blob: b3804c2599d3064cbe716f718d378acdef842ae6 [file] [log] [blame]
/**
******************************************************************************
* @file stm32h7xx_hal_fdcan.c
* @author MCD Application Team
* @brief FDCAN HAL module driver.
* This file provides firmware functions to manage the following
* functionalities of the Flexible DataRate Controller Area Network
* (FDCAN) peripheral:
* + Initialization and de-initialization functions
* + IO operation functions
* + Peripheral Configuration and Control functions
* + Peripheral State and Error functions
*
******************************************************************************
* @attention
*
* Copyright (c) 2017 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
==============================================================================
##### How to use this driver #####
==============================================================================
[..]
(#) Initialize the FDCAN peripheral using HAL_FDCAN_Init function.
(#) If needed , configure the reception filters and optional features using
the following configuration functions:
(++) HAL_FDCAN_ConfigClockCalibration
(++) HAL_FDCAN_ConfigFilter
(++) HAL_FDCAN_ConfigGlobalFilter
(++) HAL_FDCAN_ConfigExtendedIdMask
(++) HAL_FDCAN_ConfigRxFifoOverwrite
(++) HAL_FDCAN_ConfigFifoWatermark
(++) HAL_FDCAN_ConfigRamWatchdog
(++) HAL_FDCAN_ConfigTimestampCounter
(++) HAL_FDCAN_EnableTimestampCounter
(++) HAL_FDCAN_DisableTimestampCounter
(++) HAL_FDCAN_ConfigTimeoutCounter
(++) HAL_FDCAN_EnableTimeoutCounter
(++) HAL_FDCAN_DisableTimeoutCounter
(++) HAL_FDCAN_ConfigTxDelayCompensation
(++) HAL_FDCAN_EnableTxDelayCompensation
(++) HAL_FDCAN_DisableTxDelayCompensation
(++) HAL_FDCAN_EnableISOMode
(++) HAL_FDCAN_DisableISOMode
(++) HAL_FDCAN_EnableEdgeFiltering
(++) HAL_FDCAN_DisableEdgeFiltering
(++) HAL_FDCAN_TT_ConfigOperation
(++) HAL_FDCAN_TT_ConfigReferenceMessage
(++) HAL_FDCAN_TT_ConfigTrigger
(#) Start the FDCAN module using HAL_FDCAN_Start function. At this level
the node is active on the bus: it can send and receive messages.
(#) The following Tx control functions can only be called when the FDCAN
module is started:
(++) HAL_FDCAN_AddMessageToTxFifoQ
(++) HAL_FDCAN_EnableTxBufferRequest
(++) HAL_FDCAN_AbortTxRequest
(#) After having submitted a Tx request in Tx Fifo or Queue, it is possible to
get Tx buffer location used to place the Tx request thanks to
HAL_FDCAN_GetLatestTxFifoQRequestBuffer API.
It is then possible to abort later on the corresponding Tx Request using
HAL_FDCAN_AbortTxRequest API.
(#) When a message is received into the FDCAN message RAM, it can be
retrieved using the HAL_FDCAN_GetRxMessage function.
(#) Calling the HAL_FDCAN_Stop function stops the FDCAN module by entering
it to initialization mode and re-enabling access to configuration
registers through the configuration functions listed here above.
(#) All other control functions can be called any time after initialization
phase, no matter if the FDCAN module is started or stopped.
*** Polling mode operation ***
==============================
[..]
(#) Reception and transmission states can be monitored via the following
functions:
(++) HAL_FDCAN_IsRxBufferMessageAvailable
(++) HAL_FDCAN_IsTxBufferMessagePending
(++) HAL_FDCAN_GetRxFifoFillLevel
(++) HAL_FDCAN_GetTxFifoFreeLevel
*** Interrupt mode operation ***
================================
[..]
(#) There are two interrupt lines: line 0 and 1.
By default, all interrupts are assigned to line 0. Interrupt lines
can be configured using HAL_FDCAN_ConfigInterruptLines function.
(#) Notifications are activated using HAL_FDCAN_ActivateNotification
function. Then, the process can be controlled through one of the
available user callbacks: HAL_FDCAN_xxxCallback.
*** Callback registration ***
=============================================
The compilation define USE_HAL_FDCAN_REGISTER_CALLBACKS when set to 1
allows the user to configure dynamically the driver callbacks.
Use Function HAL_FDCAN_RegisterCallback() or HAL_FDCAN_RegisterXXXCallback()
to register an interrupt callback.
Function HAL_FDCAN_RegisterCallback() allows to register following callbacks:
(+) TxFifoEmptyCallback : Tx Fifo Empty Callback.
(+) RxBufferNewMessageCallback : Rx Buffer New Message Callback.
(+) HighPriorityMessageCallback : High Priority Message Callback.
(+) TimestampWraparoundCallback : Timestamp Wraparound Callback.
(+) TimeoutOccurredCallback : Timeout Occurred Callback.
(+) ErrorCallback : Error Callback.
(+) MspInitCallback : FDCAN MspInit.
(+) MspDeInitCallback : FDCAN MspDeInit.
This function takes as parameters the HAL peripheral handle, the Callback ID
and a pointer to the user callback function.
For specific callbacks ClockCalibrationCallback, TxEventFifoCallback, RxFifo0Callback, RxFifo1Callback,
TxBufferCompleteCallback, TxBufferAbortCallback, ErrorStatusCallback, TT_ScheduleSyncCallback, TT_TimeMarkCallback,
TT_StopWatchCallback and TT_GlobalTimeCallback, use dedicated register callbacks :
respectively HAL_FDCAN_RegisterClockCalibrationCallback(), HAL_FDCAN_RegisterTxEventFifoCallback(),
HAL_FDCAN_RegisterRxFifo0Callback(), HAL_FDCAN_RegisterRxFifo1Callback(),
HAL_FDCAN_RegisterTxBufferCompleCallback(), HAL_FDCAN_RegisterTxBufferAbortCallback(),
HAL_FDCAN_RegisterErrorStatusCallback(), HAL_FDCAN_TT_RegisterScheduleSyncCallback(),
HAL_FDCAN_TT_RegisterTimeMarkCallback(), HAL_FDCAN_TT_RegisterStopWatchCallback() and
HAL_FDCAN_TT_RegisterGlobalTimeCallback().
Use function HAL_FDCAN_UnRegisterCallback() to reset a callback to the default
weak function.
HAL_FDCAN_UnRegisterCallback takes as parameters the HAL peripheral handle,
and the Callback ID.
This function allows to reset following callbacks:
(+) TxFifoEmptyCallback : Tx Fifo Empty Callback.
(+) RxBufferNewMessageCallback : Rx Buffer New Message Callback.
(+) HighPriorityMessageCallback : High Priority Message Callback.
(+) TimestampWraparoundCallback : Timestamp Wraparound Callback.
(+) TimeoutOccurredCallback : Timeout Occurred Callback.
(+) ErrorCallback : Error Callback.
(+) MspInitCallback : FDCAN MspInit.
(+) MspDeInitCallback : FDCAN MspDeInit.
For specific callbacks ClockCalibrationCallback, TxEventFifoCallback, RxFifo0Callback,
RxFifo1Callback, TxBufferCompleteCallback, TxBufferAbortCallback, TT_ScheduleSyncCallback,
TT_TimeMarkCallback, TT_StopWatchCallback and TT_GlobalTimeCallback, use dedicated
register callbacks : respectively HAL_FDCAN_UnRegisterClockCalibrationCallback(),
HAL_FDCAN_UnRegisterTxEventFifoCallback(), HAL_FDCAN_UnRegisterRxFifo0Callback(),
HAL_FDCAN_UnRegisterRxFifo1Callback(), HAL_FDCAN_UnRegisterTxBufferCompleCallback(),
HAL_FDCAN_UnRegisterTxBufferAbortCallback(), HAL_FDCAN_UnRegisterErrorStatusCallback(),
HAL_FDCAN_TT_UnRegisterScheduleSyncCallback(), HAL_FDCAN_TT_UnRegisterTimeMarkCallback(),
HAL_FDCAN_TT_UnRegisterStopWatchCallback() and HAL_FDCAN_TT_UnRegisterGlobalTimeCallback().
By default, after the HAL_FDCAN_Init() and when the state is HAL_FDCAN_STATE_RESET,
all callbacks are set to the corresponding weak functions:
examples HAL_FDCAN_ErrorCallback().
Exception done for MspInit and MspDeInit functions that are
reset to the legacy weak function in the HAL_FDCAN_Init()/ HAL_FDCAN_DeInit() only when
these callbacks are null (not registered beforehand).
if not, MspInit or MspDeInit are not null, the HAL_FDCAN_Init()/ HAL_FDCAN_DeInit()
keep and use the user MspInit/MspDeInit callbacks (registered beforehand)
Callbacks can be registered/unregistered in HAL_FDCAN_STATE_READY state only.
Exception done MspInit/MspDeInit that can be registered/unregistered
in HAL_FDCAN_STATE_READY or HAL_FDCAN_STATE_RESET state,
thus registered (user) MspInit/DeInit callbacks can be used during the Init/DeInit.
In that case first register the MspInit/MspDeInit user callbacks
using HAL_FDCAN_RegisterCallback() before calling HAL_FDCAN_DeInit()
or HAL_FDCAN_Init() function.
When The compilation define USE_HAL_FDCAN_REGISTER_CALLBACKS is set to 0 or
not defined, the callback registration feature is not available and all callbacks
are set to the corresponding weak functions.
@endverbatim
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32h7xx_hal.h"
#if defined(FDCAN1)
/** @addtogroup STM32H7xx_HAL_Driver
* @{
*/
/** @defgroup FDCAN FDCAN
* @brief FDCAN HAL module driver
* @{
*/
#ifdef HAL_FDCAN_MODULE_ENABLED
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/** @addtogroup FDCAN_Private_Constants
* @{
*/
#define FDCAN_TIMEOUT_VALUE 10U
#define FDCAN_TIMEOUT_COUNT 50U
#define FDCAN_TX_EVENT_FIFO_MASK (FDCAN_IR_TEFL | FDCAN_IR_TEFF | FDCAN_IR_TEFW | FDCAN_IR_TEFN)
#define FDCAN_RX_FIFO0_MASK (FDCAN_IR_RF0L | FDCAN_IR_RF0F | FDCAN_IR_RF0W | FDCAN_IR_RF0N)
#define FDCAN_RX_FIFO1_MASK (FDCAN_IR_RF1L | FDCAN_IR_RF1F | FDCAN_IR_RF1W | FDCAN_IR_RF1N)
#define FDCAN_ERROR_MASK (FDCAN_IR_ELO | FDCAN_IR_WDI | FDCAN_IR_PEA | FDCAN_IR_PED | FDCAN_IR_ARA)
#define FDCAN_ERROR_STATUS_MASK (FDCAN_IR_EP | FDCAN_IR_EW | FDCAN_IR_BO)
#define FDCAN_TT_SCHEDULE_SYNC_MASK (FDCAN_TTIR_SBC | FDCAN_TTIR_SMC | FDCAN_TTIR_CSM | FDCAN_TTIR_SOG)
#define FDCAN_TT_TIME_MARK_MASK (FDCAN_TTIR_RTMI | FDCAN_TTIR_TTMI)
#define FDCAN_TT_GLOBAL_TIME_MASK (FDCAN_TTIR_GTW | FDCAN_TTIR_GTD)
#define FDCAN_TT_DISTURBING_ERROR_MASK (FDCAN_TTIR_GTE | FDCAN_TTIR_TXU | FDCAN_TTIR_TXO | \
FDCAN_TTIR_SE1 | FDCAN_TTIR_SE2 | FDCAN_TTIR_ELC)
#define FDCAN_TT_FATAL_ERROR_MASK (FDCAN_TTIR_IWT | FDCAN_TTIR_WT | FDCAN_TTIR_AW | FDCAN_TTIR_CER)
#define FDCAN_ELEMENT_MASK_STDID ((uint32_t)0x1FFC0000U) /* Standard Identifier */
#define FDCAN_ELEMENT_MASK_EXTID ((uint32_t)0x1FFFFFFFU) /* Extended Identifier */
#define FDCAN_ELEMENT_MASK_RTR ((uint32_t)0x20000000U) /* Remote Transmission Request */
#define FDCAN_ELEMENT_MASK_XTD ((uint32_t)0x40000000U) /* Extended Identifier */
#define FDCAN_ELEMENT_MASK_ESI ((uint32_t)0x80000000U) /* Error State Indicator */
#define FDCAN_ELEMENT_MASK_TS ((uint32_t)0x0000FFFFU) /* Timestamp */
#define FDCAN_ELEMENT_MASK_DLC ((uint32_t)0x000F0000U) /* Data Length Code */
#define FDCAN_ELEMENT_MASK_BRS ((uint32_t)0x00100000U) /* Bit Rate Switch */
#define FDCAN_ELEMENT_MASK_FDF ((uint32_t)0x00200000U) /* FD Format */
#define FDCAN_ELEMENT_MASK_EFC ((uint32_t)0x00800000U) /* Event FIFO Control */
#define FDCAN_ELEMENT_MASK_MM ((uint32_t)0xFF000000U) /* Message Marker */
#define FDCAN_ELEMENT_MASK_FIDX ((uint32_t)0x7F000000U) /* Filter Index */
#define FDCAN_ELEMENT_MASK_ANMF ((uint32_t)0x80000000U) /* Accepted Non-matching Frame */
#define FDCAN_ELEMENT_MASK_ET ((uint32_t)0x00C00000U) /* Event type */
#define FDCAN_MESSAGE_RAM_SIZE 0x2800U
#define FDCAN_MESSAGE_RAM_END_ADDRESS (SRAMCAN_BASE + FDCAN_MESSAGE_RAM_SIZE - 0x4U) /* Message RAM width is 4 Bytes */
/**
* @}
*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
static const uint8_t DLCtoBytes[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 12, 16, 20, 24, 32, 48, 64};
/* Private function prototypes -----------------------------------------------*/
/** @addtogroup FDCAN_Private_Functions_Prototypes
* @{
*/
static HAL_StatusTypeDef FDCAN_CalcultateRamBlockAddresses(FDCAN_HandleTypeDef *hfdcan);
static void FDCAN_CopyMessageToRAM(FDCAN_HandleTypeDef *hfdcan, const FDCAN_TxHeaderTypeDef *pTxHeader,
const uint8_t *pTxData, uint32_t BufferIndex);
/**
* @}
*/
/* Exported functions --------------------------------------------------------*/
/** @defgroup FDCAN_Exported_Functions FDCAN Exported Functions
* @{
*/
/** @defgroup FDCAN_Exported_Functions_Group1 Initialization and de-initialization functions
* @brief Initialization and Configuration functions
*
@verbatim
==============================================================================
##### Initialization and de-initialization functions #####
==============================================================================
[..] This section provides functions allowing to:
(+) Initialize and configure the FDCAN.
(+) De-initialize the FDCAN.
(+) Enter FDCAN peripheral in power down mode.
(+) Exit power down mode.
(+) Register callbacks.
(+) Unregister callbacks.
@endverbatim
* @{
*/
/**
* @brief Initializes the FDCAN peripheral according to the specified
* parameters in the FDCAN_InitTypeDef structure.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_Init(FDCAN_HandleTypeDef *hfdcan)
{
uint32_t tickstart;
HAL_StatusTypeDef status;
const uint32_t CvtEltSize[] = {0, 0, 0, 0, 0, 1, 2, 3, 4, 0, 5, 0, 0, 0, 6, 0, 0, 0, 7};
/* Check FDCAN handle */
if (hfdcan == NULL)
{
return HAL_ERROR;
}
/* Check FDCAN instance */
if (hfdcan->Instance == FDCAN1)
{
hfdcan->ttcan = (TTCAN_TypeDef *)((uint32_t)hfdcan->Instance + 0x100U);
}
/* Check function parameters */
assert_param(IS_FDCAN_ALL_INSTANCE(hfdcan->Instance));
assert_param(IS_FDCAN_FRAME_FORMAT(hfdcan->Init.FrameFormat));
assert_param(IS_FDCAN_MODE(hfdcan->Init.Mode));
assert_param(IS_FUNCTIONAL_STATE(hfdcan->Init.AutoRetransmission));
assert_param(IS_FUNCTIONAL_STATE(hfdcan->Init.TransmitPause));
assert_param(IS_FUNCTIONAL_STATE(hfdcan->Init.ProtocolException));
assert_param(IS_FDCAN_NOMINAL_PRESCALER(hfdcan->Init.NominalPrescaler));
assert_param(IS_FDCAN_NOMINAL_SJW(hfdcan->Init.NominalSyncJumpWidth));
assert_param(IS_FDCAN_NOMINAL_TSEG1(hfdcan->Init.NominalTimeSeg1));
assert_param(IS_FDCAN_NOMINAL_TSEG2(hfdcan->Init.NominalTimeSeg2));
if (hfdcan->Init.FrameFormat == FDCAN_FRAME_FD_BRS)
{
assert_param(IS_FDCAN_DATA_PRESCALER(hfdcan->Init.DataPrescaler));
assert_param(IS_FDCAN_DATA_SJW(hfdcan->Init.DataSyncJumpWidth));
assert_param(IS_FDCAN_DATA_TSEG1(hfdcan->Init.DataTimeSeg1));
assert_param(IS_FDCAN_DATA_TSEG2(hfdcan->Init.DataTimeSeg2));
}
assert_param(IS_FDCAN_MAX_VALUE(hfdcan->Init.StdFiltersNbr, 128U));
assert_param(IS_FDCAN_MAX_VALUE(hfdcan->Init.ExtFiltersNbr, 64U));
assert_param(IS_FDCAN_MAX_VALUE(hfdcan->Init.RxFifo0ElmtsNbr, 64U));
if (hfdcan->Init.RxFifo0ElmtsNbr > 0U)
{
assert_param(IS_FDCAN_DATA_SIZE(hfdcan->Init.RxFifo0ElmtSize));
}
assert_param(IS_FDCAN_MAX_VALUE(hfdcan->Init.RxFifo1ElmtsNbr, 64U));
if (hfdcan->Init.RxFifo1ElmtsNbr > 0U)
{
assert_param(IS_FDCAN_DATA_SIZE(hfdcan->Init.RxFifo1ElmtSize));
}
assert_param(IS_FDCAN_MAX_VALUE(hfdcan->Init.RxBuffersNbr, 64U));
if (hfdcan->Init.RxBuffersNbr > 0U)
{
assert_param(IS_FDCAN_DATA_SIZE(hfdcan->Init.RxBufferSize));
}
assert_param(IS_FDCAN_MAX_VALUE(hfdcan->Init.TxEventsNbr, 32U));
assert_param(IS_FDCAN_MAX_VALUE((hfdcan->Init.TxBuffersNbr + hfdcan->Init.TxFifoQueueElmtsNbr), 32U));
if (hfdcan->Init.TxFifoQueueElmtsNbr > 0U)
{
assert_param(IS_FDCAN_TX_FIFO_QUEUE_MODE(hfdcan->Init.TxFifoQueueMode));
}
if ((hfdcan->Init.TxBuffersNbr + hfdcan->Init.TxFifoQueueElmtsNbr) > 0U)
{
assert_param(IS_FDCAN_DATA_SIZE(hfdcan->Init.TxElmtSize));
}
#if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1
if (hfdcan->State == HAL_FDCAN_STATE_RESET)
{
/* Allocate lock resource and initialize it */
hfdcan->Lock = HAL_UNLOCKED;
/* Reset callbacks to legacy functions */
hfdcan->ClockCalibrationCallback = HAL_FDCAN_ClockCalibrationCallback; /* ClockCalibrationCallback */
hfdcan->TxEventFifoCallback = HAL_FDCAN_TxEventFifoCallback; /* TxEventFifoCallback */
hfdcan->RxFifo0Callback = HAL_FDCAN_RxFifo0Callback; /* RxFifo0Callback */
hfdcan->RxFifo1Callback = HAL_FDCAN_RxFifo1Callback; /* RxFifo1Callback */
hfdcan->TxFifoEmptyCallback = HAL_FDCAN_TxFifoEmptyCallback; /* TxFifoEmptyCallback */
hfdcan->TxBufferCompleteCallback = HAL_FDCAN_TxBufferCompleteCallback; /* TxBufferCompleteCallback */
hfdcan->TxBufferAbortCallback = HAL_FDCAN_TxBufferAbortCallback; /* TxBufferAbortCallback */
hfdcan->RxBufferNewMessageCallback = HAL_FDCAN_RxBufferNewMessageCallback; /* RxBufferNewMessageCallback */
hfdcan->HighPriorityMessageCallback = HAL_FDCAN_HighPriorityMessageCallback; /* HighPriorityMessageCallback */
hfdcan->TimestampWraparoundCallback = HAL_FDCAN_TimestampWraparoundCallback; /* TimestampWraparoundCallback */
hfdcan->TimeoutOccurredCallback = HAL_FDCAN_TimeoutOccurredCallback; /* TimeoutOccurredCallback */
hfdcan->ErrorCallback = HAL_FDCAN_ErrorCallback; /* ErrorCallback */
hfdcan->ErrorStatusCallback = HAL_FDCAN_ErrorStatusCallback; /* ErrorStatusCallback */
hfdcan->TT_ScheduleSyncCallback = HAL_FDCAN_TT_ScheduleSyncCallback; /* TT_ScheduleSyncCallback */
hfdcan->TT_TimeMarkCallback = HAL_FDCAN_TT_TimeMarkCallback; /* TT_TimeMarkCallback */
hfdcan->TT_StopWatchCallback = HAL_FDCAN_TT_StopWatchCallback; /* TT_StopWatchCallback */
hfdcan->TT_GlobalTimeCallback = HAL_FDCAN_TT_GlobalTimeCallback; /* TT_GlobalTimeCallback */
if (hfdcan->MspInitCallback == NULL)
{
hfdcan->MspInitCallback = HAL_FDCAN_MspInit; /* Legacy weak MspInit */
}
/* Init the low level hardware: CLOCK, NVIC */
hfdcan->MspInitCallback(hfdcan);
}
#else
if (hfdcan->State == HAL_FDCAN_STATE_RESET)
{
/* Allocate lock resource and initialize it */
hfdcan->Lock = HAL_UNLOCKED;
/* Init the low level hardware: CLOCK, NVIC */
HAL_FDCAN_MspInit(hfdcan);
}
#endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */
/* Exit from Sleep mode */
CLEAR_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_CSR);
/* Get tick */
tickstart = HAL_GetTick();
/* Check Sleep mode acknowledge */
while ((hfdcan->Instance->CCCR & FDCAN_CCCR_CSA) == FDCAN_CCCR_CSA)
{
if ((HAL_GetTick() - tickstart) > FDCAN_TIMEOUT_VALUE)
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT;
/* Change FDCAN state */
hfdcan->State = HAL_FDCAN_STATE_ERROR;
return HAL_ERROR;
}
}
/* Request initialisation */
SET_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_INIT);
/* Get tick */
tickstart = HAL_GetTick();
/* Wait until the INIT bit into CCCR register is set */
while ((hfdcan->Instance->CCCR & FDCAN_CCCR_INIT) == 0U)
{
/* Check for the Timeout */
if ((HAL_GetTick() - tickstart) > FDCAN_TIMEOUT_VALUE)
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT;
/* Change FDCAN state */
hfdcan->State = HAL_FDCAN_STATE_ERROR;
return HAL_ERROR;
}
}
/* Enable configuration change */
SET_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_CCE);
/* Set the no automatic retransmission */
if (hfdcan->Init.AutoRetransmission == ENABLE)
{
CLEAR_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_DAR);
}
else
{
SET_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_DAR);
}
/* Set the transmit pause feature */
if (hfdcan->Init.TransmitPause == ENABLE)
{
SET_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_TXP);
}
else
{
CLEAR_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_TXP);
}
/* Set the Protocol Exception Handling */
if (hfdcan->Init.ProtocolException == ENABLE)
{
CLEAR_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_PXHD);
}
else
{
SET_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_PXHD);
}
/* Set FDCAN Frame Format */
MODIFY_REG(hfdcan->Instance->CCCR, FDCAN_FRAME_FD_BRS, hfdcan->Init.FrameFormat);
/* Reset FDCAN Operation Mode */
CLEAR_BIT(hfdcan->Instance->CCCR, (FDCAN_CCCR_TEST | FDCAN_CCCR_MON | FDCAN_CCCR_ASM));
CLEAR_BIT(hfdcan->Instance->TEST, FDCAN_TEST_LBCK);
/* Set FDCAN Operating Mode:
| Normal | Restricted | Bus | Internal | External
| | Operation | Monitoring | LoopBack | LoopBack
CCCR.TEST | 0 | 0 | 0 | 1 | 1
CCCR.MON | 0 | 0 | 1 | 1 | 0
TEST.LBCK | 0 | 0 | 0 | 1 | 1
CCCR.ASM | 0 | 1 | 0 | 0 | 0
*/
if (hfdcan->Init.Mode == FDCAN_MODE_RESTRICTED_OPERATION)
{
/* Enable Restricted Operation mode */
SET_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_ASM);
}
else if (hfdcan->Init.Mode != FDCAN_MODE_NORMAL)
{
if (hfdcan->Init.Mode != FDCAN_MODE_BUS_MONITORING)
{
/* Enable write access to TEST register */
SET_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_TEST);
/* Enable LoopBack mode */
SET_BIT(hfdcan->Instance->TEST, FDCAN_TEST_LBCK);
if (hfdcan->Init.Mode == FDCAN_MODE_INTERNAL_LOOPBACK)
{
SET_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_MON);
}
}
else
{
/* Enable bus monitoring mode */
SET_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_MON);
}
}
else
{
/* Nothing to do: normal mode */
}
/* Set the nominal bit timing register */
hfdcan->Instance->NBTP = ((((uint32_t)hfdcan->Init.NominalSyncJumpWidth - 1U) << FDCAN_NBTP_NSJW_Pos) | \
(((uint32_t)hfdcan->Init.NominalTimeSeg1 - 1U) << FDCAN_NBTP_NTSEG1_Pos) | \
(((uint32_t)hfdcan->Init.NominalTimeSeg2 - 1U) << FDCAN_NBTP_NTSEG2_Pos) | \
(((uint32_t)hfdcan->Init.NominalPrescaler - 1U) << FDCAN_NBTP_NBRP_Pos));
/* If FD operation with BRS is selected, set the data bit timing register */
if (hfdcan->Init.FrameFormat == FDCAN_FRAME_FD_BRS)
{
hfdcan->Instance->DBTP = ((((uint32_t)hfdcan->Init.DataSyncJumpWidth - 1U) << FDCAN_DBTP_DSJW_Pos) | \
(((uint32_t)hfdcan->Init.DataTimeSeg1 - 1U) << FDCAN_DBTP_DTSEG1_Pos) | \
(((uint32_t)hfdcan->Init.DataTimeSeg2 - 1U) << FDCAN_DBTP_DTSEG2_Pos) | \
(((uint32_t)hfdcan->Init.DataPrescaler - 1U) << FDCAN_DBTP_DBRP_Pos));
}
if (hfdcan->Init.TxFifoQueueElmtsNbr > 0U)
{
/* Select between Tx FIFO and Tx Queue operation modes */
SET_BIT(hfdcan->Instance->TXBC, hfdcan->Init.TxFifoQueueMode);
}
/* Configure Tx element size */
if ((hfdcan->Init.TxBuffersNbr + hfdcan->Init.TxFifoQueueElmtsNbr) > 0U)
{
MODIFY_REG(hfdcan->Instance->TXESC, FDCAN_TXESC_TBDS, CvtEltSize[hfdcan->Init.TxElmtSize]);
}
/* Configure Rx FIFO 0 element size */
if (hfdcan->Init.RxFifo0ElmtsNbr > 0U)
{
MODIFY_REG(hfdcan->Instance->RXESC, FDCAN_RXESC_F0DS,
(CvtEltSize[hfdcan->Init.RxFifo0ElmtSize] << FDCAN_RXESC_F0DS_Pos));
}
/* Configure Rx FIFO 1 element size */
if (hfdcan->Init.RxFifo1ElmtsNbr > 0U)
{
MODIFY_REG(hfdcan->Instance->RXESC, FDCAN_RXESC_F1DS,
(CvtEltSize[hfdcan->Init.RxFifo1ElmtSize] << FDCAN_RXESC_F1DS_Pos));
}
/* Configure Rx buffer element size */
if (hfdcan->Init.RxBuffersNbr > 0U)
{
MODIFY_REG(hfdcan->Instance->RXESC, FDCAN_RXESC_RBDS,
(CvtEltSize[hfdcan->Init.RxBufferSize] << FDCAN_RXESC_RBDS_Pos));
}
/* By default operation mode is set to Event-driven communication.
