| /** |
| ****************************************************************************** |
| * @file stm32h7xx_hal_rcc.c |
| * @author MCD Application Team |
| * @brief RCC HAL module driver. |
| * This file provides firmware functions to manage the following |
| * functionalities of the Reset and Clock Control (RCC) peripheral: |
| * + Initialization and de-initialization functions |
| * + Peripheral Control functions |
| * |
| @verbatim |
| ============================================================================== |
| ##### RCC specific features ##### |
| ============================================================================== |
| [..] |
| After reset the device is running from Internal High Speed oscillator |
| (HSI 64MHz) with Flash 0 wait state,and all peripherals are off except |
| internal SRAM, Flash, JTAG and PWR |
| (+) There is no pre-scaler on High speed (AHB) and Low speed (APB) buses; |
| all peripherals mapped on these buses are running at HSI speed. |
| (+) The clock for all peripherals is switched off, except the SRAM and FLASH. |
| (+) All GPIOs are in analogue mode , except the JTAG pins which |
| are assigned to be used for debug purpose. |
| |
| [..] |
| Once the device started from reset, the user application has to: |
| (+) Configure the clock source to be used to drive the System clock |
| (if the application needs higher frequency/performance) |
| (+) Configure the System clock frequency and Flash settings |
| (+) Configure the AHB and APB buses pre-scalers |
| (+) Enable the clock for the peripheral(s) to be used |
| (+) Configure the clock kernel source(s) for peripherals which clocks are not |
| derived from the System clock through :RCC_D1CCIPR,RCC_D2CCIP1R,RCC_D2CCIP2R |
| and RCC_D3CCIPR registers |
| |
| ##### RCC Limitations ##### |
| ============================================================================== |
| [..] |
| A delay between an RCC peripheral clock enable and the effective peripheral |
| enabling should be taken into account in order to manage the peripheral read/write |
| from/to registers. |
| (+) This delay depends on the peripheral mapping. |
| (+) If peripheral is mapped on AHB: the delay is 2 AHB clock cycle |
| after the clock enable bit is set on the hardware register |
| (+) If peripheral is mapped on APB: the delay is 2 APB clock cycle |
| after the clock enable bit is set on the hardware register |
| |
| [..] |
| Implemented Workaround: |
| (+) For AHB & APB peripherals, a dummy read to the peripheral register has been |
| inserted in each __HAL_RCC_PPP_CLK_ENABLE() macro. |
| |
| @endverbatim |
| ****************************************************************************** |
| * @attention |
| * |
| * Copyright (c) 2017 STMicroelectronics. |
| * All rights reserved. |
| * |
| * This software is licensed under terms that can be found in the LICENSE file in |
| * the root directory of this software component. |
| * If no LICENSE file comes with this software, it is provided AS-IS. |
| ****************************************************************************** |
| */ |
| |
| /* Includes ------------------------------------------------------------------*/ |
| #include "stm32h7xx_hal.h" |
| |
| /** @addtogroup STM32H7xx_HAL_Driver |
| * @{ |
| */ |
| |
| /** @defgroup RCC RCC |
| * @brief RCC HAL module driver |
| * @{ |
| */ |
| |
| #ifdef HAL_RCC_MODULE_ENABLED |
| |
| /* Private typedef -----------------------------------------------------------*/ |
| /* Private define ------------------------------------------------------------*/ |
