| /** |
| ****************************************************************************** |
| * @file stm32h7xx_hal.c |
| * @author MCD Application Team |
| * @brief HAL module driver. |
| * This is the common part of the HAL initialization |
| * |
| ****************************************************************************** |
| * @attention |
| * |
| * Copyright (c) 2017 STMicroelectronics. |
| * All rights reserved. |
| * |
| * This software is licensed under terms that can be found in the LICENSE file |
| * in the root directory of this software component. |
| * If no LICENSE file comes with this software, it is provided AS-IS. |
| * |
| ****************************************************************************** |
| @verbatim |
| ============================================================================== |
| ##### How to use this driver ##### |
| ============================================================================== |
| [..] |
| The common HAL driver contains a set of generic and common APIs that can be |
| used by the PPP peripheral drivers and the user to start using the HAL. |
| [..] |
| The HAL contains two APIs' categories: |
| (+) Common HAL APIs |
| (+) Services HAL APIs |
| |
| @endverbatim |
| ****************************************************************************** |
| */ |
| |
| /* Includes ------------------------------------------------------------------*/ |
| #include "stm32h7xx_hal.h" |
| |
| /** @addtogroup STM32H7xx_HAL_Driver |
| * @{ |
| */ |
| |
| /** @defgroup HAL HAL |
| * @brief HAL module driver. |
| * @{ |
| */ |
| |
| /* Private typedef -----------------------------------------------------------*/ |
| /* Private define ------------------------------------------------------------*/ |
| /** |
| * @brief STM32H7xx HAL Driver version number V1.11.1 |
| */ |
| #define __STM32H7xx_HAL_VERSION_MAIN (0x01UL) /*!< [31:24] main version */ |
| #define __STM32H7xx_HAL_VERSION_SUB1 (0x0BUL) /*!< [23:16] sub1 version */ |
| #define __STM32H7xx_HAL_VERSION_SUB2 (0x01UL) /*!< [15:8] sub2 version */ |
| #define __STM32H7xx_HAL_VERSION_RC (0x00UL) /*!< [7:0] release candidate */ |
| #define __STM32H7xx_HAL_VERSION ((__STM32H7xx_HAL_VERSION_MAIN << 24)\ |
| |(__STM32H7xx_HAL_VERSION_SUB1 << 16)\ |
| |(__STM32H7xx_HAL_VERSION_SUB2 << 8 )\ |
| |(__STM32H7xx_HAL_VERSION_RC)) |
| |
| #define IDCODE_DEVID_MASK ((uint32_t)0x00000FFF) |
| #define VREFBUF_TIMEOUT_VALUE (uint32_t)10 /* 10 ms */ |
| |
| /* Private macro -------------------------------------------------------------*/ |
| /* Private variables ---------------------------------------------------------*/ |
| /* Exported variables --------------------------------------------------------*/ |
| |
| /** @defgroup HAL_Exported_Variables HAL Exported Variables |
| * @{ |
| */ |
| __IO uint32_t uwTick; |
| uint32_t uwTickPrio = (1UL << __NVIC_PRIO_BITS); /* Invalid PRIO */ |
| HAL_TickFreqTypeDef uwTickFreq = HAL_TICK_FREQ_DEFAULT; /* 1KHz */ |
| /** |
| * @} |
| */ |
| |
| /* Private function prototypes -----------------------------------------------*/ |
| /* Private functions ---------------------------------------------------------*/ |
| |
| /** @addtogroup HAL_Exported_Functions |
| * @{ |
| */ |
| |
| /** @addtogroup HAL_Group1 |
| * @brief Initialization and de-initialization functions |
| * |
| @verbatim |
| =============================================================================== |
| ##### Initialization and de-initialization functions ##### |
| =============================================================================== |
| [..] This section provides functions allowing to: |
| (+) Initializes the Flash interface the NVIC allocation and initial clock |
| configuration. It initializes the systick also when timeout is needed |
| and the backup domain when enabled. |
| (+) De-Initializes common part of the HAL. |
| (+) Configure The time base source to have 1ms time base with a dedicated |
| Tick interrupt priority. |
| (++) SysTick timer is used by default as source of time base, but user |
| can eventually implement his proper time base source (a general purpose |
| timer for example or other time source), keeping in mind that Time base |
| duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and |
| handled in milliseconds basis. |
| (++) Time base configuration function (HAL_InitTick ()) is called automatically |
| at the beginning of the program after reset by HAL_Init() or at any time |
| when clock is configured, by HAL_RCC_ClockConfig(). |
| (++) Source of time base is configured to generate interrupts at regular |
| time intervals. Care must be taken if HAL_Delay() is called from a |
| peripheral ISR process, the Tick interrupt line must have higher priority |
| (numerically lower) than the peripheral interrupt. Otherwise the caller |
| ISR process will be blocked. |
| (++) functions affecting time base configurations are declared as __weak |
| to make override possible in case of other implementations in user file. |
| @endverbatim |
| * @{ |
| */ |
| |
| /** |
| * @brief This function is used to initialize the HAL Library; it must be the first |
| * instruction to be executed in the main program (before to call any other |
| * HAL function), it performs the following: |
| * Configures the SysTick to generate an interrupt each 1 millisecond, |
| * which is clocked by the HSI (at this stage, the clock is not yet |
| * configured and thus the system is running from the internal HSI at 16 MHz). |
| * Set NVIC Group Priority to 4. |
| * Calls the HAL_MspInit() callback function defined in user file |
| * "stm32h7xx_hal_msp.c" to do the global low level hardware initialization |