If Time-triggered communication is needed, user should call the
HAL_FDCAN_TT_ConfigOperation function just after the HAL_FDCAN_Init */
if (hfdcan->Instance == FDCAN1)
{
CLEAR_BIT(hfdcan->ttcan->TTOCF, FDCAN_TTOCF_OM);
}
/* Initialize the Latest Tx FIFO/Queue request buffer index */
hfdcan->LatestTxFifoQRequest = 0U;
/* Initialize the error code */
hfdcan->ErrorCode = HAL_FDCAN_ERROR_NONE;
/* Initialize the FDCAN state */
hfdcan->State = HAL_FDCAN_STATE_READY;
/* Calculate each RAM block address */
status = FDCAN_CalcultateRamBlockAddresses(hfdcan);
/* Return function status */
return status;
}
/**
* @brief Deinitializes the FDCAN peripheral registers to their default reset values.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_DeInit(FDCAN_HandleTypeDef *hfdcan)
{
/* Check FDCAN handle */
if (hfdcan == NULL)
{
return HAL_ERROR;
}
/* Check function parameters */
assert_param(IS_FDCAN_ALL_INSTANCE(hfdcan->Instance));
/* Stop the FDCAN module: return value is voluntary ignored */
(void)HAL_FDCAN_Stop(hfdcan);
/* Disable Interrupt lines */
CLEAR_BIT(hfdcan->Instance->ILE, (FDCAN_INTERRUPT_LINE0 | FDCAN_INTERRUPT_LINE1));
#if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1
if (hfdcan->MspDeInitCallback == NULL)
{
hfdcan->MspDeInitCallback = HAL_FDCAN_MspDeInit; /* Legacy weak MspDeInit */
}
/* DeInit the low level hardware: CLOCK, NVIC */
hfdcan->MspDeInitCallback(hfdcan);
#else
/* DeInit the low level hardware: CLOCK, NVIC */
HAL_FDCAN_MspDeInit(hfdcan);
#endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */
/* Reset the FDCAN ErrorCode */
hfdcan->ErrorCode = HAL_FDCAN_ERROR_NONE;
/* Change FDCAN state */
hfdcan->State = HAL_FDCAN_STATE_RESET;
/* Return function status */
return HAL_OK;
}
/**
* @brief Initializes the FDCAN MSP.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval None
*/
__weak void HAL_FDCAN_MspInit(FDCAN_HandleTypeDef *hfdcan)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hfdcan);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_FDCAN_MspInit could be implemented in the user file
*/
}
/**
* @brief DeInitializes the FDCAN MSP.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval None
*/
__weak void HAL_FDCAN_MspDeInit(FDCAN_HandleTypeDef *hfdcan)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hfdcan);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_FDCAN_MspDeInit could be implemented in the user file
*/
}
/**
* @brief Enter FDCAN peripheral in sleep mode.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_EnterPowerDownMode(FDCAN_HandleTypeDef *hfdcan)
{
uint32_t tickstart;
/* Request clock stop */
SET_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_CSR);
/* Get tick */
tickstart = HAL_GetTick();
/* Wait until FDCAN is ready for power down */
while ((hfdcan->Instance->CCCR & FDCAN_CCCR_CSA) == 0U)
{
if ((HAL_GetTick() - tickstart) > FDCAN_TIMEOUT_VALUE)
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT;
/* Change FDCAN state */
hfdcan->State = HAL_FDCAN_STATE_ERROR;
return HAL_ERROR;
}
}
/* Return function status */
return HAL_OK;
}
/**
* @brief Exit power down mode.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_ExitPowerDownMode(FDCAN_HandleTypeDef *hfdcan)
{
uint32_t tickstart;
/* Reset clock stop request */
CLEAR_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_CSR);
/* Get tick */
tickstart = HAL_GetTick();
/* Wait until FDCAN exits sleep mode */
while ((hfdcan->Instance->CCCR & FDCAN_CCCR_CSA) == FDCAN_CCCR_CSA)
{
if ((HAL_GetTick() - tickstart) > FDCAN_TIMEOUT_VALUE)
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT;
/* Change FDCAN state */
hfdcan->State = HAL_FDCAN_STATE_ERROR;
return HAL_ERROR;
}
}
/* Enter normal operation */
CLEAR_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_INIT);
/* Return function status */
return HAL_OK;
}
#if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1
/**
* @brief Register a FDCAN CallBack.
* To be used instead of the weak predefined callback
* @param hfdcan pointer to a FDCAN_HandleTypeDef structure that contains
* the configuration information for FDCAN module
* @param CallbackID ID of the callback to be registered
* This parameter can be one of the following values:
* @arg @ref HAL_FDCAN_TX_FIFO_EMPTY_CB_ID Tx Fifo Empty callback ID
* @arg @ref HAL_FDCAN_RX_BUFFER_NEW_MSG_CB_ID Rx buffer new message callback ID
* @arg @ref HAL_FDCAN_HIGH_PRIO_MESSAGE_CB_ID High priority message callback ID
* @arg @ref HAL_FDCAN_TIMESTAMP_WRAPAROUND_CB_ID Timestamp wraparound callback ID
* @arg @ref HAL_FDCAN_TIMEOUT_OCCURRED_CB_ID Timeout occurred callback ID
* @arg @ref HAL_FDCAN_ERROR_CALLBACK_CB_ID Error callback ID
* @arg @ref HAL_FDCAN_MSPINIT_CB_ID MspInit callback ID
* @arg @ref HAL_FDCAN_MSPDEINIT_CB_ID MspDeInit callback ID
* @param pCallback pointer to the Callback function
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_RegisterCallback(FDCAN_HandleTypeDef *hfdcan, HAL_FDCAN_CallbackIDTypeDef CallbackID,
void (* pCallback)(FDCAN_HandleTypeDef *_hFDCAN))
{
HAL_StatusTypeDef status = HAL_OK;
if (pCallback == NULL)
{
/* Update the error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK;
return HAL_ERROR;
}
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
switch (CallbackID)
{
case HAL_FDCAN_TX_FIFO_EMPTY_CB_ID :
hfdcan->TxFifoEmptyCallback = pCallback;
break;
case HAL_FDCAN_RX_BUFFER_NEW_MSG_CB_ID :
hfdcan->RxBufferNewMessageCallback = pCallback;
break;
case HAL_FDCAN_HIGH_PRIO_MESSAGE_CB_ID :
hfdcan->HighPriorityMessageCallback = pCallback;
break;
case HAL_FDCAN_TIMESTAMP_WRAPAROUND_CB_ID :
hfdcan->TimestampWraparoundCallback = pCallback;
break;
case HAL_FDCAN_TIMEOUT_OCCURRED_CB_ID :
hfdcan->TimeoutOccurredCallback = pCallback;
break;
case HAL_FDCAN_ERROR_CALLBACK_CB_ID :
hfdcan->ErrorCallback = pCallback;
break;
case HAL_FDCAN_MSPINIT_CB_ID :
hfdcan->MspInitCallback = pCallback;
break;
case HAL_FDCAN_MSPDEINIT_CB_ID :
hfdcan->MspDeInitCallback = pCallback;
break;
default :
/* Update the error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
break;
}
}
else if (hfdcan->State == HAL_FDCAN_STATE_RESET)
{
switch (CallbackID)
{
case HAL_FDCAN_MSPINIT_CB_ID :
hfdcan->MspInitCallback = pCallback;
break;
case HAL_FDCAN_MSPDEINIT_CB_ID :
hfdcan->MspDeInitCallback = pCallback;
break;
default :
/* Update the error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
break;
}
}
else
{
/* Update the error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
}
return status;
}
/**
* @brief Unregister a FDCAN CallBack.
* FDCAN callback is redirected to the weak predefined callback
* @param hfdcan pointer to a FDCAN_HandleTypeDef structure that contains
* the configuration information for FDCAN module
* @param CallbackID ID of the callback to be unregistered
* This parameter can be one of the following values:
* @arg @ref HAL_FDCAN_TX_FIFO_EMPTY_CB_ID Tx Fifo Empty callback ID
* @arg @ref HAL_FDCAN_RX_BUFFER_NEW_MSG_CB_ID Rx buffer new message callback ID
* @arg @ref HAL_FDCAN_HIGH_PRIO_MESSAGE_CB_ID High priority message callback ID
* @arg @ref HAL_FDCAN_TIMESTAMP_WRAPAROUND_CB_ID Timestamp wraparound callback ID
* @arg @ref HAL_FDCAN_TIMEOUT_OCCURRED_CB_ID Timeout occurred callback ID
* @arg @ref HAL_FDCAN_ERROR_CALLBACK_CB_ID Error callback ID
* @arg @ref HAL_FDCAN_MSPINIT_CB_ID MspInit callback ID
* @arg @ref HAL_FDCAN_MSPDEINIT_CB_ID MspDeInit callback ID
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_UnRegisterCallback(FDCAN_HandleTypeDef *hfdcan, HAL_FDCAN_CallbackIDTypeDef CallbackID)
{
HAL_StatusTypeDef status = HAL_OK;
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
switch (CallbackID)
{
case HAL_FDCAN_TX_FIFO_EMPTY_CB_ID :
hfdcan->TxFifoEmptyCallback = HAL_FDCAN_TxFifoEmptyCallback;
break;
case HAL_FDCAN_RX_BUFFER_NEW_MSG_CB_ID :
hfdcan->RxBufferNewMessageCallback = HAL_FDCAN_RxBufferNewMessageCallback;
break;
case HAL_FDCAN_HIGH_PRIO_MESSAGE_CB_ID :
hfdcan->HighPriorityMessageCallback = HAL_FDCAN_HighPriorityMessageCallback;
break;
case HAL_FDCAN_TIMESTAMP_WRAPAROUND_CB_ID :
hfdcan->TimestampWraparoundCallback = HAL_FDCAN_TimestampWraparoundCallback;
break;
case HAL_FDCAN_TIMEOUT_OCCURRED_CB_ID :
hfdcan->TimeoutOccurredCallback = HAL_FDCAN_TimeoutOccurredCallback;
break;
case HAL_FDCAN_ERROR_CALLBACK_CB_ID :
hfdcan->ErrorCallback = HAL_FDCAN_ErrorCallback;
break;
case HAL_FDCAN_MSPINIT_CB_ID :
hfdcan->MspInitCallback = HAL_FDCAN_MspInit;
break;
case HAL_FDCAN_MSPDEINIT_CB_ID :
hfdcan->MspDeInitCallback = HAL_FDCAN_MspDeInit;
break;
default :
/* Update the error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
break;
}
}
else if (hfdcan->State == HAL_FDCAN_STATE_RESET)
{
switch (CallbackID)
{
case HAL_FDCAN_MSPINIT_CB_ID :
hfdcan->MspInitCallback = HAL_FDCAN_MspInit;
break;
case HAL_FDCAN_MSPDEINIT_CB_ID :
hfdcan->MspDeInitCallback = HAL_FDCAN_MspDeInit;
break;
default :
/* Update the error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
break;
}
}
else
{
/* Update the error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
}
return status;
}
/**
* @brief Register Clock Calibration FDCAN Callback
* To be used instead of the weak HAL_FDCAN_ClockCalibrationCallback() predefined callback
* @param hfdcan FDCAN handle
* @param pCallback pointer to the Clock Calibration Callback function
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_RegisterClockCalibrationCallback(FDCAN_HandleTypeDef *hfdcan,
pFDCAN_ClockCalibrationCallbackTypeDef pCallback)
{
HAL_StatusTypeDef status = HAL_OK;
if (pCallback == NULL)
{
/* Update the error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK;
return HAL_ERROR;
}
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
hfdcan->ClockCalibrationCallback = pCallback;
}
else
{
/* Update the error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
}
return status;
}
/**
* @brief UnRegister the Clock Calibration FDCAN Callback
* Clock Calibration FDCAN Callback is redirected to the weak
* HAL_FDCAN_ClockCalibrationCallback() predefined callback
* @param hfdcan FDCAN handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_UnRegisterClockCalibrationCallback(FDCAN_HandleTypeDef *hfdcan)
{
HAL_StatusTypeDef status = HAL_OK;
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
hfdcan->ClockCalibrationCallback = HAL_FDCAN_ClockCalibrationCallback; /* Legacy weak ClockCalibrationCallback */
}
else
{
/* Update the error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
}
return status;
}
/**
* @brief Register Tx Event Fifo FDCAN Callback
* To be used instead of the weak HAL_FDCAN_TxEventFifoCallback() predefined callback
* @param hfdcan FDCAN handle
* @param pCallback pointer to the Tx Event Fifo Callback function
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_RegisterTxEventFifoCallback(FDCAN_HandleTypeDef *hfdcan,
pFDCAN_TxEventFifoCallbackTypeDef pCallback)
{
HAL_StatusTypeDef status = HAL_OK;
if (pCallback == NULL)
{
/* Update the error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK;
return HAL_ERROR;
}
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
hfdcan->TxEventFifoCallback = pCallback;
}
else
{
/* Update the error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
}
return status;
}
/**
* @brief UnRegister the Tx Event Fifo FDCAN Callback
* Tx Event Fifo FDCAN Callback is redirected to the weak HAL_FDCAN_TxEventFifoCallback() predefined callback
* @param hfdcan FDCAN handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_UnRegisterTxEventFifoCallback(FDCAN_HandleTypeDef *hfdcan)
{
HAL_StatusTypeDef status = HAL_OK;
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
hfdcan->TxEventFifoCallback = HAL_FDCAN_TxEventFifoCallback; /* Legacy weak TxEventFifoCallback */
}
else
{
/* Update the error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
}
return status;
}
/**
* @brief Register Rx Fifo 0 FDCAN Callback
* To be used instead of the weak HAL_FDCAN_RxFifo0Callback() predefined callback
* @param hfdcan FDCAN handle
* @param pCallback pointer to the Rx Fifo 0 Callback function
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_RegisterRxFifo0Callback(FDCAN_HandleTypeDef *hfdcan,
pFDCAN_RxFifo0CallbackTypeDef pCallback)
{
HAL_StatusTypeDef status = HAL_OK;
if (pCallback == NULL)
{
/* Update the error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK;
return HAL_ERROR;
}
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
hfdcan->RxFifo0Callback = pCallback;
}
else
{
/* Update the error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
}
return status;
}
/**
* @brief UnRegister the Rx Fifo 0 FDCAN Callback
* Rx Fifo 0 FDCAN Callback is redirected to the weak HAL_FDCAN_RxFifo0Callback() predefined callback
* @param hfdcan FDCAN handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_UnRegisterRxFifo0Callback(FDCAN_HandleTypeDef *hfdcan)
{
HAL_StatusTypeDef status = HAL_OK;
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
hfdcan->RxFifo0Callback = HAL_FDCAN_RxFifo0Callback; /* Legacy weak RxFifo0Callback */
}
else
{
/* Update the error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
}
return status;
}
/**
* @brief Register Rx Fifo 1 FDCAN Callback
* To be used instead of the weak HAL_FDCAN_RxFifo1Callback() predefined callback
* @param hfdcan FDCAN handle
* @param pCallback pointer to the Rx Fifo 1 Callback function
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_RegisterRxFifo1Callback(FDCAN_HandleTypeDef *hfdcan,
pFDCAN_RxFifo1CallbackTypeDef pCallback)
{
HAL_StatusTypeDef status = HAL_OK;
if (pCallback == NULL)
{
/* Update the error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK;
return HAL_ERROR;
}
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
hfdcan->RxFifo1Callback = pCallback;
}
else
{
/* Update the error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
}
return status;
}
/**
* @brief UnRegister the Rx Fifo 1 FDCAN Callback
* Rx Fifo 1 FDCAN Callback is redirected to the weak HAL_FDCAN_RxFifo1Callback() predefined callback
* @param hfdcan FDCAN handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_UnRegisterRxFifo1Callback(FDCAN_HandleTypeDef *hfdcan)
{
HAL_StatusTypeDef status = HAL_OK;
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
hfdcan->RxFifo1Callback = HAL_FDCAN_RxFifo1Callback; /* Legacy weak RxFifo1Callback */
}
else
{
/* Update the error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
}
return status;
}
/**
* @brief Register Tx Buffer Complete FDCAN Callback
* To be used instead of the weak HAL_FDCAN_TxBufferCompleteCallback() predefined callback
* @param hfdcan FDCAN handle
* @param pCallback pointer to the Tx Buffer Complete Callback function
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_RegisterTxBufferCompleteCallback(FDCAN_HandleTypeDef *hfdcan,
pFDCAN_TxBufferCompleteCallbackTypeDef pCallback)
{
HAL_StatusTypeDef status = HAL_OK;
if (pCallback == NULL)
{
/* Update the error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK;
return HAL_ERROR;
}
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
hfdcan->TxBufferCompleteCallback = pCallback;
}
else
{
/* Update the error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
}
return status;
}
/**
* @brief UnRegister the Tx Buffer Complete FDCAN Callback
* Tx Buffer Complete FDCAN Callback is redirected to the weak
* HAL_FDCAN_TxBufferCompleteCallback() predefined callback
* @param hfdcan FDCAN handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_UnRegisterTxBufferCompleteCallback(FDCAN_HandleTypeDef *hfdcan)
{
HAL_StatusTypeDef status = HAL_OK;
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
hfdcan->TxBufferCompleteCallback = HAL_FDCAN_TxBufferCompleteCallback; /* Legacy weak TxBufferCompleteCallback */
}
else
{
/* Update the error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
}
return status;
}
/**
* @brief Register Tx Buffer Abort FDCAN Callback
* To be used instead of the weak HAL_FDCAN_TxBufferAbortCallback() predefined callback
* @param hfdcan FDCAN handle
* @param pCallback pointer to the Tx Buffer Abort Callback function
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_RegisterTxBufferAbortCallback(FDCAN_HandleTypeDef *hfdcan,
pFDCAN_TxBufferAbortCallbackTypeDef pCallback)
{
HAL_StatusTypeDef status = HAL_OK;
if (pCallback == NULL)
{
/* Update the error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK;
return HAL_ERROR;
}
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
hfdcan->TxBufferAbortCallback = pCallback;
}
else
{
/* Update the error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
}
return status;
}
/**
* @brief UnRegister the Tx Buffer Abort FDCAN Callback
* Tx Buffer Abort FDCAN Callback is redirected to the weak
* HAL_FDCAN_TxBufferAbortCallback() predefined callback
* @param hfdcan FDCAN handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_UnRegisterTxBufferAbortCallback(FDCAN_HandleTypeDef *hfdcan)
{
HAL_StatusTypeDef status = HAL_OK;
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
hfdcan->TxBufferAbortCallback = HAL_FDCAN_TxBufferAbortCallback; /* Legacy weak TxBufferAbortCallback */
}
else
{
/* Update the error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
}
return status;
}
/**
* @brief Register Error Status FDCAN Callback
* To be used instead of the weak HAL_FDCAN_ErrorStatusCallback() predefined callback
* @param hfdcan FDCAN handle
* @param pCallback pointer to the Error Status Callback function
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_RegisterErrorStatusCallback(FDCAN_HandleTypeDef *hfdcan,
pFDCAN_ErrorStatusCallbackTypeDef pCallback)
{
HAL_StatusTypeDef status = HAL_OK;
if (pCallback == NULL)
{
/* Update the error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK;
return HAL_ERROR;
}
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
hfdcan->ErrorStatusCallback = pCallback;
}
else
{
/* Update the error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
}
return status;
}
/**
* @brief UnRegister the Error Status FDCAN Callback
* Error Status FDCAN Callback is redirected to the weak HAL_FDCAN_ErrorStatusCallback() predefined callback
* @param hfdcan FDCAN handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_UnRegisterErrorStatusCallback(FDCAN_HandleTypeDef *hfdcan)
{
HAL_StatusTypeDef status = HAL_OK;
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
hfdcan->ErrorStatusCallback = HAL_FDCAN_ErrorStatusCallback; /* Legacy weak ErrorStatusCallback */
}
else
{
/* Update the error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
}
return status;
}
/**
* @brief Register TT Schedule Synchronization FDCAN Callback
* To be used instead of the weak HAL_FDCAN_TT_ScheduleSyncCallback() predefined callback
* @param hfdcan FDCAN handle
* @param pCallback pointer to the TT Schedule Synchronization Callback function
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_RegisterTTScheduleSyncCallback(FDCAN_HandleTypeDef *hfdcan,
pFDCAN_TT_ScheduleSyncCallbackTypeDef pCallback)
{
HAL_StatusTypeDef status = HAL_OK;
if (pCallback == NULL)
{
/* Update the error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK;
return HAL_ERROR;
}
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
hfdcan->TT_ScheduleSyncCallback = pCallback;
}
else
{
/* Update the error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
}
return status;
}
/**
* @brief UnRegister the TT Schedule Synchronization FDCAN Callback
* TT Schedule Synchronization Callback is redirected to the weak
* HAL_FDCAN_TT_ScheduleSyncCallback() predefined callback
* @param hfdcan FDCAN handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_UnRegisterTTScheduleSyncCallback(FDCAN_HandleTypeDef *hfdcan)
{
HAL_StatusTypeDef status = HAL_OK;
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
hfdcan->TT_ScheduleSyncCallback = HAL_FDCAN_TT_ScheduleSyncCallback; /* Legacy weak TT_ScheduleSyncCallback */
}
else
{
/* Update the error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
}
return status;
}
/**
* @brief Register TT Time Mark FDCAN Callback
* To be used instead of the weak HAL_FDCAN_TT_TimeMarkCallback() predefined callback
* @param hfdcan FDCAN handle
* @param pCallback pointer to the TT Time Mark Callback function
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_RegisterTTTimeMarkCallback(FDCAN_HandleTypeDef *hfdcan,
pFDCAN_TT_TimeMarkCallbackTypeDef pCallback)
{
HAL_StatusTypeDef status = HAL_OK;
if (pCallback == NULL)
{
/* Update the error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK;
return HAL_ERROR;
}
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
hfdcan->TT_TimeMarkCallback = pCallback;
}
else
{
/* Update the error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
}
return status;
}
/**
* @brief UnRegister the TT Time Mark FDCAN Callback
* TT Time Mark Callback is redirected to the weak HAL_FDCAN_TT_TimeMarkCallback() predefined callback
* @param hfdcan FDCAN handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_UnRegisterTTTimeMarkCallback(FDCAN_HandleTypeDef *hfdcan)
{
HAL_StatusTypeDef status = HAL_OK;
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
hfdcan->TT_TimeMarkCallback = HAL_FDCAN_TT_TimeMarkCallback; /* Legacy weak TT_TimeMarkCallback */
}
else
{
/* Update the error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
}
return status;
}
/**
* @brief Register TT Stop Watch FDCAN Callback
* To be used instead of the weak HAL_FDCAN_TT_StopWatchCallback() predefined callback
* @param hfdcan FDCAN handle
* @param pCallback pointer to the TT Stop Watch Callback function
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_RegisterTTStopWatchCallback(FDCAN_HandleTypeDef *hfdcan,
pFDCAN_TT_StopWatchCallbackTypeDef pCallback)
{
HAL_StatusTypeDef status = HAL_OK;
if (pCallback == NULL)
{
/* Update the error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK;
return HAL_ERROR;
}
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
hfdcan->TT_StopWatchCallback = pCallback;
}
else
{
/* Update the error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
}
return status;
}
/**
* @brief UnRegister the TT Stop Watch FDCAN Callback
* TT Stop Watch Callback is redirected to the weak HAL_FDCAN_TT_StopWatchCallback() predefined callback
* @param hfdcan FDCAN handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_UnRegisterTTStopWatchCallback(FDCAN_HandleTypeDef *hfdcan)
{
HAL_StatusTypeDef status = HAL_OK;
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
hfdcan->TT_StopWatchCallback = HAL_FDCAN_TT_StopWatchCallback; /* Legacy weak TT_StopWatchCallback */
}
else
{
/* Update the error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
}
return status;
}
/**
* @brief Register TT Global Time FDCAN Callback
* To be used instead of the weak HAL_FDCAN_TT_GlobalTimeCallback() predefined callback
* @param hfdcan FDCAN handle
* @param pCallback pointer to the TT Global Time Callback function
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_RegisterTTGlobalTimeCallback(FDCAN_HandleTypeDef *hfdcan,
pFDCAN_TT_GlobalTimeCallbackTypeDef pCallback)
{
HAL_StatusTypeDef status = HAL_OK;
if (pCallback == NULL)
{
/* Update the error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK;
return HAL_ERROR;
}
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
hfdcan->TT_GlobalTimeCallback = pCallback;
}
else
{
/* Update the error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
}
return status;
}
/**
* @brief UnRegister the TT Global Time FDCAN Callback
* TT Global Time Callback is redirected to the weak HAL_FDCAN_TT_GlobalTimeCallback() predefined callback
* @param hfdcan FDCAN handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_UnRegisterTTGlobalTimeCallback(FDCAN_HandleTypeDef *hfdcan)
{
HAL_StatusTypeDef status = HAL_OK;
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
hfdcan->TT_GlobalTimeCallback = HAL_FDCAN_TT_GlobalTimeCallback; /* Legacy weak TT_GlobalTimeCallback */
}
else
{
/* Update the error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
}
return status;
}
#endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */
/**
* @}
*/
/** @defgroup FDCAN_Exported_Functions_Group2 Configuration functions
* @brief FDCAN Configuration functions.