| /* Private macro -------------------------------------------------------------*/ |
| /** @defgroup RCC_Private_Macros RCC Private Macros |
| * @{ |
| */ |
| #define MCO1_CLK_ENABLE() __HAL_RCC_GPIOA_CLK_ENABLE() |
| #define MCO1_GPIO_PORT GPIOA |
| #define MCO1_PIN GPIO_PIN_8 |
| |
| #define MCO2_CLK_ENABLE() __HAL_RCC_GPIOC_CLK_ENABLE() |
| #define MCO2_GPIO_PORT GPIOC |
| #define MCO2_PIN GPIO_PIN_9 |
| |
| /** |
| * @} |
| */ |
| /* Private variables ---------------------------------------------------------*/ |
| /** @defgroup RCC_Private_Variables RCC Private Variables |
| * @{ |
| */ |
| |
| /** |
| * @} |
| */ |
| /* Private function prototypes -----------------------------------------------*/ |
| /* Exported functions --------------------------------------------------------*/ |
| |
| /** @defgroup RCC_Exported_Functions RCC Exported Functions |
| * @{ |
| */ |
| |
| /** @defgroup RCC_Exported_Functions_Group1 Initialization and de-initialization functions |
| * @brief Initialization and Configuration functions |
| * |
| @verbatim |
| =============================================================================== |
| ##### Initialization and de-initialization functions ##### |
| =============================================================================== |
| [..] |
| This section provides functions allowing to configure the internal/external oscillators |
| (HSE, HSI, LSE,CSI, LSI,HSI48, PLL, CSS and MCO) and the System buses clocks (SYSCLK, AHB3, AHB1 |
| AHB2,AHB4,APB3, APB1L, APB1H, APB2, and APB4). |
| |
| [..] Internal/external clock and PLL configuration |
| (#) HSI (high-speed internal), 64 MHz factory-trimmed RC used directly or through |
| the PLL as System clock source. |
| (#) CSI is a low-power RC oscillator which can be used directly as system clock, peripheral |
| clock, or PLL input.But even with frequency calibration, is less accurate than an |
| external crystal oscillator or ceramic resonator. |
| (#) LSI (low-speed internal), 32 KHz low consumption RC used as IWDG and/or RTC |
| clock source. |
| |
| (#) HSE (high-speed external), 4 to 48 MHz crystal oscillator used directly or |
| through the PLL as System clock source. Can be used also as RTC clock source. |
| |
| (#) LSE (low-speed external), 32 KHz oscillator used as RTC clock source. |
| |
| (#) PLL , The RCC features three independent PLLs (clocked by HSI , HSE or CSI), |
| featuring three different output clocks and able to work either in integer or Fractional mode. |
| (++) A main PLL, PLL1, which is generally used to provide clocks to the CPU |
| and to some peripherals. |
| (++) Two dedicated PLLs, PLL2 and PLL3, which are used to generate the kernel clock for peripherals. |
| |
| |
| (#) CSS (Clock security system), once enabled and if a HSE clock failure occurs |
| (HSE used directly or through PLL as System clock source), the System clock |
| is automatically switched to HSI and an interrupt is generated if enabled. |
| The interrupt is linked to the Cortex-M NMI (Non-Mask-able Interrupt) |
| exception vector. |
| |
| (#) MCO1 (micro controller clock output), used to output HSI, LSE, HSE, PLL1(PLL1_Q) |
| or HSI48 clock (through a configurable pre-scaler) on PA8 pin. |
| |
| (#) MCO2 (micro controller clock output), used to output HSE, PLL2(PLL2_P), SYSCLK, |
| LSI, CSI, or PLL1(PLL1_P) clock (through a configurable pre-scaler) on PC9 pin. |
| |
| [..] System, AHB and APB buses clocks configuration |
| (#) Several clock sources can be used to drive the System clock (SYSCLK): CSI,HSI, |
| HSE and PLL. |
| The AHB clock (HCLK) is derived from System core clock through configurable |
