_UDR_CONFIG_LAST_RECEIVED
* @arg @ref LL_SPI_UDR_CONFIG_LAST_TRANSMITTED
*/
__STATIC_INLINE uint32_t LL_SPI_GetUDRConfiguration(SPI_TypeDef *SPIx)
{
return (uint32_t)(READ_BIT(SPIx->CFG1, SPI_CFG1_UDRCFG));
}
/**
* @brief Set Underrun Detection method
* @note This configuration can not be changed when SPI is enabled.
* @rmtoll CFG1 UDRDET LL_SPI_SetUDRDetection
* @param SPIx SPI Instance
* @param UDRDetection This parameter can be one of the following values:
* @arg @ref LL_SPI_UDR_DETECT_BEGIN_DATA_FRAME
* @arg @ref LL_SPI_UDR_DETECT_END_DATA_FRAME
* @arg @ref LL_SPI_UDR_DETECT_BEGIN_ACTIVE_NSS
* @retval None
*/
__STATIC_INLINE void LL_SPI_SetUDRDetection(SPI_TypeDef *SPIx, uint32_t UDRDetection)
{
MODIFY_REG(SPIx->CFG1, SPI_CFG1_UDRDET, UDRDetection);
}
/**
* @brief Get Underrun Detection method
* @rmtoll CFG1 UDRDET LL_SPI_GetUDRDetection
* @param SPIx SPI Instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_SPI_UDR_DETECT_BEGIN_DATA_FRAME
* @arg @ref LL_SPI_UDR_DETECT_END_DATA_FRAME
* @arg @ref LL_SPI_UDR_DETECT_BEGIN_ACTIVE_NSS
*/
__STATIC_INLINE uint32_t LL_SPI_GetUDRDetection(SPI_TypeDef *SPIx)
{
return (uint32_t)(READ_BIT(SPIx->CFG1, SPI_CFG1_UDRDET));
}
/**
* @brief Set Serial protocol used
* @note This configuration can not be changed when SPI is enabled.
* @rmtoll CFG2 SP LL_SPI_SetStandard
* @param SPIx SPI Instance
* @param Standard This parameter can be one of the following values:
* @arg @ref LL_SPI_PROTOCOL_MOTOROLA
* @arg @ref LL_SPI_PROTOCOL_TI
* @retval None
*/
__STATIC_INLINE void LL_SPI_SetStandard(SPI_TypeDef *SPIx, uint32_t Standard)
{
MODIFY_REG(SPIx->CFG2, SPI_CFG2_SP, Standard);
}
/**
* @brief Get Serial protocol used
* @rmtoll CFG2 SP LL_SPI_GetStandard
* @param SPIx SPI Instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_SPI_PROTOCOL_MOTOROLA
* @arg @ref LL_SPI_PROTOCOL_TI
*/
__STATIC_INLINE uint32_t LL_SPI_GetStandard(SPI_TypeDef *SPIx)
{
return (uint32_t)(READ_BIT(SPIx->CFG2, SPI_CFG2_SP));
}
/**
* @brief Set Clock phase
* @note This configuration can not be changed when SPI is enabled.
* This bit is not used in SPI TI mode.
* @rmtoll CFG2 CPHA LL_SPI_SetClockPhase
* @param SPIx SPI Instance
* @param ClockPhase This parameter can be one of the following values:
* @arg @ref LL_SPI_PHASE_1EDGE
* @arg @ref LL_SPI_PHASE_2EDGE
* @retval None
*/
__STATIC_INLINE void LL_SPI_SetClockPhase(SPI_TypeDef *SPIx, uint32_t ClockPhase)
{
MODIFY_REG(SPIx->CFG2, SPI_CFG2_CPHA, ClockPhase);
}
/**
* @brief Get Clock phase
* @rmtoll CFG2 CPHA LL_SPI_GetClockPhase
* @param SPIx SPI Instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_SPI_PHASE_1EDGE
* @arg @ref LL_SPI_PHASE_2EDGE
*/
__STATIC_INLINE uint32_t LL_SPI_GetClockPhase(SPI_TypeDef *SPIx)
{
return (uint32_t)(READ_BIT(SPIx->CFG2, SPI_CFG2_CPHA));
}
/**
* @brief Set Clock polarity
* @note This configuration can not be changed when SPI is enabled.
* This bit is not used in SPI TI mode.
* @rmtoll CFG2 CPOL LL_SPI_SetClockPolarity
* @param SPIx SPI Instance
* @param ClockPolarity This parameter can be one of the following values:
* @arg @ref LL_SPI_POLARITY_LOW
* @arg @ref LL_SPI_POLARITY_HIGH
* @retval None
*/
__STATIC_INLINE void LL_SPI_SetClockPolarity(SPI_TypeDef *SPIx, uint32_t ClockPolarity)
{
MODIFY_REG(SPIx->CFG2, SPI_CFG2_CPOL, ClockPolarity);
}
/**
* @brief Get Clock polarity
* @rmtoll CFG2 CPOL LL_SPI_GetClockPolarity
* @param SPIx SPI Instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_SPI_POLARITY_LOW
* @arg @ref LL_SPI_POLARITY_HIGH
*/
__STATIC_INLINE uint32_t LL_SPI_GetClockPolarity(SPI_TypeDef *SPIx)
{
return (uint32_t)(READ_BIT(SPIx->CFG2, SPI_CFG2_CPOL));
}
/**
* @brief Set NSS polarity
* @note This configuration can not be changed when SPI is enabled.
* This bit is not used in SPI TI mode.
* @rmtoll CFG2 SSIOP LL_SPI_SetNSSPolarity
* @param SPIx SPI Instance
* @param NSSPolarity This parameter can be one of the following values:
* @arg @ref LL_SPI_NSS_POLARITY_LOW
* @arg @ref LL_SPI_NSS_POLARITY_HIGH
* @retval None
*/
__STATIC_INLINE void LL_SPI_SetNSSPolarity(SPI_TypeDef *SPIx, uint32_t NSSPolarity)
{
MODIFY_REG(SPIx->CFG2, SPI_CFG2_SSIOP, NSSPolarity);
}
/**
* @brief Get NSS polarity
* @rmtoll CFG2 SSIOP LL_SPI_GetNSSPolarity
* @param SPIx SPI Instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_SPI_NSS_POLARITY_LOW
* @arg @ref LL_SPI_NSS_POLARITY_HIGH
*/
__STATIC_INLINE uint32_t LL_SPI_GetNSSPolarity(SPI_TypeDef *SPIx)
{
return (uint32_t)(READ_BIT(SPIx->CFG2, SPI_CFG2_SSIOP));
}
/**
* @brief Set Baudrate Prescaler
* @note This configuration can not be changed when SPI is enabled.
* SPI BaudRate = fPCLK/Pescaler.
* @rmtoll CFG1 MBR LL_SPI_SetBaudRatePrescaler
* @param SPIx SPI Instance
* @param Baudrate This parameter can be one of the following values:
* @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV2
* @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV4
* @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV8
* @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV16
* @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV32
* @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV64
* @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV128
* @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV256
* @retval None
*/
__STATIC_INLINE void LL_SPI_SetBaudRatePrescaler(SPI_TypeDef *SPIx, uint32_t Baudrate)
{
MODIFY_REG(SPIx->CFG1, SPI_CFG1_MBR, Baudrate);
}
/**
* @brief Get Baudrate Prescaler
* @rmtoll CFG1 MBR LL_SPI_GetBaudRatePrescaler
* @param SPIx SPI Instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV2
* @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV4
* @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV8
* @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV16
* @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV32
* @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV64
* @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV128
* @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV256
*/
__STATIC_INLINE uint32_t LL_SPI_GetBaudRatePrescaler(SPI_TypeDef *SPIx)
{
return (uint32_t)(READ_BIT(SPIx->CFG1, SPI_CFG1_MBR));
}
/**
* @brief Set Transfer Bit Order
* @note This configuration can not be changed when SPI is enabled.
* This bit is not used in SPI TI mode.
* @rmtoll CFG2 LSBFRST LL_SPI_SetTransferBitOrder
* @param SPIx SPI Instance
* @param BitOrder This parameter can be one of the following values:
* @arg @ref LL_SPI_LSB_FIRST
* @arg @ref LL_SPI_MSB_FIRST
* @retval None
*/
__STATIC_INLINE void LL_SPI_SetTransferBitOrder(SPI_TypeDef *SPIx, uint32_t BitOrder)
{
MODIFY_REG(SPIx->CFG2, SPI_CFG2_LSBFRST, BitOrder);
}
/**
* @brief Get Transfer Bit Order
* @rmtoll CFG2 LSBFRST LL_SPI_GetTransferBitOrder
* @param SPIx SPI Instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_SPI_LSB_FIRST
* @arg @ref LL_SPI_MSB_FIRST
*/
__STATIC_INLINE uint32_t LL_SPI_GetTransferBitOrder(SPI_TypeDef *SPIx)
{
return (uint32_t)(READ_BIT(SPIx->CFG2, SPI_CFG2_LSBFRST));
}
/**
* @brief Set Transfer Mode
* @note This configuration can not be changed when SPI is enabled except for half duplex direction
* using LL_SPI_SetHalfDuplexDirection.
* @rmtoll CR1 HDDIR LL_SPI_SetTransferDirection\n
* CFG2 COMM LL_SPI_SetTransferDirection
* @param SPIx SPI Instance
* @param TransferDirection This parameter can be one of the following values:
* @arg @ref LL_SPI_FULL_DUPLEX
* @arg @ref LL_SPI_SIMPLEX_TX
* @arg @ref LL_SPI_SIMPLEX_RX
* @arg @ref LL_SPI_HALF_DUPLEX_RX
* @arg @ref LL_SPI_HALF_DUPLEX_TX
* @retval None
*/
__STATIC_INLINE void LL_SPI_SetTransferDirection(SPI_TypeDef *SPIx, uint32_t TransferDirection)
{
MODIFY_REG(SPIx->CR1, SPI_CR1_HDDIR, TransferDirection & SPI_CR1_HDDIR);
MODIFY_REG(SPIx->CFG2, SPI_CFG2_COMM, TransferDirection & SPI_CFG2_COMM);
}
/**
* @brief Get Transfer Mode
* @rmtoll CR1 HDDIR LL_SPI_GetTransferDirection\n
* CFG2 COMM LL_SPI_GetTransferDirection
* @param SPIx SPI Instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_SPI_FULL_DUPLEX
* @arg @ref LL_SPI_SIMPLEX_TX
* @arg @ref LL_SPI_SIMPLEX_RX
* @arg @ref LL_SPI_HALF_DUPLEX_RX
* @arg @ref LL_SPI_HALF_DUPLEX_TX
*/
__STATIC_INLINE uint32_t LL_SPI_GetTransferDirection(SPI_TypeDef *SPIx)
{
uint32_t Hddir = READ_BIT(SPIx->CR1, SPI_CR1_HDDIR);
uint32_t Comm = READ_BIT(SPIx->CFG2, SPI_CFG2_COMM);
return (Hddir | Comm);
}
/**
* @brief Set direction for Half-Duplex Mode
* @note In master mode the MOSI pin is used and in slave mode the MISO pin is used for Half-Duplex.
* @rmtoll CR1 HDDIR LL_SPI_SetHalfDuplexDirection
* @param SPIx SPI Instance
* @param HalfDuplexDirection This parameter can be one of the following values:
* @arg @ref LL_SPI_HALF_DUPLEX_RX
* @arg @ref LL_SPI_HALF_DUPLEX_TX
* @retval None
*/
__STATIC_INLINE void LL_SPI_SetHalfDuplexDirection(SPI_TypeDef *SPIx, uint32_t HalfDuplexDirection)
{
MODIFY_REG(SPIx->CR1, SPI_CR1_HDDIR, HalfDuplexDirection & SPI_CR1_HDDIR);
}
/**
* @brief Get direction for Half-Duplex Mode
* @note In master mode the MOSI pin is used and in slave mode the MISO pin is used for Half-Duplex.
* @rmtoll CR1 HDDIR LL_SPI_GetHalfDuplexDirection
* @param SPIx SPI Instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_SPI_HALF_DUPLEX_RX
* @arg @ref LL_SPI_HALF_DUPLEX_TX
*/
__STATIC_INLINE uint32_t LL_SPI_GetHalfDuplexDirection(SPI_TypeDef *SPIx)
{
return (uint32_t)(READ_BIT(SPIx->CR1, SPI_CR1_HDDIR) | SPI_CFG2_COMM);
}
/**
* @brief Set Frame Data Size
* @note This configuration can not be changed when SPI is enabled.