*
@verbatim
==============================================================================
##### Configuration functions #####
==============================================================================
[..] This section provides functions allowing to:
(+) HAL_FDCAN_ConfigClockCalibration : Configure the FDCAN clock calibration unit
(+) HAL_FDCAN_GetClockCalibrationState : Get the clock calibration state
(+) HAL_FDCAN_ResetClockCalibrationState : Reset the clock calibration state
(+) HAL_FDCAN_GetClockCalibrationCounter : Get the clock calibration counters values
(+) HAL_FDCAN_ConfigFilter : Configure the FDCAN reception filters
(+) HAL_FDCAN_ConfigGlobalFilter : Configure the FDCAN global filter
(+) HAL_FDCAN_ConfigExtendedIdMask : Configure the extended ID mask
(+) HAL_FDCAN_ConfigRxFifoOverwrite : Configure the Rx FIFO operation mode
(+) HAL_FDCAN_ConfigFifoWatermark : Configure the FIFO watermark
(+) HAL_FDCAN_ConfigRamWatchdog : Configure the RAM watchdog
(+) HAL_FDCAN_ConfigTimestampCounter : Configure the timestamp counter
(+) HAL_FDCAN_EnableTimestampCounter : Enable the timestamp counter
(+) HAL_FDCAN_DisableTimestampCounter : Disable the timestamp counter
(+) HAL_FDCAN_GetTimestampCounter : Get the timestamp counter value
(+) HAL_FDCAN_ResetTimestampCounter : Reset the timestamp counter to zero
(+) HAL_FDCAN_ConfigTimeoutCounter : Configure the timeout counter
(+) HAL_FDCAN_EnableTimeoutCounter : Enable the timeout counter
(+) HAL_FDCAN_DisableTimeoutCounter : Disable the timeout counter
(+) HAL_FDCAN_GetTimeoutCounter : Get the timeout counter value
(+) HAL_FDCAN_ResetTimeoutCounter : Reset the timeout counter to its start value
(+) HAL_FDCAN_ConfigTxDelayCompensation : Configure the transmitter delay compensation
(+) HAL_FDCAN_EnableTxDelayCompensation : Enable the transmitter delay compensation
(+) HAL_FDCAN_DisableTxDelayCompensation : Disable the transmitter delay compensation
(+) HAL_FDCAN_EnableISOMode : Enable ISO 11898-1 protocol mode
(+) HAL_FDCAN_DisableISOMode : Disable ISO 11898-1 protocol mode
(+) HAL_FDCAN_EnableEdgeFiltering : Enable edge filtering during bus integration
(+) HAL_FDCAN_DisableEdgeFiltering : Disable edge filtering during bus integration
@endverbatim
* @{
*/
/**
* @brief Configure the FDCAN clock calibration unit according to the specified
* parameters in the FDCAN_ClkCalUnitTypeDef structure.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param sCcuConfig pointer to an FDCAN_ClkCalUnitTypeDef structure that
* contains the clock calibration information
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_ConfigClockCalibration(FDCAN_HandleTypeDef *hfdcan,
const FDCAN_ClkCalUnitTypeDef *sCcuConfig)
{
/* Check function parameters */
assert_param(IS_FDCAN_CLOCK_CALIBRATION(sCcuConfig->ClockCalibration));
if (sCcuConfig->ClockCalibration == FDCAN_CLOCK_CALIBRATION_DISABLE)
{
assert_param(IS_FDCAN_CKDIV(sCcuConfig->ClockDivider));
}
else
{
assert_param(IS_FDCAN_MAX_VALUE(sCcuConfig->MinOscClkPeriods, 0xFFU));
assert_param(IS_FDCAN_CALIBRATION_FIELD_LENGTH(sCcuConfig->CalFieldLength));
assert_param(IS_FDCAN_MIN_VALUE(sCcuConfig->TimeQuantaPerBitTime, 4U));
assert_param(IS_FDCAN_MAX_VALUE(sCcuConfig->TimeQuantaPerBitTime, 0x25U));
assert_param(IS_FDCAN_MAX_VALUE(sCcuConfig->WatchdogStartValue, 0xFFFFU));
}
/* FDCAN1 should be initialized in order to use clock calibration */
if (hfdcan->Instance != FDCAN1)
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_PARAM;
return HAL_ERROR;
}
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
if (sCcuConfig->ClockCalibration == FDCAN_CLOCK_CALIBRATION_DISABLE)
{
/* Bypass clock calibration */
SET_BIT(FDCAN_CCU->CCFG, FDCANCCU_CCFG_BCC);
/* Configure clock divider */
MODIFY_REG(FDCAN_CCU->CCFG, FDCANCCU_CCFG_CDIV, sCcuConfig->ClockDivider);
}
else /* sCcuConfig->ClockCalibration == ENABLE */
{
/* Clock calibration unit generates time quanta clock */
CLEAR_BIT(FDCAN_CCU->CCFG, FDCANCCU_CCFG_BCC);
/* Configure clock calibration unit */
MODIFY_REG(FDCAN_CCU->CCFG,
(FDCANCCU_CCFG_TQBT | FDCANCCU_CCFG_CFL | FDCANCCU_CCFG_OCPM),
((sCcuConfig->TimeQuantaPerBitTime << FDCANCCU_CCFG_TQBT_Pos) |
sCcuConfig->CalFieldLength | (sCcuConfig->MinOscClkPeriods << FDCANCCU_CCFG_OCPM_Pos)));
/* Configure the start value of the calibration watchdog counter */
MODIFY_REG(FDCAN_CCU->CWD, FDCANCCU_CWD_WDC, sCcuConfig->WatchdogStartValue);
}
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY;
return HAL_ERROR;
}
}
/**
* @brief Get the clock calibration state.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval State clock calibration state (can be a value of @arg FDCAN_calibration_state)
*/
uint32_t HAL_FDCAN_GetClockCalibrationState(const FDCAN_HandleTypeDef *hfdcan)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hfdcan);
return (FDCAN_CCU->CSTAT & FDCANCCU_CSTAT_CALS);
}
/**
* @brief Reset the clock calibration state.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_ResetClockCalibrationState(FDCAN_HandleTypeDef *hfdcan)
{
/* FDCAN1 should be initialized in order to use clock calibration */
if (hfdcan->Instance != FDCAN1)
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_PARAM;
return HAL_ERROR;
}
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
/* Calibration software reset */
SET_BIT(FDCAN_CCU->CCFG, FDCANCCU_CCFG_SWR);
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY;
return HAL_ERROR;
}
}
/**
* @brief Get the clock calibration counter value.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param Counter clock calibration counter.
* This parameter can be a value of @arg FDCAN_calibration_counter.
* @retval Value clock calibration counter value
*/
uint32_t HAL_FDCAN_GetClockCalibrationCounter(const FDCAN_HandleTypeDef *hfdcan, uint32_t Counter)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hfdcan);
/* Check function parameters */
assert_param(IS_FDCAN_CALIBRATION_COUNTER(Counter));
if (Counter == FDCAN_CALIB_TIME_QUANTA_COUNTER)
{
return ((FDCAN_CCU->CSTAT & FDCANCCU_CSTAT_TQC) >> FDCANCCU_CSTAT_TQC_Pos);
}
else if (Counter == FDCAN_CALIB_CLOCK_PERIOD_COUNTER)
{
return (FDCAN_CCU->CSTAT & FDCANCCU_CSTAT_OCPC);
}
else /* Counter == FDCAN_CALIB_WATCHDOG_COUNTER */
{
return ((FDCAN_CCU->CWD & FDCANCCU_CWD_WDV) >> FDCANCCU_CWD_WDV_Pos);
}
}
/**
* @brief Configure the FDCAN reception filter according to the specified
* parameters in the FDCAN_FilterTypeDef structure.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param sFilterConfig pointer to an FDCAN_FilterTypeDef structure that
* contains the filter configuration information
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_ConfigFilter(FDCAN_HandleTypeDef *hfdcan, const FDCAN_FilterTypeDef *sFilterConfig)
{
uint32_t FilterElementW1;
uint32_t FilterElementW2;
uint32_t *FilterAddress;
HAL_FDCAN_StateTypeDef state = hfdcan->State;
if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY))
{
/* Check function parameters */
assert_param(IS_FDCAN_ID_TYPE(sFilterConfig->IdType));
assert_param(IS_FDCAN_FILTER_CFG(sFilterConfig->FilterConfig));
if (sFilterConfig->FilterConfig == FDCAN_FILTER_TO_RXBUFFER)
{
assert_param(IS_FDCAN_MAX_VALUE(sFilterConfig->RxBufferIndex, 63U));
assert_param(IS_FDCAN_MAX_VALUE(sFilterConfig->IsCalibrationMsg, 1U));
}
if (sFilterConfig->IdType == FDCAN_STANDARD_ID)
{
/* Check function parameters */
assert_param(IS_FDCAN_MAX_VALUE(sFilterConfig->FilterIndex, (hfdcan->Init.StdFiltersNbr - 1U)));
assert_param(IS_FDCAN_MAX_VALUE(sFilterConfig->FilterID1, 0x7FFU));
if (sFilterConfig->FilterConfig != FDCAN_FILTER_TO_RXBUFFER)
{
assert_param(IS_FDCAN_MAX_VALUE(sFilterConfig->FilterID2, 0x7FFU));
assert_param(IS_FDCAN_STD_FILTER_TYPE(sFilterConfig->FilterType));
}
/* Build filter element */
if (sFilterConfig->FilterConfig == FDCAN_FILTER_TO_RXBUFFER)
{
FilterElementW1 = ((FDCAN_FILTER_TO_RXBUFFER << 27U) |
(sFilterConfig->FilterID1 << 16U) |
(sFilterConfig->IsCalibrationMsg << 8U) |
sFilterConfig->RxBufferIndex);
}
else
{
FilterElementW1 = ((sFilterConfig->FilterType << 30U) |
(sFilterConfig->FilterConfig << 27U) |
(sFilterConfig->FilterID1 << 16U) |
sFilterConfig->FilterID2);
}
/* Calculate filter address */
FilterAddress = (uint32_t *)(hfdcan->msgRam.StandardFilterSA + (sFilterConfig->FilterIndex * 4U));
/* Write filter element to the message RAM */
*FilterAddress = FilterElementW1;
}
else /* sFilterConfig->IdType == FDCAN_EXTENDED_ID */
{
/* Check function parameters */
assert_param(IS_FDCAN_MAX_VALUE(sFilterConfig->FilterIndex, (hfdcan->Init.ExtFiltersNbr - 1U)));
assert_param(IS_FDCAN_MAX_VALUE(sFilterConfig->FilterID1, 0x1FFFFFFFU));
if (sFilterConfig->FilterConfig != FDCAN_FILTER_TO_RXBUFFER)
{
assert_param(IS_FDCAN_MAX_VALUE(sFilterConfig->FilterID2, 0x1FFFFFFFU));
assert_param(IS_FDCAN_EXT_FILTER_TYPE(sFilterConfig->FilterType));
}
/* Build first word of filter element */
FilterElementW1 = ((sFilterConfig->FilterConfig << 29U) | sFilterConfig->FilterID1);
/* Build second word of filter element */
if (sFilterConfig->FilterConfig == FDCAN_FILTER_TO_RXBUFFER)
{
FilterElementW2 = sFilterConfig->RxBufferIndex;
}
else
{
FilterElementW2 = ((sFilterConfig->FilterType << 30U) | sFilterConfig->FilterID2);
}
/* Calculate filter address */
FilterAddress = (uint32_t *)(hfdcan->msgRam.ExtendedFilterSA + (sFilterConfig->FilterIndex * 4U * 2U));
/* Write filter element to the message RAM */
*FilterAddress = FilterElementW1;
FilterAddress++;
*FilterAddress = FilterElementW2;
}
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED;
return HAL_ERROR;
}
}
/**
* @brief Configure the FDCAN global filter.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param NonMatchingStd Defines how received messages with 11-bit IDs that
* do not match any element of the filter list are treated.
* This parameter can be a value of @arg FDCAN_Non_Matching_Frames.
* @param NonMatchingExt Defines how received messages with 29-bit IDs that
* do not match any element of the filter list are treated.
* This parameter can be a value of @arg FDCAN_Non_Matching_Frames.
* @param RejectRemoteStd Filter or reject all the remote 11-bit IDs frames.
* This parameter can be a value of @arg FDCAN_Reject_Remote_Frames.
* @param RejectRemoteExt Filter or reject all the remote 29-bit IDs frames.
* This parameter can be a value of @arg FDCAN_Reject_Remote_Frames.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_ConfigGlobalFilter(FDCAN_HandleTypeDef *hfdcan,
uint32_t NonMatchingStd,
uint32_t NonMatchingExt,
uint32_t RejectRemoteStd,
uint32_t RejectRemoteExt)
{
/* Check function parameters */
assert_param(IS_FDCAN_NON_MATCHING(NonMatchingStd));
assert_param(IS_FDCAN_NON_MATCHING(NonMatchingExt));
assert_param(IS_FDCAN_REJECT_REMOTE(RejectRemoteStd));
assert_param(IS_FDCAN_REJECT_REMOTE(RejectRemoteExt));
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
/* Configure global filter */
hfdcan->Instance->GFC = ((NonMatchingStd << FDCAN_GFC_ANFS_Pos) |
(NonMatchingExt << FDCAN_GFC_ANFE_Pos) |
(RejectRemoteStd << FDCAN_GFC_RRFS_Pos) |
(RejectRemoteExt << FDCAN_GFC_RRFE_Pos));
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY;
return HAL_ERROR;
}
}
/**
* @brief Configure the extended ID mask.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param Mask Extended ID Mask.
* This parameter must be a number between 0 and 0x1FFFFFFF
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_ConfigExtendedIdMask(FDCAN_HandleTypeDef *hfdcan, uint32_t Mask)
{
/* Check function parameters */
assert_param(IS_FDCAN_MAX_VALUE(Mask, 0x1FFFFFFFU));
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
/* Configure the extended ID mask */
hfdcan->Instance->XIDAM = Mask;
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY;
return HAL_ERROR;
}
}
/**
* @brief Configure the Rx FIFO operation mode.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param RxFifo Rx FIFO.
* This parameter can be one of the following values:
* @arg FDCAN_RX_FIFO0: Rx FIFO 0
* @arg FDCAN_RX_FIFO1: Rx FIFO 1
* @param OperationMode operation mode.
* This parameter can be a value of @arg FDCAN_Rx_FIFO_operation_mode.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_ConfigRxFifoOverwrite(FDCAN_HandleTypeDef *hfdcan, uint32_t RxFifo, uint32_t OperationMode)
{
/* Check function parameters */
assert_param(IS_FDCAN_RX_FIFO(RxFifo));
assert_param(IS_FDCAN_RX_FIFO_MODE(OperationMode));
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
if (RxFifo == FDCAN_RX_FIFO0)
{
/* Select FIFO 0 Operation Mode */
MODIFY_REG(hfdcan->Instance->RXF0C, FDCAN_RXF0C_F0OM, OperationMode);
}
else /* RxFifo == FDCAN_RX_FIFO1 */
{
/* Select FIFO 1 Operation Mode */
MODIFY_REG(hfdcan->Instance->RXF1C, FDCAN_RXF1C_F1OM, OperationMode);
}
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY;
return HAL_ERROR;
}
}
/**
* @brief Configure the FIFO watermark.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param FIFO select the FIFO to be configured.
* This parameter can be a value of @arg FDCAN_FIFO_watermark.
* @param Watermark level for FIFO watermark interrupt.
* This parameter must be a number between:
* - 0 and 32, if FIFO is FDCAN_CFG_TX_EVENT_FIFO
* - 0 and 64, if FIFO is FDCAN_CFG_RX_FIFO0 or FDCAN_CFG_RX_FIFO1
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_ConfigFifoWatermark(FDCAN_HandleTypeDef *hfdcan, uint32_t FIFO, uint32_t Watermark)
{
/* Check function parameters */
assert_param(IS_FDCAN_FIFO_WATERMARK(FIFO));
if (FIFO == FDCAN_CFG_TX_EVENT_FIFO)
{
assert_param(IS_FDCAN_MAX_VALUE(Watermark, 32U));
}
else /* (FIFO == FDCAN_CFG_RX_FIFO0) || (FIFO == FDCAN_CFG_RX_FIFO1) */
{
assert_param(IS_FDCAN_MAX_VALUE(Watermark, 64U));
}
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
/* Set the level for FIFO watermark interrupt */
if (FIFO == FDCAN_CFG_TX_EVENT_FIFO)
{
MODIFY_REG(hfdcan->Instance->TXEFC, FDCAN_TXEFC_EFWM, (Watermark << FDCAN_TXEFC_EFWM_Pos));
}
else if (FIFO == FDCAN_CFG_RX_FIFO0)
{
MODIFY_REG(hfdcan->Instance->RXF0C, FDCAN_RXF0C_F0WM, (Watermark << FDCAN_RXF0C_F0WM_Pos));
}
else /* FIFO == FDCAN_CFG_RX_FIFO1 */
{
MODIFY_REG(hfdcan->Instance->RXF1C, FDCAN_RXF1C_F1WM, (Watermark << FDCAN_RXF1C_F1WM_Pos));
}
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY;
return HAL_ERROR;
}
}
/**
* @brief Configure the RAM watchdog.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param CounterStartValue Start value of the Message RAM Watchdog Counter,
* This parameter must be a number between 0x00 and 0xFF,
* with the reset value of 0x00 the counter is disabled.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_ConfigRamWatchdog(FDCAN_HandleTypeDef *hfdcan, uint32_t CounterStartValue)
{
/* Check function parameters */
assert_param(IS_FDCAN_MAX_VALUE(CounterStartValue, 0xFFU));
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
/* Configure the RAM watchdog counter start value */
MODIFY_REG(hfdcan->Instance->RWD, FDCAN_RWD_WDC, CounterStartValue);
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY;
return HAL_ERROR;
}
}
/**
* @brief Configure the timestamp counter.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param TimestampPrescaler Timestamp Counter Prescaler.
* This parameter can be a value of @arg FDCAN_Timestamp_Prescaler.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_ConfigTimestampCounter(FDCAN_HandleTypeDef *hfdcan, uint32_t TimestampPrescaler)
{
/* Check function parameters */
assert_param(IS_FDCAN_TIMESTAMP_PRESCALER(TimestampPrescaler));
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
/* Configure prescaler */
MODIFY_REG(hfdcan->Instance->TSCC, FDCAN_TSCC_TCP, TimestampPrescaler);
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY;
return HAL_ERROR;
}
}
/**
* @brief Enable the timestamp counter.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param TimestampOperation Timestamp counter operation.
* This parameter can be a value of @arg FDCAN_Timestamp.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_EnableTimestampCounter(FDCAN_HandleTypeDef *hfdcan, uint32_t TimestampOperation)
{
/* Check function parameters */
assert_param(IS_FDCAN_TIMESTAMP(TimestampOperation));
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
/* Enable timestamp counter */
MODIFY_REG(hfdcan->Instance->TSCC, FDCAN_TSCC_TSS, TimestampOperation);
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY;
return HAL_ERROR;
}
}
/**
* @brief Disable the timestamp counter.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_DisableTimestampCounter(FDCAN_HandleTypeDef *hfdcan)
{
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
/* Disable timestamp counter */
CLEAR_BIT(hfdcan->Instance->TSCC, FDCAN_TSCC_TSS);
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY;
return HAL_ERROR;
}
}
/**
* @brief Get the timestamp counter value.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval Value Timestamp counter value
*/
uint16_t HAL_FDCAN_GetTimestampCounter(const FDCAN_HandleTypeDef *hfdcan)
{
return (uint16_t)(hfdcan->Instance->TSCV);
}
/**
* @brief Reset the timestamp counter to zero.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_ResetTimestampCounter(FDCAN_HandleTypeDef *hfdcan)
{
if ((hfdcan->Instance->TSCC & FDCAN_TSCC_TSS) != FDCAN_TIMESTAMP_EXTERNAL)
{
/* Reset timestamp counter.
Actually any write operation to TSCV clears the counter */
CLEAR_REG(hfdcan->Instance->TSCV);
}
else
{
/* Update error code.
Unable to reset external counter */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_SUPPORTED;
return HAL_ERROR;
}
/* Return function status */
return HAL_OK;
}
/**
* @brief Configure the timeout counter.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param TimeoutOperation Timeout counter operation.
* This parameter can be a value of @arg FDCAN_Timeout_Operation.
* @param TimeoutPeriod Start value of the timeout down-counter.