| pre-scaler and used to clock the CPU, memory and peripherals mapped |
| on AHB and APB bus of the 3 Domains (D1, D2, D3)* through configurable pre-scalers |
| and used to clock the peripherals mapped on these buses. You can use |
| "HAL_RCC_GetSysClockFreq()" function to retrieve system clock frequency. |
| |
| -@- All the peripheral clocks are derived from the System clock (SYSCLK) except those |
| with dual clock domain where kernel source clock could be selected through |
| RCC_D1CCIPR,RCC_D2CCIP1R,RCC_D2CCIP2R and RCC_D3CCIPR registers. |
| |
| (*) : 2 Domains (CD and SRD) for stm32h7a3xx and stm32h7b3xx family lines. |
| @endverbatim |
| * @{ |
| */ |
| |
| /** |
| * @brief Resets the RCC clock configuration to the default reset state. |
| * @note The default reset state of the clock configuration is given below: |
| * - HSI ON and used as system clock source |
| * - HSE, PLL1, PLL2 and PLL3 OFF |
| * - AHB, APB Bus pre-scaler set to 1. |
| * - CSS, MCO1 and MCO2 OFF |
| * - All interrupts disabled |
| * @note This function doesn't modify the configuration of the |
| * - Peripheral clocks |
| * - LSI, LSE and RTC clocks |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_RCC_DeInit(void) |
| { |
| uint32_t tickstart; |
| |
| /* Increasing the CPU frequency */ |
| if (FLASH_LATENCY_DEFAULT > __HAL_FLASH_GET_LATENCY()) |
| { |
| /* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */ |
| __HAL_FLASH_SET_LATENCY(FLASH_LATENCY_DEFAULT); |
| |
| /* Check that the new number of wait states is taken into account to access the Flash |
| memory by reading the FLASH_ACR register */ |
| if (__HAL_FLASH_GET_LATENCY() != FLASH_LATENCY_DEFAULT) |
| { |
| return HAL_ERROR; |
| } |
| |
| } |
| |
| |
| /* Get Start Tick */ |
| tickstart = HAL_GetTick(); |
| |
| /* Set HSION bit */ |
| SET_BIT(RCC->CR, RCC_CR_HSION); |
| |
| /* Wait till HSI is ready */ |
| while (READ_BIT(RCC->CR, RCC_CR_HSIRDY) == 0U) |
| { |
| if ((HAL_GetTick() - tickstart) > HSI_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| |
| /* Set HSITRIM[6:0] bits to the reset value */ |
| SET_BIT(RCC->HSICFGR, RCC_HSICFGR_HSITRIM_6); |
| |
| /* Reset CFGR register */ |
| CLEAR_REG(RCC->CFGR); |
| |
| /* Update the SystemCoreClock and SystemD2Clock global variables */ |
| SystemCoreClock = HSI_VALUE; |
| SystemD2Clock = HSI_VALUE; |
| |
| /* Adapt Systick interrupt period */ |
| if (HAL_InitTick(uwTickPrio) != HAL_OK) |
| { |
| return HAL_ERROR; |
| } |
| |
| /* Get Start Tick */ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till clock switch is ready */ |
| while (READ_BIT(RCC->CFGR, RCC_CFGR_SWS) != 0U) |
| { |
| if ((HAL_GetTick() - tickstart) > CLOCKSWITCH_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| |
| /* Get Start Tick */ |
| tickstart = HAL_GetTick(); |
| |
| /* Reset CSION, CSIKERON, HSEON, HSI48ON, HSECSSON, HSIDIV bits */ |
| CLEAR_BIT(RCC->CR, RCC_CR_HSEON | RCC_CR_HSIKERON | RCC_CR_HSIDIV | RCC_CR_HSIDIVF | RCC_CR_CSION | RCC_CR_CSIKERON \ |
| | RCC_CR_HSI48ON | RCC_CR_CSSHSEON); |
| |
| /* Wait till HSE is disabled */ |
| while (READ_BIT(RCC->CR, RCC_CR_HSERDY) != 0U) |
| { |
| if ((HAL_GetTick() - tickstart) > HSE_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| |
| /* Get Start Tick */ |
| tickstart = HAL_GetTick(); |
| |
| /* Clear PLLON bit */ |
| CLEAR_BIT(RCC->CR, RCC_CR_PLL1ON); |
| |
| /* Wait till PLL is disabled */ |
| while (READ_BIT(RCC->CR, RCC_CR_PLL1RDY) != 0U) |
| { |
| if ((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| |
| /* Get Start Tick */ |
| tickstart = HAL_GetTick(); |