* @rmtoll CFG1 DSIZE LL_SPI_SetDataWidth
* @param SPIx SPI Instance
* @param DataWidth This parameter can be one of the following values:
* @arg @ref LL_SPI_DATAWIDTH_4BIT
* @arg @ref LL_SPI_DATAWIDTH_5BIT
* @arg @ref LL_SPI_DATAWIDTH_6BIT
* @arg @ref LL_SPI_DATAWIDTH_7BIT
* @arg @ref LL_SPI_DATAWIDTH_8BIT
* @arg @ref LL_SPI_DATAWIDTH_9BIT
* @arg @ref LL_SPI_DATAWIDTH_10BIT
* @arg @ref LL_SPI_DATAWIDTH_11BIT
* @arg @ref LL_SPI_DATAWIDTH_12BIT
* @arg @ref LL_SPI_DATAWIDTH_13BIT
* @arg @ref LL_SPI_DATAWIDTH_14BIT
* @arg @ref LL_SPI_DATAWIDTH_15BIT
* @arg @ref LL_SPI_DATAWIDTH_16BIT
* @arg @ref LL_SPI_DATAWIDTH_17BIT
* @arg @ref LL_SPI_DATAWIDTH_18BIT
* @arg @ref LL_SPI_DATAWIDTH_19BIT
* @arg @ref LL_SPI_DATAWIDTH_20BIT
* @arg @ref LL_SPI_DATAWIDTH_21BIT
* @arg @ref LL_SPI_DATAWIDTH_22BIT
* @arg @ref LL_SPI_DATAWIDTH_23BIT
* @arg @ref LL_SPI_DATAWIDTH_24BIT
* @arg @ref LL_SPI_DATAWIDTH_25BIT
* @arg @ref LL_SPI_DATAWIDTH_26BIT
* @arg @ref LL_SPI_DATAWIDTH_27BIT
* @arg @ref LL_SPI_DATAWIDTH_28BIT
* @arg @ref LL_SPI_DATAWIDTH_29BIT
* @arg @ref LL_SPI_DATAWIDTH_30BIT
* @arg @ref LL_SPI_DATAWIDTH_31BIT
* @arg @ref LL_SPI_DATAWIDTH_32BIT
* @retval None
*/
__STATIC_INLINE void LL_SPI_SetDataWidth(SPI_TypeDef *SPIx, uint32_t DataWidth)
{
MODIFY_REG(SPIx->CFG1, SPI_CFG1_DSIZE, DataWidth);
}
/**
* @brief Get Frame Data Size
* @rmtoll CFG1 DSIZE LL_SPI_GetDataWidth
* @param SPIx SPI Instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_SPI_DATAWIDTH_4BIT
* @arg @ref LL_SPI_DATAWIDTH_5BIT
* @arg @ref LL_SPI_DATAWIDTH_6BIT
* @arg @ref LL_SPI_DATAWIDTH_7BIT
* @arg @ref LL_SPI_DATAWIDTH_8BIT
* @arg @ref LL_SPI_DATAWIDTH_9BIT
* @arg @ref LL_SPI_DATAWIDTH_10BIT
* @arg @ref LL_SPI_DATAWIDTH_11BIT
* @arg @ref LL_SPI_DATAWIDTH_12BIT
* @arg @ref LL_SPI_DATAWIDTH_13BIT
* @arg @ref LL_SPI_DATAWIDTH_14BIT
* @arg @ref LL_SPI_DATAWIDTH_15BIT
* @arg @ref LL_SPI_DATAWIDTH_16BIT
* @arg @ref LL_SPI_DATAWIDTH_17BIT
* @arg @ref LL_SPI_DATAWIDTH_18BIT
* @arg @ref LL_SPI_DATAWIDTH_19BIT
* @arg @ref LL_SPI_DATAWIDTH_20BIT
* @arg @ref LL_SPI_DATAWIDTH_21BIT
* @arg @ref LL_SPI_DATAWIDTH_22BIT
* @arg @ref LL_SPI_DATAWIDTH_23BIT
* @arg @ref LL_SPI_DATAWIDTH_24BIT
* @arg @ref LL_SPI_DATAWIDTH_25BIT
* @arg @ref LL_SPI_DATAWIDTH_26BIT
* @arg @ref LL_SPI_DATAWIDTH_27BIT
* @arg @ref LL_SPI_DATAWIDTH_28BIT
* @arg @ref LL_SPI_DATAWIDTH_29BIT
* @arg @ref LL_SPI_DATAWIDTH_30BIT
* @arg @ref LL_SPI_DATAWIDTH_31BIT
* @arg @ref LL_SPI_DATAWIDTH_32BIT
*/
__STATIC_INLINE uint32_t LL_SPI_GetDataWidth(SPI_TypeDef *SPIx)
{
return (uint32_t)(READ_BIT(SPIx->CFG1, SPI_CFG1_DSIZE));
}
/**
* @brief Set threshold of FIFO that triggers a transfer event
* @note This configuration can not be changed when SPI is enabled.
* @rmtoll CFG1 FTHLV LL_SPI_SetFIFOThreshold
* @param SPIx SPI Instance
* @param Threshold This parameter can be one of the following values:
* @arg @ref LL_SPI_FIFO_TH_01DATA
* @arg @ref LL_SPI_FIFO_TH_02DATA
* @arg @ref LL_SPI_FIFO_TH_03DATA
* @arg @ref LL_SPI_FIFO_TH_04DATA
* @arg @ref LL_SPI_FIFO_TH_05DATA
* @arg @ref LL_SPI_FIFO_TH_06DATA
* @arg @ref LL_SPI_FIFO_TH_07DATA
* @arg @ref LL_SPI_FIFO_TH_08DATA
* @arg @ref LL_SPI_FIFO_TH_09DATA
* @arg @ref LL_SPI_FIFO_TH_10DATA
* @arg @ref LL_SPI_FIFO_TH_11DATA
* @arg @ref LL_SPI_FIFO_TH_12DATA
* @arg @ref LL_SPI_FIFO_TH_13DATA
* @arg @ref LL_SPI_FIFO_TH_14DATA
* @arg @ref LL_SPI_FIFO_TH_15DATA
* @arg @ref LL_SPI_FIFO_TH_16DATA
* @retval None
*/
__STATIC_INLINE void LL_SPI_SetFIFOThreshold(SPI_TypeDef *SPIx, uint32_t Threshold)
{
MODIFY_REG(SPIx->CFG1, SPI_CFG1_FTHLV, Threshold);
}
/**
* @brief Get threshold of FIFO that triggers a transfer event
* @rmtoll CFG1 FTHLV LL_SPI_GetFIFOThreshold
* @param SPIx SPI Instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_SPI_FIFO_TH_01DATA
* @arg @ref LL_SPI_FIFO_TH_02DATA
* @arg @ref LL_SPI_FIFO_TH_03DATA
* @arg @ref LL_SPI_FIFO_TH_04DATA
* @arg @ref LL_SPI_FIFO_TH_05DATA
* @arg @ref LL_SPI_FIFO_TH_06DATA
* @arg @ref LL_SPI_FIFO_TH_07DATA
* @arg @ref LL_SPI_FIFO_TH_08DATA
* @arg @ref LL_SPI_FIFO_TH_09DATA
* @arg @ref LL_SPI_FIFO_TH_10DATA
* @arg @ref LL_SPI_FIFO_TH_11DATA
* @arg @ref LL_SPI_FIFO_TH_12DATA
* @arg @ref LL_SPI_FIFO_TH_13DATA
* @arg @ref LL_SPI_FIFO_TH_14DATA
* @arg @ref LL_SPI_FIFO_TH_15DATA
* @arg @ref LL_SPI_FIFO_TH_16DATA
*/
__STATIC_INLINE uint32_t LL_SPI_GetFIFOThreshold(SPI_TypeDef *SPIx)
{
return (uint32_t)(READ_BIT(SPIx->CFG1, SPI_CFG1_FTHLV));
}
/**
* @brief Enable CRC
* @note This configuration can not be changed when SPI is enabled.
* @rmtoll CFG1 CRCEN LL_SPI_EnableCRC
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_SPI_EnableCRC(SPI_TypeDef *SPIx)
{
SET_BIT(SPIx->CFG1, SPI_CFG1_CRCEN);
}
/**
* @brief Disable CRC
* @rmtoll CFG1 CRCEN LL_SPI_DisableCRC
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_SPI_DisableCRC(SPI_TypeDef *SPIx)
{
CLEAR_BIT(SPIx->CFG1, SPI_CFG1_CRCEN);
}
/**
* @brief Check if CRC is enabled
* @rmtoll CFG1 CRCEN LL_SPI_IsEnabledCRC
* @param SPIx SPI Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_SPI_IsEnabledCRC(SPI_TypeDef *SPIx)
{
return ((READ_BIT(SPIx->CFG1, SPI_CFG1_CRCEN) == SPI_CFG1_CRCEN) ? 1UL : 0UL);
}
/**
* @brief Set CRC Length
* @note This configuration can not be changed when SPI is enabled.
* @rmtoll CFG1 CRCSIZE LL_SPI_SetCRCWidth
* @param SPIx SPI Instance
* @param CRCLength This parameter can be one of the following values:
* @arg @ref LL_SPI_CRC_4BIT
* @arg @ref LL_SPI_CRC_5BIT
* @arg @ref LL_SPI_CRC_6BIT
* @arg @ref LL_SPI_CRC_7BIT
* @arg @ref LL_SPI_CRC_8BIT
* @arg @ref LL_SPI_CRC_9BIT
* @arg @ref LL_SPI_CRC_10BIT
* @arg @ref LL_SPI_CRC_11BIT
* @arg @ref LL_SPI_CRC_12BIT
* @arg @ref LL_SPI_CRC_13BIT
* @arg @ref LL_SPI_CRC_14BIT
* @arg @ref LL_SPI_CRC_15BIT
* @arg @ref LL_SPI_CRC_16BIT
* @arg @ref LL_SPI_CRC_17BIT
* @arg @ref LL_SPI_CRC_18BIT
* @arg @ref LL_SPI_CRC_19BIT
* @arg @ref LL_SPI_CRC_20BIT
* @arg @ref LL_SPI_CRC_21BIT
* @arg @ref LL_SPI_CRC_22BIT
* @arg @ref LL_SPI_CRC_23BIT
* @arg @ref LL_SPI_CRC_24BIT
* @arg @ref LL_SPI_CRC_25BIT
* @arg @ref LL_SPI_CRC_26BIT
* @arg @ref LL_SPI_CRC_27BIT
* @arg @ref LL_SPI_CRC_28BIT
* @arg @ref LL_SPI_CRC_29BIT
* @arg @ref LL_SPI_CRC_30BIT
* @arg @ref LL_SPI_CRC_31BIT
* @arg @ref LL_SPI_CRC_32BIT
* @retval None
*/
__STATIC_INLINE void LL_SPI_SetCRCWidth(SPI_TypeDef *SPIx, uint32_t CRCLength)
{
MODIFY_REG(SPIx->CFG1, SPI_CFG1_CRCSIZE, CRCLength);
}
/**
* @brief Get CRC Length
* @rmtoll CFG1 CRCSIZE LL_SPI_GetCRCWidth
* @param SPIx SPI Instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_SPI_CRC_4BIT
* @arg @ref LL_SPI_CRC_5BIT
* @arg @ref LL_SPI_CRC_6BIT
* @arg @ref LL_SPI_CRC_7BIT
* @arg @ref LL_SPI_CRC_8BIT
* @arg @ref LL_SPI_CRC_9BIT
* @arg @ref LL_SPI_CRC_10BIT
* @arg @ref LL_SPI_CRC_11BIT
* @arg @ref LL_SPI_CRC_12BIT
* @arg @ref LL_SPI_CRC_13BIT
* @arg @ref LL_SPI_CRC_14BIT
* @arg @ref LL_SPI_CRC_15BIT
* @arg @ref LL_SPI_CRC_16BIT
* @arg @ref LL_SPI_CRC_17BIT
* @arg @ref LL_SPI_CRC_18BIT
* @arg @ref LL_SPI_CRC_19BIT
* @arg @ref LL_SPI_CRC_20BIT
* @arg @ref LL_SPI_CRC_21BIT
* @arg @ref LL_SPI_CRC_22BIT
* @arg @ref LL_SPI_CRC_23BIT
* @arg @ref LL_SPI_CRC_24BIT
* @arg @ref LL_SPI_CRC_25BIT
* @arg @ref LL_SPI_CRC_26BIT
* @arg @ref LL_SPI_CRC_27BIT
* @arg @ref LL_SPI_CRC_28BIT
* @arg @ref LL_SPI_CRC_29BIT
* @arg @ref LL_SPI_CRC_30BIT
* @arg @ref LL_SPI_CRC_31BIT
* @arg @ref LL_SPI_CRC_32BIT
*/
__STATIC_INLINE uint32_t LL_SPI_GetCRCWidth(SPI_TypeDef *SPIx)
{
return (uint32_t)(READ_BIT(SPIx->CFG1, SPI_CFG1_CRCSIZE));
}
/**
* @brief Set NSS Mode
* @note This configuration can not be changed when SPI is enabled.