| * |
| * @note SysTick is used as time base for the HAL_Delay() function, the application |
| * need to ensure that the SysTick time base is always set to 1 millisecond |
| * to have correct HAL operation. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_Init(void) |
| { |
| |
| uint32_t common_system_clock; |
| |
| #if defined(DUAL_CORE) && defined(CORE_CM4) |
| /* Configure Cortex-M4 Instruction cache through ART accelerator */ |
| __HAL_RCC_ART_CLK_ENABLE(); /* Enable the Cortex-M4 ART Clock */ |
| __HAL_ART_CONFIG_BASE_ADDRESS(0x08100000UL); /* Configure the Cortex-M4 ART Base address to the Flash Bank 2 : */ |
| __HAL_ART_ENABLE(); /* Enable the Cortex-M4 ART */ |
| #endif /* DUAL_CORE && CORE_CM4 */ |
| |
| /* Set Interrupt Group Priority */ |
| HAL_NVIC_SetPriorityGrouping(NVIC_PRIORITYGROUP_4); |
| |
| /* Update the SystemCoreClock global variable */ |
| #if defined(RCC_D1CFGR_D1CPRE) |
| common_system_clock = HAL_RCC_GetSysClockFreq() >> ((D1CorePrescTable[(RCC->D1CFGR & RCC_D1CFGR_D1CPRE)>> RCC_D1CFGR_D1CPRE_Pos]) & 0x1FU); |
| #else |
| common_system_clock = HAL_RCC_GetSysClockFreq() >> ((D1CorePrescTable[(RCC->CDCFGR1 & RCC_CDCFGR1_CDCPRE)>> RCC_CDCFGR1_CDCPRE_Pos]) & 0x1FU); |
| #endif |
| |
| /* Update the SystemD2Clock global variable */ |
| #if defined(RCC_D1CFGR_HPRE) |
| SystemD2Clock = (common_system_clock >> ((D1CorePrescTable[(RCC->D1CFGR & RCC_D1CFGR_HPRE)>> RCC_D1CFGR_HPRE_Pos]) & 0x1FU)); |
| #else |
| SystemD2Clock = (common_system_clock >> ((D1CorePrescTable[(RCC->CDCFGR1 & RCC_CDCFGR1_HPRE)>> RCC_CDCFGR1_HPRE_Pos]) & 0x1FU)); |
| #endif |
| |
| #if defined(DUAL_CORE) && defined(CORE_CM4) |
| SystemCoreClock = SystemD2Clock; |
| #else |
| SystemCoreClock = common_system_clock; |
| #endif /* DUAL_CORE && CORE_CM4 */ |
| |
| /* Use systick as time base source and configure 1ms tick (default clock after Reset is HSI) */ |
| if(HAL_InitTick(TICK_INT_PRIORITY) != HAL_OK) |
| { |
| return HAL_ERROR; |
| } |
| |
| /* Init the low level hardware */ |
| HAL_MspInit(); |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief This function de-Initializes common part of the HAL and stops the systick. |
| * This function is optional. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_DeInit(void) |
| { |
| /* Reset of all peripherals */ |
| __HAL_RCC_AHB3_FORCE_RESET(); |
| __HAL_RCC_AHB3_RELEASE_RESET(); |
| |
| __HAL_RCC_AHB1_FORCE_RESET(); |
| __HAL_RCC_AHB1_RELEASE_RESET(); |
| |
| __HAL_RCC_AHB2_FORCE_RESET(); |
| __HAL_RCC_AHB2_RELEASE_RESET(); |
| |
| __HAL_RCC_AHB4_FORCE_RESET(); |
| __HAL_RCC_AHB4_RELEASE_RESET(); |
| |
| __HAL_RCC_APB3_FORCE_RESET(); |
| __HAL_RCC_APB3_RELEASE_RESET(); |
| |
| __HAL_RCC_APB1L_FORCE_RESET(); |
| __HAL_RCC_APB1L_RELEASE_RESET(); |
| |
| __HAL_RCC_APB1H_FORCE_RESET(); |
| __HAL_RCC_APB1H_RELEASE_RESET(); |
| |
| __HAL_RCC_APB2_FORCE_RESET(); |
| __HAL_RCC_APB2_RELEASE_RESET(); |
| |
| __HAL_RCC_APB4_FORCE_RESET(); |
| __HAL_RCC_APB4_RELEASE_RESET(); |
| |
| /* De-Init the low level hardware */ |
| HAL_MspDeInit(); |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Initializes the MSP. |
| * @retval None |
| */ |
| __weak void HAL_MspInit(void) |
| { |
| /* NOTE : This function Should not be modified, when the callback is needed, |
| the HAL_MspInit could be implemented in the user file |
| */ |
| } |
| |
| /** |
| * @brief DeInitializes the MSP. |
| * @retval None |
| */ |
| __weak void HAL_MspDeInit(void) |
| { |
| /* NOTE : This function Should not be modified, when the callback is needed, |
| the HAL_MspDeInit could be implemented in the user file |
| */ |
| } |
| |
| /** |
| * @brief This function configures the source of the time base. |
| * The time source is configured to have 1ms time base with a dedicated |
| * Tick interrupt priority. |
| * @note This function is called automatically at the beginning of program after |
| * reset by HAL_Init() or at any time when clock is reconfigured by HAL_RCC_ClockConfig(). |
| * @note In the default implementation, SysTick timer is the source of time base. |
| * It is used to generate interrupts at regular time intervals. |
| * Care must be taken if HAL_Delay() is called from a peripheral ISR process, |
| * the SysTick interrupt must have higher priority (numerically lower) |
| * than the peripheral interrupt. Otherwise the caller ISR process will be blocked. |
| * The function is declared as __weak to be overwritten in case of other |
| * implementation in user file. |
| * @param TickPriority: Tick interrupt priority. |
| * @retval HAL status |
| */ |
| __weak HAL_StatusTypeDef HAL_InitTick(uint32_t TickPriority) |
| { |
| /* Check uwTickFreq for MisraC 2012 (even if uwTickFreq is a enum type that don't take the value zero)*/ |
| if((uint32_t)uwTickFreq == 0UL) |
| { |
| return HAL_ERROR; |
| } |
| |
| /* Configure the SysTick to have interrupt in 1ms time basis*/ |
| if (HAL_SYSTICK_Config(SystemCoreClock / (1000UL / (uint32_t)uwTickFreq)) > 0U) |
| { |
| return HAL_ERROR; |
| } |
| |
| /* Configure the SysTick IRQ priority */ |
| if (TickPriority < (1UL << __NVIC_PRIO_BITS)) |
| { |
| HAL_NVIC_SetPriority(SysTick_IRQn, TickPriority, 0U); |
| uwTickPrio = TickPriority; |
| } |
| else |
| { |
| return HAL_ERROR; |
| } |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| |
| /** |
| * @} |
| */ |
| |
| /** @addtogroup HAL_Group2 |
| * @brief HAL Control functions |
| * |
| @verbatim |
| =============================================================================== |
| ##### HAL Control functions ##### |
| =============================================================================== |