* This parameter must be a number between 0x0000 and 0xFFFF
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_ConfigTimeoutCounter(FDCAN_HandleTypeDef *hfdcan, uint32_t TimeoutOperation,
uint32_t TimeoutPeriod)
{
/* Check function parameters */
assert_param(IS_FDCAN_TIMEOUT(TimeoutOperation));
assert_param(IS_FDCAN_MAX_VALUE(TimeoutPeriod, 0xFFFFU));
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
/* Select timeout operation and configure period */
MODIFY_REG(hfdcan->Instance->TOCC, (FDCAN_TOCC_TOS | FDCAN_TOCC_TOP),
(TimeoutOperation | (TimeoutPeriod << FDCAN_TOCC_TOP_Pos)));
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY;
return HAL_ERROR;
}
}
/**
* @brief Enable the timeout counter.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_EnableTimeoutCounter(FDCAN_HandleTypeDef *hfdcan)
{
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
/* Enable timeout counter */
SET_BIT(hfdcan->Instance->TOCC, FDCAN_TOCC_ETOC);
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY;
return HAL_ERROR;
}
}
/**
* @brief Disable the timeout counter.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_DisableTimeoutCounter(FDCAN_HandleTypeDef *hfdcan)
{
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
/* Disable timeout counter */
CLEAR_BIT(hfdcan->Instance->TOCC, FDCAN_TOCC_ETOC);
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY;
return HAL_ERROR;
}
}
/**
* @brief Get the timeout counter value.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval Value Timeout counter value
*/
uint16_t HAL_FDCAN_GetTimeoutCounter(const FDCAN_HandleTypeDef *hfdcan)
{
return (uint16_t)(hfdcan->Instance->TOCV);
}
/**
* @brief Reset the timeout counter to its start value.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_ResetTimeoutCounter(FDCAN_HandleTypeDef *hfdcan)
{
if ((hfdcan->Instance->TOCC & FDCAN_TOCC_TOS) == FDCAN_TIMEOUT_CONTINUOUS)
{
/* Reset timeout counter to start value */
CLEAR_REG(hfdcan->Instance->TOCV);
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code.
Unable to reset counter: controlled only by FIFO empty state */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_SUPPORTED;
return HAL_ERROR;
}
}
/**
* @brief Configure the transmitter delay compensation.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param TdcOffset Transmitter Delay Compensation Offset.
* This parameter must be a number between 0x00 and 0x7F.
* @param TdcFilter Transmitter Delay Compensation Filter Window Length.
* This parameter must be a number between 0x00 and 0x7F.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_ConfigTxDelayCompensation(FDCAN_HandleTypeDef *hfdcan, uint32_t TdcOffset,
uint32_t TdcFilter)
{
/* Check function parameters */
assert_param(IS_FDCAN_MAX_VALUE(TdcOffset, 0x7FU));
assert_param(IS_FDCAN_MAX_VALUE(TdcFilter, 0x7FU));
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
/* Configure TDC offset and filter window */
hfdcan->Instance->TDCR = ((TdcFilter << FDCAN_TDCR_TDCF_Pos) | (TdcOffset << FDCAN_TDCR_TDCO_Pos));
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY;
return HAL_ERROR;
}
}
/**
* @brief Enable the transmitter delay compensation.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_EnableTxDelayCompensation(FDCAN_HandleTypeDef *hfdcan)
{
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
/* Enable transmitter delay compensation */
SET_BIT(hfdcan->Instance->DBTP, FDCAN_DBTP_TDC);
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY;
return HAL_ERROR;
}
}
/**
* @brief Disable the transmitter delay compensation.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_DisableTxDelayCompensation(FDCAN_HandleTypeDef *hfdcan)
{
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
/* Disable transmitter delay compensation */
CLEAR_BIT(hfdcan->Instance->DBTP, FDCAN_DBTP_TDC);
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY;
return HAL_ERROR;
}
}
/**
* @brief Enable ISO 11898-1 protocol mode.
* CAN FD frame format is according to ISO 11898-1 standard.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_EnableISOMode(FDCAN_HandleTypeDef *hfdcan)
{
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
/* Disable Non ISO protocol mode */
CLEAR_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_NISO);
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY;
return HAL_ERROR;
}
}
/**
* @brief Disable ISO 11898-1 protocol mode.
* CAN FD frame format is according to Bosch CAN FD specification V1.0.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_DisableISOMode(FDCAN_HandleTypeDef *hfdcan)
{
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
/* Enable Non ISO protocol mode */
SET_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_NISO);
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY;
return HAL_ERROR;
}
}
/**
* @brief Enable edge filtering during bus integration.
* Two consecutive dominant tq are required to detect an edge for hard synchronization.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_EnableEdgeFiltering(FDCAN_HandleTypeDef *hfdcan)
{
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
/* Enable edge filtering */
SET_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_EFBI);
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY;
return HAL_ERROR;
}
}
/**
* @brief Disable edge filtering during bus integration.
* One dominant tq is required to detect an edge for hard synchronization.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_DisableEdgeFiltering(FDCAN_HandleTypeDef *hfdcan)
{
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
/* Disable edge filtering */
CLEAR_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_EFBI);
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY;
return HAL_ERROR;
}
}
/**
* @}
*/
/** @defgroup FDCAN_Exported_Functions_Group3 Control functions
* @brief Control functions
*
@verbatim
==============================================================================
##### Control functions #####
==============================================================================
[..] This section provides functions allowing to:
(+) HAL_FDCAN_Start : Start the FDCAN module
(+) HAL_FDCAN_Stop : Stop the FDCAN module and enable access to configuration registers
(+) HAL_FDCAN_AddMessageToTxFifoQ : Add a message to the Tx FIFO/Queue and activate the
corresponding transmission request
(+) HAL_FDCAN_AddMessageToTxBuffer : Add a message to a dedicated Tx buffer
(+) HAL_FDCAN_EnableTxBufferRequest : Enable transmission request
(+) HAL_FDCAN_GetLatestTxFifoQRequestBuffer : Get Tx buffer index of latest Tx FIFO/Queue request
(+) HAL_FDCAN_AbortTxRequest : Abort transmission request
(+) HAL_FDCAN_GetRxMessage : Get an FDCAN frame from the Rx Buffer/FIFO zone into the
message RAM
(+) HAL_FDCAN_GetTxEvent : Get an FDCAN Tx event from the Tx Event FIFO zone into the
message RAM
(+) HAL_FDCAN_GetHighPriorityMessageStatus : Get high priority message status
(+) HAL_FDCAN_GetProtocolStatus : Get protocol status
(+) HAL_FDCAN_GetErrorCounters : Get error counter values
(+) HAL_FDCAN_IsRxBufferMessageAvailable : Check if a new message is received in the selected Rx buffer
(+) HAL_FDCAN_IsTxBufferMessagePending : Check if a transmission request is pending on the selected Tx buffer
(+) HAL_FDCAN_GetRxFifoFillLevel : Return Rx FIFO fill level
(+) HAL_FDCAN_GetTxFifoFreeLevel : Return Tx FIFO free level
(+) HAL_FDCAN_IsRestrictedOperationMode : Check if the FDCAN peripheral entered Restricted Operation Mode
(+) HAL_FDCAN_ExitRestrictedOperationMode : Exit Restricted Operation Mode
@endverbatim
* @{
*/
/**
* @brief Start the FDCAN module.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_Start(FDCAN_HandleTypeDef *hfdcan)
{
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
/* Change FDCAN peripheral state */
hfdcan->State = HAL_FDCAN_STATE_BUSY;
/* Request leave initialisation */
CLEAR_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_INIT);
/* Reset the FDCAN ErrorCode */
hfdcan->ErrorCode = HAL_FDCAN_ERROR_NONE;
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY;
return HAL_ERROR;
}
}
/**
* @brief Stop the FDCAN module and enable access to configuration registers.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_Stop(FDCAN_HandleTypeDef *hfdcan)
{
uint32_t Counter = 0U;
if (hfdcan->State == HAL_FDCAN_STATE_BUSY)
{
/* Request initialisation */
SET_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_INIT);
/* Wait until the INIT bit into CCCR register is set */
while ((hfdcan->Instance->CCCR & FDCAN_CCCR_INIT) == 0U)
{
/* Check for the Timeout */
if (Counter > FDCAN_TIMEOUT_COUNT)
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT;
/* Change FDCAN state */
hfdcan->State = HAL_FDCAN_STATE_ERROR;
return HAL_ERROR;
}
/* Increment counter */
Counter++;
}
/* Reset counter */
Counter = 0U;
/* Exit from Sleep mode */
CLEAR_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_CSR);
/* Wait until FDCAN exits sleep mode */
while ((hfdcan->Instance->CCCR & FDCAN_CCCR_CSA) == FDCAN_CCCR_CSA)
{
/* Check for the Timeout */
if (Counter > FDCAN_TIMEOUT_COUNT)
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT;
/* Change FDCAN state */
hfdcan->State = HAL_FDCAN_STATE_ERROR;
return HAL_ERROR;
}
/* Increment counter */
Counter++;
}
/* Enable configuration change */
SET_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_CCE);
/* Reset Latest Tx FIFO/Queue Request Buffer Index */
hfdcan->LatestTxFifoQRequest = 0U;
/* Change FDCAN peripheral state */
hfdcan->State = HAL_FDCAN_STATE_READY;
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_STARTED;
return HAL_ERROR;
}
}
/**
* @brief Add a message to the Tx FIFO/Queue and activate the corresponding transmission request
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param pTxHeader pointer to a FDCAN_TxHeaderTypeDef structure.
* @param pTxData pointer to a buffer containing the payload of the Tx frame.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_AddMessageToTxFifoQ(FDCAN_HandleTypeDef *hfdcan, const FDCAN_TxHeaderTypeDef *pTxHeader,
const uint8_t *pTxData)
{
uint32_t PutIndex;
/* Check function parameters */
assert_param(IS_FDCAN_ID_TYPE(pTxHeader->IdType));
if (pTxHeader->IdType == FDCAN_STANDARD_ID)
{
assert_param(IS_FDCAN_MAX_VALUE(pTxHeader->Identifier, 0x7FFU));
}
else /* pTxHeader->IdType == FDCAN_EXTENDED_ID */
{
assert_param(IS_FDCAN_MAX_VALUE(pTxHeader->Identifier, 0x1FFFFFFFU));
}
assert_param(IS_FDCAN_FRAME_TYPE(pTxHeader->TxFrameType));
assert_param(IS_FDCAN_DLC(pTxHeader->DataLength));
assert_param(IS_FDCAN_ESI(pTxHeader->ErrorStateIndicator));
assert_param(IS_FDCAN_BRS(pTxHeader->BitRateSwitch));
assert_param(IS_FDCAN_FDF(pTxHeader->FDFormat));
assert_param(IS_FDCAN_EFC(pTxHeader->TxEventFifoControl));
assert_param(IS_FDCAN_MAX_VALUE(pTxHeader->MessageMarker, 0xFFU));
if (hfdcan->State == HAL_FDCAN_STATE_BUSY)
{
/* Check that the Tx FIFO/Queue has an allocated area into the RAM */
if ((hfdcan->Instance->TXBC & FDCAN_TXBC_TFQS) == 0U)
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_PARAM;
return HAL_ERROR;
}
/* Check that the Tx FIFO/Queue is not full */
if ((hfdcan->Instance->TXFQS & FDCAN_TXFQS_TFQF) != 0U)
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_FIFO_FULL;
return HAL_ERROR;
}
else
{
/* Retrieve the Tx FIFO PutIndex */
PutIndex = ((hfdcan->Instance->TXFQS & FDCAN_TXFQS_TFQPI) >> FDCAN_TXFQS_TFQPI_Pos);
/* Add the message to the Tx FIFO/Queue */
FDCAN_CopyMessageToRAM(hfdcan, pTxHeader, pTxData, PutIndex);
/* Activate the corresponding transmission request */
hfdcan->Instance->TXBAR = ((uint32_t)1 << PutIndex);
/* Store the Latest Tx FIFO/Queue Request Buffer Index */
hfdcan->LatestTxFifoQRequest = ((uint32_t)1 << PutIndex);
}
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_STARTED;
return HAL_ERROR;
}
}
/**
* @brief Add a message to a dedicated Tx buffer
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param pTxHeader pointer to a FDCAN_TxHeaderTypeDef structure.
* @param pTxData pointer to a buffer containing the payload of the Tx frame.
* @param BufferIndex index of the buffer to be configured.
* This parameter can be a value of @arg FDCAN_Tx_location.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_AddMessageToTxBuffer(FDCAN_HandleTypeDef *hfdcan, const FDCAN_TxHeaderTypeDef *pTxHeader,
const uint8_t *pTxData, uint32_t BufferIndex)
{
HAL_FDCAN_StateTypeDef state = hfdcan->State;
/* Check function parameters */
assert_param(IS_FDCAN_ID_TYPE(pTxHeader->IdType));
if (pTxHeader->IdType == FDCAN_STANDARD_ID)
{
assert_param(IS_FDCAN_MAX_VALUE(pTxHeader->Identifier, 0x7FFU));
}
else /* pTxHeader->IdType == FDCAN_EXTENDED_ID */
{
assert_param(IS_FDCAN_MAX_VALUE(pTxHeader->Identifier, 0x1FFFFFFFU));
}
assert_param(IS_FDCAN_FRAME_TYPE(pTxHeader->TxFrameType));
assert_param(IS_FDCAN_DLC(pTxHeader->DataLength));
assert_param(IS_FDCAN_ESI(pTxHeader->ErrorStateIndicator));
assert_param(IS_FDCAN_BRS(pTxHeader->BitRateSwitch));
assert_param(IS_FDCAN_FDF(pTxHeader->FDFormat));
assert_param(IS_FDCAN_EFC(pTxHeader->TxEventFifoControl));
assert_param(IS_FDCAN_MAX_VALUE(pTxHeader->MessageMarker, 0xFFU));
assert_param(IS_FDCAN_TX_LOCATION(BufferIndex));
if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY))
{
/* Check that the selected buffer has an allocated area into the RAM */
if (POSITION_VAL(BufferIndex) >= ((hfdcan->Instance->TXBC & FDCAN_TXBC_NDTB) >> FDCAN_TXBC_NDTB_Pos))
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_PARAM;
return HAL_ERROR;
}
/* Check that there is no transmission request pending for the selected buffer */
if ((hfdcan->Instance->TXBRP & BufferIndex) != 0U)
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_PENDING;
return HAL_ERROR;
}
else
{
/* Add the message to the Tx buffer */
FDCAN_CopyMessageToRAM(hfdcan, pTxHeader, pTxData, POSITION_VAL(BufferIndex));
}
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED;
return HAL_ERROR;
}
}
/**
* @brief Enable transmission request.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param BufferIndex buffer index.
* This parameter can be any combination of @arg FDCAN_Tx_location.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_EnableTxBufferRequest(FDCAN_HandleTypeDef *hfdcan, uint32_t BufferIndex)
{
if (hfdcan->State == HAL_FDCAN_STATE_BUSY)
{
/* Add transmission request */
hfdcan->Instance->TXBAR = BufferIndex;
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_STARTED;
return HAL_ERROR;
}
}
/**
* @brief Get Tx buffer index of latest Tx FIFO/Queue request
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval Tx buffer index of last Tx FIFO/Queue request
* - Any value of @arg FDCAN_Tx_location if Tx request has been submitted.
* - 0 if no Tx FIFO/Queue request have been submitted.
*/
uint32_t HAL_FDCAN_GetLatestTxFifoQRequestBuffer(const FDCAN_HandleTypeDef *hfdcan)
{
/* Return Last Tx FIFO/Queue Request Buffer */
return hfdcan->LatestTxFifoQRequest;
}
/**
* @brief Abort transmission request
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param BufferIndex buffer index.
* This parameter can be any combination of @arg FDCAN_Tx_location.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_AbortTxRequest(FDCAN_HandleTypeDef *hfdcan, uint32_t BufferIndex)
{
if (hfdcan->State == HAL_FDCAN_STATE_BUSY)
{
/* Add cancellation request */
hfdcan->Instance->TXBCR = BufferIndex;
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_STARTED;
return HAL_ERROR;
}
}
/**
* @brief Get an FDCAN frame from the Rx Buffer/FIFO zone into the message RAM.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param RxLocation Location of the received message to be read.
* This parameter can be a value of @arg FDCAN_Rx_location.
* @param pRxHeader pointer to a FDCAN_RxHeaderTypeDef structure.
* @param pRxData pointer to a buffer where the payload of the Rx frame will be stored.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_GetRxMessage(FDCAN_HandleTypeDef *hfdcan, uint32_t RxLocation,
FDCAN_RxHeaderTypeDef *pRxHeader, uint8_t *pRxData)
{
uint32_t *RxAddress;
uint8_t *pData;
uint32_t ByteCounter;
uint32_t GetIndex = 0;
HAL_FDCAN_StateTypeDef state = hfdcan->State;
if (state == HAL_FDCAN_STATE_BUSY)
{
if (RxLocation == FDCAN_RX_FIFO0) /* Rx element is assigned to the Rx FIFO 0 */
{
/* Check that the Rx FIFO 0 has an allocated area into the RAM */
if ((hfdcan->Instance->RXF0C & FDCAN_RXF0C_F0S) == 0U)
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_PARAM;
return HAL_ERROR;
}
/* Check that the Rx FIFO 0 is not empty */
if ((hfdcan->Instance->RXF0S & FDCAN_RXF0S_F0FL) == 0U)
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_FIFO_EMPTY;
return HAL_ERROR;
}
else
{
/* Check that the Rx FIFO 0 is full & overwrite mode is on */
if (((hfdcan->Instance->RXF0S & FDCAN_RXF0S_F0F) >> FDCAN_RXF0S_F0F_Pos) == 1U)
{
if (((hfdcan->Instance->RXF0C & FDCAN_RXF0C_F0OM) >> FDCAN_RXF0C_F0OM_Pos) == FDCAN_RX_FIFO_OVERWRITE)
{
/* When overwrite status is on discard first message in FIFO */
GetIndex = 1U;
}
}
/* Calculate Rx FIFO 0 element index */
GetIndex += ((hfdcan->Instance->RXF0S & FDCAN_RXF0S_F0GI) >> FDCAN_RXF0S_F0GI_Pos);
/* Calculate Rx FIFO 0 element address */
RxAddress = (uint32_t *)(hfdcan->msgRam.RxFIFO0SA + (GetIndex * hfdcan->Init.RxFifo0ElmtSize * 4U));
}
}
else if (RxLocation == FDCAN_RX_FIFO1) /* Rx element is assigned to the Rx FIFO 1 */
{
/* Check that the Rx FIFO 1 has an allocated area into the RAM */
if ((hfdcan->Instance->RXF1C & FDCAN_RXF1C_F1S) == 0U)
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_PARAM;
return HAL_ERROR;
}
/* Check that the Rx FIFO 0 is not empty */
if ((hfdcan->Instance->RXF1S & FDCAN_RXF1S_F1FL) == 0U)
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_FIFO_EMPTY;
return HAL_ERROR;
}
else
{
/* Check that the Rx FIFO 1 is full & overwrite mode is on */
if (((hfdcan->Instance->RXF1S & FDCAN_RXF1S_F1F) >> FDCAN_RXF1S_F1F_Pos) == 1U)
{
if (((hfdcan->Instance->RXF1C & FDCAN_RXF1C_F1OM) >> FDCAN_RXF1C_F1OM_Pos) == FDCAN_RX_FIFO_OVERWRITE)
{
/* When overwrite status is on discard first message in FIFO */
GetIndex = 1U;
}
}
/* Calculate Rx FIFO 1 element index */
GetIndex += ((hfdcan->Instance->RXF1S & FDCAN_RXF1S_F1GI) >> FDCAN_RXF1S_F1GI_Pos);
/* Calculate Rx FIFO 1 element address */
RxAddress = (uint32_t *)(hfdcan->msgRam.RxFIFO1SA + (GetIndex * hfdcan->Init.RxFifo1ElmtSize * 4U));
}
}
else /* Rx element is assigned to a dedicated Rx buffer */
{
/* Check that the selected buffer has an allocated area into the RAM */
if (RxLocation >= hfdcan->Init.RxBuffersNbr)
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_PARAM;
return HAL_ERROR;
}
else
{
/* Calculate Rx buffer address */
RxAddress = (uint32_t *)(hfdcan->msgRam.RxBufferSA + (RxLocation * hfdcan->Init.RxBufferSize * 4U));
}
}
/* Retrieve IdType */
pRxHeader->IdType = *RxAddress & FDCAN_ELEMENT_MASK_XTD;
/* Retrieve Identifier */
if (pRxHeader->IdType == FDCAN_STANDARD_ID) /* Standard ID element */
{
pRxHeader->Identifier = ((*RxAddress & FDCAN_ELEMENT_MASK_STDID) >> 18);
}
else /* Extended ID element */
{
pRxHeader->Identifier = (*RxAddress & FDCAN_ELEMENT_MASK_EXTID);
}
/* Retrieve RxFrameType */
pRxHeader->RxFrameType = (*RxAddress & FDCAN_ELEMENT_MASK_RTR);
/* Retrieve ErrorStateIndicator */
pRxHeader->ErrorStateIndicator = (*RxAddress & FDCAN_ELEMENT_MASK_ESI);
/* Increment RxAddress pointer to second word of Rx FIFO element */
RxAddress++;
/* Retrieve RxTimestamp */
pRxHeader->RxTimestamp = (*RxAddress & FDCAN_ELEMENT_MASK_TS);
/* Retrieve DataLength */
pRxHeader->DataLength = (*RxAddress & FDCAN_ELEMENT_MASK_DLC);
/* Retrieve BitRateSwitch */
pRxHeader->BitRateSwitch = (*RxAddress & FDCAN_ELEMENT_MASK_BRS);
/* Retrieve FDFormat */
pRxHeader->FDFormat = (*RxAddress & FDCAN_ELEMENT_MASK_FDF);
/* Retrieve FilterIndex */
pRxHeader->FilterIndex = ((*RxAddress & FDCAN_ELEMENT_MASK_FIDX) >> 24);
/* Retrieve NonMatchingFrame */
pRxHeader->IsFilterMatchingFrame = ((*RxAddress & FDCAN_ELEMENT_MASK_ANMF) >> 31);
/* Increment RxAddress pointer to payload of Rx FIFO element */
RxAddress++;
/* Retrieve Rx payload */
pData = (uint8_t *)RxAddress;
for (ByteCounter = 0; ByteCounter < DLCtoBytes[pRxHeader->DataLength >> 16]; ByteCounter++)
{
pRxData[ByteCounter] = pData[ByteCounter];
}
if (RxLocation == FDCAN_RX_FIFO0) /* Rx element is assigned to the Rx FIFO 0 */
{
/* Acknowledge the Rx FIFO 0 that the oldest element is read so that it increments the GetIndex */
hfdcan->Instance->RXF0A = GetIndex;
}
else if (RxLocation == FDCAN_RX_FIFO1) /* Rx element is assigned to the Rx FIFO 1 */
{
/* Acknowledge the Rx FIFO 1 that the oldest element is read so that it increments the GetIndex */
hfdcan->Instance->RXF1A = GetIndex;
}
else /* Rx element is assigned to a dedicated Rx buffer */
{
/* Clear the New Data flag of the current Rx buffer */
if (RxLocation < FDCAN_RX_BUFFER32)
{
hfdcan->Instance->NDAT1 = ((uint32_t)1 << RxLocation);
}
else /* FDCAN_RX_BUFFER32 <= RxLocation <= FDCAN_RX_BUFFER63 */
{
hfdcan->Instance->NDAT2 = ((uint32_t)1 << (RxLocation & 0x1FU));
}
}
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_STARTED;
return HAL_ERROR;
}
}
/**
* @brief Get an FDCAN Tx event from the Tx Event FIFO zone into the message RAM.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param pTxEvent pointer to a FDCAN_TxEventFifoTypeDef structure.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_GetTxEvent(FDCAN_HandleTypeDef *hfdcan, FDCAN_TxEventFifoTypeDef *pTxEvent)
{
uint32_t *TxEventAddress;
uint32_t GetIndex;
HAL_FDCAN_StateTypeDef state = hfdcan->State;
/* Check function parameters */
assert_param(IS_FDCAN_MIN_VALUE(hfdcan->Init.TxEventsNbr, 1U));
if (state == HAL_FDCAN_STATE_BUSY)
{
/* Check that the Tx Event FIFO has an allocated area into the RAM */
if ((hfdcan->Instance->TXEFC & FDCAN_TXEFC_EFS) == 0U)
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_PARAM;
return HAL_ERROR;
}
/* Check that the Tx event FIFO is not empty */
if ((hfdcan->Instance->TXEFS & FDCAN_TXEFS_EFFL) == 0U)
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_FIFO_EMPTY;
return HAL_ERROR;
}
/* Calculate Tx event FIFO element address */
GetIndex = ((hfdcan->Instance->TXEFS & FDCAN_TXEFS_EFGI) >> FDCAN_TXEFS_EFGI_Pos);
TxEventAddress = (uint32_t *)(hfdcan->msgRam.TxEventFIFOSA + (GetIndex * 2U * 4U));
/* Retrieve IdType */
pTxEvent->IdType = *TxEventAddress & FDCAN_ELEMENT_MASK_XTD;
/* Retrieve Identifier */
if (pTxEvent->IdType == FDCAN_STANDARD_ID) /* Standard ID element */
{
pTxEvent->Identifier = ((*TxEventAddress & FDCAN_ELEMENT_MASK_STDID) >> 18U);
}
else /* Extended ID element */
{
pTxEvent->Identifier = (*TxEventAddress & FDCAN_ELEMENT_MASK_EXTID);
}
/* Retrieve TxFrameType */
pTxEvent->TxFrameType = (*TxEventAddress & FDCAN_ELEMENT_MASK_RTR);
/* Retrieve ErrorStateIndicator */
pTxEvent->ErrorStateIndicator = (*TxEventAddress & FDCAN_ELEMENT_MASK_ESI);
/* Increment TxEventAddress pointer to second word of Tx Event FIFO element */
TxEventAddress++;
/* Retrieve TxTimestamp */
pTxEvent->TxTimestamp = (*TxEventAddress & FDCAN_ELEMENT_MASK_TS);
/* Retrieve DataLength */
pTxEvent->DataLength = (*TxEventAddress & FDCAN_ELEMENT_MASK_DLC);
/* Retrieve BitRateSwitch */
pTxEvent->BitRateSwitch = (*TxEventAddress & FDCAN_ELEMENT_MASK_BRS);
/* Retrieve FDFormat */
pTxEvent->FDFormat = (*TxEventAddress & FDCAN_ELEMENT_MASK_FDF);
/* Retrieve EventType */
pTxEvent->EventType = (*TxEventAddress & FDCAN_ELEMENT_MASK_ET);
/* Retrieve MessageMarker */
pTxEvent->MessageMarker = ((*TxEventAddress & FDCAN_ELEMENT_MASK_MM) >> 24);
/* Acknowledge the Tx Event FIFO that the oldest element is read so that it increments the GetIndex */
hfdcan->Instance->TXEFA = GetIndex;
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_STARTED;
return HAL_ERROR;
}
}
/**
* @brief Get high priority message status.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param HpMsgStatus pointer to an FDCAN_HpMsgStatusTypeDef structure.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_GetHighPriorityMessageStatus(const FDCAN_HandleTypeDef *hfdcan,
FDCAN_HpMsgStatusTypeDef *HpMsgStatus)
{
HpMsgStatus->FilterList = ((hfdcan->Instance->HPMS & FDCAN_HPMS_FLST) >> FDCAN_HPMS_FLST_Pos);
HpMsgStatus->FilterIndex = ((hfdcan->Instance->HPMS & FDCAN_HPMS_FIDX) >> FDCAN_HPMS_FIDX_Pos);
HpMsgStatus->MessageStorage = (hfdcan->Instance->HPMS & FDCAN_HPMS_MSI);
HpMsgStatus->MessageIndex = (hfdcan->Instance->HPMS & FDCAN_HPMS_BIDX);
/* Return function status */
return HAL_OK;
}
/**
* @brief Get protocol status.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param ProtocolStatus pointer to an FDCAN_ProtocolStatusTypeDef structure.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_GetProtocolStatus(const FDCAN_HandleTypeDef *hfdcan,
FDCAN_ProtocolStatusTypeDef *ProtocolStatus)
{
uint32_t StatusReg;
/* Read the protocol status register */
StatusReg = READ_REG(hfdcan->Instance->PSR);
/* Fill the protocol status structure */
ProtocolStatus->LastErrorCode = (StatusReg & FDCAN_PSR_LEC);
ProtocolStatus->DataLastErrorCode = ((StatusReg & FDCAN_PSR_DLEC) >> FDCAN_PSR_DLEC_Pos);
ProtocolStatus->Activity = (StatusReg & FDCAN_PSR_ACT);
ProtocolStatus->ErrorPassive = ((StatusReg & FDCAN_PSR_EP) >> FDCAN_PSR_EP_Pos);
ProtocolStatus->Warning = ((StatusReg & FDCAN_PSR_EW) >> FDCAN_PSR_EW_Pos);
ProtocolStatus->BusOff = ((StatusReg & FDCAN_PSR_BO) >> FDCAN_PSR_BO_Pos);
ProtocolStatus->RxESIflag = ((StatusReg & FDCAN_PSR_RESI) >> FDCAN_PSR_RESI_Pos);
ProtocolStatus->RxBRSflag = ((StatusReg & FDCAN_PSR_RBRS) >> FDCAN_PSR_RBRS_Pos);
ProtocolStatus->RxFDFflag = ((StatusReg & FDCAN_PSR_REDL) >> FDCAN_PSR_REDL_Pos);
ProtocolStatus->ProtocolException = ((StatusReg & FDCAN_PSR_PXE) >> FDCAN_PSR_PXE_Pos);
ProtocolStatus->TDCvalue = ((StatusReg & FDCAN_PSR_TDCV) >> FDCAN_PSR_TDCV_Pos);
/* Return function status */
return HAL_OK;
}
/**
* @brief Get error counter values.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param ErrorCounters pointer to an FDCAN_ErrorCountersTypeDef structure.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_GetErrorCounters(const FDCAN_HandleTypeDef *hfdcan,
FDCAN_ErrorCountersTypeDef *ErrorCounters)
{
uint32_t CountersReg;
/* Read the error counters register */
CountersReg = READ_REG(hfdcan->Instance->ECR);
/* Fill the error counters structure */
ErrorCounters->TxErrorCnt = ((CountersReg & FDCAN_ECR_TEC) >> FDCAN_ECR_TEC_Pos);
ErrorCounters->RxErrorCnt = ((CountersReg & FDCAN_ECR_REC) >> FDCAN_ECR_REC_Pos);
ErrorCounters->RxErrorPassive = ((CountersReg & FDCAN_ECR_RP) >> FDCAN_ECR_RP_Pos);
ErrorCounters->ErrorLogging = ((CountersReg & FDCAN_ECR_CEL) >> FDCAN_ECR_CEL_Pos);
/* Return function status */
return HAL_OK;
}
/**
* @brief Check if a new message is received in the selected Rx buffer.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param RxBufferIndex Rx buffer index.