* This bit is not used in SPI TI mode.
* @rmtoll CFG2 SSM LL_SPI_SetNSSMode\n
* CFG2 SSOE LL_SPI_SetNSSMode
* @param SPIx SPI Instance
* @param NSS This parameter can be one of the following values:
* @arg @ref LL_SPI_NSS_SOFT
* @arg @ref LL_SPI_NSS_HARD_INPUT
* @arg @ref LL_SPI_NSS_HARD_OUTPUT
* @retval None
*/
__STATIC_INLINE void LL_SPI_SetNSSMode(SPI_TypeDef *SPIx, uint32_t NSS)
{
MODIFY_REG(SPIx->CFG2, SPI_CFG2_SSM | SPI_CFG2_SSOE, NSS);
}
/**
* @brief Set NSS Mode
* @rmtoll CFG2 SSM LL_SPI_GetNSSMode\n
* CFG2 SSOE LL_SPI_GetNSSMode
* @param SPIx SPI Instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_SPI_NSS_SOFT
* @arg @ref LL_SPI_NSS_HARD_INPUT
* @arg @ref LL_SPI_NSS_HARD_OUTPUT
*/
__STATIC_INLINE uint32_t LL_SPI_GetNSSMode(SPI_TypeDef *SPIx)
{
return (uint32_t)(READ_BIT(SPIx->CFG2, SPI_CFG2_SSM | SPI_CFG2_SSOE));
}
/**
* @brief Enable NSS pulse mgt
* @note This configuration can not be changed when SPI is enabled.
* This bit is not used in SPI TI mode.
* @rmtoll CFG2 SSOM LL_SPI_EnableNSSPulseMgt
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_SPI_EnableNSSPulseMgt(SPI_TypeDef *SPIx)
{
SET_BIT(SPIx->CFG2, SPI_CFG2_SSOM);
}
/**
* @brief Disable NSS pulse mgt
* @note This configuration can not be changed when SPI is enabled.
* This bit is not used in SPI TI mode.
* @rmtoll CFG2 SSOM LL_SPI_DisableNSSPulseMgt
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_SPI_DisableNSSPulseMgt(SPI_TypeDef *SPIx)
{
CLEAR_BIT(SPIx->CFG2, SPI_CFG2_SSOM);
}
/**
* @brief Check if NSS pulse is enabled
* @rmtoll CFG2 SSOM LL_SPI_IsEnabledNSSPulse
* @param SPIx SPI Instance
* @retval State of bit (1 or 0)
*/
__STATIC_INLINE uint32_t LL_SPI_IsEnabledNSSPulse(SPI_TypeDef *SPIx)
{
return ((READ_BIT(SPIx->CFG2, SPI_CFG2_SSOM) == SPI_CFG2_SSOM) ? 1UL : 0UL);
}
/**
* @}
*/
/** @defgroup SPI_LL_EF_FLAG_Management FLAG_Management
* @{
*/
/**
* @brief Check if there is enough data in FIFO to read a full packet
* @rmtoll SR RXP LL_SPI_IsActiveFlag_RXP
* @param SPIx SPI Instance
* @retval State of bit (1 or 0)
*/
__STATIC_INLINE uint32_t LL_SPI_IsActiveFlag_RXP(SPI_TypeDef *SPIx)
{
return ((READ_BIT(SPIx->SR, SPI_SR_RXP) == (SPI_SR_RXP)) ? 1UL : 0UL);
}
/**
* @brief Check if there is enough space in FIFO to hold a full packet
* @rmtoll SR TXP LL_SPI_IsActiveFlag_TXP
* @param SPIx SPI Instance
* @retval State of bit (1 or 0)
*/
__STATIC_INLINE uint32_t LL_SPI_IsActiveFlag_TXP(SPI_TypeDef *SPIx)
{
return ((READ_BIT(SPIx->SR, SPI_SR_TXP) == (SPI_SR_TXP)) ? 1UL : 0UL);
}
/**
* @brief Check if there enough space in FIFO to hold a full packet, AND enough data to read a full packet
* @rmtoll SR DXP LL_SPI_IsActiveFlag_DXP
* @param SPIx SPI Instance
* @retval State of bit (1 or 0)
*/
__STATIC_INLINE uint32_t LL_SPI_IsActiveFlag_DXP(SPI_TypeDef *SPIx)
{
return ((READ_BIT(SPIx->SR, SPI_SR_DXP) == (SPI_SR_DXP)) ? 1UL : 0UL);
}
/**
* @brief Check that end of transfer event occurred
* @rmtoll SR EOT LL_SPI_IsActiveFlag_EOT
* @param SPIx SPI Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_SPI_IsActiveFlag_EOT(SPI_TypeDef *SPIx)
{
return ((READ_BIT(SPIx->SR, SPI_SR_EOT) == (SPI_SR_EOT)) ? 1UL : 0UL);
}
/**
* @brief Check that all required data has been filled in the fifo according to transfer size
* @rmtoll SR TXTF LL_SPI_IsActiveFlag_TXTF
* @param SPIx SPI Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_SPI_IsActiveFlag_TXTF(SPI_TypeDef *SPIx)
{
return ((READ_BIT(SPIx->SR, SPI_SR_TXTF) == (SPI_SR_TXTF)) ? 1UL : 0UL);
}
/**
* @brief Get Underrun error flag
* @rmtoll SR UDR LL_SPI_IsActiveFlag_UDR
* @param SPIx SPI Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_SPI_IsActiveFlag_UDR(SPI_TypeDef *SPIx)
{
return ((READ_BIT(SPIx->SR, SPI_SR_UDR) == (SPI_SR_UDR)) ? 1UL : 0UL);
}
/**
* @brief Get CRC error flag
* @rmtoll SR CRCE LL_SPI_IsActiveFlag_CRCERR
* @param SPIx SPI Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_SPI_IsActiveFlag_CRCERR(SPI_TypeDef *SPIx)
{
return ((READ_BIT(SPIx->SR, SPI_SR_CRCE) == (SPI_SR_CRCE)) ? 1UL : 0UL);
}
/**
* @brief Get Mode fault error flag
* @rmtoll SR MODF LL_SPI_IsActiveFlag_MODF
* @param SPIx SPI Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_SPI_IsActiveFlag_MODF(SPI_TypeDef *SPIx)
{
return ((READ_BIT(SPIx->SR, SPI_SR_MODF) == (SPI_SR_MODF)) ? 1UL : 0UL);
}
/**
* @brief Get Overrun error flag
* @rmtoll SR OVR LL_SPI_IsActiveFlag_OVR
* @param SPIx SPI Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_SPI_IsActiveFlag_OVR(SPI_TypeDef *SPIx)
{
return ((READ_BIT(SPIx->SR, SPI_SR_OVR) == (SPI_SR_OVR)) ? 1UL : 0UL);
}
/**
* @brief Get TI Frame format error flag
* @rmtoll SR TIFRE LL_SPI_IsActiveFlag_FRE
* @param SPIx SPI Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_SPI_IsActiveFlag_FRE(SPI_TypeDef *SPIx)
{
return ((READ_BIT(SPIx->SR, SPI_SR_TIFRE) == (SPI_SR_TIFRE)) ? 1UL : 0UL);
}
/**
* @brief Check if the additional number of data has been reloaded
* @rmtoll SR TSERF LL_SPI_IsActiveFlag_TSER
* @param SPIx SPI Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_SPI_IsActiveFlag_TSER(SPI_TypeDef *SPIx)
{
return ((READ_BIT(SPIx->SR, SPI_SR_TSERF) == (SPI_SR_TSERF)) ? 1UL : 0UL);
}
/**
* @brief Check if a suspend operation is done
* @rmtoll SR SUSP LL_SPI_IsActiveFlag_SUSP
* @param SPIx SPI Instance
* @retval State of bit (1 or 0)
*/
__STATIC_INLINE uint32_t LL_SPI_IsActiveFlag_SUSP(SPI_TypeDef *SPIx)
{
return ((READ_BIT(SPIx->SR, SPI_SR_SUSP) == (SPI_SR_SUSP)) ? 1UL : 0UL);
}
/**
* @brief Check if last TxFIFO or CRC frame transmission is completed
* @rmtoll SR TXC LL_SPI_IsActiveFlag_TXC
* @param SPIx SPI Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_SPI_IsActiveFlag_TXC(SPI_TypeDef *SPIx)
{
return ((READ_BIT(SPIx->SR, SPI_SR_TXC) == (SPI_SR_TXC)) ? 1UL : 0UL);
}
/**
* @brief Check if at least one 32-bit data is available in RxFIFO
* @rmtoll SR RXWNE LL_SPI_IsActiveFlag_RXWNE
* @param SPIx SPI Instance
* @retval State of bit (1 or 0)
*/
__STATIC_INLINE uint32_t LL_SPI_IsActiveFlag_RXWNE(SPI_TypeDef *SPIx)
{
return ((READ_BIT(SPIx->SR, SPI_SR_RXWNE) == (SPI_SR_RXWNE)) ? 1UL : 0UL);
}
/**
* @brief Get number of data framed remaining in current TSIZE
* @rmtoll SR CTSIZE LL_SPI_GetRemainingDataFrames
* @param SPIx SPI Instance
* @retval 0..0xFFFF
*/
__STATIC_INLINE uint32_t LL_SPI_GetRemainingDataFrames(SPI_TypeDef *SPIx)
{
return (uint32_t)(READ_BIT(SPIx->SR, SPI_SR_CTSIZE) >> SPI_SR_CTSIZE_Pos);
}
/**
* @brief Get RxFIFO packing Level
* @rmtoll SR RXPLVL LL_SPI_GetRxFIFOPackingLevel
* @param SPIx SPI Instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_SPI_RX_FIFO_0PACKET
* @arg @ref LL_SPI_RX_FIFO_1PACKET
* @arg @ref LL_SPI_RX_FIFO_2PACKET
* @arg @ref LL_SPI_RX_FIFO_3PACKET
*/
__STATIC_INLINE uint32_t LL_SPI_GetRxFIFOPackingLevel(SPI_TypeDef *SPIx)
{
return (uint32_t)(READ_BIT(SPIx->SR, SPI_SR_RXPLVL));
}
/**
* @brief Clear End Of Transfer flag
* @rmtoll IFCR EOTC LL_SPI_ClearFlag_EOT
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_SPI_ClearFlag_EOT(SPI_TypeDef *SPIx)
{
SET_BIT(SPIx->IFCR, SPI_IFCR_EOTC);
}
/**
* @brief Clear TXTF flag
* @rmtoll IFCR TXTFC LL_SPI_ClearFlag_TXTF
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_SPI_ClearFlag_TXTF(SPI_TypeDef *SPIx)
{
SET_BIT(SPIx->IFCR, SPI_IFCR_TXTFC);
}
/**
* @brief Clear Underrun error flag
* @rmtoll IFCR UDRC LL_SPI_ClearFlag_UDR
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_SPI_ClearFlag_UDR(SPI_TypeDef *SPIx)
{
SET_BIT(SPIx->IFCR, SPI_IFCR_UDRC);
}
/**
* @brief Clear Overrun error flag
* @rmtoll IFCR OVRC LL_SPI_ClearFlag_OVR
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_SPI_ClearFlag_OVR(SPI_TypeDef *SPIx)
{
SET_BIT(SPIx->IFCR, SPI_IFCR_OVRC);
}
/**
* @brief Clear CRC error flag
* @rmtoll IFCR CRCEC LL_SPI_ClearFlag_CRCERR
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_SPI_ClearFlag_CRCERR(SPI_TypeDef *SPIx)
{
SET_BIT(SPIx->IFCR, SPI_IFCR_CRCEC);
}
/**
* @brief Clear Mode fault error flag
* @rmtoll IFCR MODFC LL_SPI_ClearFlag_MODF
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_SPI_ClearFlag_MODF(SPI_TypeDef *SPIx)
{
SET_BIT(SPIx->IFCR, SPI_IFCR_MODFC);
}
/**
* @brief Clear Frame format error flag
* @rmtoll IFCR TIFREC LL_SPI_ClearFlag_FRE