| [..] This section provides functions allowing to: |
| (+) Provide a tick value in millisecond |
| (+) Provide a blocking delay in millisecond |
| (+) Suspend the time base source interrupt |
| (+) Resume the time base source interrupt |
| (+) Get the HAL API driver version |
| (+) Get the device identifier |
| (+) Get the device revision identifier |
| (+) Enable/Disable Debug module during SLEEP mode |
| (+) Enable/Disable Debug module during STOP mode |
| (+) Enable/Disable Debug module during STANDBY mode |
| |
| @endverbatim |
| * @{ |
| */ |
| |
| /** |
| * @brief This function is called to increment a global variable "uwTick" |
| * used as application time base. |
| * @note In the default implementation, this variable is incremented each 1ms |
| * in Systick ISR. |
| * @note This function is declared as __weak to be overwritten in case of other |
| * implementations in user file. |
| * @retval None |
| */ |
| __weak void HAL_IncTick(void) |
| { |
| uwTick += (uint32_t)uwTickFreq; |
| } |
| |
| /** |
| * @brief Provides a tick value in millisecond. |
| * @note This function is declared as __weak to be overwritten in case of other |
| * implementations in user file. |
| * @retval tick value |
| */ |
| __weak uint32_t HAL_GetTick(void) |
| { |
| return uwTick; |
| } |
| |
| /** |
| * @brief This function returns a tick priority. |
| * @retval tick priority |
| */ |
| uint32_t HAL_GetTickPrio(void) |
| { |
| return uwTickPrio; |
| } |
| |
| /** |
| * @brief Set new tick Freq. |
| * @retval Status |
| */ |
| HAL_StatusTypeDef HAL_SetTickFreq(HAL_TickFreqTypeDef Freq) |
| { |
| HAL_StatusTypeDef status = HAL_OK; |
| HAL_TickFreqTypeDef prevTickFreq; |
| |
| assert_param(IS_TICKFREQ(Freq)); |
| |
| if (uwTickFreq != Freq) |
| { |
| |
| /* Back up uwTickFreq frequency */ |
| prevTickFreq = uwTickFreq; |
| |
| /* Update uwTickFreq global variable used by HAL_InitTick() */ |
| uwTickFreq = Freq; |
| |
| /* Apply the new tick Freq */ |
| status = HAL_InitTick(uwTickPrio); |
| if (status != HAL_OK) |
| { |
| /* Restore previous tick frequency */ |
| uwTickFreq = prevTickFreq; |
| } |
| } |
| |
| return status; |
| } |
| |
| /** |
| * @brief Return tick frequency. |
| * @retval Tick frequency. |
| * Value of @ref HAL_TickFreqTypeDef. |
| */ |
| HAL_TickFreqTypeDef HAL_GetTickFreq(void) |
| { |
| return uwTickFreq; |
| } |
| |
| /** |
| * @brief This function provides minimum delay (in milliseconds) based |
| * on variable incremented. |
| * @note In the default implementation , SysTick timer is the source of time base. |
| * It is used to generate interrupts at regular time intervals where uwTick |
| * is incremented. |
| * @note This function is declared as __weak to be overwritten in case of other |
| * implementations in user file. |
| * @param Delay specifies the delay time length, in milliseconds. |
| * @retval None |
| */ |
| __weak void HAL_Delay(uint32_t Delay) |
| { |
| uint32_t tickstart = HAL_GetTick(); |
| uint32_t wait = Delay; |
| |
| /* Add a freq to guarantee minimum wait */ |
| if (wait < HAL_MAX_DELAY) |
| { |
| wait += (uint32_t)(uwTickFreq); |
| } |
| |
| while ((HAL_GetTick() - tickstart) < wait) |
| { |
| } |
| } |
| |
| /** |
| * @brief Suspend Tick increment. |
| * @note In the default implementation , SysTick timer is the source of time base. It is |
| * used to generate interrupts at regular time intervals. Once HAL_SuspendTick() |
| * is called, the SysTick interrupt will be disabled and so Tick increment |
| * is suspended. |
| * @note This function is declared as __weak to be overwritten in case of other |
| * implementations in user file. |
| * @retval None |
| */ |
| __weak void HAL_SuspendTick(void) |
| { |
| /* Disable SysTick Interrupt */ |
| SysTick->CTRL &= ~SysTick_CTRL_TICKINT_Msk; |
| } |
| |
| /** |
| * @brief Resume Tick increment. |
| * @note In the default implementation , SysTick timer is the source of time base. It is |
| * used to generate interrupts at regular time intervals. Once HAL_ResumeTick() |
| * is called, the SysTick interrupt will be enabled and so Tick increment |
| * is resumed. |
| * @note This function is declared as __weak to be overwritten in case of other |
| * implementations in user file. |
| * @retval None |
| */ |
| __weak void HAL_ResumeTick(void) |
| { |
| /* Enable SysTick Interrupt */ |
| SysTick->CTRL |= SysTick_CTRL_TICKINT_Msk; |
| } |
| |
| /** |
| * @brief Returns the HAL revision |
| * @retval version : 0xXYZR (8bits for each decimal, R for RC) |
| */ |
| uint32_t HAL_GetHalVersion(void) |
| { |
| return __STM32H7xx_HAL_VERSION; |
| } |
| |
| /** |
| * @brief Returns the device revision identifier. |
| * @retval Device revision identifier |
| */ |
| uint32_t HAL_GetREVID(void) |
| { |
| return((DBGMCU->IDCODE) >> 16); |
| } |
| |
| /** |
| * @brief Returns the device identifier. |
| * @retval Device identifier |
| */ |
| uint32_t HAL_GetDEVID(void) |
| { |
| return((DBGMCU->IDCODE) & IDCODE_DEVID_MASK); |
| } |
| |
| /** |
| * @brief Return the first word of the unique device identifier (UID based on 96 bits) |
| * @retval Device identifier |
| */ |
| uint32_t HAL_GetUIDw0(void) |
| { |
| return(READ_REG(*((uint32_t *)UID_BASE))); |
| } |
| |
| /** |
| * @brief Return the second word of the unique device identifier (UID based on 96 bits) |
| * @retval Device identifier |
| */ |
| uint32_t HAL_GetUIDw1(void) |
| { |
| return(READ_REG(*((uint32_t *)(UID_BASE + 4U)))); |
| } |
| |
| /** |
| * @brief Return the third word of the unique device identifier (UID based on 96 bits) |
| * @retval Device identifier |
| */ |
| uint32_t HAL_GetUIDw2(void) |
| { |
| return(READ_REG(*((uint32_t *)(UID_BASE + 8U)))); |