* This parameter must be a number between 0 and 63.
* @retval Status
* - 0 : No new message on RxBufferIndex.
* - 1 : New message received on RxBufferIndex.
*/
uint32_t HAL_FDCAN_IsRxBufferMessageAvailable(FDCAN_HandleTypeDef *hfdcan, uint32_t RxBufferIndex)
{
/* Check function parameters */
assert_param(IS_FDCAN_MAX_VALUE(RxBufferIndex, 63U));
uint32_t NewData1 = hfdcan->Instance->NDAT1;
uint32_t NewData2 = hfdcan->Instance->NDAT2;
/* Check new message reception on the selected buffer */
if (((RxBufferIndex < 32U) && ((NewData1 & (uint32_t)((uint32_t)1 << RxBufferIndex)) == 0U)) ||
((RxBufferIndex >= 32U) && ((NewData2 & (uint32_t)((uint32_t)1 << (RxBufferIndex & 0x1FU))) == 0U)))
{
return 0;
}
/* Clear the New Data flag of the current Rx buffer */
if (RxBufferIndex < 32U)
{
hfdcan->Instance->NDAT1 = ((uint32_t)1 << RxBufferIndex);
}
else /* 32 <= RxBufferIndex <= 63 */
{
hfdcan->Instance->NDAT2 = ((uint32_t)1 << (RxBufferIndex & 0x1FU));
}
return 1;
}
/**
* @brief Check if a transmission request is pending on the selected Tx buffer.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param TxBufferIndex Tx buffer index.
* This parameter can be any combination of @arg FDCAN_Tx_location.
* @retval Status
* - 0 : No pending transmission request on TxBufferIndex.
* - 1 : Pending transmission request on TxBufferIndex.
*/
uint32_t HAL_FDCAN_IsTxBufferMessagePending(const FDCAN_HandleTypeDef *hfdcan, uint32_t TxBufferIndex)
{
/* Check pending transmission request on the selected buffer */
if ((hfdcan->Instance->TXBRP & TxBufferIndex) == 0U)
{
return 0;
}
return 1;
}
/**
* @brief Return Rx FIFO fill level.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param RxFifo Rx FIFO.
* This parameter can be one of the following values:
* @arg FDCAN_RX_FIFO0: Rx FIFO 0
* @arg FDCAN_RX_FIFO1: Rx FIFO 1
* @retval Level Rx FIFO fill level.
*/
uint32_t HAL_FDCAN_GetRxFifoFillLevel(const FDCAN_HandleTypeDef *hfdcan, uint32_t RxFifo)
{
uint32_t FillLevel;
/* Check function parameters */
assert_param(IS_FDCAN_RX_FIFO(RxFifo));
if (RxFifo == FDCAN_RX_FIFO0)
{
FillLevel = hfdcan->Instance->RXF0S & FDCAN_RXF0S_F0FL;
}
else /* RxFifo == FDCAN_RX_FIFO1 */
{
FillLevel = hfdcan->Instance->RXF1S & FDCAN_RXF1S_F1FL;
}
/* Return Rx FIFO fill level */
return FillLevel;
}
/**
* @brief Return Tx FIFO free level: number of consecutive free Tx FIFO
* elements starting from Tx FIFO GetIndex.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval Level Tx FIFO free level.
*/
uint32_t HAL_FDCAN_GetTxFifoFreeLevel(const FDCAN_HandleTypeDef *hfdcan)
{
uint32_t FreeLevel;
FreeLevel = hfdcan->Instance->TXFQS & FDCAN_TXFQS_TFFL;
/* Return Tx FIFO free level */
return FreeLevel;
}
/**
* @brief Check if the FDCAN peripheral entered Restricted Operation Mode.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval Status
* - 0 : Normal FDCAN operation.
* - 1 : Restricted Operation Mode active.
*/
uint32_t HAL_FDCAN_IsRestrictedOperationMode(const FDCAN_HandleTypeDef *hfdcan)
{
uint32_t OperationMode;
/* Get Operation Mode */
OperationMode = ((hfdcan->Instance->CCCR & FDCAN_CCCR_ASM) >> FDCAN_CCCR_ASM_Pos);
return OperationMode;
}
/**
* @brief Exit Restricted Operation Mode.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_ExitRestrictedOperationMode(FDCAN_HandleTypeDef *hfdcan)
{
HAL_FDCAN_StateTypeDef state = hfdcan->State;
if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY))
{
/* Exit Restricted Operation mode */
CLEAR_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_ASM);
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED;
return HAL_ERROR;
}
}
/**
* @}
*/
/** @defgroup FDCAN_Exported_Functions_Group4 TT Configuration and control functions
* @brief TT Configuration and control functions
*
@verbatim
==============================================================================
##### TT Configuration and control functions #####
==============================================================================
[..] This section provides functions allowing to:
(+) HAL_FDCAN_TT_ConfigOperation : Initialize TT operation parameters
(+) HAL_FDCAN_TT_ConfigReferenceMessage : Configure the reference message
(+) HAL_FDCAN_TT_ConfigTrigger : Configure the FDCAN trigger
(+) HAL_FDCAN_TT_SetGlobalTime : Schedule global time adjustment
(+) HAL_FDCAN_TT_SetClockSynchronization : Schedule TUR numerator update
(+) HAL_FDCAN_TT_ConfigStopWatch : Configure stop watch source and polarity
(+) HAL_FDCAN_TT_ConfigRegisterTimeMark : Configure register time mark pulse generation
(+) HAL_FDCAN_TT_EnableRegisterTimeMarkPulse : Enable register time mark pulse generation
(+) HAL_FDCAN_TT_DisableRegisterTimeMarkPulse : Disable register time mark pulse generation
(+) HAL_FDCAN_TT_EnableTriggerTimeMarkPulse : Enable trigger time mark pulse generation
(+) HAL_FDCAN_TT_DisableTriggerTimeMarkPulse : Disable trigger time mark pulse generation
(+) HAL_FDCAN_TT_EnableHardwareGapControl : Enable gap control by input pin fdcan1_evt
(+) HAL_FDCAN_TT_DisableHardwareGapControl : Disable gap control by input pin fdcan1_evt
(+) HAL_FDCAN_TT_EnableTimeMarkGapControl : Enable gap control (finish only) by register time mark IT
(+) HAL_FDCAN_TT_DisableTimeMarkGapControl : Disable gap control by register time mark interrupt
(+) HAL_FDCAN_TT_SetNextIsGap : Transmit next reference message with Next_is_Gap = "1"
(+) HAL_FDCAN_TT_SetEndOfGap : Finish a Gap by requesting start of reference message
(+) HAL_FDCAN_TT_ConfigExternalSyncPhase : Configure target phase used for external synchronization
(+) HAL_FDCAN_TT_EnableExternalSynchronization : Synchronize the phase of the FDCAN schedule to an external
schedule
(+) HAL_FDCAN_TT_DisableExternalSynchronization : Disable external schedule synchronization
(+) HAL_FDCAN_TT_GetOperationStatus : Get TT operation status
@endverbatim
* @{
*/
/**
* @brief Initialize TT operation parameters.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param pTTParams pointer to a FDCAN_TT_ConfigTypeDef structure.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_TT_ConfigOperation(FDCAN_HandleTypeDef *hfdcan, const FDCAN_TT_ConfigTypeDef *pTTParams)
{
uint32_t tickstart;
uint32_t RAMcounter;
uint32_t StartAddress;
/* Check function parameters */
assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance));
assert_param(IS_FDCAN_TT_TUR_NUMERATOR(pTTParams->TURNumerator));
assert_param(IS_FDCAN_TT_TUR_DENOMINATOR(pTTParams->TURDenominator));
assert_param(IS_FDCAN_TT_TIME_MASTER(pTTParams->TimeMaster));
assert_param(IS_FDCAN_MAX_VALUE(pTTParams->SyncDevLimit, 7U));
assert_param(IS_FDCAN_MAX_VALUE(pTTParams->InitRefTrigOffset, 127U));
assert_param(IS_FDCAN_MAX_VALUE(pTTParams->TriggerMemoryNbr, 64U));
assert_param(IS_FDCAN_TT_CYCLE_START_SYNC(pTTParams->CycleStartSync));
assert_param(IS_FDCAN_TT_STOP_WATCH_TRIGGER(pTTParams->StopWatchTrigSel));
assert_param(IS_FDCAN_TT_EVENT_TRIGGER(pTTParams->EventTrigSel));
if (pTTParams->TimeMaster == FDCAN_TT_POTENTIAL_MASTER)
{
assert_param(IS_FDCAN_TT_BASIC_CYCLES_NUMBER(pTTParams->BasicCyclesNbr));
}
if (pTTParams->OperationMode != FDCAN_TT_COMMUNICATION_LEVEL0)
{
assert_param(IS_FDCAN_TT_OPERATION(pTTParams->GapEnable));
assert_param(IS_FDCAN_MAX_VALUE(pTTParams->AppWdgLimit, 255U));
assert_param(IS_FDCAN_TT_EVENT_TRIGGER_POLARITY(pTTParams->EvtTrigPolarity));
assert_param(IS_FDCAN_TT_TX_ENABLE_WINDOW(pTTParams->TxEnableWindow));
assert_param(IS_FDCAN_MAX_VALUE(pTTParams->ExpTxTrigNbr, 4095U));
}
if (pTTParams->OperationMode != FDCAN_TT_COMMUNICATION_LEVEL1)
{
assert_param(IS_FDCAN_TT_TUR_LEVEL_0_2(pTTParams->TURNumerator, pTTParams->TURDenominator));
assert_param(IS_FDCAN_TT_EXTERNAL_CLK_SYNC(pTTParams->ExternalClkSync));
assert_param(IS_FDCAN_TT_GLOBAL_TIME_FILTERING(pTTParams->GlobalTimeFilter));
assert_param(IS_FDCAN_TT_AUTO_CLK_CALIBRATION(pTTParams->ClockCalibration));
}
else
{
assert_param(IS_FDCAN_TT_TUR_LEVEL_1(pTTParams->TURNumerator, pTTParams->TURDenominator));
}
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
/* Stop local time in order to enable write access to the other bits of TURCF register */
CLEAR_BIT(hfdcan->ttcan->TURCF, FDCAN_TURCF_ELT);
/* Get tick */
tickstart = HAL_GetTick();
/* Wait until the ELT bit into TURCF register is reset */
while ((hfdcan->ttcan->TURCF & FDCAN_TURCF_ELT) != 0U)
{
/* Check for the Timeout */
if ((HAL_GetTick() - tickstart) > FDCAN_TIMEOUT_VALUE)
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT;
/* Change FDCAN state */
hfdcan->State = HAL_FDCAN_STATE_ERROR;
return HAL_ERROR;
}
}
/* Configure TUR (Time Unit Ratio) */
MODIFY_REG(hfdcan->ttcan->TURCF,
(FDCAN_TURCF_NCL | FDCAN_TURCF_DC),
(((pTTParams->TURNumerator - 0x10000U) << FDCAN_TURCF_NCL_Pos) |
(pTTParams->TURDenominator << FDCAN_TURCF_DC_Pos)));
/* Enable local time */
SET_BIT(hfdcan->ttcan->TURCF, FDCAN_TURCF_ELT);
/* Configure TT operation */
MODIFY_REG(hfdcan->ttcan->TTOCF,
(FDCAN_TTOCF_OM | FDCAN_TTOCF_TM | FDCAN_TTOCF_LDSDL | FDCAN_TTOCF_IRTO),
(pTTParams->OperationMode | \
pTTParams->TimeMaster | \
(pTTParams->SyncDevLimit << FDCAN_TTOCF_LDSDL_Pos) | \
(pTTParams->InitRefTrigOffset << FDCAN_TTOCF_IRTO_Pos)));
if (pTTParams->OperationMode != FDCAN_TT_COMMUNICATION_LEVEL0)
{
MODIFY_REG(hfdcan->ttcan->TTOCF,
(FDCAN_TTOCF_GEN | FDCAN_TTOCF_AWL | FDCAN_TTOCF_EVTP),
(pTTParams->GapEnable | \
(pTTParams->AppWdgLimit << FDCAN_TTOCF_AWL_Pos) | \
pTTParams->EvtTrigPolarity));
}
if (pTTParams->OperationMode != FDCAN_TT_COMMUNICATION_LEVEL1)
{
MODIFY_REG(hfdcan->ttcan->TTOCF,
(FDCAN_TTOCF_EECS | FDCAN_TTOCF_EGTF | FDCAN_TTOCF_ECC),
(pTTParams->ExternalClkSync | \
pTTParams->GlobalTimeFilter | \
pTTParams->ClockCalibration));
}
/* Configure system matrix limits */
MODIFY_REG(hfdcan->ttcan->TTMLM, FDCAN_TTMLM_CSS, pTTParams->CycleStartSync);
if (pTTParams->OperationMode != FDCAN_TT_COMMUNICATION_LEVEL0)
{
MODIFY_REG(hfdcan->ttcan->TTMLM,
(FDCAN_TTMLM_TXEW | FDCAN_TTMLM_ENTT),
(((pTTParams->TxEnableWindow - 1U) << FDCAN_TTMLM_TXEW_Pos) |
(pTTParams->ExpTxTrigNbr << FDCAN_TTMLM_ENTT_Pos)));
}
if (pTTParams->TimeMaster == FDCAN_TT_POTENTIAL_MASTER)
{
MODIFY_REG(hfdcan->ttcan->TTMLM, FDCAN_TTMLM_CCM, pTTParams->BasicCyclesNbr);
}
/* Configure input triggers: Stop watch and Event */
MODIFY_REG(hfdcan->ttcan->TTTS,
(FDCAN_TTTS_SWTSEL | FDCAN_TTTS_EVTSEL),
(pTTParams->StopWatchTrigSel | pTTParams->EventTrigSel));
/* Configure trigger memory start address */
StartAddress = (hfdcan->msgRam.EndAddress - SRAMCAN_BASE) / 4U;
MODIFY_REG(hfdcan->ttcan->TTTMC, FDCAN_TTTMC_TMSA, (StartAddress << FDCAN_TTTMC_TMSA_Pos));
/* Trigger memory elements number */
MODIFY_REG(hfdcan->ttcan->TTTMC, FDCAN_TTTMC_TME, (pTTParams->TriggerMemoryNbr << FDCAN_TTTMC_TME_Pos));
/* Recalculate End Address */
hfdcan->msgRam.TTMemorySA = hfdcan->msgRam.EndAddress;
hfdcan->msgRam.EndAddress = hfdcan->msgRam.TTMemorySA + (pTTParams->TriggerMemoryNbr * 2U * 4U);
if (hfdcan->msgRam.EndAddress > FDCAN_MESSAGE_RAM_END_ADDRESS) /* Last address of the Message RAM */
{
/* Update error code.
Message RAM overflow */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_PARAM;
return HAL_ERROR;
}
else
{
/* Flush the allocated Message RAM area */
for (RAMcounter = hfdcan->msgRam.TTMemorySA; RAMcounter < hfdcan->msgRam.EndAddress; RAMcounter += 4U)
{
*(uint32_t *)(RAMcounter) = 0x00000000;
}
}
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY;
return HAL_ERROR;
}
}
/**
* @brief Configure the reference message.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param IdType Identifier Type.
* This parameter can be a value of @arg FDCAN_id_type.
* @param Identifier Reference Identifier.
* This parameter must be a number between:
* - 0 and 0x7FF, if IdType is FDCAN_STANDARD_ID
* - 0 and 0x1FFFFFFF, if IdType is FDCAN_EXTENDED_ID
* @param Payload Enable or disable the additional payload.
* This parameter can be a value of @arg FDCAN_TT_Reference_Message_Payload.
* This parameter is ignored in case of time slaves.
* If this parameter is set to FDCAN_TT_REF_MESSAGE_ADD_PAYLOAD, the
* following elements are taken from Tx Buffer 0:
* - MessageMarker
* - TxEventFifoControl
* - DataLength
* - Data Bytes (payload):
* - bytes 2-8, for Level 1
* - bytes 5-8, for Level 0 and Level 2
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_TT_ConfigReferenceMessage(FDCAN_HandleTypeDef *hfdcan, uint32_t IdType,
uint32_t Identifier, uint32_t Payload)
{
/* Check function parameters */
assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance));
assert_param(IS_FDCAN_ID_TYPE(IdType));
if (IdType == FDCAN_STANDARD_ID)
{
assert_param(IS_FDCAN_MAX_VALUE(Identifier, 0x7FFU));
}
else /* IdType == FDCAN_EXTENDED_ID */
{
assert_param(IS_FDCAN_MAX_VALUE(Identifier, 0x1FFFFFFFU));
}
assert_param(IS_FDCAN_TT_REFERENCE_MESSAGE_PAYLOAD(Payload));
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
/* Configure reference message identifier type, identifier and payload */
if (IdType == FDCAN_EXTENDED_ID)
{
MODIFY_REG(hfdcan->ttcan->TTRMC, (FDCAN_TTRMC_RID | FDCAN_TTRMC_XTD | FDCAN_TTRMC_RMPS),
(Payload | IdType | Identifier));
}
else /* IdType == FDCAN_STANDARD_ID */
{
MODIFY_REG(hfdcan->ttcan->TTRMC, (FDCAN_TTRMC_RID | FDCAN_TTRMC_XTD | FDCAN_TTRMC_RMPS),
(Payload | IdType | (Identifier << 18)));
}
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY;
return HAL_ERROR;
}
}
/**
* @brief Configure the FDCAN trigger according to the specified
* parameters in the FDCAN_TriggerTypeDef structure.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param sTriggerConfig pointer to an FDCAN_TriggerTypeDef structure that
* contains the trigger configuration information
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_TT_ConfigTrigger(FDCAN_HandleTypeDef *hfdcan, const FDCAN_TriggerTypeDef *sTriggerConfig)
{
uint32_t CycleCode;
uint32_t MessageNumber;
uint32_t TriggerElementW1;
uint32_t TriggerElementW2;
uint32_t *TriggerAddress;
/* Check function parameters */
assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance));
assert_param(IS_FDCAN_MAX_VALUE(sTriggerConfig->TriggerIndex, 63U));
assert_param(IS_FDCAN_MAX_VALUE(sTriggerConfig->TimeMark, 0xFFFFU));
assert_param(IS_FDCAN_TT_REPEAT_FACTOR(sTriggerConfig->RepeatFactor));
if (sTriggerConfig->RepeatFactor != FDCAN_TT_REPEAT_EVERY_CYCLE)
{
assert_param(IS_FDCAN_MAX_VALUE(sTriggerConfig->StartCycle, (sTriggerConfig->RepeatFactor - 1U)));
}
assert_param(IS_FDCAN_TT_TM_EVENT_INTERNAL(sTriggerConfig->TmEventInt));
assert_param(IS_FDCAN_TT_TM_EVENT_EXTERNAL(sTriggerConfig->TmEventExt));
assert_param(IS_FDCAN_TT_TRIGGER_TYPE(sTriggerConfig->TriggerType));
assert_param(IS_FDCAN_ID_TYPE(sTriggerConfig->FilterType));
if ((sTriggerConfig->TriggerType == FDCAN_TT_TX_TRIGGER_SINGLE) ||
(sTriggerConfig->TriggerType == FDCAN_TT_TX_TRIGGER_CONTINUOUS) ||
(sTriggerConfig->TriggerType == FDCAN_TT_TX_TRIGGER_ARBITRATION) ||
(sTriggerConfig->TriggerType == FDCAN_TT_TX_TRIGGER_MERGED))
{
assert_param(IS_FDCAN_TX_LOCATION(sTriggerConfig->TxBufferIndex));
}
if (sTriggerConfig->TriggerType == FDCAN_TT_RX_TRIGGER)
{
if (sTriggerConfig->FilterType == FDCAN_STANDARD_ID)
{
assert_param(IS_FDCAN_MAX_VALUE(sTriggerConfig->FilterIndex, 63U));
}
else /* sTriggerConfig->FilterType == FDCAN_EXTENDED_ID */
{
assert_param(IS_FDCAN_MAX_VALUE(sTriggerConfig->FilterIndex, 127U));
}
}
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
/* Calculate cycle code */
if (sTriggerConfig->RepeatFactor == FDCAN_TT_REPEAT_EVERY_CYCLE)
{
CycleCode = FDCAN_TT_REPEAT_EVERY_CYCLE;
}
else /* sTriggerConfig->RepeatFactor != FDCAN_TT_REPEAT_EVERY_CYCLE */
{
CycleCode = sTriggerConfig->RepeatFactor + sTriggerConfig->StartCycle;
}
/* Build first word of trigger element */
TriggerElementW1 = ((sTriggerConfig->TimeMark << 16) | \
(CycleCode << 8) | \
sTriggerConfig->TmEventInt | \
sTriggerConfig->TmEventExt | \
sTriggerConfig->TriggerType);
/* Select message number depending on trigger type (transmission or reception) */
if (sTriggerConfig->TriggerType == FDCAN_TT_RX_TRIGGER)
{
MessageNumber = sTriggerConfig->FilterIndex;
}
else if ((sTriggerConfig->TriggerType == FDCAN_TT_TX_TRIGGER_SINGLE) ||
(sTriggerConfig->TriggerType == FDCAN_TT_TX_TRIGGER_CONTINUOUS) ||
(sTriggerConfig->TriggerType == FDCAN_TT_TX_TRIGGER_ARBITRATION) ||
(sTriggerConfig->TriggerType == FDCAN_TT_TX_TRIGGER_MERGED))
{
MessageNumber = POSITION_VAL(sTriggerConfig->TxBufferIndex);
}
else
{
MessageNumber = 0U;
}
/* Build second word of trigger element */
TriggerElementW2 = ((sTriggerConfig->FilterType >> 7) | (MessageNumber << 16));
/* Calculate trigger address */
TriggerAddress = (uint32_t *)(hfdcan->msgRam.TTMemorySA + (sTriggerConfig->TriggerIndex * 4U * 2U));
/* Write trigger element to the message RAM */
*TriggerAddress = TriggerElementW1;
TriggerAddress++;
*TriggerAddress = TriggerElementW2;
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY;
return HAL_ERROR;
}
}
/**
* @brief Schedule global time adjustment for the next reference message.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param TimePreset time preset value.