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_SPI_ClearFlag_FRE(SPI_TypeDef *SPIx)
{
SET_BIT(SPIx->IFCR, SPI_IFCR_TIFREC);
}
/**
* @brief Clear TSER flag
* @rmtoll IFCR TSERFC LL_SPI_ClearFlag_TSER
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_SPI_ClearFlag_TSER(SPI_TypeDef *SPIx)
{
SET_BIT(SPIx->IFCR, SPI_IFCR_TSERFC);
}
/**
* @brief Clear SUSP flag
* @rmtoll IFCR SUSPC LL_SPI_ClearFlag_SUSP
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_SPI_ClearFlag_SUSP(SPI_TypeDef *SPIx)
{
SET_BIT(SPIx->IFCR, SPI_IFCR_SUSPC);
}
/**
* @}
*/
/** @defgroup SPI_LL_EF_IT_Management IT_Management
* @{
*/
/**
* @brief Enable Rx Packet available IT
* @rmtoll IER RXPIE LL_SPI_EnableIT_RXP
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_SPI_EnableIT_RXP(SPI_TypeDef *SPIx)
{
SET_BIT(SPIx->IER, SPI_IER_RXPIE);
}
/**
* @brief Enable Tx Packet space available IT
* @rmtoll IER TXPIE LL_SPI_EnableIT_TXP
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_SPI_EnableIT_TXP(SPI_TypeDef *SPIx)
{
SET_BIT(SPIx->IER, SPI_IER_TXPIE);
}
/**
* @brief Enable Duplex Packet available IT
* @rmtoll IER DXPIE LL_SPI_EnableIT_DXP
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_SPI_EnableIT_DXP(SPI_TypeDef *SPIx)
{
SET_BIT(SPIx->IER, SPI_IER_DXPIE);
}
/**
* @brief Enable End Of Transfer IT
* @rmtoll IER EOTIE LL_SPI_EnableIT_EOT
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_SPI_EnableIT_EOT(SPI_TypeDef *SPIx)
{
SET_BIT(SPIx->IER, SPI_IER_EOTIE);
}
/**
* @brief Enable TXTF IT
* @rmtoll IER TXTFIE LL_SPI_EnableIT_TXTF
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_SPI_EnableIT_TXTF(SPI_TypeDef *SPIx)
{
SET_BIT(SPIx->IER, SPI_IER_TXTFIE);
}
/**
* @brief Enable Underrun IT
* @rmtoll IER UDRIE LL_SPI_EnableIT_UDR
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_SPI_EnableIT_UDR(SPI_TypeDef *SPIx)
{
SET_BIT(SPIx->IER, SPI_IER_UDRIE);
}
/**
* @brief Enable Overrun IT
* @rmtoll IER OVRIE LL_SPI_EnableIT_OVR
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_SPI_EnableIT_OVR(SPI_TypeDef *SPIx)
{
SET_BIT(SPIx->IER, SPI_IER_OVRIE);
}
/**
* @brief Enable CRC Error IT
* @rmtoll IER CRCEIE LL_SPI_EnableIT_CRCERR
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_SPI_EnableIT_CRCERR(SPI_TypeDef *SPIx)
{
SET_BIT(SPIx->IER, SPI_IER_CRCEIE);
}
/**
* @brief Enable TI Frame Format Error IT
* @rmtoll IER TIFREIE LL_SPI_EnableIT_FRE
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_SPI_EnableIT_FRE(SPI_TypeDef *SPIx)
{
SET_BIT(SPIx->IER, SPI_IER_TIFREIE);
}
/**
* @brief Enable MODF IT
* @rmtoll IER MODFIE LL_SPI_EnableIT_MODF
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_SPI_EnableIT_MODF(SPI_TypeDef *SPIx)
{
SET_BIT(SPIx->IER, SPI_IER_MODFIE);
}
/**
* @brief Enable TSER reload IT
* @rmtoll IER TSERFIE LL_SPI_EnableIT_TSER
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_SPI_EnableIT_TSER(SPI_TypeDef *SPIx)
{
SET_BIT(SPIx->IER, SPI_IER_TSERFIE);
}
/**
* @brief Disable Rx Packet available IT
* @rmtoll IER RXPIE LL_SPI_DisableIT_RXP
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_SPI_DisableIT_RXP(SPI_TypeDef *SPIx)
{
CLEAR_BIT(SPIx->IER, SPI_IER_RXPIE);
}
/**
* @brief Disable Tx Packet space available IT
* @rmtoll IER TXPIE LL_SPI_DisableIT_TXP
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_SPI_DisableIT_TXP(SPI_TypeDef *SPIx)
{
CLEAR_BIT(SPIx->IER, SPI_IER_TXPIE);
}
/**
* @brief Disable Duplex Packet available IT
* @rmtoll IER DXPIE LL_SPI_DisableIT_DXP
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_SPI_DisableIT_DXP(SPI_TypeDef *SPIx)
{
CLEAR_BIT(SPIx->IER, SPI_IER_DXPIE);
}
/**
* @brief Disable End Of Transfer IT
* @rmtoll IER EOTIE LL_SPI_DisableIT_EOT
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_SPI_DisableIT_EOT(SPI_TypeDef *SPIx)
{
CLEAR_BIT(SPIx->IER, SPI_IER_EOTIE);
}
/**
* @brief Disable TXTF IT
* @rmtoll IER TXTFIE LL_SPI_DisableIT_TXTF
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_SPI_DisableIT_TXTF(SPI_TypeDef *SPIx)
{
CLEAR_BIT(SPIx->IER, SPI_IER_TXTFIE);
}
/**
* @brief Disable Underrun IT
* @rmtoll IER UDRIE LL_SPI_DisableIT_UDR
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_SPI_DisableIT_UDR(SPI_TypeDef *SPIx)
{
CLEAR_BIT(SPIx->IER, SPI_IER_UDRIE);
}
/**
* @brief Disable Overrun IT
* @rmtoll IER OVRIE LL_SPI_DisableIT_OVR
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_SPI_DisableIT_OVR(SPI_TypeDef *SPIx)
{
CLEAR_BIT(SPIx->IER, SPI_IER_OVRIE);
}
/**
* @brief Disable CRC Error IT
* @rmtoll IER CRCEIE LL_SPI_DisableIT_CRCERR
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_SPI_DisableIT_CRCERR(SPI_TypeDef *SPIx)
{
CLEAR_BIT(SPIx->IER, SPI_IER_CRCEIE);
}
/**
* @brief Disable TI Frame Format Error IT
* @rmtoll IER TIFREIE LL_SPI_DisableIT_FRE
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_SPI_DisableIT_FRE(SPI_TypeDef *SPIx)
{
CLEAR_BIT(SPIx->IER, SPI_IER_TIFREIE);
}
/**
* @brief Disable MODF IT
* @rmtoll IER MODFIE LL_SPI_DisableIT_MODF
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_SPI_DisableIT_MODF(SPI_TypeDef *SPIx)
{
CLEAR_BIT(SPIx->IER, SPI_IER_MODFIE);
}
/**
* @brief Disable TSER reload IT
* @rmtoll IER TSERFIE LL_SPI_DisableIT_TSER
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_SPI_DisableIT_TSER(SPI_TypeDef *SPIx)
{
CLEAR_BIT(SPIx->IER, SPI_IER_TSERFIE);
}
/**
* @brief Check if Rx Packet available IT is enabled
* @rmtoll IER RXPIE LL_SPI_IsEnabledIT_RXP
* @param SPIx SPI Instance
* @retval State of bit (1 or 0)
*/
__STATIC_INLINE uint32_t LL_SPI_IsEnabledIT_RXP(SPI_TypeDef *SPIx)
{
return ((READ_BIT(SPIx->IER, SPI_IER_RXPIE) == (SPI_IER_RXPIE)) ? 1UL : 0UL);
}
/**
* @brief Check if Tx Packet space available IT is enabled
* @rmtoll IER TXPIE LL_SPI_IsEnabledIT_TXP
* @param SPIx SPI Instance
* @retval State of bit (1 or 0)
*/
__STATIC_INLINE uint32_t LL_SPI_IsEnabledIT_TXP(SPI_TypeDef *SPIx)
{
return ((READ_BIT(SPIx->IER, SPI_IER_TXPIE) == (SPI_IER_TXPIE)) ? 1UL : 0UL);
}
/**
* @brief Check if Duplex Packet available IT is enabled
* @rmtoll IER DXPIE LL_SPI_IsEnabledIT_DXP
* @param SPIx SPI Instance
* @retval State of bit (1 or 0)
*/
__STATIC_INLINE uint32_t LL_SPI_IsEnabledIT_DXP(SPI_TypeDef *SPIx)
{
return ((READ_BIT(SPIx->IER, SPI_IER_DXPIE) == (SPI_IER_DXPIE)) ? 1UL : 0UL);
}
/**
* @brief Check if End Of Transfer IT is enabled
* @rmtoll IER EOTIE LL_SPI_IsEnabledIT_EOT
* @param SPIx SPI Instance
* @retval State of bit (1 or 0)
*/
__STATIC_INLINE uint32_t LL_SPI_IsEnabledIT_EOT(SPI_TypeDef *SPIx)
{
return ((READ_BIT(SPIx->IER, SPI_IER_EOTIE) == (SPI_IER_EOTIE)) ? 1UL : 0UL);
}
/**
* @brief Check if TXTF IT is enabled
* @rmtoll IER TXTFIE LL_SPI_IsEnabledIT_TXTF
* @param SPIx SPI Instance
* @retval State of bit (1 or 0)
*/
__STATIC_INLINE uint32_t LL_SPI_IsEnabledIT_TXTF(SPI_TypeDef *SPIx)
{
return ((READ_BIT(SPIx->IER, SPI_IER_TXTFIE) == (SPI_IER_TXTFIE)) ? 1UL : 0UL);
}
/**
* @brief Check if Underrun IT is enabled
* @rmtoll IER UDRIE LL_SPI_IsEnabledIT_UDR
* @param SPIx SPI Instance
* @retval State of bit (1 or 0)
*/
__STATIC_INLINE uint32_t LL_SPI_IsEnabledIT_UDR(SPI_TypeDef *SPIx)
{
return ((READ_BIT(SPIx->IER, SPI_IER_UDRIE) == (SPI_IER_UDRIE)) ? 1UL : 0UL);
}
/**
* @brief Check if Overrun IT is enabled
* @rmtoll IER OVRIE LL_SPI_IsEnabledIT_OVR
* @param SPIx SPI Instance
* @retval State of bit (1 or 0)
*/
__STATIC_INLINE uint32_t LL_SPI_IsEnabledIT_OVR(SPI_TypeDef *SPIx)
{
return ((READ_BIT(SPIx->IER, SPI_IER_OVRIE) == (SPI_IER_OVRIE)) ? 1UL : 0UL);
}
/**
* @brief Check if CRC Error IT is enabled
* @rmtoll IER CRCEIE LL_SPI_IsEnabledIT_CRCERR
* @param SPIx SPI Instance
* @retval State of bit (1 or 0)
*/
__STATIC_INLINE uint32_t LL_SPI_IsEnabledIT_CRCERR(SPI_TypeDef *SPIx)
{
return ((READ_BIT(SPIx->IER, SPI_IER_CRCEIE) == (SPI_IER_CRCEIE)) ? 1UL : 0UL);
}
/**
* @brief Check if TI Frame Format Error IT is enabled
* @rmtoll IER TIFREIE LL_SPI_IsEnabledIT_FRE
* @param SPIx SPI Instance
* @retval State of bit (1 or 0)
*/
__STATIC_INLINE uint32_t LL_SPI_IsEnabledIT_FRE(SPI_TypeDef *SPIx)
{
return ((READ_BIT(SPIx->IER, SPI_IER_TIFREIE) == (SPI_IER_TIFREIE)) ? 1UL : 0UL);
}
/**
* @brief Check if MODF IT is enabled
* @rmtoll IER MODFIE LL_SPI_IsEnabledIT_MODF
* @param SPIx SPI Instance
* @retval State of bit (1 or 0)
*/