| } |
| |
| /** |
| * @brief Configure the internal voltage reference buffer voltage scale. |
| * @param VoltageScaling specifies the output voltage to achieve |
| * This parameter can be one of the following values: |
| * @arg SYSCFG_VREFBUF_VOLTAGE_SCALE0: VREF_OUT1 around 2.5 V. |
| * This requires VDDA equal to or higher than 2.8 V. |
| * @arg SYSCFG_VREFBUF_VOLTAGE_SCALE1: VREF_OUT2 around 2.048 V. |
| * This requires VDDA equal to or higher than 2.4 V. |
| * @arg SYSCFG_VREFBUF_VOLTAGE_SCALE2: VREF_OUT3 around 1.8 V. |
| * This requires VDDA equal to or higher than 2.1 V. |
| * @arg SYSCFG_VREFBUF_VOLTAGE_SCALE3: VREF_OUT4 around 1.5 V. |
| * This requires VDDA equal to or higher than 1.8 V. |
| * @retval None |
| */ |
| void HAL_SYSCFG_VREFBUF_VoltageScalingConfig(uint32_t VoltageScaling) |
| { |
| /* Check the parameters */ |
| assert_param(IS_SYSCFG_VREFBUF_VOLTAGE_SCALE(VoltageScaling)); |
| |
| MODIFY_REG(VREFBUF->CSR, VREFBUF_CSR_VRS, VoltageScaling); |
| } |
| |
| /** |
| * @brief Configure the internal voltage reference buffer high impedance mode. |
| * @param Mode specifies the high impedance mode |
| * This parameter can be one of the following values: |
| * @arg SYSCFG_VREFBUF_HIGH_IMPEDANCE_DISABLE: VREF+ pin is internally connect to VREFINT output. |
| * @arg SYSCFG_VREFBUF_HIGH_IMPEDANCE_ENABLE: VREF+ pin is high impedance. |
| * @retval None |
| */ |
| void HAL_SYSCFG_VREFBUF_HighImpedanceConfig(uint32_t Mode) |
| { |
| /* Check the parameters */ |
| assert_param(IS_SYSCFG_VREFBUF_HIGH_IMPEDANCE(Mode)); |
| |
| MODIFY_REG(VREFBUF->CSR, VREFBUF_CSR_HIZ, Mode); |
| } |
| |
| /** |
| * @brief Tune the Internal Voltage Reference buffer (VREFBUF). |
| * @retval None |
| */ |
| void HAL_SYSCFG_VREFBUF_TrimmingConfig(uint32_t TrimmingValue) |
| { |
| /* Check the parameters */ |
| assert_param(IS_SYSCFG_VREFBUF_TRIMMING(TrimmingValue)); |
| |
| MODIFY_REG(VREFBUF->CCR, VREFBUF_CCR_TRIM, TrimmingValue); |
| } |
| |
| /** |
| * @brief Enable the Internal Voltage Reference buffer (VREFBUF). |
| * @retval HAL_OK/HAL_TIMEOUT |
| */ |
| HAL_StatusTypeDef HAL_SYSCFG_EnableVREFBUF(void) |
| { |
| uint32_t tickstart; |
| |
| SET_BIT(VREFBUF->CSR, VREFBUF_CSR_ENVR); |
| |
| /* Get Start Tick*/ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait for VRR bit */ |
| while(READ_BIT(VREFBUF->CSR, VREFBUF_CSR_VRR) == 0UL) |
| { |
| if((HAL_GetTick() - tickstart) > VREFBUF_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Disable the Internal Voltage Reference buffer (VREFBUF). |
| * |
| * @retval None |
| */ |
| void HAL_SYSCFG_DisableVREFBUF(void) |
| { |
| CLEAR_BIT(VREFBUF->CSR, VREFBUF_CSR_ENVR); |
| } |
| |
| #if defined(SYSCFG_PMCR_EPIS_SEL) |
| /** |
| * @brief Ethernet PHY Interface Selection either MII or RMII |
| * @param SYSCFG_ETHInterface: Selects the Ethernet PHY interface |
| * This parameter can be one of the following values: |
| * @arg SYSCFG_ETH_MII : Select the Media Independent Interface |
| * @arg SYSCFG_ETH_RMII: Select the Reduced Media Independent Interface |
| * @retval None |
| */ |
| void HAL_SYSCFG_ETHInterfaceSelect(uint32_t SYSCFG_ETHInterface) |
| { |
| /* Check the parameter */ |
| assert_param(IS_SYSCFG_ETHERNET_CONFIG(SYSCFG_ETHInterface)); |
| |
| MODIFY_REG(SYSCFG->PMCR, SYSCFG_PMCR_EPIS_SEL, (uint32_t)(SYSCFG_ETHInterface)); |
| } |
| #endif /* SYSCFG_PMCR_EPIS_SEL */ |
| |
| /** |
| * @brief Analog Switch control for dual analog pads. |
| * @param SYSCFG_AnalogSwitch: Selects the analog pad |
| * This parameter can be one or a combination of the following values: |
| * @arg SYSCFG_SWITCH_PA0 : Select PA0 analog switch |
| * @arg SYSCFG_SWITCH_PA1: Select PA1 analog switch |
| * @arg SYSCFG_SWITCH_PC2 : Select PC2 analog switch |
| * @arg SYSCFG_SWITCH_PC3: Select PC3 analog switch |
| * @param SYSCFG_SwitchState: Open or Close the analog switch between dual pads (PXn and PXn_C) |
| * This parameter can be one or a combination of the following values: |
| * @arg SYSCFG_SWITCH_PA0_OPEN |
| * @arg SYSCFG_SWITCH_PA0_CLOSE |
| * @arg SYSCFG_SWITCH_PA1_OPEN |
| * @arg SYSCFG_SWITCH_PA1_CLOSE |
| * @arg SYSCFG_SWITCH_PC2_OPEN |
| * @arg SYSCFG_SWITCH_PC2_CLOSE |
| * @arg SYSCFG_SWITCH_PC3_OPEN |
| * @arg SYSCFG_SWITCH_PC3_CLOSE |
| * @retval None |
| */ |
| |
| void HAL_SYSCFG_AnalogSwitchConfig(uint32_t SYSCFG_AnalogSwitch , uint32_t SYSCFG_SwitchState ) |
| { |
| /* Check the parameter */ |
| assert_param(IS_SYSCFG_ANALOG_SWITCH(SYSCFG_AnalogSwitch)); |
| assert_param(IS_SYSCFG_SWITCH_STATE(SYSCFG_SwitchState)); |
| |
| MODIFY_REG(SYSCFG->PMCR, (uint32_t) SYSCFG_AnalogSwitch, (uint32_t)(SYSCFG_SwitchState)); |
| } |
| |
| #if defined(SYSCFG_PMCR_BOOSTEN) |
| /** |
| * @brief Enables the booster to reduce the total harmonic distortion of the analog |
| * switch when the supply voltage is lower than 2.7 V. |
| * @note Activating the booster allows to guaranty the analog switch AC performance |
| * when the supply voltage is below 2.7 V: in this case, the analog switch |
| * performance is the same on the full voltage range |
| * @retval None |
| */ |
| void HAL_SYSCFG_EnableBOOST(void) |
| { |
| SET_BIT(SYSCFG->PMCR, SYSCFG_PMCR_BOOSTEN) ; |
| } |
| |
| /** |
| * @brief Disables the booster |
| * @note Activating the booster allows to guaranty the analog switch AC performance |
| * when the supply voltage is below 2.7 V: in this case, the analog switch |
| * performance is the same on the full voltage range |
| * @retval None |
| */ |
| void HAL_SYSCFG_DisableBOOST(void) |
| { |
| CLEAR_BIT(SYSCFG->PMCR, SYSCFG_PMCR_BOOSTEN) ; |
| } |
| #endif /* SYSCFG_PMCR_BOOSTEN */ |
| |