* This parameter must be a number between:
* - 0x0000 and 0x7FFF, Next_Master_Ref_Mark = Current_Master_Ref_Mark + TimePreset
* or
* - 0x8001 and 0xFFFF, Next_Master_Ref_Mark = Current_Master_Ref_Mark - (0x10000 - TimePreset)
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_TT_SetGlobalTime(FDCAN_HandleTypeDef *hfdcan, uint32_t TimePreset)
{
uint32_t Counter = 0U;
HAL_FDCAN_StateTypeDef state = hfdcan->State;
/* Check function parameters */
assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance));
assert_param(IS_FDCAN_TT_TIME_PRESET(TimePreset));
if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY))
{
/* Check that the external clock synchronization is enabled */
if ((hfdcan->ttcan->TTOCF & FDCAN_TTOCF_EECS) != FDCAN_TTOCF_EECS)
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_SUPPORTED;
return HAL_ERROR;
}
/* Check that no global time preset is pending */
if ((hfdcan->ttcan->TTOST & FDCAN_TTOST_WGTD) == FDCAN_TTOST_WGTD)
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_PENDING;
return HAL_ERROR;
}
/* Configure time preset */
MODIFY_REG(hfdcan->ttcan->TTGTP, FDCAN_TTGTP_TP, (TimePreset << FDCAN_TTGTP_TP_Pos));
/* Wait until the LCKC bit into TTOCN register is reset */
while ((hfdcan->ttcan->TTOCN & FDCAN_TTOCN_LCKC) != 0U)
{
/* Check for the Timeout */
if (Counter > FDCAN_TIMEOUT_COUNT)
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT;
/* Change FDCAN state */
hfdcan->State = HAL_FDCAN_STATE_ERROR;
return HAL_ERROR;
}
/* Increment counter */
Counter++;
}
/* Schedule time preset to take effect by the next reference message */
SET_BIT(hfdcan->ttcan->TTOCN, FDCAN_TTOCN_SGT);
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED;
return HAL_ERROR;
}
}
/**
* @brief Schedule TUR numerator update for the next reference message.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param NewTURNumerator new value of the TUR numerator.
* This parameter must be a number between 0x10000 and 0x1FFFF.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_TT_SetClockSynchronization(FDCAN_HandleTypeDef *hfdcan, uint32_t NewTURNumerator)
{
uint32_t Counter = 0U;
HAL_FDCAN_StateTypeDef state = hfdcan->State;
/* Check function parameters */
assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance));
assert_param(IS_FDCAN_TT_TUR_NUMERATOR(NewTURNumerator));
if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY))
{
/* Check that the external clock synchronization is enabled */
if ((hfdcan->ttcan->TTOCF & FDCAN_TTOCF_EECS) != FDCAN_TTOCF_EECS)
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_SUPPORTED;
return HAL_ERROR;
}
/* Check that no external clock synchronization is pending */
if ((hfdcan->ttcan->TTOST & FDCAN_TTOST_WECS) == FDCAN_TTOST_WECS)
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_PENDING;
return HAL_ERROR;
}
/* Configure new TUR numerator */
MODIFY_REG(hfdcan->ttcan->TURCF, FDCAN_TURCF_NCL, (NewTURNumerator - 0x10000U));
/* Wait until the LCKC bit into TTOCN register is reset */
while ((hfdcan->ttcan->TTOCN & FDCAN_TTOCN_LCKC) != 0U)
{
/* Check for the Timeout */
if (Counter > FDCAN_TIMEOUT_COUNT)
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT;
/* Change FDCAN state */
hfdcan->State = HAL_FDCAN_STATE_ERROR;
return HAL_ERROR;
}
/* Increment counter */
Counter++;
}
/* Schedule TUR numerator update by the next reference message */
SET_BIT(hfdcan->ttcan->TTOCN, FDCAN_TTOCN_ECS);
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED;
return HAL_ERROR;
}
}
/**
* @brief Configure stop watch source and polarity.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param Source stop watch source.
* This parameter can be a value of @arg FDCAN_TT_stop_watch_source.
* @param Polarity stop watch polarity.
* This parameter can be a value of @arg FDCAN_TT_stop_watch_polarity.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_TT_ConfigStopWatch(FDCAN_HandleTypeDef *hfdcan, uint32_t Source, uint32_t Polarity)
{
uint32_t Counter = 0U;
HAL_FDCAN_StateTypeDef state = hfdcan->State;
/* Check function parameters */
assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance));
assert_param(IS_FDCAN_TT_STOP_WATCH_SOURCE(Source));
assert_param(IS_FDCAN_TT_STOP_WATCH_POLARITY(Polarity));
if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY))
{
/* Wait until the LCKC bit into TTOCN register is reset */
while ((hfdcan->ttcan->TTOCN & FDCAN_TTOCN_LCKC) != 0U)
{
/* Check for the Timeout */
if (Counter > FDCAN_TIMEOUT_COUNT)
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT;
/* Change FDCAN state */
hfdcan->State = HAL_FDCAN_STATE_ERROR;
return HAL_ERROR;
}
/* Increment counter */
Counter++;
}
/* Select stop watch source and polarity */
MODIFY_REG(hfdcan->ttcan->TTOCN, (FDCAN_TTOCN_SWS | FDCAN_TTOCN_SWP), (Source | Polarity));
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED;
return HAL_ERROR;
}
}
/**
* @brief Configure register time mark pulse generation.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param TimeMarkSource time mark source.
* This parameter can be a value of @arg FDCAN_TT_time_mark_source.
* @param TimeMarkValue time mark value (reference).
* This parameter must be a number between 0 and 0xFFFF.
* @param RepeatFactor repeat factor of the cycle for which the time mark is valid.
* This parameter can be a value of @arg FDCAN_TT_Repeat_Factor.
* @param StartCycle index of the first cycle in which the time mark becomes valid.
* This parameter is ignored if RepeatFactor is set to FDCAN_TT_REPEAT_EVERY_CYCLE.
* This parameter must be a number between 0 and RepeatFactor.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_TT_ConfigRegisterTimeMark(FDCAN_HandleTypeDef *hfdcan,
uint32_t TimeMarkSource, uint32_t TimeMarkValue,
uint32_t RepeatFactor, uint32_t StartCycle)
{
uint32_t Counter = 0U;
uint32_t CycleCode;
HAL_FDCAN_StateTypeDef state = hfdcan->State;
/* Check function parameters */
assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance));
assert_param(IS_FDCAN_TT_REGISTER_TIME_MARK_SOURCE(TimeMarkSource));
assert_param(IS_FDCAN_MAX_VALUE(TimeMarkValue, 0xFFFFU));
assert_param(IS_FDCAN_TT_REPEAT_FACTOR(RepeatFactor));
if (RepeatFactor != FDCAN_TT_REPEAT_EVERY_CYCLE)
{
assert_param(IS_FDCAN_MAX_VALUE(StartCycle, (RepeatFactor - 1U)));
}
if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY))
{
/* Wait until the LCKC bit into TTOCN register is reset */
while ((hfdcan->ttcan->TTOCN & FDCAN_TTOCN_LCKC) != 0U)
{
/* Check for the Timeout */
if (Counter > FDCAN_TIMEOUT_COUNT)
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT;
/* Change FDCAN state */
hfdcan->State = HAL_FDCAN_STATE_ERROR;
return HAL_ERROR;
}
/* Increment counter */
Counter++;
}
/* Disable the time mark compare function */
CLEAR_BIT(hfdcan->ttcan->TTOCN, FDCAN_TTOCN_TMC);
if (TimeMarkSource != FDCAN_TT_REG_TIMEMARK_DIABLED)
{
/* Calculate cycle code */
if (RepeatFactor == FDCAN_TT_REPEAT_EVERY_CYCLE)
{
CycleCode = FDCAN_TT_REPEAT_EVERY_CYCLE;
}
else /* RepeatFactor != FDCAN_TT_REPEAT_EVERY_CYCLE */
{
CycleCode = RepeatFactor + StartCycle;
}
Counter = 0U;
/* Wait until the LCKM bit into TTTMK register is reset */
while ((hfdcan->ttcan->TTTMK & FDCAN_TTTMK_LCKM) != 0U)
{
/* Check for the Timeout */
if (Counter > FDCAN_TIMEOUT_COUNT)
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT;
/* Change FDCAN state */
hfdcan->State = HAL_FDCAN_STATE_ERROR;
return HAL_ERROR;
}
/* Increment counter */
Counter++;
}
/* Configure time mark value and cycle code */
hfdcan->ttcan->TTTMK = ((TimeMarkValue << FDCAN_TTTMK_TM_Pos) | (CycleCode << FDCAN_TTTMK_TICC_Pos));
Counter = 0U;
/* Wait until the LCKC bit into TTOCN register is reset */
while ((hfdcan->ttcan->TTOCN & FDCAN_TTOCN_LCKC) != 0U)
{
/* Check for the Timeout */
if (Counter > FDCAN_TIMEOUT_COUNT)
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT;
/* Change FDCAN state */
hfdcan->State = HAL_FDCAN_STATE_ERROR;
return HAL_ERROR;
}
/* Increment counter */
Counter++;
}
/* Update the register time mark compare source */
MODIFY_REG(hfdcan->ttcan->TTOCN, FDCAN_TTOCN_TMC, TimeMarkSource);
}
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED;
return HAL_ERROR;
}
}
/**
* @brief Enable register time mark pulse generation.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_TT_EnableRegisterTimeMarkPulse(FDCAN_HandleTypeDef *hfdcan)
{
uint32_t Counter = 0U;
HAL_FDCAN_StateTypeDef state = hfdcan->State;
/* Check function parameters */
assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance));
if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY))
{
/* Wait until the LCKC bit into TTOCN register is reset */
while ((hfdcan->ttcan->TTOCN & FDCAN_TTOCN_LCKC) != 0U)
{
/* Check for the Timeout */
if (Counter > FDCAN_TIMEOUT_COUNT)
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT;
/* Change FDCAN state */
hfdcan->State = HAL_FDCAN_STATE_ERROR;
return HAL_ERROR;
}
/* Increment counter */
Counter++;
}
/* Enable Register Time Mark Interrupt output on fdcan1_rtp */
SET_BIT(hfdcan->ttcan->TTOCN, FDCAN_TTOCN_RTIE);
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED;
return HAL_ERROR;
}
}
/**
* @brief Disable register time mark pulse generation.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_TT_DisableRegisterTimeMarkPulse(FDCAN_HandleTypeDef *hfdcan)
{
uint32_t Counter = 0U;
HAL_FDCAN_StateTypeDef state = hfdcan->State;
/* Check function parameters */
assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance));
if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY))
{
/* Wait until the LCKC bit into TTOCN register is reset */
while ((hfdcan->ttcan->TTOCN & FDCAN_TTOCN_LCKC) != 0U)
{
/* Check for the Timeout */
if (Counter > FDCAN_TIMEOUT_COUNT)
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT;
/* Change FDCAN state */
hfdcan->State = HAL_FDCAN_STATE_ERROR;
return HAL_ERROR;
}
/* Increment counter */
Counter++;
}
/* Disable Register Time Mark Interrupt output on fdcan1_rtp */
CLEAR_BIT(hfdcan->ttcan->TTOCN, FDCAN_TTOCN_RTIE);
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED;
return HAL_ERROR;
}
}
/**
* @brief Enable trigger time mark pulse generation.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_TT_EnableTriggerTimeMarkPulse(FDCAN_HandleTypeDef *hfdcan)
{
uint32_t Counter = 0U;
HAL_FDCAN_StateTypeDef state = hfdcan->State;
/* Check function parameters */
assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance));
if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY))
{
if ((hfdcan->ttcan->TTOCF & FDCAN_TTOCF_OM) != FDCAN_TT_COMMUNICATION_LEVEL0)
{
/* Wait until the LCKC bit into TTOCN register is reset */
while ((hfdcan->ttcan->TTOCN & FDCAN_TTOCN_LCKC) != 0U)
{
/* Check for the Timeout */
if (Counter > FDCAN_TIMEOUT_COUNT)
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT;
/* Change FDCAN state */
hfdcan->State = HAL_FDCAN_STATE_ERROR;
return HAL_ERROR;
}
/* Increment counter */
Counter++;
}
/* Enable Trigger Time Mark Interrupt output on fdcan1_tmp */
SET_BIT(hfdcan->ttcan->TTOCN, FDCAN_TTOCN_TTIE);
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code.
Feature not supported for TT Level 0 */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_SUPPORTED;
return HAL_ERROR;
}
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED;
return HAL_ERROR;
}
}
/**
* @brief Disable trigger time mark pulse generation.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_TT_DisableTriggerTimeMarkPulse(FDCAN_HandleTypeDef *hfdcan)
{
uint32_t Counter = 0U;
HAL_FDCAN_StateTypeDef state = hfdcan->State;
/* Check function parameters */
assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance));
if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY))
{
if ((hfdcan->ttcan->TTOCF & FDCAN_TTOCF_OM) != FDCAN_TT_COMMUNICATION_LEVEL0)
{
/* Wait until the LCKC bit into TTOCN register is reset */
while ((hfdcan->ttcan->TTOCN & FDCAN_TTOCN_LCKC) != 0U)
{
/* Check for the Timeout */
if (Counter > FDCAN_TIMEOUT_COUNT)
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT;
/* Change FDCAN state */
hfdcan->State = HAL_FDCAN_STATE_ERROR;
return HAL_ERROR;
}
/* Increment counter */
Counter++;
}
/* Disable Trigger Time Mark Interrupt output on fdcan1_rtp */
CLEAR_BIT(hfdcan->ttcan->TTOCN, FDCAN_TTOCN_TTIE);
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code.
Feature not supported for TT Level 0 */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_SUPPORTED;
return HAL_ERROR;
}
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED;
return HAL_ERROR;
}
}
/**
* @brief Enable gap control by input pin fdcan1_evt.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_TT_EnableHardwareGapControl(FDCAN_HandleTypeDef *hfdcan)
{
uint32_t Counter = 0U;
HAL_FDCAN_StateTypeDef state = hfdcan->State;
/* Check function parameters */
assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance));
if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY))
{
if ((hfdcan->ttcan->TTOCF & FDCAN_TTOCF_OM) != FDCAN_TT_COMMUNICATION_LEVEL0)
{
/* Wait until the LCKC bit into TTOCN register is reset */
while ((hfdcan->ttcan->TTOCN & FDCAN_TTOCN_LCKC) != 0U)
{
/* Check for the Timeout */
if (Counter > FDCAN_TIMEOUT_COUNT)
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT;
/* Change FDCAN state */
hfdcan->State = HAL_FDCAN_STATE_ERROR;
return HAL_ERROR;
}
/* Increment counter */
Counter++;
}
/* Enable gap control by pin fdcan1_evt */
SET_BIT(hfdcan->ttcan->TTOCN, FDCAN_TTOCN_GCS);
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code.
Feature not supported for TT Level 0 */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_SUPPORTED;
return HAL_ERROR;
}
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED;
return HAL_ERROR;
}
}
/**
* @brief Disable gap control by input pin fdcan1_evt.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_TT_DisableHardwareGapControl(FDCAN_HandleTypeDef *hfdcan)
{
uint32_t Counter = 0U;
HAL_FDCAN_StateTypeDef state = hfdcan->State;
/* Check function parameters */
assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance));
if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY))
{
if ((hfdcan->ttcan->TTOCF & FDCAN_TTOCF_OM) != FDCAN_TT_COMMUNICATION_LEVEL0)
{
/* Wait until the LCKC bit into TTOCN register is reset */
while ((hfdcan->ttcan->TTOCN & FDCAN_TTOCN_LCKC) != 0U)
{
/* Check for the Timeout */
if (Counter > FDCAN_TIMEOUT_COUNT)
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT;
/* Change FDCAN state */
hfdcan->State = HAL_FDCAN_STATE_ERROR;
return HAL_ERROR;
}
/* Increment counter */
Counter++;
}
/* Disable gap control by pin fdcan1_evt */
CLEAR_BIT(hfdcan->ttcan->TTOCN, FDCAN_TTOCN_GCS);
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code.
Feature not supported for TT Level 0 */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_SUPPORTED;
return HAL_ERROR;
}
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED;
return HAL_ERROR;
}
}
/**
* @brief Enable gap control (finish only) by register time mark interrupt.
* The next register time mark interrupt (TTIR.RTMI = "1") will finish
* the Gap and start the reference message.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_TT_EnableTimeMarkGapControl(FDCAN_HandleTypeDef *hfdcan)
{
uint32_t Counter = 0U;
HAL_FDCAN_StateTypeDef state = hfdcan->State;
/* Check function parameters */
assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance));
if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY))
{
if ((hfdcan->ttcan->TTOCF & FDCAN_TTOCF_OM) != FDCAN_TT_COMMUNICATION_LEVEL0)
{
/* Wait until the LCKC bit into TTOCN register is reset */
while ((hfdcan->ttcan->TTOCN & FDCAN_TTOCN_LCKC) != 0U)
{
/* Check for the Timeout */
if (Counter > FDCAN_TIMEOUT_COUNT)
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT;
/* Change FDCAN state */
hfdcan->State = HAL_FDCAN_STATE_ERROR;
return HAL_ERROR;
}
/* Increment counter */
Counter++;
}
/* Enable gap control by register time mark interrupt */
SET_BIT(hfdcan->ttcan->TTOCN, FDCAN_TTOCN_TMG);
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code.
Feature not supported for TT Level 0 */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_SUPPORTED;
return HAL_ERROR;
}
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED;
return HAL_ERROR;
}
}
/**
* @brief Disable gap control by register time mark interrupt.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_TT_DisableTimeMarkGapControl(FDCAN_HandleTypeDef *hfdcan)
{
uint32_t Counter = 0U;
HAL_FDCAN_StateTypeDef state = hfdcan->State;
/* Check function parameters */
assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance));
if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY))
{
if ((hfdcan->ttcan->TTOCF & FDCAN_TTOCF_OM) != FDCAN_TT_COMMUNICATION_LEVEL0)
{
/* Wait until the LCKC bit into TTOCN register is reset */
while ((hfdcan->ttcan->TTOCN & FDCAN_TTOCN_LCKC) != 0U)
{
/* Check for the Timeout */
if (Counter > FDCAN_TIMEOUT_COUNT)
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT;
/* Change FDCAN state */
hfdcan->State = HAL_FDCAN_STATE_ERROR;
return HAL_ERROR;
}
/* Increment counter */
Counter++;
}
/* Disable gap control by register time mark interrupt */
CLEAR_BIT(hfdcan->ttcan->TTOCN, FDCAN_TTOCN_TMG);
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code.
Feature not supported for TT Level 0 */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_SUPPORTED;
return HAL_ERROR;
}
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED;
return HAL_ERROR;
}
}
/**
* @brief Transmit next reference message with Next_is_Gap = "1".
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_TT_SetNextIsGap(FDCAN_HandleTypeDef *hfdcan)
{
uint32_t Counter = 0U;
HAL_FDCAN_StateTypeDef state = hfdcan->State;
/* Check function parameters */
assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance));
if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY))
{
/* Check that the node is configured for external event-synchronized TT operation */
if ((hfdcan->ttcan->TTOCF & FDCAN_TTOCF_GEN) != FDCAN_TTOCF_GEN)
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_SUPPORTED;
return HAL_ERROR;
}
if ((hfdcan->ttcan->TTOCF & FDCAN_TTOCF_OM) != FDCAN_TT_COMMUNICATION_LEVEL0)
{
/* Wait until the LCKC bit into TTOCN register is reset */
while ((hfdcan->ttcan->TTOCN & FDCAN_TTOCN_LCKC) != 0U)
{
/* Check for the Timeout */
if (Counter > FDCAN_TIMEOUT_COUNT)
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT;
/* Change FDCAN state */
hfdcan->State = HAL_FDCAN_STATE_ERROR;
return HAL_ERROR;
}
/* Increment counter */
Counter++;
}
/* Set Next is Gap */
SET_BIT(hfdcan->ttcan->TTOCN, FDCAN_TTOCN_NIG);
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code.
Feature not supported for TT Level 0 */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_SUPPORTED;
return HAL_ERROR;
}
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED;
return HAL_ERROR;
}
}
/**
* @brief Finish a Gap by requesting start of reference message.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_TT_SetEndOfGap(FDCAN_HandleTypeDef *hfdcan)
{
uint32_t Counter = 0U;
HAL_FDCAN_StateTypeDef state = hfdcan->State;
/* Check function parameters */
assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance));
if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY))
{
/* Check that the node is configured for external event-synchronized TT operation */
if ((hfdcan->ttcan->TTOCF & FDCAN_TTOCF_GEN) != FDCAN_TTOCF_GEN)
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_SUPPORTED;
return HAL_ERROR;
}
if ((hfdcan->ttcan->TTOCF & FDCAN_TTOCF_OM) != FDCAN_TT_COMMUNICATION_LEVEL0)
{
/* Wait until the LCKC bit into TTOCN register is reset */
while ((hfdcan->ttcan->TTOCN & FDCAN_TTOCN_LCKC) != 0U)
{
/* Check for the Timeout */
if (Counter > FDCAN_TIMEOUT_COUNT)
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT;
/* Change FDCAN state */
hfdcan->State = HAL_FDCAN_STATE_ERROR;
return HAL_ERROR;
}
/* Increment counter */
Counter++;
}
/* Set Finish Gap */
SET_BIT(hfdcan->ttcan->TTOCN, FDCAN_TTOCN_FGP);
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code.
Feature not supported for TT Level 0 */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_SUPPORTED;
return HAL_ERROR;
}
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED;
return HAL_ERROR;
}
}
/**
* @brief Configure target phase used for external synchronization by event
* trigger input pin fdcan1_evt.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param TargetPhase defines target value of cycle time when a rising edge
* of fdcan1_evt is expected.