__STATIC_INLINE uint32_t LL_SPI_IsEnabledIT_MODF(SPI_TypeDef *SPIx)
{
return ((READ_BIT(SPIx->IER, SPI_IER_MODFIE) == (SPI_IER_MODFIE)) ? 1UL : 0UL);
}
/**
* @brief Check if TSER reload IT is enabled
* @rmtoll IER TSERFIE LL_SPI_IsEnabledIT_TSER
* @param SPIx SPI Instance
* @retval State of bit (1 or 0)
*/
__STATIC_INLINE uint32_t LL_SPI_IsEnabledIT_TSER(SPI_TypeDef *SPIx)
{
return ((READ_BIT(SPIx->IER, SPI_IER_TSERFIE) == (SPI_IER_TSERFIE)) ? 1UL : 0UL);
}
/**
* @}
*/
/** @defgroup SPI_LL_EF_DMA_Management DMA Management
* @{
*/
/**
* @brief Enable DMA Rx
* @rmtoll CFG1 RXDMAEN LL_SPI_EnableDMAReq_RX
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_SPI_EnableDMAReq_RX(SPI_TypeDef *SPIx)
{
SET_BIT(SPIx->CFG1, SPI_CFG1_RXDMAEN);
}
/**
* @brief Disable DMA Rx
* @rmtoll CFG1 RXDMAEN LL_SPI_DisableDMAReq_RX
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_SPI_DisableDMAReq_RX(SPI_TypeDef *SPIx)
{
CLEAR_BIT(SPIx->CFG1, SPI_CFG1_RXDMAEN);
}
/**
* @brief Check if DMA Rx is enabled
* @rmtoll CFG1 RXDMAEN LL_SPI_IsEnabledDMAReq_RX
* @param SPIx SPI Instance
* @retval State of bit (1 or 0)
*/
__STATIC_INLINE uint32_t LL_SPI_IsEnabledDMAReq_RX(SPI_TypeDef *SPIx)
{
return ((READ_BIT(SPIx->CFG1, SPI_CFG1_RXDMAEN) == (SPI_CFG1_RXDMAEN)) ? 1UL : 0UL);
}
/**
* @brief Enable DMA Tx
* @rmtoll CFG1 TXDMAEN LL_SPI_EnableDMAReq_TX
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_SPI_EnableDMAReq_TX(SPI_TypeDef *SPIx)
{
SET_BIT(SPIx->CFG1, SPI_CFG1_TXDMAEN);
}
/**
* @brief Disable DMA Tx
* @rmtoll CFG1 TXDMAEN LL_SPI_DisableDMAReq_TX
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_SPI_DisableDMAReq_TX(SPI_TypeDef *SPIx)
{
CLEAR_BIT(SPIx->CFG1, SPI_CFG1_TXDMAEN);
}
/**
* @brief Check if DMA Tx is enabled
* @rmtoll CFG1 TXDMAEN LL_SPI_IsEnabledDMAReq_TX
* @param SPIx SPI Instance
* @retval State of bit (1 or 0)
*/
__STATIC_INLINE uint32_t LL_SPI_IsEnabledDMAReq_TX(SPI_TypeDef *SPIx)
{
return ((READ_BIT(SPIx->CFG1, SPI_CFG1_TXDMAEN) == (SPI_CFG1_TXDMAEN)) ? 1UL : 0UL);
}
/**
* @brief Get the data register address used for DMA transfer
* @rmtoll TXDR TXDR LL_SPI_DMA_GetTxRegAddr
* @param SPIx SPI Instance
* @retval Address of data register
*/
__STATIC_INLINE uint32_t LL_SPI_DMA_GetTxRegAddr(SPI_TypeDef *SPIx)
{
return (uint32_t) &(SPIx->TXDR);
}
/**
* @brief Get the data register address used for DMA transfer
* @rmtoll RXDR RXDR LL_SPI_DMA_GetRxRegAddr
* @param SPIx SPI Instance
* @retval Address of data register
*/
__STATIC_INLINE uint32_t LL_SPI_DMA_GetRxRegAddr(SPI_TypeDef *SPIx)
{
return (uint32_t) &(SPIx->RXDR);
}
/**
* @}
*/
/** @defgroup SPI_LL_EF_DATA_Management DATA_Management
* @{
*/
/**
* @brief Read Data Register
* @rmtoll RXDR . LL_SPI_ReceiveData8
* @param SPIx SPI Instance
* @retval 0..0xFF
*/
__STATIC_INLINE uint8_t LL_SPI_ReceiveData8(SPI_TypeDef *SPIx)
{
return (*((__IO uint8_t *)&SPIx->RXDR));
}
/**
* @brief Read Data Register
* @rmtoll RXDR . LL_SPI_ReceiveData16
* @param SPIx SPI Instance
* @retval 0..0xFFFF
*/
__STATIC_INLINE uint16_t LL_SPI_ReceiveData16(SPI_TypeDef *SPIx)
{
#if defined (__GNUC__)
__IO uint16_t *spirxdr = (__IO uint16_t *)(&(SPIx->RXDR));
return (*spirxdr);
#else
return (*((__IO uint16_t *)&SPIx->RXDR));
#endif /* __GNUC__ */
}
/**
* @brief Read Data Register
* @rmtoll RXDR . LL_SPI_ReceiveData32
* @param SPIx SPI Instance
* @retval 0..0xFFFFFFFF
*/
__STATIC_INLINE uint32_t LL_SPI_ReceiveData32(SPI_TypeDef *SPIx)
{
return (*((__IO uint32_t *)&SPIx->RXDR));
}
/**
* @brief Write Data Register
* @rmtoll TXDR . LL_SPI_TransmitData8
* @param SPIx SPI Instance
* @param TxData 0..0xFF
* @retval None
*/
__STATIC_INLINE void LL_SPI_TransmitData8(SPI_TypeDef *SPIx, uint8_t TxData)
{
*((__IO uint8_t *)&SPIx->TXDR) = TxData;
}
/**
* @brief Write Data Register
* @rmtoll TXDR . LL_SPI_TransmitData16
* @param SPIx SPI Instance
* @param TxData 0..0xFFFF
* @retval None
*/
__STATIC_INLINE void LL_SPI_TransmitData16(SPI_TypeDef *SPIx, uint16_t TxData)
{
#if defined (__GNUC__)
__IO uint16_t *spitxdr = ((__IO uint16_t *)&SPIx->TXDR);
*spitxdr = TxData;
#else
*((__IO uint16_t *)&SPIx->TXDR) = TxData;
#endif /* __GNUC__ */
}
/**
* @brief Write Data Register
* @rmtoll TXDR . LL_SPI_TransmitData32
* @param SPIx SPI Instance
* @param TxData 0..0xFFFFFFFF
* @retval None
*/
__STATIC_INLINE void LL_SPI_TransmitData32(SPI_TypeDef *SPIx, uint32_t TxData)
{
*((__IO uint32_t *)&SPIx->TXDR) = TxData;
}
/**
* @brief Set polynomial for CRC calcul
* @rmtoll CRCPOLY CRCPOLY LL_SPI_SetCRCPolynomial
* @param SPIx SPI Instance
* @param CRCPoly 0..0xFFFFFFFF
* @retval None
*/
__STATIC_INLINE void LL_SPI_SetCRCPolynomial(SPI_TypeDef *SPIx, uint32_t CRCPoly)
{
WRITE_REG(SPIx->CRCPOLY, CRCPoly);
}
/**
* @brief Get polynomial for CRC calcul
* @rmtoll CRCPOLY CRCPOLY LL_SPI_GetCRCPolynomial
* @param SPIx SPI Instance
* @retval 0..0xFFFFFFFF
*/
__STATIC_INLINE uint32_t LL_SPI_GetCRCPolynomial(SPI_TypeDef *SPIx)
{
return (uint32_t)(READ_REG(SPIx->CRCPOLY));
}
/**
* @brief Set the underrun pattern
* @rmtoll UDRDR UDRDR LL_SPI_SetUDRPattern
* @param SPIx SPI Instance
* @param Pattern 0..0xFFFFFFFF
* @retval None
*/
__STATIC_INLINE void LL_SPI_SetUDRPattern(SPI_TypeDef *SPIx, uint32_t Pattern)
{
WRITE_REG(SPIx->UDRDR, Pattern);
}
/**
* @brief Get the underrun pattern
* @rmtoll UDRDR UDRDR LL_SPI_GetUDRPattern
* @param SPIx SPI Instance
* @retval 0..0xFFFFFFFF
*/
__STATIC_INLINE uint32_t LL_SPI_GetUDRPattern(SPI_TypeDef *SPIx)
{
return (uint32_t)(READ_REG(SPIx->UDRDR));
}
/**
* @brief Get Rx CRC
* @rmtoll RXCRCR RXCRC LL_SPI_GetRxCRC
* @param SPIx SPI Instance
* @retval 0..0xFFFFFFFF
*/
__STATIC_INLINE uint32_t LL_SPI_GetRxCRC(SPI_TypeDef *SPIx)
{
return (uint32_t)(READ_REG(SPIx->RXCRC));
}
/**
* @brief Get Tx CRC
* @rmtoll TXCRCR TXCRC LL_SPI_GetTxCRC
* @param SPIx SPI Instance
* @retval 0..0xFFFFFFFF
*/
__STATIC_INLINE uint32_t LL_SPI_GetTxCRC(SPI_TypeDef *SPIx)
{
return (uint32_t)(READ_REG(SPIx->TXCRC));
}
/**
* @}
*/
#if defined(USE_FULL_LL_DRIVER)
/** @defgroup SPI_LL_EF_Init Initialization and de-initialization functions
* @{
*/
ErrorStatus LL_SPI_DeInit(SPI_TypeDef *SPIx);
ErrorStatus LL_SPI_Init(SPI_TypeDef *SPIx, LL_SPI_InitTypeDef *SPI_InitStruct);
void LL_SPI_StructInit(LL_SPI_InitTypeDef *SPI_InitStruct);
/**
* @}
*/
#endif /* USE_FULL_LL_DRIVER */
/**
* @}
*/
/**
* @}
*/
/** @defgroup I2S_LL I2S
* @{
*/
/* Private variables ---------------------------------------------------------*/
/* Private constants ---------------------------------------------------------*/
/* Private macros ------------------------------------------------------------*/
/* Exported types ------------------------------------------------------------*/
#if defined(USE_FULL_LL_DRIVER)
/** @defgroup I2S_LL_ES_INIT I2S Exported Init structure
* @{
*/
/**
* @brief I2S Init structure definition
*/
typedef struct
{
uint32_t Mode; /*!< Specifies the I2S operating mode.
This parameter can be a value of @ref I2S_LL_EC_MODE
This feature can be modified afterwards using unitary function
@ref LL_I2S_SetTransferMode().*/
uint32_t Standard; /*!< Specifies the standard used for the I2S communication.
This parameter can be a value of @ref I2S_LL_EC_STANDARD
This feature can be modified afterwards using unitary function
@ref LL_I2S_SetStandard().*/
uint32_t DataFormat; /*!< Specifies the data format for the I2S communication.
This parameter can be a value of @ref I2S_LL_EC_DATA_FORMAT
This feature can be modified afterwards using unitary function
@ref LL_I2S_SetDataFormat().*/
uint32_t MCLKOutput; /*!< Specifies whether the I2S MCLK output is enabled or not.
This parameter can be a value of @ref I2S_LL_EC_MCLK_OUTPUT
This feature can be modified afterwards using unitary functions
@ref LL_I2S_EnableMasterClock() or @ref LL_I2S_DisableMasterClock.*/
uint32_t AudioFreq; /*!< Specifies the frequency selected for the I2S communication.
This parameter can be a value of @ref I2S_LL_EC_AUDIO_FREQ
Audio Frequency can be modified afterwards using Reference manual formulas
to calculate Prescaler Linear, Parity and unitary functions
@ref LL_I2S_SetPrescalerLinear() and @ref LL_I2S_SetPrescalerParity()
to set it.*/
uint32_t ClockPolarity; /*!< Specifies the idle state of the I2S clock.