| |
| /* Reset PLL2ON bit */ |
| CLEAR_BIT(RCC->CR, RCC_CR_PLL2ON); |
| |
| /* Wait till PLL2 is disabled */ |
| while (READ_BIT(RCC->CR, RCC_CR_PLL2RDY) != 0U) |
| { |
| if ((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| |
| /* Get Start Tick */ |
| tickstart = HAL_GetTick(); |
| |
| /* Reset PLL3 bit */ |
| CLEAR_BIT(RCC->CR, RCC_CR_PLL3ON); |
| |
| /* Wait till PLL3 is disabled */ |
| while (READ_BIT(RCC->CR, RCC_CR_PLL3RDY) != 0U) |
| { |
| if ((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| |
| #if defined(RCC_D1CFGR_HPRE) |
| /* Reset D1CFGR register */ |
| CLEAR_REG(RCC->D1CFGR); |
| |
| /* Reset D2CFGR register */ |
| CLEAR_REG(RCC->D2CFGR); |
| |
| /* Reset D3CFGR register */ |
| CLEAR_REG(RCC->D3CFGR); |
| #else |
| /* Reset CDCFGR1 register */ |
| CLEAR_REG(RCC->CDCFGR1); |
| |
| /* Reset CDCFGR2 register */ |
| CLEAR_REG(RCC->CDCFGR2); |
| |
| /* Reset SRDCFGR register */ |
| CLEAR_REG(RCC->SRDCFGR); |
| #endif |
| |
| /* Reset PLLCKSELR register to default value */ |
| RCC->PLLCKSELR = RCC_PLLCKSELR_DIVM1_5 | RCC_PLLCKSELR_DIVM2_5 | RCC_PLLCKSELR_DIVM3_5; |
| |
| /* Reset PLLCFGR register to default value */ |
| WRITE_REG(RCC->PLLCFGR, 0x01FF0000U); |
| |
| /* Reset PLL1DIVR register to default value */ |
| WRITE_REG(RCC->PLL1DIVR, 0x01010280U); |
| |
| /* Reset PLL1FRACR register */ |
| CLEAR_REG(RCC->PLL1FRACR); |
| |
| /* Reset PLL2DIVR register to default value */ |
| WRITE_REG(RCC->PLL2DIVR, 0x01010280U); |
| |
| /* Reset PLL2FRACR register */ |
| CLEAR_REG(RCC->PLL2FRACR); |
| |
| /* Reset PLL3DIVR register to default value */ |
| WRITE_REG(RCC->PLL3DIVR, 0x01010280U); |
| |
| /* Reset PLL3FRACR register */ |
| CLEAR_REG(RCC->PLL3FRACR); |
| |
| #if defined(RCC_CR_HSEEXT) |
| /* Reset HSEEXT */ |
| CLEAR_BIT(RCC->CR, RCC_CR_HSEEXT); |
| #endif /* RCC_CR_HSEEXT */ |
| |
| /* Reset HSEBYP bit */ |
| CLEAR_BIT(RCC->CR, RCC_CR_HSEBYP); |
| |
| /* Disable all interrupts */ |
| CLEAR_REG(RCC->CIER); |
| |
| /* Clear all interrupts flags */ |
| WRITE_REG(RCC->CICR, 0xFFFFFFFFU); |
| |
| /* Reset all RSR flags */ |
| SET_BIT(RCC->RSR, RCC_RSR_RMVF); |
| |
| /* Decreasing the number of wait states because of lower CPU frequency */ |
| if (FLASH_LATENCY_DEFAULT < __HAL_FLASH_GET_LATENCY()) |
| { |
| /* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */ |
| __HAL_FLASH_SET_LATENCY(FLASH_LATENCY_DEFAULT); |
| |
| /* Check that the new number of wait states is taken into account to access the Flash |
| memory by reading the FLASH_ACR register */ |
| if (__HAL_FLASH_GET_LATENCY() != FLASH_LATENCY_DEFAULT) |
| { |
| return HAL_ERROR; |
| } |
| |
| } |
| |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Initializes the RCC Oscillators according to the specified parameters in the |
| * RCC_OscInitTypeDef. |
| * @param RCC_OscInitStruct: pointer to an RCC_OscInitTypeDef structure that |
| * contains the configuration information for the RCC Oscillators. |
| * @note The PLL is not disabled when used as system clock. |
| * @note Transitions LSE Bypass to LSE On and LSE On to LSE Bypass are not |
| * supported by this function. User should request a transition to LSE Off |
| * first and then LSE On or LSE Bypass. |
| * @note Transition HSE Bypass to HSE On and HSE On to HSE Bypass are not |
| * supported by this function. User should request a transition to HSE Off |
| * first and then HSE On or HSE Bypass. |
| * @retval HAL status |
| */ |
| __weak HAL_StatusTypeDef HAL_RCC_OscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct) |
| { |
| uint32_t tickstart; |
| uint32_t temp1_pllckcfg, temp2_pllckcfg; |