| #if defined (SYSCFG_UR2_BOOT_ADD0) || defined (SYSCFG_UR2_BCM7_ADD0) |
| /** |
| * @brief BootCM7 address 0 configuration |
| * @param BootRegister :Specifies the Boot Address register (Address0 or Address1) |
| * This parameter can be one of the following values: |
| * @arg SYSCFG_BOOT_ADDR0 : Select the boot address0 |
| * @arg SYSCFG_BOOT_ADDR1: Select the boot address1 |
| * @param BootAddress :Specifies the CM7 Boot Address to be loaded in Address0 or Address1 |
| * @retval None |
| */ |
| void HAL_SYSCFG_CM7BootAddConfig(uint32_t BootRegister, uint32_t BootAddress) |
| { |
| /* Check the parameters */ |
| assert_param(IS_SYSCFG_BOOT_REGISTER(BootRegister)); |
| assert_param(IS_SYSCFG_BOOT_ADDRESS(BootAddress)); |
| if ( BootRegister == SYSCFG_BOOT_ADDR0 ) |
| { |
| /* Configure CM7 BOOT ADD0 */ |
| #if defined(DUAL_CORE) |
| MODIFY_REG(SYSCFG->UR2, SYSCFG_UR2_BCM7_ADD0, ((BootAddress >> 16) << SYSCFG_UR2_BCM7_ADD0_Pos)); |
| #else |
| MODIFY_REG(SYSCFG->UR2, SYSCFG_UR2_BOOT_ADD0, ((BootAddress >> 16) << SYSCFG_UR2_BOOT_ADD0_Pos)); |
| #endif /*DUAL_CORE*/ |
| } |
| else |
| { |
| /* Configure CM7 BOOT ADD1 */ |
| #if defined(DUAL_CORE) |
| MODIFY_REG(SYSCFG->UR3, SYSCFG_UR3_BCM7_ADD1, (BootAddress >> 16)); |
| #else |
| MODIFY_REG(SYSCFG->UR3, SYSCFG_UR3_BOOT_ADD1, (BootAddress >> 16)); |
| #endif /*DUAL_CORE*/ |
| } |
| } |
| #endif /* SYSCFG_UR2_BOOT_ADD0 || SYSCFG_UR2_BCM7_ADD0 */ |
| |
| #if defined(DUAL_CORE) |
| /** |
| * @brief BootCM4 address 0 configuration |
| * @param BootRegister :Specifies the Boot Address register (Address0 or Address1) |
| * This parameter can be one of the following values: |
| * @arg SYSCFG_BOOT_ADDR0 : Select the boot address0 |
| * @arg SYSCFG_BOOT_ADDR1: Select the boot address1 |
| * @param BootAddress :Specifies the CM4 Boot Address to be loaded in Address0 or Address1 |
| * @retval None |
| */ |
| void HAL_SYSCFG_CM4BootAddConfig(uint32_t BootRegister, uint32_t BootAddress) |
| { |
| /* Check the parameters */ |
| assert_param(IS_SYSCFG_BOOT_REGISTER(BootRegister)); |
| assert_param(IS_SYSCFG_BOOT_ADDRESS(BootAddress)); |
| |
| if ( BootRegister == SYSCFG_BOOT_ADDR0 ) |
| { |
| /* Configure CM4 BOOT ADD0 */ |
| MODIFY_REG(SYSCFG->UR3, SYSCFG_UR3_BCM4_ADD0, ((BootAddress >> 16)<< SYSCFG_UR3_BCM4_ADD0_Pos)); |
| } |
| |
| else |
| { |
| /* Configure CM4 BOOT ADD1 */ |
| MODIFY_REG(SYSCFG->UR4, SYSCFG_UR4_BCM4_ADD1, (BootAddress >> 16)); |
| } |
| } |
| |
| /** |
| * @brief Enables the Cortex-M7 boot |
| * @retval None |
| */ |
| void HAL_SYSCFG_EnableCM7BOOT(void) |
| { |
| SET_BIT(SYSCFG->UR1, SYSCFG_UR1_BCM7); |
| } |
| |
| /** |
| * @brief Disables the Cortex-M7 boot |
| * @note Disabling the boot will gate the CPU clock |
| * @retval None |
| */ |
| void HAL_SYSCFG_DisableCM7BOOT(void) |
| { |
| CLEAR_BIT(SYSCFG->UR1, SYSCFG_UR1_BCM7) ; |
| } |
| |
| /** |
| * @brief Enables the Cortex-M4 boot |
| * @retval None |
| */ |
| void HAL_SYSCFG_EnableCM4BOOT(void) |
| { |
| SET_BIT(SYSCFG->UR1, SYSCFG_UR1_BCM4); |
| } |
| |
| /** |
| * @brief Disables the Cortex-M4 boot |
| * @note Disabling the boot will gate the CPU clock |
| * @retval None |
| */ |
| void HAL_SYSCFG_DisableCM4BOOT(void) |
| { |
| CLEAR_BIT(SYSCFG->UR1, SYSCFG_UR1_BCM4); |
| } |
| #endif /*DUAL_CORE*/ |
| /** |
| * @brief Enables the I/O Compensation Cell. |
| * @note The I/O compensation cell can be used only when the device supply |
| * voltage ranges from 1.62 to 2.0 V and from 2.7 to 3.6 V. |
| * @retval None |
| */ |
| void HAL_EnableCompensationCell(void) |
| { |
| SET_BIT(SYSCFG->CCCSR, SYSCFG_CCCSR_EN) ; |
| } |
| |
| /** |
| * @brief Power-down the I/O Compensation Cell. |
| * @note The I/O compensation cell can be used only when the device supply |
| * voltage ranges from 1.62 to 2.0 V and from 2.7 to 3.6 V. |
| * @retval None |
| */ |
| void HAL_DisableCompensationCell(void) |
| { |
| CLEAR_BIT(SYSCFG->CCCSR, SYSCFG_CCCSR_EN); |
| } |
| |
| |
| /** |
| * @brief To Enable optimize the I/O speed when the product voltage is low. |
| * @note This bit is active only if PRODUCT_BELOW_25V user option bit is set. It must be |
| * used only if the product supply voltage is below 2.5 V. Setting this bit when VDD is |
| * higher than 2.5 V might be destructive. |
| * @retval None |
| */ |
| void HAL_SYSCFG_EnableIOSpeedOptimize(void) |
| { |
| #if defined(SYSCFG_CCCSR_HSLV) |
| SET_BIT(SYSCFG->CCCSR, SYSCFG_CCCSR_HSLV); |
| #else |
| SET_BIT(SYSCFG->CCCSR, (SYSCFG_CCCSR_HSLV0| SYSCFG_CCCSR_HSLV1 | SYSCFG_CCCSR_HSLV2 | SYSCFG_CCCSR_HSLV3)); |
| #endif /* SYSCFG_CCCSR_HSLV */ |
| } |
| |
| /** |
| * @brief To Disable optimize the I/O speed when the product voltage is low. |
| * @note This bit is active only if PRODUCT_BELOW_25V user option bit is set. It must be |
| * used only if the product supply voltage is below 2.5 V. Setting this bit when VDD is |
| * higher than 2.5 V might be destructive. |
| * @retval None |
| */ |
| void HAL_SYSCFG_DisableIOSpeedOptimize(void) |
| { |
| #if defined(SYSCFG_CCCSR_HSLV) |
| CLEAR_BIT(SYSCFG->CCCSR, SYSCFG_CCCSR_HSLV); |
| #else |
| CLEAR_BIT(SYSCFG->CCCSR, (SYSCFG_CCCSR_HSLV0| SYSCFG_CCCSR_HSLV1 | SYSCFG_CCCSR_HSLV2 | SYSCFG_CCCSR_HSLV3)); |
| #endif /* SYSCFG_CCCSR_HSLV */ |
| } |
| |
| /** |
| * @brief Code selection for the I/O Compensation cell |
| * @param SYSCFG_CompCode: Selects the code to be applied for the I/O compensation cell |
| * This parameter can be one of the following values: |
| * @arg SYSCFG_CELL_CODE : Select Code from the cell (available in the SYSCFG_CCVR) |
| * @arg SYSCFG_REGISTER_CODE: Select Code from the SYSCFG compensation cell code register (SYSCFG_CCCR) |
| * @retval None |
| */ |