This parameter can be a value of @ref I2S_LL_EC_POLARITY
This feature can be modified afterwards using unitary function
@ref LL_I2S_SetClockPolarity().*/
} LL_I2S_InitTypeDef;
/**
* @}
*/
#endif /*USE_FULL_LL_DRIVER*/
/* Exported constants --------------------------------------------------------*/
/** @defgroup I2S_LL_Exported_Constants I2S Exported Constants
* @{
*/
/** @defgroup I2S_LL_EC_DATA_FORMAT Data Format
* @{
*/
#define LL_I2S_DATAFORMAT_16B (0x00000000UL)
#define LL_I2S_DATAFORMAT_16B_EXTENDED (SPI_I2SCFGR_CHLEN)
#define LL_I2S_DATAFORMAT_24B (SPI_I2SCFGR_CHLEN | SPI_I2SCFGR_DATLEN_0)
#define LL_I2S_DATAFORMAT_24B_LEFT_ALIGNED (SPI_I2SCFGR_CHLEN | SPI_I2SCFGR_DATLEN_0 | SPI_I2SCFGR_DATFMT)
#define LL_I2S_DATAFORMAT_32B (SPI_I2SCFGR_CHLEN | SPI_I2SCFGR_DATLEN_1)
/**
* @}
*/
/** @defgroup I2S_LL_EC_CHANNEL_LENGTH_TYPE Type of Channel Length
* @{
*/
#define LL_I2S_SLAVE_VARIABLE_CH_LENGTH (0x00000000UL)
#define LL_I2S_SLAVE_FIXED_CH_LENGTH (SPI_I2SCFGR_FIXCH)
/**
* @}
*/
/** @defgroup I2S_LL_EC_POLARITY Clock Polarity
* @{
*/
#define LL_I2S_POLARITY_LOW (0x00000000UL)
#define LL_I2S_POLARITY_HIGH (SPI_I2SCFGR_CKPOL)
/**
* @}
*/
/** @defgroup I2S_LL_EC_STANDARD I2S Standard
* @{
*/
#define LL_I2S_STANDARD_PHILIPS (0x00000000UL)
#define LL_I2S_STANDARD_MSB (SPI_I2SCFGR_I2SSTD_0)
#define LL_I2S_STANDARD_LSB (SPI_I2SCFGR_I2SSTD_1)
#define LL_I2S_STANDARD_PCM_SHORT (SPI_I2SCFGR_I2SSTD_0 | SPI_I2SCFGR_I2SSTD_1)
#define LL_I2S_STANDARD_PCM_LONG (SPI_I2SCFGR_I2SSTD_0 | SPI_I2SCFGR_I2SSTD_1 | SPI_I2SCFGR_PCMSYNC)
/**
* @}
*/
/** @defgroup I2S_LL_EC_MODE Operation Mode
* @{
*/
#define LL_I2S_MODE_SLAVE_TX (0x00000000UL)
#define LL_I2S_MODE_SLAVE_RX (SPI_I2SCFGR_I2SCFG_0)
#define LL_I2S_MODE_SLAVE_FULL_DUPLEX (SPI_I2SCFGR_I2SCFG_2)
#define LL_I2S_MODE_MASTER_TX (SPI_I2SCFGR_I2SCFG_1)
#define LL_I2S_MODE_MASTER_RX (SPI_I2SCFGR_I2SCFG_1 | SPI_I2SCFGR_I2SCFG_0)
#define LL_I2S_MODE_MASTER_FULL_DUPLEX (SPI_I2SCFGR_I2SCFG_2 | SPI_I2SCFGR_I2SCFG_0)
/**
* @}
*/
/** @defgroup I2S_LL_EC_PRESCALER_PARITY Prescaler Factor
* @{
*/
#define LL_I2S_PRESCALER_PARITY_EVEN (0x00000000UL) /*!< Odd factor: Real divider value is = I2SDIV * 2 */
#define LL_I2S_PRESCALER_PARITY_ODD (0x00000001UL) /*!< Odd factor: Real divider value is = (I2SDIV * 2)+1 */
/**
* @}
*/
/** @defgroup I2S_LL_EC_FIFO_TH FIFO Threshold Level
* @{
*/
#define LL_I2S_FIFO_TH_01DATA (LL_SPI_FIFO_TH_01DATA)
#define LL_I2S_FIFO_TH_02DATA (LL_SPI_FIFO_TH_02DATA)
#define LL_I2S_FIFO_TH_03DATA (LL_SPI_FIFO_TH_03DATA)
#define LL_I2S_FIFO_TH_04DATA (LL_SPI_FIFO_TH_04DATA)
#define LL_I2S_FIFO_TH_05DATA (LL_SPI_FIFO_TH_05DATA)
#define LL_I2S_FIFO_TH_06DATA (LL_SPI_FIFO_TH_06DATA)
#define LL_I2S_FIFO_TH_07DATA (LL_SPI_FIFO_TH_07DATA)
#define LL_I2S_FIFO_TH_08DATA (LL_SPI_FIFO_TH_08DATA)
/**
* @}
*/
/** @defgroup I2S_LL_EC_BIT_ORDER Transmission Bit Order
* @{
*/
#define LL_I2S_LSB_FIRST (LL_SPI_LSB_FIRST)
#define LL_I2S_MSB_FIRST (LL_SPI_MSB_FIRST)
/**
* @}
*/
#if defined(USE_FULL_LL_DRIVER)
/** @defgroup I2S_LL_EC_MCLK_OUTPUT MCLK Output
* @{
*/
#define LL_I2S_MCLK_OUTPUT_DISABLE (0x00000000UL)
#define LL_I2S_MCLK_OUTPUT_ENABLE (SPI_I2SCFGR_MCKOE)
/**
* @}
*/
/** @defgroup I2S_LL_EC_AUDIO_FREQ Audio Frequency
* @{
*/
#define LL_I2S_AUDIOFREQ_192K 192000UL /*!< Audio Frequency configuration 192000 Hz */
#define LL_I2S_AUDIOFREQ_96K 96000UL /*!< Audio Frequency configuration 96000 Hz */
#define LL_I2S_AUDIOFREQ_48K 48000UL /*!< Audio Frequency configuration 48000 Hz */
#define LL_I2S_AUDIOFREQ_44K 44100UL /*!< Audio Frequency configuration 44100 Hz */
#define LL_I2S_AUDIOFREQ_32K 32000UL /*!< Audio Frequency configuration 32000 Hz */
#define LL_I2S_AUDIOFREQ_22K 22050UL /*!< Audio Frequency configuration 22050 Hz */
#define LL_I2S_AUDIOFREQ_16K 16000UL /*!< Audio Frequency configuration 16000 Hz */
#define LL_I2S_AUDIOFREQ_11K 11025UL /*!< Audio Frequency configuration 11025 Hz */
#define LL_I2S_AUDIOFREQ_8K 8000UL /*!< Audio Frequency configuration 8000 Hz */
#define LL_I2S_AUDIOFREQ_DEFAULT 0UL /*!< Audio Freq not specified. Register I2SDIV = 0 */
/**
* @}
*/
#endif /* USE_FULL_LL_DRIVER */
/**
* @}
*/
/* Exported macro ------------------------------------------------------------*/
/** @defgroup I2S_LL_Exported_Macros I2S Exported Macros
* @{
*/
/** @defgroup I2S_LL_EM_WRITE_READ Common Write and read registers Macros
* @{
*/
/**
* @brief Write a value in I2S register
* @param __INSTANCE__ I2S Instance
* @param __REG__ Register to be written
* @param __VALUE__ Value to be written in the register
* @retval None
*/
#define LL_I2S_WriteReg(__INSTANCE__, __REG__, __VALUE__) WRITE_REG(__INSTANCE__->__REG__, (__VALUE__))
/**
* @brief Read a value in I2S register
* @param __INSTANCE__ I2S Instance
* @param __REG__ Register to be read
* @retval Register value
*/
#define LL_I2S_ReadReg(__INSTANCE__, __REG__) READ_REG(__INSTANCE__->__REG__)
/**
* @}
*/
/**
* @}
*/
/* Exported functions --------------------------------------------------------*/
/** @defgroup I2S_LL_Exported_Functions I2S Exported Functions
* @{
*/
/** @defgroup I2S_LL_EF_Configuration Configuration
* @{
*/
/**
* @brief Set I2S Data frame format
* @rmtoll I2SCFGR DATLEN LL_I2S_SetDataFormat\n
* I2SCFGR CHLEN LL_I2S_SetDataFormat\n
* I2SCFGR DATFMT LL_I2S_SetDataFormat
* @param SPIx SPI Handle
* @param DataLength This parameter can be one of the following values:
* @arg @ref LL_I2S_DATAFORMAT_16B
* @arg @ref LL_I2S_DATAFORMAT_16B_EXTENDED
* @arg @ref LL_I2S_DATAFORMAT_24B
* @arg @ref LL_I2S_DATAFORMAT_24B_LEFT_ALIGNED
* @arg @ref LL_I2S_DATAFORMAT_32B
* @retval None
*/
__STATIC_INLINE void LL_I2S_SetDataFormat(SPI_TypeDef *SPIx, uint32_t DataLength)
{
MODIFY_REG(SPIx->I2SCFGR, SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN | SPI_I2SCFGR_DATFMT, DataLength);
}
/**
* @brief Get I2S Data frame format
* @rmtoll I2SCFGR DATLEN LL_I2S_GetDataFormat\n
* I2SCFGR CHLEN LL_I2S_GetDataFormat\n
* I2SCFGR DATFMT LL_I2S_GetDataFormat
* @param SPIx SPI Handle
* @retval Return value can be one of the following values:
* @arg @ref LL_I2S_DATAFORMAT_16B
* @arg @ref LL_I2S_DATAFORMAT_16B_EXTENDED
* @arg @ref LL_I2S_DATAFORMAT_24B
* @arg @ref LL_I2S_DATAFORMAT_24B_LEFT_ALIGNED
* @arg @ref LL_I2S_DATAFORMAT_32B
*/
__STATIC_INLINE uint32_t LL_I2S_GetDataFormat(SPI_TypeDef *SPIx)
{
return (uint32_t)(READ_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN | SPI_I2SCFGR_DATFMT));
}
/**
* @brief Set I2S Channel Length Type
* @note This feature is useful with SLAVE only
* @rmtoll I2SCFGR FIXCH LL_I2S_SetChannelLengthType
* @param SPIx SPI Handle
* @param ChannelLengthType This parameter can be one of the following values:
* @arg @ref LL_I2S_SLAVE_VARIABLE_CH_LENGTH
* @arg @ref LL_I2S_SLAVE_FIXED_CH_LENGTH
* @retval None
*/
__STATIC_INLINE void LL_I2S_SetChannelLengthType(SPI_TypeDef *SPIx, uint32_t ChannelLengthType)
{
MODIFY_REG(SPIx->I2SCFGR, SPI_I2SCFGR_FIXCH, ChannelLengthType);
}
/**
* @brief Get I2S Channel Length Type
* @note This feature is useful with SLAVE only
* @rmtoll I2SCFGR FIXCH LL_I2S_GetChannelLengthType
* @param SPIx SPI Handle
* @retval Return value can be one of the following values:
* @arg @ref LL_I2S_SLAVE_VARIABLE_CH_LENGTH
* @arg @ref LL_I2S_SLAVE_FIXED_CH_LENGTH
*/
__STATIC_INLINE uint32_t LL_I2S_GetChannelLengthType(SPI_TypeDef *SPIx)
{
return (uint32_t)(READ_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_FIXCH));
}
/**
* @brief Invert the default polarity of WS signal
* @rmtoll I2SCFGR WSINV LL_I2S_EnableWordSelectInversion
* @param SPIx SPI Handle
* @retval None
*/
__STATIC_INLINE void LL_I2S_EnableWordSelectInversion(SPI_TypeDef *SPIx)
{
SET_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_WSINV);
}
/**
* @brief Use the default polarity of WS signal
* @rmtoll I2SCFGR WSINV LL_I2S_DisableWordSelectInversion
* @param SPIx SPI Handle
* @retval None
*/
__STATIC_INLINE void LL_I2S_DisableWordSelectInversion(SPI_TypeDef *SPIx)
{
CLEAR_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_WSINV);
}
/**
* @brief Check if polarity of WS signal is inverted
* @rmtoll I2SCFGR WSINV LL_I2S_IsEnabledWordSelectInversion
* @param SPIx SPI Handle
* @retval State of bit (1 or 0)
*/
__STATIC_INLINE uint32_t LL_I2S_IsEnabledWordSelectInversion(SPI_TypeDef *SPIx)
{
return ((READ_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_WSINV) == (SPI_I2SCFGR_WSINV)) ? 1UL : 0UL);
}
/**
* @brief Set 2S Clock Polarity
* @rmtoll I2SCFGR CKPOL LL_I2S_SetClockPolarity
* @param SPIx SPI Handle
* @param ClockPolarity This parameter can be one of the following values:
* @arg @ref LL_I2S_POLARITY_LOW
* @arg @ref LL_I2S_POLARITY_HIGH
* @retval None
*/
__STATIC_INLINE void LL_I2S_SetClockPolarity(SPI_TypeDef *SPIx, uint32_t ClockPolarity)
{
MODIFY_REG(SPIx->I2SCFGR, SPI_I2SCFGR_CKPOL, ClockPolarity);
}
/**
* @brief Get 2S Clock Polarity
* @rmtoll I2SCFGR CKPOL LL_I2S_GetClockPolarity
* @param SPIx SPI Handle
* @retval Return value can be one of the following values:
* @arg @ref LL_I2S_POLARITY_LOW
* @arg @ref LL_I2S_POLARITY_HIGH
*/
__STATIC_INLINE uint32_t LL_I2S_GetClockPolarity(SPI_TypeDef *SPIx)
{
return (uint32_t)(READ_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_CKPOL));
}
/**
* @brief Set I2S standard
* @rmtoll I2SCFGR I2SSTD LL_I2S_SetStandard\n
* I2SCFGR PCMSYNC LL_I2S_SetStandard
* @param SPIx SPI Handle
* @param Standard This parameter can be one of the following values:
* @arg @ref LL_I2S_STANDARD_PHILIPS
* @arg @ref LL_I2S_STANDARD_MSB
* @arg @ref LL_I2S_STANDARD_LSB
* @arg @ref LL_I2S_STANDARD_PCM_SHORT
* @arg @ref LL_I2S_STANDARD_PCM_LONG
* @retval None
*/
__STATIC_INLINE void LL_I2S_SetStandard(SPI_TypeDef *SPIx, uint32_t Standard)
{
MODIFY_REG(SPIx->I2SCFGR, SPI_I2SCFGR_I2SSTD | SPI_I2SCFGR_PCMSYNC, Standard);
}
/**
* @brief Get I2S standard
* @rmtoll I2SCFGR I2SSTD LL_I2S_GetStandard\n
* I2SCFGR PCMSYNC LL_I2S_GetStandard
* @param SPIx SPI Handle
* @retval Return value can be one of the following values:
* @arg @ref LL_I2S_STANDARD_PHILIPS
* @arg @ref LL_I2S_STANDARD_MSB
* @arg @ref LL_I2S_STANDARD_LSB
* @arg @ref LL_I2S_STANDARD_PCM_SHORT
* @arg @ref LL_I2S_STANDARD_PCM_LONG
*/
__STATIC_INLINE uint32_t LL_I2S_GetStandard(SPI_TypeDef *SPIx)
{
return (uint32_t)(READ_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_I2SSTD | SPI_I2SCFGR_PCMSYNC));
}
/**
* @brief Set I2S config
* @rmtoll I2SCFGR I2SCFG LL_I2S_SetTransferMode
* @param SPIx SPI Handle
* @param Standard This parameter can be one of the following values:
* @arg @ref LL_I2S_MODE_SLAVE_TX
* @arg @ref LL_I2S_MODE_SLAVE_RX
* @arg @ref LL_I2S_MODE_SLAVE_FULL_DUPLEX
* @arg @ref LL_I2S_MODE_MASTER_TX
* @arg @ref LL_I2S_MODE_MASTER_RX
* @arg @ref LL_I2S_MODE_MASTER_FULL_DUPLEX
* @retval None
*/
__STATIC_INLINE void LL_I2S_SetTransferMode(SPI_TypeDef *SPIx, uint32_t Standard)
{
MODIFY_REG(SPIx->I2SCFGR, SPI_I2SCFGR_I2SCFG, Standard);
}
/**
* @brief Get I2S config
* @rmtoll I2SCFGR I2SCFG LL_I2S_GetTransferMode
* @param SPIx SPI Handle
* @retval Return value can be one of the following values:
* @arg @ref LL_I2S_MODE_SLAVE_TX
* @arg @ref LL_I2S_MODE_SLAVE_RX
* @arg @ref LL_I2S_MODE_SLAVE_FULL_DUPLEX
* @arg @ref LL_I2S_MODE_MASTER_TX
* @arg @ref LL_I2S_MODE_MASTER_RX
* @arg @ref LL_I2S_MODE_MASTER_FULL_DUPLEX
*/
__STATIC_INLINE uint32_t LL_I2S_GetTransferMode(SPI_TypeDef *SPIx)
{
return (uint32_t)(READ_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_I2SCFG));
}
/**
* @brief Select I2S mode and Enable I2S peripheral
* @rmtoll I2SCFGR I2SMOD LL_I2S_Enable\n
* CR1 SPE LL_I2S_Enable
* @param SPIx SPI Handle
* @retval None
*/
__STATIC_INLINE void LL_I2S_Enable(SPI_TypeDef *SPIx)
{
SET_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_I2SMOD);
SET_BIT(SPIx->CR1, SPI_CR1_SPE);
}
/**
* @brief Disable I2S peripheral and disable I2S mode
* @rmtoll CR1 SPE LL_I2S_Disable\n
* I2SCFGR I2SMOD LL_I2S_Disable
* @param SPIx SPI Handle
* @retval None
*/
__STATIC_INLINE void LL_I2S_Disable(SPI_TypeDef *SPIx)
{
CLEAR_BIT(SPIx->CR1, SPI_CR1_SPE);
CLEAR_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_I2SMOD);
}
/**
* @brief Swap the SDO and SDI pin
* @note This configuration can not be changed when I2S is enabled.