| |
| /* Check Null pointer */ |
| if (RCC_OscInitStruct == NULL) |
| { |
| return HAL_ERROR; |
| } |
| |
| /* Check the parameters */ |
| assert_param(IS_RCC_OSCILLATORTYPE(RCC_OscInitStruct->OscillatorType)); |
| /*------------------------------- HSE Configuration ------------------------*/ |
| if (((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSE) == RCC_OSCILLATORTYPE_HSE) |
| { |
| /* Check the parameters */ |
| assert_param(IS_RCC_HSE(RCC_OscInitStruct->HSEState)); |
| |
| const uint32_t temp_sysclksrc = __HAL_RCC_GET_SYSCLK_SOURCE(); |
| const uint32_t temp_pllckselr = RCC->PLLCKSELR; |
| /* When the HSE is used as system clock or clock source for PLL in these cases HSE will not disabled */ |
| if ((temp_sysclksrc == RCC_CFGR_SWS_HSE) || ((temp_sysclksrc == RCC_CFGR_SWS_PLL1) && ((temp_pllckselr & RCC_PLLCKSELR_PLLSRC) == RCC_PLLCKSELR_PLLSRC_HSE))) |
| { |
| if ((__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) != 0U) && (RCC_OscInitStruct->HSEState == RCC_HSE_OFF)) |
| { |
| return HAL_ERROR; |
| } |
| } |
| else |
| { |
| /* Set the new HSE configuration ---------------------------------------*/ |
| __HAL_RCC_HSE_CONFIG(RCC_OscInitStruct->HSEState); |
| |
| /* Check the HSE State */ |
| if (RCC_OscInitStruct->HSEState != RCC_HSE_OFF) |
| { |
| /* Get Start Tick*/ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till HSE is ready */ |
| while (__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) == 0U) |
| { |
| if ((uint32_t)(HAL_GetTick() - tickstart) > HSE_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| else |
| { |
| /* Get Start Tick*/ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till HSE is disabled */ |
| while (__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) != 0U) |
| { |
| if ((uint32_t)(HAL_GetTick() - tickstart) > HSE_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| } |
| } |
| /*----------------------------- HSI Configuration --------------------------*/ |
| if (((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSI) == RCC_OSCILLATORTYPE_HSI) |
| { |
| /* Check the parameters */ |
| assert_param(IS_RCC_HSI(RCC_OscInitStruct->HSIState)); |
| assert_param(IS_RCC_HSICALIBRATION_VALUE(RCC_OscInitStruct->HSICalibrationValue)); |
| |
| /* When the HSI is used as system clock it will not be disabled */ |
| const uint32_t temp_sysclksrc = __HAL_RCC_GET_SYSCLK_SOURCE(); |
| const uint32_t temp_pllckselr = RCC->PLLCKSELR; |
| if ((temp_sysclksrc == RCC_CFGR_SWS_HSI) || ((temp_sysclksrc == RCC_CFGR_SWS_PLL1) && ((temp_pllckselr & RCC_PLLCKSELR_PLLSRC) == RCC_PLLCKSELR_PLLSRC_HSI))) |
| { |
| /* When HSI is used as system clock it will not be disabled */ |
| if ((__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) != 0U) && (RCC_OscInitStruct->HSIState == RCC_HSI_OFF)) |
| { |
| return HAL_ERROR; |
| } |
| /* Otherwise, only HSI division and calibration are allowed */ |
| else |
| { |
| /* Enable the Internal High Speed oscillator (HSI, HSIDIV2, HSIDIV4, or HSIDIV8) */ |
| __HAL_RCC_HSI_CONFIG(RCC_OscInitStruct->HSIState); |
| |
| /* Get Start Tick*/ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till HSI is ready */ |
| while (__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) == 0U) |
| { |
| if ((uint32_t)(HAL_GetTick() - tickstart) > HSI_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| /* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/ |
| __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue); |
| } |
| } |
| |
| else |
| { |
| /* Check the HSI State */ |
| if ((RCC_OscInitStruct->HSIState) != RCC_HSI_OFF) |
| { |