* This parameter must be a number between 0 and 0xFFFF.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_TT_ConfigExternalSyncPhase(FDCAN_HandleTypeDef *hfdcan, uint32_t TargetPhase)
{
HAL_FDCAN_StateTypeDef state = hfdcan->State;
/* Check function parameters */
assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance));
assert_param(IS_FDCAN_MAX_VALUE(TargetPhase, 0xFFFFU));
if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY))
{
/* Check that no external schedule synchronization is pending */
if ((hfdcan->ttcan->TTOCN & FDCAN_TTOCN_ESCN) == FDCAN_TTOCN_ESCN)
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_PENDING;
return HAL_ERROR;
}
/* Configure cycle time target phase */
MODIFY_REG(hfdcan->ttcan->TTGTP, FDCAN_TTGTP_CTP, (TargetPhase << FDCAN_TTGTP_CTP_Pos));
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED;
return HAL_ERROR;
}
}
/**
* @brief Synchronize the phase of the FDCAN schedule to an external schedule
* using event trigger input pin fdcan1_evt.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_TT_EnableExternalSynchronization(FDCAN_HandleTypeDef *hfdcan)
{
uint32_t Counter = 0U;
HAL_FDCAN_StateTypeDef state = hfdcan->State;
/* Check function parameters */
assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance));
if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY))
{
/* Wait until the LCKC bit into TTOCN register is reset */
while ((hfdcan->ttcan->TTOCN & FDCAN_TTOCN_LCKC) != 0U)
{
/* Check for the Timeout */
if (Counter > FDCAN_TIMEOUT_COUNT)
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT;
/* Change FDCAN state */
hfdcan->State = HAL_FDCAN_STATE_ERROR;
return HAL_ERROR;
}
/* Increment counter */
Counter++;
}
/* Enable external synchronization */
SET_BIT(hfdcan->ttcan->TTOCN, FDCAN_TTOCN_ESCN);
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED;
return HAL_ERROR;
}
}
/**
* @brief Disable external schedule synchronization.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_TT_DisableExternalSynchronization(FDCAN_HandleTypeDef *hfdcan)
{
uint32_t Counter = 0U;
HAL_FDCAN_StateTypeDef state = hfdcan->State;
/* Check function parameters */
assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance));
if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY))
{
/* Wait until the LCKC bit into TTOCN register is reset */
while ((hfdcan->ttcan->TTOCN & FDCAN_TTOCN_LCKC) != 0U)
{
/* Check for the Timeout */
if (Counter > FDCAN_TIMEOUT_COUNT)
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT;
/* Change FDCAN state */
hfdcan->State = HAL_FDCAN_STATE_ERROR;
return HAL_ERROR;
}
/* Increment counter */
Counter++;
}
/* Disable external synchronization */
CLEAR_BIT(hfdcan->ttcan->TTOCN, FDCAN_TTOCN_ESCN);
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED;
return HAL_ERROR;
}
}
/**
* @brief Get TT operation status.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param TTOpStatus pointer to an FDCAN_TTOperationStatusTypeDef structure.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_TT_GetOperationStatus(const FDCAN_HandleTypeDef *hfdcan,
FDCAN_TTOperationStatusTypeDef *TTOpStatus)
{
uint32_t TTStatusReg;
/* Check function parameters */
assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance));
/* Read the TT operation status register */
TTStatusReg = READ_REG(hfdcan->ttcan->TTOST);
/* Fill the TT operation status structure */
TTOpStatus->ErrorLevel = (TTStatusReg & FDCAN_TTOST_EL);
TTOpStatus->MasterState = (TTStatusReg & FDCAN_TTOST_MS);
TTOpStatus->SyncState = (TTStatusReg & FDCAN_TTOST_SYS);
TTOpStatus->GTimeQuality = ((TTStatusReg & FDCAN_TTOST_QGTP) >> FDCAN_TTOST_QGTP_Pos);
TTOpStatus->ClockQuality = ((TTStatusReg & FDCAN_TTOST_QCS) >> FDCAN_TTOST_QCS_Pos);
TTOpStatus->RefTrigOffset = ((TTStatusReg & FDCAN_TTOST_RTO) >> FDCAN_TTOST_RTO_Pos);
TTOpStatus->GTimeDiscPending = ((TTStatusReg & FDCAN_TTOST_WGTD) >> FDCAN_TTOST_WGTD_Pos);
TTOpStatus->GapFinished = ((TTStatusReg & FDCAN_TTOST_GFI) >> FDCAN_TTOST_GFI_Pos);
TTOpStatus->MasterPriority = ((TTStatusReg & FDCAN_TTOST_TMP) >> FDCAN_TTOST_TMP_Pos);
TTOpStatus->GapStarted = ((TTStatusReg & FDCAN_TTOST_GSI) >> FDCAN_TTOST_GSI_Pos);
TTOpStatus->WaitForEvt = ((TTStatusReg & FDCAN_TTOST_WFE) >> FDCAN_TTOST_WFE_Pos);
TTOpStatus->AppWdgEvt = ((TTStatusReg & FDCAN_TTOST_AWE) >> FDCAN_TTOST_AWE_Pos);
TTOpStatus->ECSPending = ((TTStatusReg & FDCAN_TTOST_WECS) >> FDCAN_TTOST_WECS_Pos);
TTOpStatus->PhaseLock = ((TTStatusReg & FDCAN_TTOST_SPL) >> FDCAN_TTOST_SPL_Pos);
/* Return function status */
return HAL_OK;
}
/**
* @}
*/
/** @defgroup FDCAN_Exported_Functions_Group5 Interrupts management
* @brief Interrupts management
*
@verbatim
==============================================================================
##### Interrupts management #####
==============================================================================
[..] This section provides functions allowing to:
(+) HAL_FDCAN_ConfigInterruptLines : Assign interrupts to either Interrupt line 0 or 1
(+) HAL_FDCAN_TT_ConfigInterruptLines : Assign TT interrupts to either Interrupt line 0 or 1
(+) HAL_FDCAN_ActivateNotification : Enable interrupts
(+) HAL_FDCAN_DeactivateNotification : Disable interrupts
(+) HAL_FDCAN_TT_ActivateNotification : Enable TT interrupts
(+) HAL_FDCAN_TT_DeactivateNotification : Disable TT interrupts
(+) HAL_FDCAN_IRQHandler : Handles FDCAN interrupt request
@endverbatim
* @{
*/
/**
* @brief Assign interrupts to either Interrupt line 0 or 1.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param ITList indicates which interrupts will be assigned to the selected interrupt line.
* This parameter can be any combination of @arg FDCAN_Interrupts.
* @param InterruptLine Interrupt line.
* This parameter can be a value of @arg FDCAN_Interrupt_Line.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_ConfigInterruptLines(FDCAN_HandleTypeDef *hfdcan, uint32_t ITList, uint32_t InterruptLine)
{
HAL_FDCAN_StateTypeDef state = hfdcan->State;
/* Check function parameters */
assert_param(IS_FDCAN_IT(ITList));
assert_param(IS_FDCAN_IT_LINE(InterruptLine));
if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY))
{
/* Assign list of interrupts to the selected line */
if (InterruptLine == FDCAN_INTERRUPT_LINE0)
{
CLEAR_BIT(hfdcan->Instance->ILS, ITList);
}
else /* InterruptLine == FDCAN_INTERRUPT_LINE1 */
{
SET_BIT(hfdcan->Instance->ILS, ITList);
}
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED;
return HAL_ERROR;
}
}
/**
* @brief Assign TT interrupts to either Interrupt line 0 or 1.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param TTITList indicates which interrupts will be assigned to the selected interrupt line.
* This parameter can be any combination of @arg FDCAN_TTInterrupts.
* @param InterruptLine Interrupt line.
* This parameter can be a value of @arg FDCAN_Interrupt_Line.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_TT_ConfigInterruptLines(FDCAN_HandleTypeDef *hfdcan, uint32_t TTITList,
uint32_t InterruptLine)
{
HAL_FDCAN_StateTypeDef state = hfdcan->State;
/* Check function parameters */
assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance));
assert_param(IS_FDCAN_TT_IT(TTITList));
assert_param(IS_FDCAN_IT_LINE(InterruptLine));
if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY))
{
/* Assign list of interrupts to the selected line */
if (InterruptLine == FDCAN_INTERRUPT_LINE0)
{
CLEAR_BIT(hfdcan->ttcan->TTILS, TTITList);
}
else /* InterruptLine == FDCAN_INTERRUPT_LINE1 */
{
SET_BIT(hfdcan->ttcan->TTILS, TTITList);
}
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED;
return HAL_ERROR;
}
}
/**
* @brief Enable interrupts.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param ActiveITs indicates which interrupts will be enabled.
* This parameter can be any combination of @arg FDCAN_Interrupts.
* @param BufferIndexes Tx Buffer Indexes.
* This parameter can be any combination of @arg FDCAN_Tx_location.
* This parameter is ignored if ActiveITs does not include one of the following:
* - FDCAN_IT_TX_COMPLETE
* - FDCAN_IT_TX_ABORT_COMPLETE
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_ActivateNotification(FDCAN_HandleTypeDef *hfdcan, uint32_t ActiveITs,
uint32_t BufferIndexes)
{
HAL_FDCAN_StateTypeDef state = hfdcan->State;
/* Check function parameters */
assert_param(IS_FDCAN_IT(ActiveITs));
if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY))
{
/* Enable Interrupt lines */
if ((ActiveITs & hfdcan->Instance->ILS) == 0U)
{
/* Enable Interrupt line 0 */
SET_BIT(hfdcan->Instance->ILE, FDCAN_INTERRUPT_LINE0);
}
else if ((ActiveITs & hfdcan->Instance->ILS) == ActiveITs)
{
/* Enable Interrupt line 1 */
SET_BIT(hfdcan->Instance->ILE, FDCAN_INTERRUPT_LINE1);
}
else
{
/* Enable Interrupt lines 0 and 1 */
hfdcan->Instance->ILE = (FDCAN_INTERRUPT_LINE0 | FDCAN_INTERRUPT_LINE1);
}
if ((ActiveITs & FDCAN_IT_TX_COMPLETE) != 0U)
{
/* Enable Tx Buffer Transmission Interrupt to set TC flag in IR register,
but interrupt will only occur if TC is enabled in IE register */
SET_BIT(hfdcan->Instance->TXBTIE, BufferIndexes);
}
if ((ActiveITs & FDCAN_IT_TX_ABORT_COMPLETE) != 0U)
{
/* Enable Tx Buffer Cancellation Finished Interrupt to set TCF flag in IR register,
but interrupt will only occur if TCF is enabled in IE register */
SET_BIT(hfdcan->Instance->TXBCIE, BufferIndexes);
}
/* Enable the selected interrupts */
__HAL_FDCAN_ENABLE_IT(hfdcan, ActiveITs);
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED;
return HAL_ERROR;
}
}
/**
* @brief Disable interrupts.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param InactiveITs indicates which interrupts will be disabled.
* This parameter can be any combination of @arg FDCAN_Interrupts.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_DeactivateNotification(FDCAN_HandleTypeDef *hfdcan, uint32_t InactiveITs)
{
uint32_t ITLineSelection;
HAL_FDCAN_StateTypeDef state = hfdcan->State;
/* Check function parameters */
assert_param(IS_FDCAN_IT(InactiveITs));
if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY))
{
/* Disable the selected interrupts */
__HAL_FDCAN_DISABLE_IT(hfdcan, InactiveITs);
if ((InactiveITs & FDCAN_IT_TX_COMPLETE) != 0U)
{
/* Disable Tx Buffer Transmission Interrupts */
CLEAR_REG(hfdcan->Instance->TXBTIE);
}
if ((InactiveITs & FDCAN_IT_TX_ABORT_COMPLETE) != 0U)
{
/* Disable Tx Buffer Cancellation Finished Interrupt */
CLEAR_REG(hfdcan->Instance->TXBCIE);
}
ITLineSelection = hfdcan->Instance->ILS;
if ((hfdcan->Instance->IE | ITLineSelection) == ITLineSelection)
{
/* Disable Interrupt line 0 */
CLEAR_BIT(hfdcan->Instance->ILE, FDCAN_INTERRUPT_LINE0);
}
if ((hfdcan->Instance->IE & ITLineSelection) == 0U)
{
/* Disable Interrupt line 1 */
CLEAR_BIT(hfdcan->Instance->ILE, FDCAN_INTERRUPT_LINE1);
}
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED;
return HAL_ERROR;
}
}
/**
* @brief Enable TT interrupts.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param ActiveTTITs indicates which TT interrupts will be enabled.
* This parameter can be any combination of @arg FDCAN_TTInterrupts.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_TT_ActivateNotification(FDCAN_HandleTypeDef *hfdcan, uint32_t ActiveTTITs)
{
HAL_FDCAN_StateTypeDef state = hfdcan->State;
/* Check function parameters */
assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance));
assert_param(IS_FDCAN_TT_IT(ActiveTTITs));
if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY))
{
/* Enable Interrupt lines */
if ((ActiveTTITs & hfdcan->ttcan->TTILS) == 0U)
{
/* Enable Interrupt line 0 */
SET_BIT(hfdcan->Instance->ILE, FDCAN_INTERRUPT_LINE0);
}
else if ((ActiveTTITs & hfdcan->ttcan->TTILS) == ActiveTTITs)
{
/* Enable Interrupt line 1 */
SET_BIT(hfdcan->Instance->ILE, FDCAN_INTERRUPT_LINE1);
}
else
{
/* Enable Interrupt lines 0 and 1 */
hfdcan->Instance->ILE = (FDCAN_INTERRUPT_LINE0 | FDCAN_INTERRUPT_LINE1);
}
/* Enable the selected TT interrupts */
__HAL_FDCAN_TT_ENABLE_IT(hfdcan, ActiveTTITs);
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED;
return HAL_ERROR;
}
}
/**
* @brief Disable TT interrupts.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param InactiveTTITs indicates which TT interrupts will be disabled.
* This parameter can be any combination of @arg FDCAN_TTInterrupts.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_TT_DeactivateNotification(FDCAN_HandleTypeDef *hfdcan, uint32_t InactiveTTITs)
{
uint32_t ITLineSelection;
HAL_FDCAN_StateTypeDef state = hfdcan->State;
/* Check function parameters */
assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance));
assert_param(IS_FDCAN_TT_IT(InactiveTTITs));
if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY))
{
/* Disable the selected TT interrupts */
__HAL_FDCAN_TT_DISABLE_IT(hfdcan, InactiveTTITs);
ITLineSelection = hfdcan->ttcan->TTILS;
if ((hfdcan->ttcan->TTIE | ITLineSelection) == ITLineSelection)
{
/* Disable Interrupt line 0 */
CLEAR_BIT(hfdcan->Instance->ILE, FDCAN_INTERRUPT_LINE0);
}
if ((hfdcan->ttcan->TTIE & ITLineSelection) == 0U)
{
/* Disable Interrupt line 1 */
CLEAR_BIT(hfdcan->Instance->ILE, FDCAN_INTERRUPT_LINE1);
}
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED;
return HAL_ERROR;
}
}
/**
* @brief Handles FDCAN interrupt request.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval HAL status
*/
void HAL_FDCAN_IRQHandler(FDCAN_HandleTypeDef *hfdcan)
{
uint32_t ClkCalibrationITs;
uint32_t TxEventFifoITs;
uint32_t RxFifo0ITs;
uint32_t RxFifo1ITs;
uint32_t Errors;
uint32_t ErrorStatusITs;
uint32_t TransmittedBuffers;
uint32_t AbortedBuffers;
uint32_t TTSchedSyncITs;
uint32_t TTTimeMarkITs;
uint32_t TTGlobTimeITs;
uint32_t TTDistErrors;
uint32_t TTFatalErrors;
uint32_t SWTime;
uint32_t SWCycleCount;
uint32_t itsourceIE;
uint32_t itsourceTTIE;
uint32_t itflagIR;
uint32_t itflagTTIR;
ClkCalibrationITs = (FDCAN_CCU->IR << 30);
ClkCalibrationITs &= (FDCAN_CCU->IE << 30);
TxEventFifoITs = hfdcan->Instance->IR & FDCAN_TX_EVENT_FIFO_MASK;
TxEventFifoITs &= hfdcan->Instance->IE;
RxFifo0ITs = hfdcan->Instance->IR & FDCAN_RX_FIFO0_MASK;
RxFifo0ITs &= hfdcan->Instance->IE;
RxFifo1ITs = hfdcan->Instance->IR & FDCAN_RX_FIFO1_MASK;
RxFifo1ITs &= hfdcan->Instance->IE;
Errors = hfdcan->Instance->IR & FDCAN_ERROR_MASK;
Errors &= hfdcan->Instance->IE;
ErrorStatusITs = hfdcan->Instance->IR & FDCAN_ERROR_STATUS_MASK;
ErrorStatusITs &= hfdcan->Instance->IE;
itsourceIE = hfdcan->Instance->IE;
itflagIR = hfdcan->Instance->IR;
/* High Priority Message interrupt management *******************************/
if (FDCAN_CHECK_IT_SOURCE(itsourceIE, FDCAN_IT_RX_HIGH_PRIORITY_MSG) != RESET)
{
if (FDCAN_CHECK_FLAG(itflagIR, FDCAN_FLAG_RX_HIGH_PRIORITY_MSG) != RESET)
{
/* Clear the High Priority Message flag */
__HAL_FDCAN_CLEAR_FLAG(hfdcan, FDCAN_FLAG_RX_HIGH_PRIORITY_MSG);
#if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1
/* Call registered callback*/
hfdcan->HighPriorityMessageCallback(hfdcan);
#else
/* High Priority Message Callback */
HAL_FDCAN_HighPriorityMessageCallback(hfdcan);
#endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */
}
}
/* Transmission Abort interrupt management **********************************/
if (FDCAN_CHECK_IT_SOURCE(itsourceIE, FDCAN_IT_TX_ABORT_COMPLETE) != RESET)
{
if (FDCAN_CHECK_FLAG(itflagIR, FDCAN_FLAG_TX_ABORT_COMPLETE) != RESET)
{
/* List of aborted monitored buffers */
AbortedBuffers = hfdcan->Instance->TXBCF;
AbortedBuffers &= hfdcan->Instance->TXBCIE;
/* Clear the Transmission Cancellation flag */
__HAL_FDCAN_CLEAR_FLAG(hfdcan, FDCAN_FLAG_TX_ABORT_COMPLETE);
#if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1
/* Call registered callback*/
hfdcan->TxBufferAbortCallback(hfdcan, AbortedBuffers);
#else
/* Transmission Cancellation Callback */
HAL_FDCAN_TxBufferAbortCallback(hfdcan, AbortedBuffers);
#endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */
}
}
/* Clock calibration unit interrupts management *****************************/
if (ClkCalibrationITs != 0U)
{
/* Clear the Clock Calibration flags */
__HAL_FDCAN_CLEAR_FLAG(hfdcan, ClkCalibrationITs);
#if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1
/* Call registered callback*/
hfdcan->ClockCalibrationCallback(hfdcan, ClkCalibrationITs);
#else
/* Clock Calibration Callback */
HAL_FDCAN_ClockCalibrationCallback(hfdcan, ClkCalibrationITs);
#endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */
}
/* Tx event FIFO interrupts management **************************************/
if (TxEventFifoITs != 0U)
{
/* Clear the Tx Event FIFO flags */
__HAL_FDCAN_CLEAR_FLAG(hfdcan, TxEventFifoITs);
#if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1
/* Call registered callback*/
hfdcan->TxEventFifoCallback(hfdcan, TxEventFifoITs);
#else
/* Tx Event FIFO Callback */
HAL_FDCAN_TxEventFifoCallback(hfdcan, TxEventFifoITs);
#endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */
}
/* Rx FIFO 0 interrupts management ******************************************/
if (RxFifo0ITs != 0U)
{
/* Clear the Rx FIFO 0 flags */
__HAL_FDCAN_CLEAR_FLAG(hfdcan, RxFifo0ITs);
#if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1
/* Call registered callback*/
hfdcan->RxFifo0Callback(hfdcan, RxFifo0ITs);
#else
/* Rx FIFO 0 Callback */
HAL_FDCAN_RxFifo0Callback(hfdcan, RxFifo0ITs);
#endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */
}
/* Rx FIFO 1 interrupts management ******************************************/
if (RxFifo1ITs != 0U)
{
/* Clear the Rx FIFO 1 flags */
__HAL_FDCAN_CLEAR_FLAG(hfdcan, RxFifo1ITs);
#if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1
/* Call registered callback*/
hfdcan->RxFifo1Callback(hfdcan, RxFifo1ITs);
#else
/* Rx FIFO 1 Callback */
HAL_FDCAN_RxFifo1Callback(hfdcan, RxFifo1ITs);
#endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */
}
/* Tx FIFO empty interrupt management ***************************************/
if (FDCAN_CHECK_IT_SOURCE(itsourceIE, FDCAN_IT_TX_FIFO_EMPTY) != RESET)
{
if (FDCAN_CHECK_FLAG(itflagIR, FDCAN_FLAG_TX_FIFO_EMPTY) != RESET)
{
/* Clear the Tx FIFO empty flag */
__HAL_FDCAN_CLEAR_FLAG(hfdcan, FDCAN_FLAG_TX_FIFO_EMPTY);
#if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1
/* Call registered callback*/
hfdcan->TxFifoEmptyCallback(hfdcan);
#else
/* Tx FIFO empty Callback */
HAL_FDCAN_TxFifoEmptyCallback(hfdcan);
#endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */
}
}
/* Transmission Complete interrupt management *******************************/
if (FDCAN_CHECK_IT_SOURCE(itsourceIE, FDCAN_IT_TX_COMPLETE) != RESET)
{
if (FDCAN_CHECK_FLAG(itflagIR, FDCAN_FLAG_TX_COMPLETE) != RESET)
{
/* List of transmitted monitored buffers */
TransmittedBuffers = hfdcan->Instance->TXBTO;
TransmittedBuffers &= hfdcan->Instance->TXBTIE;
/* Clear the Transmission Complete flag */
__HAL_FDCAN_CLEAR_FLAG(hfdcan, FDCAN_FLAG_TX_COMPLETE);
#if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1
/* Call registered callback*/
hfdcan->TxBufferCompleteCallback(hfdcan, TransmittedBuffers);
#else
/* Transmission Complete Callback */
HAL_FDCAN_TxBufferCompleteCallback(hfdcan, TransmittedBuffers);
#endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */
}
}
/* Rx Buffer New Message interrupt management *******************************/
if (FDCAN_CHECK_IT_SOURCE(itsourceIE, FDCAN_IT_RX_BUFFER_NEW_MESSAGE) != RESET)
{
if (FDCAN_CHECK_FLAG(itflagIR, FDCAN_FLAG_RX_BUFFER_NEW_MESSAGE) != RESET)
{
/* Clear the Rx Buffer New Message flag */
__HAL_FDCAN_CLEAR_FLAG(hfdcan, FDCAN_FLAG_RX_BUFFER_NEW_MESSAGE);
#if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1
/* Call registered callback*/
hfdcan->RxBufferNewMessageCallback(hfdcan);
#else
/* Rx Buffer New Message Callback */
HAL_FDCAN_RxBufferNewMessageCallback(hfdcan);
#endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */
}
}
/* Timestamp Wraparound interrupt management ********************************/
if (FDCAN_CHECK_IT_SOURCE(itsourceIE, FDCAN_IT_TIMESTAMP_WRAPAROUND) != RESET)
{
if (FDCAN_CHECK_FLAG(itflagIR, FDCAN_FLAG_TIMESTAMP_WRAPAROUND) != RESET)
{
/* Clear the Timestamp Wraparound flag */
__HAL_FDCAN_CLEAR_FLAG(hfdcan, FDCAN_FLAG_TIMESTAMP_WRAPAROUND);
#if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1
/* Call registered callback*/
hfdcan->TimestampWraparoundCallback(hfdcan);
#else
/* Timestamp Wraparound Callback */
HAL_FDCAN_TimestampWraparoundCallback(hfdcan);
#endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */
}
}
/* Timeout Occurred interrupt management ************************************/
if (FDCAN_CHECK_IT_SOURCE(itsourceIE, FDCAN_IT_TIMEOUT_OCCURRED) != RESET)
{
if (FDCAN_CHECK_FLAG(itflagIR, FDCAN_FLAG_TIMEOUT_OCCURRED) != RESET)
{
/* Clear the Timeout Occurred flag */
__HAL_FDCAN_CLEAR_FLAG(hfdcan, FDCAN_FLAG_TIMEOUT_OCCURRED);
#if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1
/* Call registered callback*/
hfdcan->TimeoutOccurredCallback(hfdcan);
#else
/* Timeout Occurred Callback */
HAL_FDCAN_TimeoutOccurredCallback(hfdcan);
#endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */
}
}
/* Message RAM access failure interrupt management **************************/
if (FDCAN_CHECK_IT_SOURCE(itsourceIE, FDCAN_IT_RAM_ACCESS_FAILURE) != RESET)
{
if (FDCAN_CHECK_FLAG(itflagIR, FDCAN_FLAG_RAM_ACCESS_FAILURE) != RESET)
{
/* Clear the Message RAM access failure flag */
__HAL_FDCAN_CLEAR_FLAG(hfdcan, FDCAN_FLAG_RAM_ACCESS_FAILURE);
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_RAM_ACCESS;
}
}
/* Error Status interrupts management ***************************************/
if (ErrorStatusITs != 0U)
{
/* Clear the Error flags */
__HAL_FDCAN_CLEAR_FLAG(hfdcan, ErrorStatusITs);
#if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1
/* Call registered callback*/
hfdcan->ErrorStatusCallback(hfdcan, ErrorStatusITs);
#else
/* Error Status Callback */
HAL_FDCAN_ErrorStatusCallback(hfdcan, ErrorStatusITs);
#endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */
}
/* Error interrupts management **********************************************/
if (Errors != 0U)
{
/* Clear the Error flags */
__HAL_FDCAN_CLEAR_FLAG(hfdcan, Errors);
/* Update error code */
hfdcan->ErrorCode |= Errors;
}
if (hfdcan->Instance == FDCAN1)
{
if ((hfdcan->ttcan->TTOCF & FDCAN_TTOCF_OM) != 0U)
{
TTSchedSyncITs = hfdcan->ttcan->TTIR & FDCAN_TT_SCHEDULE_SYNC_MASK;
TTSchedSyncITs &= hfdcan->ttcan->TTIE;
TTTimeMarkITs = hfdcan->ttcan->TTIR & FDCAN_TT_TIME_MARK_MASK;
TTTimeMarkITs &= hfdcan->ttcan->TTIE;
TTGlobTimeITs = hfdcan->ttcan->TTIR & FDCAN_TT_GLOBAL_TIME_MASK;
TTGlobTimeITs &= hfdcan->ttcan->TTIE;
TTDistErrors = hfdcan->ttcan->TTIR & FDCAN_TT_DISTURBING_ERROR_MASK;
TTDistErrors &= hfdcan->ttcan->TTIE;
TTFatalErrors = hfdcan->ttcan->TTIR & FDCAN_TT_FATAL_ERROR_MASK;
TTFatalErrors &= hfdcan->ttcan->TTIE;
itsourceTTIE = hfdcan->ttcan->TTIE;
itflagTTIR = hfdcan->ttcan->TTIR;
/* TT Schedule Synchronization interrupts management **********************/
if (TTSchedSyncITs != 0U)
{
/* Clear the TT Schedule Synchronization flags */
__HAL_FDCAN_TT_CLEAR_FLAG(hfdcan, TTSchedSyncITs);
#if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1
/* Call registered callback*/
hfdcan->TT_ScheduleSyncCallback(hfdcan, TTSchedSyncITs);
#else
/* TT Schedule Synchronization Callback */
HAL_FDCAN_TT_ScheduleSyncCallback(hfdcan, TTSchedSyncITs);
#endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */
}
/* TT Time Mark interrupts management *************************************/
if (TTTimeMarkITs != 0U)
{
/* Clear the TT Time Mark flags */
__HAL_FDCAN_TT_CLEAR_FLAG(hfdcan, TTTimeMarkITs);
#if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1
/* Call registered callback*/
hfdcan->TT_TimeMarkCallback(hfdcan, TTTimeMarkITs);
#else
/* TT Time Mark Callback */
HAL_FDCAN_TT_TimeMarkCallback(hfdcan, TTTimeMarkITs);
#endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */
}
/* TT Stop Watch interrupt management *************************************/
if (FDCAN_CHECK_IT_SOURCE(itsourceTTIE, FDCAN_TT_IT_STOP_WATCH) != RESET)
{
if (FDCAN_CHECK_FLAG(itflagTTIR, FDCAN_TT_FLAG_STOP_WATCH) != RESET)
{
/* Retrieve Stop watch Time and Cycle count */
SWTime = ((hfdcan->ttcan->TTCPT & FDCAN_TTCPT_SWV) >> FDCAN_TTCPT_SWV_Pos);
SWCycleCount = ((hfdcan->ttcan->TTCPT & FDCAN_TTCPT_CCV) >> FDCAN_TTCPT_CCV_Pos);
/* Clear the TT Stop Watch flag */
__HAL_FDCAN_TT_CLEAR_FLAG(hfdcan, FDCAN_TT_FLAG_STOP_WATCH);
#if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1
/* Call registered callback*/
hfdcan->TT_StopWatchCallback(hfdcan, SWTime, SWCycleCount);
#else
/* TT Stop Watch Callback */
HAL_FDCAN_TT_StopWatchCallback(hfdcan, SWTime, SWCycleCount);
#endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */
}
}
/* TT Global Time interrupts management ***********************************/
if (TTGlobTimeITs != 0U)
{
/* Clear the TT Global Time flags */
__HAL_FDCAN_TT_CLEAR_FLAG(hfdcan, TTGlobTimeITs);
#if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1
/* Call registered callback*/
hfdcan->TT_GlobalTimeCallback(hfdcan, TTGlobTimeITs);
#else
/* TT Global Time Callback */
HAL_FDCAN_TT_GlobalTimeCallback(hfdcan, TTGlobTimeITs);
#endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */
}
/* TT Disturbing Error interrupts management ******************************/
if (TTDistErrors != 0U)
{
/* Clear the TT Disturbing Error flags */
__HAL_FDCAN_TT_CLEAR_FLAG(hfdcan, TTDistErrors);
/* Update error code */
hfdcan->ErrorCode |= TTDistErrors;
}
/* TT Fatal Error interrupts management ***********************************/
if (TTFatalErrors != 0U)
{
/* Clear the TT Fatal Error flags */
__HAL_FDCAN_TT_CLEAR_FLAG(hfdcan, TTFatalErrors);
/* Update error code */
hfdcan->ErrorCode |= TTFatalErrors;
}
}
}
if (hfdcan->ErrorCode != HAL_FDCAN_ERROR_NONE)
{
#if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1
/* Call registered callback*/
hfdcan->ErrorCallback(hfdcan);
#else
/* Error Callback */
HAL_FDCAN_ErrorCallback(hfdcan);
#endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */
}
}
/**
* @}
*/
/** @defgroup FDCAN_Exported_Functions_Group6 Callback functions
* @brief FDCAN Callback functions
*
@verbatim
==============================================================================
##### Callback functions #####
==============================================================================
[..]