* @rmtoll CFG2 IOSWP LL_I2S_EnableIOSwap
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_I2S_EnableIOSwap(SPI_TypeDef *SPIx)
{
LL_SPI_EnableIOSwap(SPIx);
}
/**
* @brief Restore default function for SDO and SDI pin
* @note This configuration can not be changed when I2S is enabled.
* @rmtoll CFG2 IOSWP LL_I2S_DisableIOSwap
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_I2S_DisableIOSwap(SPI_TypeDef *SPIx)
{
LL_SPI_DisableIOSwap(SPIx);
}
/**
* @brief Check if SDO and SDI pin are swapped
* @rmtoll CFG2 IOSWP LL_I2S_IsEnabledIOSwap
* @param SPIx SPI Instance
* @retval State of bit (1 or 0)
*/
__STATIC_INLINE uint32_t LL_I2S_IsEnabledIOSwap(SPI_TypeDef *SPIx)
{
return LL_SPI_IsEnabledIOSwap(SPIx);
}
/**
* @brief Enable GPIO control
* @note This configuration can not be changed when I2S is enabled.
* @rmtoll CFG2 AFCNTR LL_I2S_EnableGPIOControl
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_I2S_EnableGPIOControl(SPI_TypeDef *SPIx)
{
LL_SPI_EnableGPIOControl(SPIx);
}
/**
* @brief Disable GPIO control
* @note This configuration can not be changed when I2S is enabled.
* @rmtoll CFG2 AFCNTR LL_I2S_DisableGPIOControl
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_I2S_DisableGPIOControl(SPI_TypeDef *SPIx)
{
LL_SPI_DisableGPIOControl(SPIx);
}
/**
* @brief Check if GPIO control is active
* @rmtoll CFG2 AFCNTR LL_I2S_IsEnabledGPIOControl
* @param SPIx SPI Instance
* @retval State of bit (1 or 0)
*/
__STATIC_INLINE uint32_t LL_I2S_IsEnabledGPIOControl(SPI_TypeDef *SPIx)
{
return LL_SPI_IsEnabledGPIOControl(SPIx);
}
/**
* @brief Lock the AF configuration of associated IOs
* @note Once this bit is set, the SPI_CFG2 register content can not be modified until a hardware reset occurs.
* The reset of the IOLock bit is done by hardware. for that, LL_SPI_DisableIOLock can not exist.
* @rmtoll CR1 IOLOCK LL_SPI_EnableIOLock
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_I2S_EnableIOLock(SPI_TypeDef *SPIx)
{
LL_SPI_EnableIOLock(SPIx);
}
/**
* @brief Check if the the SPI_CFG2 register is locked
* @rmtoll CR1 IOLOCK LL_I2S_IsEnabledIOLock
* @param SPIx SPI Instance
* @retval State of bit (1 or 0)
*/
__STATIC_INLINE uint32_t LL_I2S_IsEnabledIOLock(SPI_TypeDef *SPIx)
{
return LL_SPI_IsEnabledIOLock(SPIx);
}
/**
* @brief Set Transfer Bit Order
* @note This configuration can not be changed when I2S is enabled.
* @rmtoll CFG2 LSBFRST LL_I2S_SetTransferBitOrder
* @param SPIx SPI Instance
* @param BitOrder This parameter can be one of the following values:
* @arg @ref LL_I2S_LSB_FIRST
* @arg @ref LL_I2S_MSB_FIRST
* @retval None
*/
__STATIC_INLINE void LL_I2S_SetTransferBitOrder(SPI_TypeDef *SPIx, uint32_t BitOrder)
{
LL_SPI_SetTransferBitOrder(SPIx, BitOrder);
}
/**
* @brief Get Transfer Bit Order
* @rmtoll CFG2 LSBFRST LL_I2S_GetTransferBitOrder
* @param SPIx SPI Instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_I2S_LSB_FIRST
* @arg @ref LL_I2S_MSB_FIRST
*/
__STATIC_INLINE uint32_t LL_I2S_GetTransferBitOrder(SPI_TypeDef *SPIx)
{
return LL_SPI_GetTransferBitOrder(SPIx);
}
/**
* @brief Start effective transfer on wire
* @rmtoll CR1 CSTART LL_I2S_StartTransfer
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_I2S_StartTransfer(SPI_TypeDef *SPIx)
{
LL_SPI_StartMasterTransfer(SPIx);
}
/**
* @brief Check if there is an unfinished transfer
* @rmtoll CR1 CSTART LL_I2S_IsTransferActive
* @param SPIx SPI Instance
* @retval State of bit (1 or 0)
*/
__STATIC_INLINE uint32_t LL_I2S_IsActiveTransfer(SPI_TypeDef *SPIx)
{
return LL_SPI_IsActiveMasterTransfer(SPIx);
}
/**
* @brief Set threshold of FIFO that triggers a transfer event
* @note This configuration can not be changed when I2S is enabled.
* @rmtoll CFG1 FTHLV LL_I2S_SetFIFOThreshold
* @param SPIx SPI Instance
* @param Threshold This parameter can be one of the following values:
* @arg @ref LL_I2S_FIFO_TH_01DATA
* @arg @ref LL_I2S_FIFO_TH_02DATA
* @arg @ref LL_I2S_FIFO_TH_03DATA
* @arg @ref LL_I2S_FIFO_TH_04DATA
* @arg @ref LL_I2S_FIFO_TH_05DATA
* @arg @ref LL_I2S_FIFO_TH_06DATA
* @arg @ref LL_I2S_FIFO_TH_07DATA
* @arg @ref LL_I2S_FIFO_TH_08DATA
* @retval None
*/
__STATIC_INLINE void LL_I2S_SetFIFOThreshold(SPI_TypeDef *SPIx, uint32_t Threshold)
{
LL_SPI_SetFIFOThreshold(SPIx, Threshold);
}
/**
* @brief Get threshold of FIFO that triggers a transfer event
* @rmtoll CFG1 FTHLV LL_I2S_GetFIFOThreshold
* @param SPIx SPI Instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_I2S_FIFO_TH_01DATA
* @arg @ref LL_I2S_FIFO_TH_02DATA
* @arg @ref LL_I2S_FIFO_TH_03DATA
* @arg @ref LL_I2S_FIFO_TH_04DATA
* @arg @ref LL_I2S_FIFO_TH_05DATA
* @arg @ref LL_I2S_FIFO_TH_06DATA
* @arg @ref LL_I2S_FIFO_TH_07DATA
* @arg @ref LL_I2S_FIFO_TH_08DATA
*/
__STATIC_INLINE uint32_t LL_I2S_GetFIFOThreshold(SPI_TypeDef *SPIx)
{
return LL_SPI_GetFIFOThreshold(SPIx);
}
/**
* @brief Set I2S linear prescaler
* @rmtoll I2SCFGR I2SDIV LL_I2S_SetPrescalerLinear
* @param SPIx SPI Instance
* @param PrescalerLinear Value between Min_Data=0x00 and Max_Data=0xFF
* @note PrescalerLinear '1' is not authorized with parity LL_I2S_PRESCALER_PARITY_ODD
* @retval None
*/
__STATIC_INLINE void LL_I2S_SetPrescalerLinear(SPI_TypeDef *SPIx, uint32_t PrescalerLinear)
{
MODIFY_REG(SPIx->I2SCFGR, SPI_I2SCFGR_I2SDIV, (PrescalerLinear << SPI_I2SCFGR_I2SDIV_Pos));
}
/**
* @brief Get I2S linear prescaler
* @rmtoll I2SCFGR I2SDIV LL_I2S_GetPrescalerLinear
* @param SPIx SPI Instance
* @retval PrescalerLinear Value between Min_Data=0x00 and Max_Data=0xFF
*/
__STATIC_INLINE uint32_t LL_I2S_GetPrescalerLinear(SPI_TypeDef *SPIx)
{
return (uint32_t)(READ_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_I2SDIV) >> SPI_I2SCFGR_I2SDIV_Pos);
}
/**
* @brief Set I2S parity prescaler
* @rmtoll I2SCFGR ODD LL_I2S_SetPrescalerParity
* @param SPIx SPI Instance
* @param PrescalerParity This parameter can be one of the following values:
* @arg @ref LL_I2S_PRESCALER_PARITY_EVEN
* @arg @ref LL_I2S_PRESCALER_PARITY_ODD
* @retval None
*/
__STATIC_INLINE void LL_I2S_SetPrescalerParity(SPI_TypeDef *SPIx, uint32_t PrescalerParity)
{
MODIFY_REG(SPIx->I2SCFGR, SPI_I2SCFGR_ODD, PrescalerParity << SPI_I2SCFGR_ODD_Pos);
}
/**
* @brief Get I2S parity prescaler
* @rmtoll I2SCFGR ODD LL_I2S_GetPrescalerParity
* @param SPIx SPI Instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_I2S_PRESCALER_PARITY_EVEN
* @arg @ref LL_I2S_PRESCALER_PARITY_ODD
*/
__STATIC_INLINE uint32_t LL_I2S_GetPrescalerParity(SPI_TypeDef *SPIx)
{
return (uint32_t)(READ_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_ODD) >> SPI_I2SCFGR_ODD_Pos);
}
/**
* @brief Enable the Master Clock Output (Pin MCK)
* @rmtoll I2SCFGR MCKOE LL_I2S_EnableMasterClock
* @param SPIx SPI Handle
* @retval None
*/
__STATIC_INLINE void LL_I2S_EnableMasterClock(SPI_TypeDef *SPIx)
{
SET_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_MCKOE);
}
/**
* @brief Disable the Master Clock Output (Pin MCK)
* @rmtoll I2SCFGR MCKOE LL_I2S_DisableMasterClock
* @param SPIx SPI Handle
* @retval None
*/
__STATIC_INLINE void LL_I2S_DisableMasterClock(SPI_TypeDef *SPIx)
{
CLEAR_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_MCKOE);
}
/**
* @brief Check if the master clock output (Pin MCK) is enabled
* @rmtoll I2SCFGR MCKOE LL_I2S_IsEnabledMasterClock
* @param SPIx SPI Instance
* @retval State of bit (1 or 0)
*/
__STATIC_INLINE uint32_t LL_I2S_IsEnabledMasterClock(SPI_TypeDef *SPIx)
{
return ((READ_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_MCKOE) == (SPI_I2SCFGR_MCKOE)) ? 1UL : 0UL);
}
/**
* @}
*/
/** @defgroup I2S_LL_EF_FLAG_Management FLAG_Management
* @{
*/
/**
* @brief Check if there enough data in FIFO to read a full packet
* @rmtoll SR RXP LL_I2S_IsActiveFlag_RXP
* @param SPIx SPI Instance
* @retval State of bit (1 or 0)
*/
__STATIC_INLINE uint32_t LL_I2S_IsActiveFlag_RXP(SPI_TypeDef *SPIx)
{
return LL_SPI_IsActiveFlag_RXP(SPIx);
}
/**
* @brief Check if there enough space in FIFO to hold a full packet
* @rmtoll SR TXP LL_I2S_IsActiveFlag_TXP
* @param SPIx SPI Instance
* @retval State of bit (1 or 0)
*/