| /* Enable the Internal High Speed oscillator (HSI, HSIDIV2,HSIDIV4, or HSIDIV8) */ |
| __HAL_RCC_HSI_CONFIG(RCC_OscInitStruct->HSIState); |
| |
| /* Get Start Tick*/ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till HSI is ready */ |
| while (__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) == 0U) |
| { |
| if ((HAL_GetTick() - tickstart) > HSI_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| |
| /* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/ |
| __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue); |
| } |
| else |
| { |
| /* Disable the Internal High Speed oscillator (HSI). */ |
| __HAL_RCC_HSI_DISABLE(); |
| |
| /* Get Start Tick*/ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till HSI is disabled */ |
| while (__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) != 0U) |
| { |
| if ((HAL_GetTick() - tickstart) > HSI_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| } |
| } |
| /*----------------------------- CSI Configuration --------------------------*/ |
| if (((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_CSI) == RCC_OSCILLATORTYPE_CSI) |
| { |
| /* Check the parameters */ |
| assert_param(IS_RCC_CSI(RCC_OscInitStruct->CSIState)); |
| assert_param(IS_RCC_CSICALIBRATION_VALUE(RCC_OscInitStruct->CSICalibrationValue)); |
| |
| /* When the CSI is used as system clock it will not disabled */ |
| const uint32_t temp_sysclksrc = __HAL_RCC_GET_SYSCLK_SOURCE(); |
| const uint32_t temp_pllckselr = RCC->PLLCKSELR; |
| if ((temp_sysclksrc == RCC_CFGR_SWS_CSI) || ((temp_sysclksrc == RCC_CFGR_SWS_PLL1) && ((temp_pllckselr & RCC_PLLCKSELR_PLLSRC) == RCC_PLLCKSELR_PLLSRC_CSI))) |
| { |
| /* When CSI is used as system clock it will not disabled */ |
| if ((__HAL_RCC_GET_FLAG(RCC_FLAG_CSIRDY) != 0U) && (RCC_OscInitStruct->CSIState != RCC_CSI_ON)) |
| { |
| return HAL_ERROR; |
| } |
| /* Otherwise, just the calibration is allowed */ |
| else |
| { |
| /* Adjusts the Internal High Speed oscillator (CSI) calibration value.*/ |
| __HAL_RCC_CSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->CSICalibrationValue); |
| } |
| } |
| else |
| { |
| /* Check the CSI State */ |
| if ((RCC_OscInitStruct->CSIState) != RCC_CSI_OFF) |
| { |
| /* Enable the Internal High Speed oscillator (CSI). */ |
| __HAL_RCC_CSI_ENABLE(); |
| |
| /* Get Start Tick*/ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till CSI is ready */ |
| while (__HAL_RCC_GET_FLAG(RCC_FLAG_CSIRDY) == 0U) |
| { |
| if ((HAL_GetTick() - tickstart) > CSI_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| |
| /* Adjusts the Internal High Speed oscillator (CSI) calibration value.*/ |
| __HAL_RCC_CSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->CSICalibrationValue); |
| } |
| else |
| { |
| /* Disable the Internal High Speed oscillator (CSI). */ |
| __HAL_RCC_CSI_DISABLE(); |
| |
| /* Get Start Tick*/ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till CSI is disabled */ |
| while (__HAL_RCC_GET_FLAG(RCC_FLAG_CSIRDY) != 0U) |
| { |
| if ((HAL_GetTick() - tickstart) > CSI_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| } |
| } |
| /*------------------------------ LSI Configuration -------------------------*/ |
| if (((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSI) == RCC_OSCILLATORTYPE_LSI) |
| { |
| /* Check the parameters */ |
| assert_param(IS_RCC_LSI(RCC_OscInitStruct->LSIState)); |
| |
| /* Check the LSI State */ |
| if ((RCC_OscInitStruct->LSIState) != RCC_LSI_OFF) |
| { |
| /* Enable the Internal Low Speed oscillator (LSI). */ |
| __HAL_RCC_LSI_ENABLE(); |
| |