This subsection provides the following callback functions:
(+) HAL_FDCAN_ClockCalibrationCallback
(+) HAL_FDCAN_TxEventFifoCallback
(+) HAL_FDCAN_RxFifo0Callback
(+) HAL_FDCAN_RxFifo1Callback
(+) HAL_FDCAN_TxFifoEmptyCallback
(+) HAL_FDCAN_TxBufferCompleteCallback
(+) HAL_FDCAN_TxBufferAbortCallback
(+) HAL_FDCAN_RxBufferNewMessageCallback
(+) HAL_FDCAN_HighPriorityMessageCallback
(+) HAL_FDCAN_TimestampWraparoundCallback
(+) HAL_FDCAN_TimeoutOccurredCallback
(+) HAL_FDCAN_ErrorCallback
(+) HAL_FDCAN_ErrorStatusCallback
(+) HAL_FDCAN_TT_ScheduleSyncCallback
(+) HAL_FDCAN_TT_TimeMarkCallback
(+) HAL_FDCAN_TT_StopWatchCallback
(+) HAL_FDCAN_TT_GlobalTimeCallback
@endverbatim
* @{
*/
/**
* @brief Clock Calibration callback.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param ClkCalibrationITs indicates which Clock Calibration interrupts are signaled.
* This parameter can be any combination of @arg FDCAN_Clock_Calibration_Interrupts.
* @retval None
*/
__weak void HAL_FDCAN_ClockCalibrationCallback(FDCAN_HandleTypeDef *hfdcan, uint32_t ClkCalibrationITs)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hfdcan);
UNUSED(ClkCalibrationITs);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_FDCAN_ClockCalibrationCallback could be implemented in the user file
*/
}
/**
* @brief Tx Event callback.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param TxEventFifoITs indicates which Tx Event FIFO interrupts are signaled.
* This parameter can be any combination of @arg FDCAN_Tx_Event_Fifo_Interrupts.
* @retval None
*/
__weak void HAL_FDCAN_TxEventFifoCallback(FDCAN_HandleTypeDef *hfdcan, uint32_t TxEventFifoITs)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hfdcan);
UNUSED(TxEventFifoITs);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_FDCAN_TxEventFifoCallback could be implemented in the user file
*/
}
/**
* @brief Rx FIFO 0 callback.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param RxFifo0ITs indicates which Rx FIFO 0 interrupts are signaled.
* This parameter can be any combination of @arg FDCAN_Rx_Fifo0_Interrupts.
* @retval None
*/
__weak void HAL_FDCAN_RxFifo0Callback(FDCAN_HandleTypeDef *hfdcan, uint32_t RxFifo0ITs)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hfdcan);
UNUSED(RxFifo0ITs);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_FDCAN_RxFifo0Callback could be implemented in the user file
*/
}
/**
* @brief Rx FIFO 1 callback.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param RxFifo1ITs indicates which Rx FIFO 1 interrupts are signaled.
* This parameter can be any combination of @arg FDCAN_Rx_Fifo1_Interrupts.
* @retval None
*/
__weak void HAL_FDCAN_RxFifo1Callback(FDCAN_HandleTypeDef *hfdcan, uint32_t RxFifo1ITs)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hfdcan);
UNUSED(RxFifo1ITs);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_FDCAN_RxFifo1Callback could be implemented in the user file
*/
}
/**
* @brief Tx FIFO Empty callback.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval None
*/
__weak void HAL_FDCAN_TxFifoEmptyCallback(FDCAN_HandleTypeDef *hfdcan)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hfdcan);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_FDCAN_TxFifoEmptyCallback could be implemented in the user file
*/
}
/**
* @brief Transmission Complete callback.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param BufferIndexes Indexes of the transmitted buffers.
* This parameter can be any combination of @arg FDCAN_Tx_location.
* @retval None
*/
__weak void HAL_FDCAN_TxBufferCompleteCallback(FDCAN_HandleTypeDef *hfdcan, uint32_t BufferIndexes)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hfdcan);
UNUSED(BufferIndexes);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_FDCAN_TxBufferCompleteCallback could be implemented in the user file
*/
}
/**
* @brief Transmission Cancellation callback.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param BufferIndexes Indexes of the aborted buffers.
* This parameter can be any combination of @arg FDCAN_Tx_location.
* @retval None
*/
__weak void HAL_FDCAN_TxBufferAbortCallback(FDCAN_HandleTypeDef *hfdcan, uint32_t BufferIndexes)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hfdcan);
UNUSED(BufferIndexes);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_FDCAN_TxBufferAbortCallback could be implemented in the user file
*/
}
/**
* @brief Rx Buffer New Message callback.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval None
*/
__weak void HAL_FDCAN_RxBufferNewMessageCallback(FDCAN_HandleTypeDef *hfdcan)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hfdcan);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_FDCAN_RxBufferNewMessageCallback could be implemented in the user file
*/
}
/**
* @brief Timestamp Wraparound callback.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval None
*/
__weak void HAL_FDCAN_TimestampWraparoundCallback(FDCAN_HandleTypeDef *hfdcan)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hfdcan);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_FDCAN_TimestampWraparoundCallback could be implemented in the user file
*/
}
/**
* @brief Timeout Occurred callback.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval None
*/
__weak void HAL_FDCAN_TimeoutOccurredCallback(FDCAN_HandleTypeDef *hfdcan)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hfdcan);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_FDCAN_TimeoutOccurredCallback could be implemented in the user file
*/
}
/**
* @brief High Priority Message callback.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval None
*/
__weak void HAL_FDCAN_HighPriorityMessageCallback(FDCAN_HandleTypeDef *hfdcan)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hfdcan);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_FDCAN_HighPriorityMessageCallback could be implemented in the user file
*/
}
/**
* @brief Error callback.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval None
*/
__weak void HAL_FDCAN_ErrorCallback(FDCAN_HandleTypeDef *hfdcan)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hfdcan);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_FDCAN_ErrorCallback could be implemented in the user file
*/
}
/**
* @brief Error status callback.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param ErrorStatusITs indicates which Error Status interrupts are signaled.
* This parameter can be any combination of @arg FDCAN_Error_Status_Interrupts.
* @retval None
*/
__weak void HAL_FDCAN_ErrorStatusCallback(FDCAN_HandleTypeDef *hfdcan, uint32_t ErrorStatusITs)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hfdcan);
UNUSED(ErrorStatusITs);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_FDCAN_ErrorStatusCallback could be implemented in the user file
*/
}
/**
* @brief TT Schedule Synchronization callback.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param TTSchedSyncITs indicates which TT Schedule Synchronization interrupts are signaled.
* This parameter can be any combination of @arg FDCAN_TTScheduleSynchronization_Interrupts.
* @retval None
*/
__weak void HAL_FDCAN_TT_ScheduleSyncCallback(FDCAN_HandleTypeDef *hfdcan, uint32_t TTSchedSyncITs)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hfdcan);
UNUSED(TTSchedSyncITs);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_FDCAN_TT_ScheduleSyncCallback could be implemented in the user file
*/
}
/**
* @brief TT Time Mark callback.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param TTTimeMarkITs indicates which TT Schedule Synchronization interrupts are signaled.
* This parameter can be any combination of @arg FDCAN_TTTimeMark_Interrupts.
* @retval None
*/
__weak void HAL_FDCAN_TT_TimeMarkCallback(FDCAN_HandleTypeDef *hfdcan, uint32_t TTTimeMarkITs)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hfdcan);
UNUSED(TTTimeMarkITs);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_FDCAN_TT_TimeMarkCallback could be implemented in the user file
*/
}
/**
* @brief TT Stop Watch callback.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param SWTime Time Value captured at the Stop Watch Trigger pin (fdcan1_swt) falling/rising
* edge (as configured via HAL_FDCAN_TTConfigStopWatch).
* This parameter is a number between 0 and 0xFFFF.
* @param SWCycleCount Cycle count value captured together with SWTime.
* This parameter is a number between 0 and 0x3F.
* @retval None
*/
__weak void HAL_FDCAN_TT_StopWatchCallback(FDCAN_HandleTypeDef *hfdcan, uint32_t SWTime, uint32_t SWCycleCount)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hfdcan);
UNUSED(SWTime);
UNUSED(SWCycleCount);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_FDCAN_TT_StopWatchCallback could be implemented in the user file
*/
}
/**
* @brief TT Global Time callback.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param TTGlobTimeITs indicates which TT Global Time interrupts are signaled.
* This parameter can be any combination of @arg FDCAN_TTGlobalTime_Interrupts.
* @retval None
*/
__weak void HAL_FDCAN_TT_GlobalTimeCallback(FDCAN_HandleTypeDef *hfdcan, uint32_t TTGlobTimeITs)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hfdcan);
UNUSED(TTGlobTimeITs);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_FDCAN_TT_GlobalTimeCallback could be implemented in the user file
*/
}
/**
* @}
*/
/** @defgroup FDCAN_Exported_Functions_Group7 Peripheral State functions
* @brief FDCAN Peripheral State functions
*
@verbatim
==============================================================================
##### Peripheral State functions #####
==============================================================================
[..]
This subsection provides functions allowing to :
(+) HAL_FDCAN_GetState() : Return the FDCAN state.
(+) HAL_FDCAN_GetError() : Return the FDCAN error code if any.
@endverbatim
* @{
*/
/**
* @brief Return the FDCAN state
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval HAL state
*/
HAL_FDCAN_StateTypeDef HAL_FDCAN_GetState(const FDCAN_HandleTypeDef *hfdcan)
{
/* Return FDCAN state */
return hfdcan->State;
}
/**
* @brief Return the FDCAN error code
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval FDCAN Error Code
*/
uint32_t HAL_FDCAN_GetError(const FDCAN_HandleTypeDef *hfdcan)
{
/* Return FDCAN error code */
return hfdcan->ErrorCode;
}
/**
* @}
*/
/**
* @}
*/
/** @addtogroup FDCAN_Private_Functions
* @{
*/
/**
* @brief Calculate each RAM block start address and size
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval HAL status
*/
static HAL_StatusTypeDef FDCAN_CalcultateRamBlockAddresses(FDCAN_HandleTypeDef *hfdcan)
{
uint32_t RAMcounter;
uint32_t StartAddress;
StartAddress = hfdcan->Init.MessageRAMOffset;
/* Standard filter list start address */
MODIFY_REG(hfdcan->Instance->SIDFC, FDCAN_SIDFC_FLSSA, (StartAddress << FDCAN_SIDFC_FLSSA_Pos));
/* Standard filter elements number */
MODIFY_REG(hfdcan->Instance->SIDFC, FDCAN_SIDFC_LSS, (hfdcan->Init.StdFiltersNbr << FDCAN_SIDFC_LSS_Pos));
/* Extended filter list start address */
StartAddress += hfdcan->Init.StdFiltersNbr;
MODIFY_REG(hfdcan->Instance->XIDFC, FDCAN_XIDFC_FLESA, (StartAddress << FDCAN_XIDFC_FLESA_Pos));
/* Extended filter elements number */
MODIFY_REG(hfdcan->Instance->XIDFC, FDCAN_XIDFC_LSE, (hfdcan->Init.ExtFiltersNbr << FDCAN_XIDFC_LSE_Pos));
/* Rx FIFO 0 start address */
StartAddress += (hfdcan->Init.ExtFiltersNbr * 2U);
MODIFY_REG(hfdcan->Instance->RXF0C, FDCAN_RXF0C_F0SA, (StartAddress << FDCAN_RXF0C_F0SA_Pos));
/* Rx FIFO 0 elements number */
MODIFY_REG(hfdcan->Instance->RXF0C, FDCAN_RXF0C_F0S, (hfdcan->Init.RxFifo0ElmtsNbr << FDCAN_RXF0C_F0S_Pos));
/* Rx FIFO 1 start address */
StartAddress += (hfdcan->Init.RxFifo0ElmtsNbr * hfdcan->Init.RxFifo0ElmtSize);
MODIFY_REG(hfdcan->Instance->RXF1C, FDCAN_RXF1C_F1SA, (StartAddress << FDCAN_RXF1C_F1SA_Pos));
/* Rx FIFO 1 elements number */
MODIFY_REG(hfdcan->Instance->RXF1C, FDCAN_RXF1C_F1S, (hfdcan->Init.RxFifo1ElmtsNbr << FDCAN_RXF1C_F1S_Pos));
/* Rx buffer list start address */
StartAddress += (hfdcan->Init.RxFifo1ElmtsNbr * hfdcan->Init.RxFifo1ElmtSize);
MODIFY_REG(hfdcan->Instance->RXBC, FDCAN_RXBC_RBSA, (StartAddress << FDCAN_RXBC_RBSA_Pos));
/* Tx event FIFO start address */
StartAddress += (hfdcan->Init.RxBuffersNbr * hfdcan->Init.RxBufferSize);
MODIFY_REG(hfdcan->Instance->TXEFC, FDCAN_TXEFC_EFSA, (StartAddress << FDCAN_TXEFC_EFSA_Pos));
/* Tx event FIFO elements number */
MODIFY_REG(hfdcan->Instance->TXEFC, FDCAN_TXEFC_EFS, (hfdcan->Init.TxEventsNbr << FDCAN_TXEFC_EFS_Pos));
/* Tx buffer list start address */
StartAddress += (hfdcan->Init.TxEventsNbr * 2U);
MODIFY_REG(hfdcan->Instance->TXBC, FDCAN_TXBC_TBSA, (StartAddress << FDCAN_TXBC_TBSA_Pos));
/* Dedicated Tx buffers number */
MODIFY_REG(hfdcan->Instance->TXBC, FDCAN_TXBC_NDTB, (hfdcan->Init.TxBuffersNbr << FDCAN_TXBC_NDTB_Pos));
/* Tx FIFO/queue elements number */
MODIFY_REG(hfdcan->Instance->TXBC, FDCAN_TXBC_TFQS, (hfdcan->Init.TxFifoQueueElmtsNbr << FDCAN_TXBC_TFQS_Pos));
hfdcan->msgRam.StandardFilterSA = SRAMCAN_BASE + (hfdcan->Init.MessageRAMOffset * 4U);
hfdcan->msgRam.ExtendedFilterSA = hfdcan->msgRam.StandardFilterSA + (hfdcan->Init.StdFiltersNbr * 4U);
hfdcan->msgRam.RxFIFO0SA = hfdcan->msgRam.ExtendedFilterSA + (hfdcan->Init.ExtFiltersNbr * 2U * 4U);
hfdcan->msgRam.RxFIFO1SA = hfdcan->msgRam.RxFIFO0SA +
(hfdcan->Init.RxFifo0ElmtsNbr * hfdcan->Init.RxFifo0ElmtSize * 4U);
hfdcan->msgRam.RxBufferSA = hfdcan->msgRam.RxFIFO1SA +
(hfdcan->Init.RxFifo1ElmtsNbr * hfdcan->Init.RxFifo1ElmtSize * 4U);
hfdcan->msgRam.TxEventFIFOSA = hfdcan->msgRam.RxBufferSA +
(hfdcan->Init.RxBuffersNbr * hfdcan->Init.RxBufferSize * 4U);
hfdcan->msgRam.TxBufferSA = hfdcan->msgRam.TxEventFIFOSA + (hfdcan->Init.TxEventsNbr * 2U * 4U);
hfdcan->msgRam.TxFIFOQSA = hfdcan->msgRam.TxBufferSA + (hfdcan->Init.TxBuffersNbr * hfdcan->Init.TxElmtSize * 4U);
hfdcan->msgRam.EndAddress = hfdcan->msgRam.TxFIFOQSA +
(hfdcan->Init.TxFifoQueueElmtsNbr * hfdcan->Init.TxElmtSize * 4U);
if (hfdcan->msgRam.EndAddress > FDCAN_MESSAGE_RAM_END_ADDRESS) /* Last address of the Message RAM */
{
/* Update error code.
Message RAM overflow */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_PARAM;
/* Change FDCAN state */
hfdcan->State = HAL_FDCAN_STATE_ERROR;
return HAL_ERROR;
}
else
{
/* Flush the allocated Message RAM area */
for (RAMcounter = hfdcan->msgRam.StandardFilterSA; RAMcounter < hfdcan->msgRam.EndAddress; RAMcounter += 4U)
{
*(uint32_t *)(RAMcounter) = 0x00000000;
}
}
/* Return function status */
return HAL_OK;
}
/**
* @brief Copy Tx message to the message RAM.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param pTxHeader pointer to a FDCAN_TxHeaderTypeDef structure.
* @param pTxData pointer to a buffer containing the payload of the Tx frame.
* @param BufferIndex index of the buffer to be configured.
* @retval HAL status
*/
static void FDCAN_CopyMessageToRAM(FDCAN_HandleTypeDef *hfdcan, const FDCAN_TxHeaderTypeDef *pTxHeader,
const uint8_t *pTxData, uint32_t BufferIndex)
{
uint32_t TxElementW1;
uint32_t TxElementW2;
uint32_t *TxAddress;
uint32_t ByteCounter;
/* Build first word of Tx header element */
if (pTxHeader->IdType == FDCAN_STANDARD_ID)
{
TxElementW1 = (pTxHeader->ErrorStateIndicator |
FDCAN_STANDARD_ID |
pTxHeader->TxFrameType |
(pTxHeader->Identifier << 18));
}
else /* pTxHeader->IdType == FDCAN_EXTENDED_ID */
{
TxElementW1 = (pTxHeader->ErrorStateIndicator |
FDCAN_EXTENDED_ID |
pTxHeader->TxFrameType |
pTxHeader->Identifier);
}
/* Build second word of Tx header element */
TxElementW2 = ((pTxHeader->MessageMarker << 24) |
pTxHeader->TxEventFifoControl |
pTxHeader->FDFormat |
pTxHeader->BitRateSwitch |
pTxHeader->DataLength);
/* Calculate Tx element address */
TxAddress = (uint32_t *)(hfdcan->msgRam.TxBufferSA + (BufferIndex * hfdcan->Init.TxElmtSize * 4U));
/* Write Tx element header to the message RAM */
*TxAddress = TxElementW1;
TxAddress++;
*TxAddress = TxElementW2;
TxAddress++;
/* Write Tx payload to the message RAM */
for (ByteCounter = 0; ByteCounter < DLCtoBytes[pTxHeader->DataLength >> 16]; ByteCounter += 4U)
{
*TxAddress = (((uint32_t)pTxData[ByteCounter + 3U] << 24) |
((uint32_t)pTxData[ByteCounter + 2U] << 16) |
((uint32_t)pTxData[ByteCounter + 1U] << 8) |
(uint32_t)pTxData[ByteCounter]);
TxAddress++;
}
}
/**
* @}
*/
#endif /* HAL_FDCAN_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/
#endif /* FDCAN1 */