__STATIC_INLINE uint32_t LL_I2S_IsActiveFlag_TXP(SPI_TypeDef *SPIx)
{
return LL_SPI_IsActiveFlag_TXP(SPIx);
}
/**
* @brief Get Underrun error flag
* @rmtoll SR UDR LL_I2S_IsActiveFlag_UDR
* @param SPIx SPI Instance
* @retval State of bit (1 or 0)
*/
__STATIC_INLINE uint32_t LL_I2S_IsActiveFlag_UDR(SPI_TypeDef *SPIx)
{
return LL_SPI_IsActiveFlag_UDR(SPIx);
}
/**
* @brief Get Overrun error flag
* @rmtoll SR OVR LL_I2S_IsActiveFlag_OVR
* @param SPIx SPI Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_I2S_IsActiveFlag_OVR(SPI_TypeDef *SPIx)
{
return LL_SPI_IsActiveFlag_OVR(SPIx);
}
/**
* @brief Get TI Frame format error flag
* @rmtoll SR TIFRE LL_I2S_IsActiveFlag_FRE
* @param SPIx SPI Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_I2S_IsActiveFlag_FRE(SPI_TypeDef *SPIx)
{
return LL_SPI_IsActiveFlag_FRE(SPIx);
}
/**
* @brief Clear Underrun error flag
* @rmtoll IFCR UDRC LL_I2S_ClearFlag_UDR
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_I2S_ClearFlag_UDR(SPI_TypeDef *SPIx)
{
LL_SPI_ClearFlag_UDR(SPIx);
}
/**
* @brief Clear Overrun error flag
* @rmtoll IFCR OVRC LL_I2S_ClearFlag_OVR
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_I2S_ClearFlag_OVR(SPI_TypeDef *SPIx)
{
LL_SPI_ClearFlag_OVR(SPIx);
}
/**
* @brief Clear Frame format error flag
* @rmtoll IFCR TIFREC LL_I2S_ClearFlag_FRE
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_I2S_ClearFlag_FRE(SPI_TypeDef *SPIx)
{
LL_SPI_ClearFlag_FRE(SPIx);
}
/**
* @}
*/
/** @defgroup I2S_LL_EF_IT_Management IT_Management
* @{
*/
/**
* @brief Enable Rx Packet available IT
* @rmtoll IER RXPIE LL_I2S_EnableIT_RXP
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_I2S_EnableIT_RXP(SPI_TypeDef *SPIx)
{
LL_SPI_EnableIT_RXP(SPIx);
}
/**
* @brief Enable Tx Packet space available IT
* @rmtoll IER TXPIE LL_I2S_EnableIT_TXP
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_I2S_EnableIT_TXP(SPI_TypeDef *SPIx)
{
LL_SPI_EnableIT_TXP(SPIx);
}
/**
* @brief Enable Underrun IT
* @rmtoll IER UDRIE LL_I2S_EnableIT_UDR
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_I2S_EnableIT_UDR(SPI_TypeDef *SPIx)
{
LL_SPI_EnableIT_UDR(SPIx);
}
/**
* @brief Enable Overrun IT
* @rmtoll IER OVRIE LL_I2S_EnableIT_OVR
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_I2S_EnableIT_OVR(SPI_TypeDef *SPIx)
{
LL_SPI_EnableIT_OVR(SPIx);
}
/**
* @brief Enable TI Frame Format Error IT
* @rmtoll IER TIFREIE LL_I2S_EnableIT_FRE
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_I2S_EnableIT_FRE(SPI_TypeDef *SPIx)
{
LL_SPI_EnableIT_FRE(SPIx);
}
/**
* @brief Disable Rx Packet available IT
* @rmtoll IER RXPIE LL_I2S_DisableIT_RXP
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_I2S_DisableIT_RXP(SPI_TypeDef *SPIx)
{
LL_SPI_DisableIT_RXP(SPIx);
}
/**
* @brief Disable Tx Packet space available IT
* @rmtoll IER TXPIE LL_I2S_DisableIT_TXP
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_I2S_DisableIT_TXP(SPI_TypeDef *SPIx)
{
LL_SPI_DisableIT_TXP(SPIx);
}
/**
* @brief Disable Underrun IT
* @rmtoll IER UDRIE LL_I2S_DisableIT_UDR
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_I2S_DisableIT_UDR(SPI_TypeDef *SPIx)
{
LL_SPI_DisableIT_UDR(SPIx);
}
/**
* @brief Disable Overrun IT
* @rmtoll IER OVRIE LL_I2S_DisableIT_OVR
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_I2S_DisableIT_OVR(SPI_TypeDef *SPIx)
{
LL_SPI_DisableIT_OVR(SPIx);
}
/**
* @brief Disable TI Frame Format Error IT
* @rmtoll IER TIFREIE LL_I2S_DisableIT_FRE
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_I2S_DisableIT_FRE(SPI_TypeDef *SPIx)
{
LL_SPI_DisableIT_FRE(SPIx);
}
/**
* @brief Check if Rx Packet available IT is enabled
* @rmtoll IER RXPIE LL_I2S_IsEnabledIT_RXP
* @param SPIx SPI Instance
* @retval State of bit (1 or 0)
*/
__STATIC_INLINE uint32_t LL_I2S_IsEnabledIT_RXP(SPI_TypeDef *SPIx)
{
return LL_SPI_IsEnabledIT_RXP(SPIx);
}
/**
* @brief Check if Tx Packet space available IT is enabled
* @rmtoll IER TXPIE LL_I2S_IsEnabledIT_TXP
* @param SPIx SPI Instance
* @retval State of bit (1 or 0)
*/
__STATIC_INLINE uint32_t LL_I2S_IsEnabledIT_TXP(SPI_TypeDef *SPIx)
{
return LL_SPI_IsEnabledIT_TXP(SPIx);
}
/**
* @brief Check if Underrun IT is enabled
* @rmtoll IER UDRIE LL_I2S_IsEnabledIT_UDR
* @param SPIx SPI Instance
* @retval State of bit (1 or 0)
*/
__STATIC_INLINE uint32_t LL_I2S_IsEnabledIT_UDR(SPI_TypeDef *SPIx)
{
return LL_SPI_IsEnabledIT_UDR(SPIx);
}
/**
* @brief Check if Overrun IT is enabled
* @rmtoll IER OVRIE LL_I2S_IsEnabledIT_OVR
* @param SPIx SPI Instance
* @retval State of bit (1 or 0)
*/
__STATIC_INLINE uint32_t LL_I2S_IsEnabledIT_OVR(SPI_TypeDef *SPIx)
{
return LL_SPI_IsEnabledIT_OVR(SPIx);
}
/**
* @brief Check if TI Frame Format Error IT is enabled
* @rmtoll IER TIFREIE LL_I2S_IsEnabledIT_FRE
* @param SPIx SPI Instance
* @retval State of bit (1 or 0)
*/
__STATIC_INLINE uint32_t LL_I2S_IsEnabledIT_FRE(SPI_TypeDef *SPIx)
{
return LL_SPI_IsEnabledIT_FRE(SPIx);
}
/**
* @}
*/
/** @defgroup I2S_LL_EF_DMA_Management DMA_Management
* @{
*/
/**
* @brief Enable DMA Rx
* @rmtoll CFG1 RXDMAEN LL_I2S_EnableDMAReq_RX
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_I2S_EnableDMAReq_RX(SPI_TypeDef *SPIx)
{
LL_SPI_EnableDMAReq_RX(SPIx);
}
/**
* @brief Disable DMA Rx
* @rmtoll CFG1 RXDMAEN LL_I2S_DisableDMAReq_RX
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_I2S_DisableDMAReq_RX(SPI_TypeDef *SPIx)
{
LL_SPI_DisableDMAReq_RX(SPIx);
}
/**
* @brief Check if DMA Rx is enabled
* @rmtoll CFG1 RXDMAEN LL_I2S_IsEnabledDMAReq_RX
* @param SPIx SPI Instance
* @retval State of bit (1 or 0)
*/
__STATIC_INLINE uint32_t LL_I2S_IsEnabledDMAReq_RX(SPI_TypeDef *SPIx)
{
return LL_SPI_IsEnabledDMAReq_RX(SPIx);
}
/**
* @brief Enable DMA Tx
* @rmtoll CFG1 TXDMAEN LL_I2S_EnableDMAReq_TX
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_I2S_EnableDMAReq_TX(SPI_TypeDef *SPIx)
{
LL_SPI_EnableDMAReq_TX(SPIx);
}
/**
* @brief Disable DMA Tx
* @rmtoll CFG1 TXDMAEN LL_I2S_DisableDMAReq_TX
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_I2S_DisableDMAReq_TX(SPI_TypeDef *SPIx)
{
LL_SPI_DisableDMAReq_TX(SPIx);
}
/**
* @brief Check if DMA Tx is enabled
* @rmtoll CFG1 TXDMAEN LL_I2S_IsEnabledDMAReq_TX
* @param SPIx SPI Instance
* @retval State of bit (1 or 0)
*/
__STATIC_INLINE uint32_t LL_I2S_IsEnabledDMAReq_TX(SPI_TypeDef *SPIx)
{
return LL_SPI_IsEnabledDMAReq_TX(SPIx);
}
/**
* @}
*/
/** @defgroup I2S_LL_EF_DATA_Management DATA_Management
* @{
*/
/**
* @brief Read Data Register
* @rmtoll RXDR . LL_I2S_ReceiveData16
* @param SPIx SPI Instance
* @retval 0..0xFFFF
*/
__STATIC_INLINE uint16_t LL_I2S_ReceiveData16(SPI_TypeDef *SPIx)
{
return LL_SPI_ReceiveData16(SPIx);
}
/**
* @brief Read Data Register
* @rmtoll RXDR . LL_I2S_ReceiveData32
* @param SPIx SPI Instance
* @retval 0..0xFFFFFFFF
*/
__STATIC_INLINE uint32_t LL_I2S_ReceiveData32(SPI_TypeDef *SPIx)
{
return LL_SPI_ReceiveData32(SPIx);
}
/**
* @brief Write Data Register
* @rmtoll TXDR . LL_I2S_TransmitData16
* @param SPIx SPI Instance
* @param TxData 0..0xFFFF
* @retval None
*/
__STATIC_INLINE void LL_I2S_TransmitData16(SPI_TypeDef *SPIx, uint16_t TxData)
{
LL_SPI_TransmitData16(SPIx, TxData);
}
/**
* @brief Write Data Register
* @rmtoll TXDR . LL_I2S_TransmitData32
* @param SPIx SPI Instance
* @param TxData 0..0xFFFFFFFF
* @retval None
*/
__STATIC_INLINE void LL_I2S_TransmitData32(SPI_TypeDef *SPIx, uint32_t TxData)
{
LL_SPI_TransmitData32(SPIx, TxData);
}
/**
* @}
*/
#if defined(USE_FULL_LL_DRIVER)
/** @defgroup I2S_LL_EF_Init Initialization and de-initialization functions
* @{
*/
ErrorStatus LL_I2S_DeInit(SPI_TypeDef *SPIx);
ErrorStatus LL_I2S_Init(SPI_TypeDef *SPIx, LL_I2S_InitTypeDef *I2S_InitStruct);
void LL_I2S_StructInit(LL_I2S_InitTypeDef *I2S_InitStruct);
void LL_I2S_ConfigPrescaler(SPI_TypeDef *SPIx, uint32_t PrescalerLinear, uint32_t PrescalerParity);
/**
* @}
*/
#endif /* USE_FULL_LL_DRIVER */
/**
* @}
*/
/**
* @}
*/
#endif /* defined(SPI1) || defined(SPI2) || defined(SPI3) || defined(SPI4) || defined(SPI5) || defined(SPI6) */
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* STM32H7xx_LL_SPI_H */