| /* Get Start Tick*/ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till LSI is ready */ |
| while (__HAL_RCC_GET_FLAG(RCC_FLAG_LSIRDY) == 0U) |
| { |
| if ((HAL_GetTick() - tickstart) > LSI_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| else |
| { |
| /* Disable the Internal Low Speed oscillator (LSI). */ |
| __HAL_RCC_LSI_DISABLE(); |
| |
| /* Get Start Tick*/ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till LSI is ready */ |
| while (__HAL_RCC_GET_FLAG(RCC_FLAG_LSIRDY) != 0U) |
| { |
| if ((HAL_GetTick() - tickstart) > LSI_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| } |
| |
| /*------------------------------ HSI48 Configuration -------------------------*/ |
| if (((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSI48) == RCC_OSCILLATORTYPE_HSI48) |
| { |
| /* Check the parameters */ |
| assert_param(IS_RCC_HSI48(RCC_OscInitStruct->HSI48State)); |
| |
| /* Check the HSI48 State */ |
| if ((RCC_OscInitStruct->HSI48State) != RCC_HSI48_OFF) |
| { |
| /* Enable the Internal Low Speed oscillator (HSI48). */ |
| __HAL_RCC_HSI48_ENABLE(); |
| |
| /* Get time-out */ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till HSI48 is ready */ |
| while (__HAL_RCC_GET_FLAG(RCC_FLAG_HSI48RDY) == 0U) |
| { |
| if ((HAL_GetTick() - tickstart) > HSI48_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| else |
| { |
| /* Disable the Internal Low Speed oscillator (HSI48). */ |
| __HAL_RCC_HSI48_DISABLE(); |
| |
| /* Get time-out */ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till HSI48 is ready */ |
| while (__HAL_RCC_GET_FLAG(RCC_FLAG_HSI48RDY) != 0U) |
| { |
| if ((HAL_GetTick() - tickstart) > HSI48_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| } |
| /*------------------------------ LSE Configuration -------------------------*/ |
| if (((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSE) == RCC_OSCILLATORTYPE_LSE) |
| { |
| /* Check the parameters */ |
| assert_param(IS_RCC_LSE(RCC_OscInitStruct->LSEState)); |
| |
| /* Enable write access to Backup domain */ |
| PWR->CR1 |= PWR_CR1_DBP; |
| |
| /* Wait for Backup domain Write protection disable */ |
| tickstart = HAL_GetTick(); |
| |
| while ((PWR->CR1 & PWR_CR1_DBP) == 0U) |
| { |
| if ((HAL_GetTick() - tickstart) > RCC_DBP_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| |
| /* Set the new LSE configuration -----------------------------------------*/ |
| __HAL_RCC_LSE_CONFIG(RCC_OscInitStruct->LSEState); |
| /* Check the LSE State */ |
| if ((RCC_OscInitStruct->LSEState) != RCC_LSE_OFF) |
| { |
| /* Get Start Tick*/ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till LSE is ready */ |
| while (__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) == 0U) |
| { |
| if ((HAL_GetTick() - tickstart) > RCC_LSE_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| else |
| { |
| /* Get Start Tick*/ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till LSE is disabled */ |
| while (__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) != 0U) |
| { |
| if ((HAL_GetTick() - tickstart) > RCC_LSE_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| } |
| /*-------------------------------- PLL Configuration -----------------------*/ |
| /* Check the parameters */ |
| assert_param(IS_RCC_PLL(RCC_OscInitStruct->PLL.PLLState)); |
| if ((RCC_OscInitStruct->PLL.PLLState) != RCC_PLL_NONE) |
| { |
| /* Check if the PLL is used as system clock or not */ |
| if (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_CFGR_SWS_PLL1) |
| { |
| if ((RCC_OscInitStruct->PLL.PLLState) == RCC_PLL_ON) |
| { |
| /* Check the parameters */ |