| void HAL_SYSCFG_CompensationCodeSelect(uint32_t SYSCFG_CompCode) |
| { |
| /* Check the parameter */ |
| assert_param(IS_SYSCFG_CODE_SELECT(SYSCFG_CompCode)); |
| MODIFY_REG(SYSCFG->CCCSR, SYSCFG_CCCSR_CS, (uint32_t)(SYSCFG_CompCode)); |
| } |
| |
| /** |
| * @brief Code selection for the I/O Compensation cell |
| * @param SYSCFG_PMOSCode: PMOS compensation code |
| * This code is applied to the I/O compensation cell when the CS bit of the |
| * SYSCFG_CMPCR is set |
| * @param SYSCFG_NMOSCode: NMOS compensation code |
| * This code is applied to the I/O compensation cell when the CS bit of the |
| * SYSCFG_CMPCR is set |
| * @retval None |
| */ |
| void HAL_SYSCFG_CompensationCodeConfig(uint32_t SYSCFG_PMOSCode, uint32_t SYSCFG_NMOSCode ) |
| { |
| /* Check the parameter */ |
| assert_param(IS_SYSCFG_CODE_CONFIG(SYSCFG_PMOSCode)); |
| assert_param(IS_SYSCFG_CODE_CONFIG(SYSCFG_NMOSCode)); |
| MODIFY_REG(SYSCFG->CCCR, SYSCFG_CCCR_NCC|SYSCFG_CCCR_PCC, (((uint32_t)(SYSCFG_PMOSCode)<< 4)|(uint32_t)(SYSCFG_NMOSCode)) ); |
| } |
| |
| #if defined(SYSCFG_CCCR_NCC_MMC) |
| /** |
| * @brief Code selection for the I/O Compensation cell |
| * @param SYSCFG_PMOSCode: VDDMMC PMOS compensation code |
| * This code is applied to the I/O compensation cell when the CS bit of the |
| * SYSCFG_CMPCR is set |
| * @param SYSCFG_NMOSCode: VDDMMC NMOS compensation code |
| * This code is applied to the I/O compensation cell when the CS bit of the |
| * SYSCFG_CMPCR is set |
| * @retval None |
| */ |
| void HAL_SYSCFG_VDDMMC_CompensationCodeConfig(uint32_t SYSCFG_PMOSCode, uint32_t SYSCFG_NMOSCode ) |
| { |
| /* Check the parameter */ |
| assert_param(IS_SYSCFG_CODE_CONFIG(SYSCFG_PMOSCode)); |
| assert_param(IS_SYSCFG_CODE_CONFIG(SYSCFG_NMOSCode)); |
| MODIFY_REG(SYSCFG->CCCR, (SYSCFG_CCCR_NCC_MMC | SYSCFG_CCCR_PCC_MMC), (((uint32_t)(SYSCFG_PMOSCode)<< 4)|(uint32_t)(SYSCFG_NMOSCode)) ); |
| } |
| #endif /* SYSCFG_CCCR_NCC_MMC */ |
| |
| #if defined(SYSCFG_ADC2ALT_ADC2_ROUT0) |
| /** @brief SYSCFG ADC2 internal input alternate connection macros |
| * @param Adc2AltRout0 This parameter can be a value of : |
| * @arg @ref SYSCFG_ADC2_ROUT0_DAC1_1 DAC1_out1 connected to ADC2 VINP[16] |
| * @arg @ref SYSCFG_ADC2_ROUT0_VBAT4 VBAT/4 connected to ADC2 VINP[16] |
| */ |
| void HAL_SYSCFG_ADC2ALT_Rout0Config(uint32_t Adc2AltRout0) |
| { |
| /* Check the parameters */ |
| assert_param(IS_SYSCFG_ADC2ALT_ROUT0(Adc2AltRout0)); |
| |
| MODIFY_REG(SYSCFG->ADC2ALT, SYSCFG_ADC2ALT_ADC2_ROUT0, Adc2AltRout0); |
| } |
| #endif /*SYSCFG_ADC2ALT_ADC2_ROUT0*/ |
| |
| #if defined(SYSCFG_ADC2ALT_ADC2_ROUT1) |
| /** @brief SYSCFG ADC2 internal input alternate connection macros |
| * @param Adc2AltRout1 This parameter can be a value of : |
| * @arg @ref SYSCFG_ADC2_ROUT1_DAC1_2 DAC1_out2 connected to ADC2 VINP[17] |
| * @arg @ref SYSCFG_ADC2_ROUT1_VREFINT VREFINT connected to ADC2 VINP[17] |
| */ |
| void HAL_SYSCFG_ADC2ALT_Rout1Config(uint32_t Adc2AltRout1) |
| { |
| /* Check the parameters */ |
| assert_param(IS_SYSCFG_ADC2ALT_ROUT1(Adc2AltRout1)); |
| |
| MODIFY_REG(SYSCFG->ADC2ALT, SYSCFG_ADC2ALT_ADC2_ROUT1, Adc2AltRout1); |
| } |
| #endif /*SYSCFG_ADC2ALT_ADC2_ROUT1*/ |
| |
| /** |
| * @brief Enable the Debug Module during Domain1/CDomain SLEEP mode |
| * @retval None |
| */ |
| void HAL_DBGMCU_EnableDBGSleepMode(void) |
| { |
| SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_SLEEPD1); |
| } |
| |
| /** |
| * @brief Disable the Debug Module during Domain1/CDomain SLEEP mode |
| * @retval None |
| */ |
| void HAL_DBGMCU_DisableDBGSleepMode(void) |
| { |
| CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_SLEEPD1); |
| } |
| |
| |
| /** |
| * @brief Enable the Debug Module during Domain1/CDomain STOP mode |
| * @retval None |
| */ |
| void HAL_DBGMCU_EnableDBGStopMode(void) |
| { |
| SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STOPD1); |
| } |
| |
| /** |
| * @brief Disable the Debug Module during Domain1/CDomain STOP mode |
| * @retval None |
| */ |
| void HAL_DBGMCU_DisableDBGStopMode(void) |
| { |
| CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STOPD1); |
| } |
| |
| /** |
| * @brief Enable the Debug Module during Domain1/CDomain STANDBY mode |
| * @retval None |
| */ |
| void HAL_DBGMCU_EnableDBGStandbyMode(void) |
| { |
| SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STANDBYD1); |
| } |
| |
| /** |
| * @brief Disable the Debug Module during Domain1/CDomain STANDBY mode |
| * @retval None |
| */ |
| void HAL_DBGMCU_DisableDBGStandbyMode(void) |
| { |
| CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STANDBYD1); |
| } |
| |
| #if defined(DUAL_CORE) |
| /** |
| * @brief Enable the Debug Module during Domain1 SLEEP mode |
| * @retval None |
| */ |
| void HAL_EnableDomain2DBGSleepMode(void) |
| { |
| SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_SLEEPD2); |
| } |
| |
| /** |
| * @brief Disable the Debug Module during Domain2 SLEEP mode |
| * @retval None |
| */ |
| void HAL_DisableDomain2DBGSleepMode(void) |
| { |
| CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_SLEEPD2); |
| } |
| |
| /** |
| * @brief Enable the Debug Module during Domain2 STOP mode |
| * @retval None |
| */ |
| void HAL_EnableDomain2DBGStopMode(void) |
| { |
| SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STOPD2); |
| } |
| |
| /** |
| * @brief Disable the Debug Module during Domain2 STOP mode |
| * @retval None |
| */ |
| void HAL_DisableDomain2DBGStopMode(void) |
| { |
| CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STOPD2); |
| } |
| |
| /** |
| * @brief Enable the Debug Module during Domain2 STANDBY mode |
| * @retval None |
| */ |
| void HAL_EnableDomain2DBGStandbyMode(void) |
| { |
| SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STANDBYD2); |
| } |
| |
| /** |
| * @brief Disable the Debug Module during Domain2 STANDBY mode |
| * @retval None |
| */ |
| void HAL_DisableDomain2DBGStandbyMode(void) |
| { |
| CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STANDBYD2); |
| } |
| #endif /*DUAL_CORE*/ |
| |
| #if defined(DBGMCU_CR_DBG_STOPD3) |
| /** |
| * @brief Enable the Debug Module during Domain3/SRDomain STOP mode |
| * @retval None |
| */ |
| void HAL_EnableDomain3DBGStopMode(void) |
| { |
| SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STOPD3); |
| } |
| |
| /** |
| * @brief Disable the Debug Module during Domain3/SRDomain STOP mode |
| * @retval None |
| */ |
| void HAL_DisableDomain3DBGStopMode(void) |
| { |
| CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STOPD3); |
| } |
| #endif /*DBGMCU_CR_DBG_STOPD3*/ |
| |
| #if defined(DBGMCU_CR_DBG_STANDBYD3) |
| /** |
| * @brief Enable the Debug Module during Domain3/SRDomain STANDBY mode |
| * @retval None |
| */ |
| void HAL_EnableDomain3DBGStandbyMode(void) |
| { |
| SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STANDBYD3); |
| } |
| |
| /** |
| * @brief Disable the Debug Module during Domain3/SRDomain STANDBY mode |
| * @retval None |
| */ |
| void HAL_DisableDomain3DBGStandbyMode(void) |
| { |
| CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STANDBYD3); |
| } |
| #endif /*DBGMCU_CR_DBG_STANDBYD3*/ |
| |
| /** |
| * @brief Set the FMC Memory Mapping Swapping config. |
| * @param BankMapConfig: Defines the FMC Bank mapping configuration. This parameter can be |
| FMC_SWAPBMAP_DISABLE, FMC_SWAPBMAP_SDRAM_SRAM, FMC_SWAPBMAP_SDRAMB2 |
| * @retval HAL state |
| */ |
| void HAL_SetFMCMemorySwappingConfig(uint32_t BankMapConfig) |
| { |
| /* Check the parameter */ |
| assert_param(IS_FMC_SWAPBMAP_MODE(BankMapConfig)); |
| MODIFY_REG(FMC_Bank1_R->BTCR[0], FMC_BCR1_BMAP, BankMapConfig); |
| } |
| |
| /** |
| * @brief Get FMC Bank mapping mode. |
| * @retval The FMC Bank mapping mode. This parameter can be |
| FMC_SWAPBMAP_DISABLE, FMC_SWAPBMAP_SDRAM_SRAM, FMC_SWAPBMAP_SDRAMB2 |
| */ |
| uint32_t HAL_GetFMCMemorySwappingConfig(void) |
| { |
| return READ_BIT(FMC_Bank1_R->BTCR[0], FMC_BCR1_BMAP); |
| } |
| |
| /** |
| * @brief Configure the EXTI input event line edge |
| * @note No edge configuration for direct lines but for configurable lines:(EXTI_LINE0..EXTI_LINE21), |
| * EXTI_LINE49,EXTI_LINE51,EXTI_LINE82,EXTI_LINE84,EXTI_LINE85 and EXTI_LINE86. |
| * @param EXTI_Line: Specifies the EXTI LINE, it can be one of the following values, |
| * (EXTI_LINE0....EXTI_LINE87)excluding :line45, line81,line83 which are reserved |
| * @param EXTI_Edge: Specifies EXTI line Edge used. |
| * This parameter can be one of the following values : |
| * @arg EXTI_RISING_EDGE : Configurable line, with Rising edge trigger detection |
| * @arg EXTI_FALLING_EDGE: Configurable line, with Falling edge trigger detection |
| * @retval None |
| */ |
| void HAL_EXTI_EdgeConfig(uint32_t EXTI_Line , uint32_t EXTI_Edge ) |
| { |
| /* Check the parameter */ |
| assert_param(IS_HAL_EXTI_CONFIG_LINE(EXTI_Line)); |
| assert_param(IS_EXTI_EDGE_LINE(EXTI_Edge)); |
| |
| /* Clear Rising Falling edge configuration */ |
| CLEAR_BIT(*(__IO uint32_t *) (((uint32_t) &(EXTI->FTSR1)) + ((EXTI_Line >> 5 ) * 0x20UL)), (uint32_t)(1UL << (EXTI_Line & 0x1FUL))); |
| CLEAR_BIT( *(__IO uint32_t *) (((uint32_t) &(EXTI->RTSR1)) + ((EXTI_Line >> 5 ) * 0x20UL)), (uint32_t)(1UL << (EXTI_Line & 0x1FUL))); |
| |
| if( (EXTI_Edge & EXTI_RISING_EDGE) == EXTI_RISING_EDGE) |
| { |
| SET_BIT( *(__IO uint32_t *) (((uint32_t) &(EXTI->RTSR1)) + ((EXTI_Line >> 5 ) * 0x20UL)), (uint32_t)(1UL << (EXTI_Line & 0x1FUL))); |
| } |
| if( (EXTI_Edge & EXTI_FALLING_EDGE) == EXTI_FALLING_EDGE) |
| { |
| SET_BIT(*(__IO uint32_t *) (((uint32_t) &(EXTI->FTSR1)) + ((EXTI_Line >> 5 ) * 0x20UL)), (uint32_t)(1UL << (EXTI_Line & 0x1FUL))); |
| } |
| } |
| |
| /** |
| * @brief Generates a Software interrupt on selected EXTI line. |
| * @param EXTI_Line: Specifies the EXTI LINE, it can be one of the following values, |
| * (EXTI_LINE0..EXTI_LINE21),EXTI_LINE49,EXTI_LINE51,EXTI_LINE82,EXTI_LINE84,EXTI_LINE85 and EXTI_LINE86. |
| * @retval None |
| */ |
| void HAL_EXTI_GenerateSWInterrupt(uint32_t EXTI_Line) |
| { |
| /* Check the parameters */ |
| assert_param(IS_HAL_EXTI_CONFIG_LINE(EXTI_Line)); |
| |
| SET_BIT(*(__IO uint32_t *) (((uint32_t) &(EXTI->SWIER1)) + ((EXTI_Line >> 5 ) * 0x20UL)), (uint32_t)(1UL << (EXTI_Line & 0x1FUL))); |
| } |
| |
| |
| /** |
| * @brief Clears the EXTI's line pending flags for Domain D1 |
| * @param EXTI_Line: Specifies the EXTI LINE, it can be one of the following values, |
| * (EXTI_LINE0....EXTI_LINE87)excluding :line45, line81,line83 which are reserved |
| * @retval None |
| */ |
| void HAL_EXTI_D1_ClearFlag(uint32_t EXTI_Line) |
| { |
| /* Check the parameters */ |
| assert_param(IS_EXTI_D1_LINE(EXTI_Line)); |
| WRITE_REG(*(__IO uint32_t *) (((uint32_t) &(EXTI_D1->PR1)) + ((EXTI_Line >> 5 ) * 0x10UL)), (uint32_t)(1UL << (EXTI_Line & 0x1FUL))); |
| |
| } |
| |
| #if defined(DUAL_CORE) |
| /** |
| * @brief Clears the EXTI's line pending flags for Domain D2 |
| * @param EXTI_Line: Specifies the EXTI LINE, it can be one of the following values, |
| * (EXTI_LINE0....EXTI_LINE87)excluding :line45, line81,line83 which are reserved |
| * @retval None |
| */ |
| void HAL_EXTI_D2_ClearFlag(uint32_t EXTI_Line) |
| { |
| /* Check the parameters */ |
| assert_param(IS_EXTI_D2_LINE(EXTI_Line)); |
| WRITE_REG(*(__IO uint32_t *) (((uint32_t) &(EXTI_D2->PR1)) + ((EXTI_Line >> 5 ) * 0x10UL)), (uint32_t)(1UL << (EXTI_Line & 0x1FUL))); |
| } |
| |
| #endif /*DUAL_CORE*/ |
| /** |
| * @brief Configure the EXTI input event line for Domain D1 |
| * @param EXTI_Line: Specifies the EXTI LINE, it can be one of the following values, |
| * (EXTI_LINE0....EXTI_LINE87)excluding :line45, line81,line83 which are reserved |
| * @param EXTI_Mode: Specifies which EXTI line is used as interrupt or an event. |
| * This parameter can be one or a combination of the following values : |
| * @arg EXTI_MODE_IT : Interrupt Mode selected |
| * @arg EXTI_MODE_EVT : Event Mode selected |
| * @param EXTI_LineCmd controls (Enable/Disable) the EXTI line. |
| |
| * @retval None |
| */ |
| void HAL_EXTI_D1_EventInputConfig(uint32_t EXTI_Line , uint32_t EXTI_Mode, uint32_t EXTI_LineCmd ) |
| { |
| /* Check the parameter */ |
| assert_param(IS_EXTI_D1_LINE(EXTI_Line)); |
| assert_param(IS_EXTI_MODE_LINE(EXTI_Mode)); |
| |
| if( (EXTI_Mode & EXTI_MODE_IT) == EXTI_MODE_IT) |
| { |
| if( EXTI_LineCmd == 0UL) |
| { |
| /* Clear EXTI line configuration */ |
| CLEAR_BIT(*(__IO uint32_t *) (((uint32_t) &(EXTI_D1->IMR1)) + ((EXTI_Line >> 5 ) * 0x10UL)),(uint32_t)(1UL << (EXTI_Line & 0x1FUL)) ); |
| } |
| else |
| { |
| SET_BIT(*(__IO uint32_t *) (((uint32_t) &(EXTI_D1->IMR1)) + ((EXTI_Line >> 5 ) * 0x10UL)), (uint32_t)(1UL << (EXTI_Line & 0x1FUL))); |
| } |
| } |
| |
| if( (EXTI_Mode & EXTI_MODE_EVT) == EXTI_MODE_EVT) |
| { |
| if( EXTI_LineCmd == 0UL) |
| { |
| /* Clear EXTI line configuration */ |
| CLEAR_BIT( *(__IO uint32_t *) (((uint32_t) &(EXTI_D1->EMR1)) + ((EXTI_Line >> 5 ) * 0x10UL)), (uint32_t)(1UL << (EXTI_Line & 0x1FUL))); |
| } |
| else |
| { |
| SET_BIT( *(__IO uint32_t *) (((uint32_t) &(EXTI_D1->EMR1)) + ((EXTI_Line >> 5 ) * 0x10UL)), (uint32_t)(1UL << (EXTI_Line & 0x1FUL))); |
| } |
| } |
| } |
| |
| #if defined(DUAL_CORE) |
| /** |
| * @brief Configure the EXTI input event line for Domain D2 |
| * @param EXTI_Line: Specifies the EXTI LINE, it can be one of the following values, |
| * (EXTI_LINE0....EXTI_LINE87)excluding :line45, line81,line83 which are reserved |
| * @param EXTI_Mode: Specifies which EXTI line is used as interrupt or an event. |
| * This parameter can be one or a combination of the following values : |
| * @arg EXTI_MODE_IT : Interrupt Mode selected |
| * @arg EXTI_MODE_EVT : Event Mode selected |
| * @param EXTI_LineCmd controls (Enable/Disable) the EXTI line. |
| |
| * @retval None |
| */ |
| void HAL_EXTI_D2_EventInputConfig(uint32_t EXTI_Line , uint32_t EXTI_Mode, uint32_t EXTI_LineCmd ) |
| { |
| /* Check the parameter */ |
| assert_param(IS_EXTI_D2_LINE(EXTI_Line)); |
| assert_param(IS_EXTI_MODE_LINE(EXTI_Mode)); |
| |
| if( (EXTI_Mode & EXTI_MODE_IT) == EXTI_MODE_IT) |
| { |
| if( EXTI_LineCmd == 0UL) |
| { |
| /* Clear EXTI line configuration */ |
| CLEAR_BIT(*(__IO uint32_t *) (((uint32_t) &(EXTI_D2->IMR1)) + ((EXTI_Line >> 5 ) * 0x10UL)),(uint32_t)(1UL << (EXTI_Line & 0x1FUL)) ); |
| } |
| else |
| { |
| SET_BIT(*(__IO uint32_t *) (((uint32_t) &(EXTI_D2->IMR1)) + ((EXTI_Line >> 5 ) * 0x10UL)), (uint32_t)(1UL << (EXTI_Line & 0x1FUL))); |
| } |
| } |
| |
| if( (EXTI_Mode & EXTI_MODE_EVT) == EXTI_MODE_EVT) |
| { |
| if( EXTI_LineCmd == 0UL) |
| { |
| /* Clear EXTI line configuration */ |
| CLEAR_BIT( *(__IO uint32_t *) (((uint32_t) &(EXTI_D2->EMR1)) + ((EXTI_Line >> 5 ) * 0x10UL)), (uint32_t)(1UL << (EXTI_Line & 0x1FUL))); |
| } |
| else |
| { |
| SET_BIT( *(__IO uint32_t *) (((uint32_t) &(EXTI_D2->EMR1)) + ((EXTI_Line >> 5 ) * 0x10UL)), (uint32_t)(1UL << (EXTI_Line & 0x1FUL))); |
| } |
| } |
| } |
| #endif /*DUAL_CORE*/ |
| |
| /** |
| * @brief Configure the EXTI input event line for Domain D3 |
| * @param EXTI_Line: Specifies the EXTI LINE, it can be one of the following values, |
| * (EXTI_LINE0...EXTI_LINE15),(EXTI_LINE19...EXTI_LINE21),EXTI_LINE25, EXTI_LINE34, |
| * EXTI_LINE35,EXTI_LINE41,(EXTI_LINE48...EXTI_LINE53) |
| * @param EXTI_LineCmd controls (Enable/Disable) the EXTI line. |
| * @param EXTI_ClearSrc: Specifies the clear source of D3 pending event. |
| * This parameter can be one of the following values : |
| * @arg BDMA_CH6_CLEAR : BDMA ch6 event selected as D3 domain pendclear source |
| * @arg BDMA_CH7_CLEAR : BDMA ch7 event selected as D3 domain pendclear source |
| * @arg LPTIM4_OUT_CLEAR : LPTIM4 out selected as D3 domain pendclear source |
| * @arg LPTIM5_OUT_CLEAR : LPTIM5 out selected as D3 domain pendclear source |
| * @retval None |
| */ |
| void HAL_EXTI_D3_EventInputConfig(uint32_t EXTI_Line, uint32_t EXTI_LineCmd , uint32_t EXTI_ClearSrc ) |
| { |
| __IO uint32_t *pRegv; |
| |
| /* Check the parameter */ |
| assert_param(IS_EXTI_D3_LINE(EXTI_Line)); |
| assert_param(IS_EXTI_D3_CLEAR(EXTI_ClearSrc)); |
| |
| if( EXTI_LineCmd == 0UL) |
| { |
| /* Clear EXTI line configuration */ |
| CLEAR_BIT(*(__IO uint32_t *) (((uint32_t) &(EXTI->D3PMR1)) + ((EXTI_Line >> 5 ) * 0x20UL)),(uint32_t)(1UL << (EXTI_Line & 0x1FUL)) ); |
| } |
| else |
| { |
| SET_BIT(*(__IO uint32_t *) (((uint32_t) &(EXTI->D3PMR1)) +((EXTI_Line >> 5 ) * 0x20UL)), (uint32_t)(1UL << (EXTI_Line & 0x1FUL))); |
| } |
| |
| if(((EXTI_Line>>4)%2UL) == 0UL) |
| { |
| pRegv = (__IO uint32_t *) (((uint32_t) &(EXTI->D3PCR1L)) + ((EXTI_Line >> 5 ) * 0x20UL)); |
| } |
| else |
| { |
| pRegv = (__IO uint32_t *) (((uint32_t) &(EXTI->D3PCR1H)) + ((EXTI_Line >> 5 ) * 0x20UL)); |
| } |
| MODIFY_REG(*pRegv, (uint32_t)(3UL << ((EXTI_Line*2UL) & 0x1FUL)), (uint32_t)(EXTI_ClearSrc << ((EXTI_Line*2UL) & 0x1FUL))); |
| |
| } |
| |
| |
| |
| /** |
| * @} |
| */ |
| |
| /** |
| * @} |
| */ |
| |
| /** |
| * @} |
| */ |
| |
| /** |
| * @} |
| */ |
| |
| |