| assert_param(IS_RCC_PLLSOURCE(RCC_OscInitStruct->PLL.PLLSource)); |
| assert_param(IS_RCC_PLLRGE_VALUE(RCC_OscInitStruct->PLL.PLLRGE)); |
| assert_param(IS_RCC_PLLVCO_VALUE(RCC_OscInitStruct->PLL.PLLVCOSEL)); |
| assert_param(IS_RCC_PLLM_VALUE(RCC_OscInitStruct->PLL.PLLM)); |
| assert_param(IS_RCC_PLLN_VALUE(RCC_OscInitStruct->PLL.PLLN)); |
| assert_param(IS_RCC_PLLP_VALUE(RCC_OscInitStruct->PLL.PLLP)); |
| assert_param(IS_RCC_PLLQ_VALUE(RCC_OscInitStruct->PLL.PLLQ)); |
| assert_param(IS_RCC_PLLR_VALUE(RCC_OscInitStruct->PLL.PLLR)); |
| assert_param(IS_RCC_PLLFRACN_VALUE(RCC_OscInitStruct->PLL.PLLFRACN)); |
| |
| /* Disable the main PLL. */ |
| __HAL_RCC_PLL_DISABLE(); |
| |
| /* Get Start Tick*/ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till PLL is disabled */ |
| while (__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) != 0U) |
| { |
| if ((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| |
| /* Configure the main PLL clock source, multiplication and division factors. */ |
| __HAL_RCC_PLL_CONFIG(RCC_OscInitStruct->PLL.PLLSource, |
| RCC_OscInitStruct->PLL.PLLM, |
| RCC_OscInitStruct->PLL.PLLN, |
| RCC_OscInitStruct->PLL.PLLP, |
| RCC_OscInitStruct->PLL.PLLQ, |
| RCC_OscInitStruct->PLL.PLLR); |
| |
| /* Disable PLLFRACN . */ |
| __HAL_RCC_PLLFRACN_DISABLE(); |
| |
| /* Configure PLL PLL1FRACN */ |
| __HAL_RCC_PLLFRACN_CONFIG(RCC_OscInitStruct->PLL.PLLFRACN); |
| |
| /* Select PLL1 input reference frequency range: VCI */ |
| __HAL_RCC_PLL_VCIRANGE(RCC_OscInitStruct->PLL.PLLRGE) ; |
| |
| /* Select PLL1 output frequency range : VCO */ |
| __HAL_RCC_PLL_VCORANGE(RCC_OscInitStruct->PLL.PLLVCOSEL) ; |
| |
| /* Enable PLL System Clock output. */ |
| __HAL_RCC_PLLCLKOUT_ENABLE(RCC_PLL1_DIVP); |
| |
| /* Enable PLL1Q Clock output. */ |
| __HAL_RCC_PLLCLKOUT_ENABLE(RCC_PLL1_DIVQ); |
| |
| /* Enable PLL1R Clock output. */ |
| __HAL_RCC_PLLCLKOUT_ENABLE(RCC_PLL1_DIVR); |
| |
| /* Enable PLL1FRACN . */ |
| __HAL_RCC_PLLFRACN_ENABLE(); |
| |
| /* Enable the main PLL. */ |
| __HAL_RCC_PLL_ENABLE(); |
| |
| /* Get Start Tick*/ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till PLL is ready */ |
| while (__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) == 0U) |
| { |
| if ((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| else |
| { |
| /* Disable the main PLL. */ |
| __HAL_RCC_PLL_DISABLE(); |
| |
| /* Get Start Tick*/ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till PLL is disabled */ |
| while (__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) != 0U) |
| { |
| if ((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| } |
| else |
| { |
| /* Do not return HAL_ERROR if request repeats the current configuration */ |
| temp1_pllckcfg = RCC->PLLCKSELR; |
| temp2_pllckcfg = RCC->PLL1DIVR; |
| if (((RCC_OscInitStruct->PLL.PLLState) == RCC_PLL_OFF) || |
| (READ_BIT(temp1_pllckcfg, RCC_PLLCKSELR_PLLSRC) != RCC_OscInitStruct->PLL.PLLSource) || |
| ((READ_BIT(temp1_pllckcfg, RCC_PLLCKSELR_DIVM1) >> RCC_PLLCKSELR_DIVM1_Pos) != RCC_OscInitStruct->PLL.PLLM) || |
| (READ_BIT(temp2_pllckcfg, RCC_PLL1DIVR_N1) != (RCC_OscInitStruct->PLL.PLLN - 1U)) || |
| ((READ_BIT(temp2_pllckcfg, RCC_PLL1DIVR_P1) >> RCC_PLL1DIVR_P1_Pos) != (RCC_OscInitStruct->PLL.PLLP - 1U)) || |
| ((READ_BIT(temp2_pllckcfg, RCC_PLL1DIVR_Q1) >> RCC_PLL1DIVR_Q1_Pos) != (RCC_OscInitStruct->PLL.PLLQ - 1U)) || |
| ((READ_BIT(temp2_pllckcfg, RCC_PLL1DIVR_R1) >> RCC_PLL1DIVR_R1_Pos) != (RCC_OscInitStruct->PLL.PLLR - 1U))) |
| { |
| return HAL_ERROR; |
| } |
| else |
| { |
| /* Check if only fractional part needs to be updated */ |
| temp1_pllckcfg = ((RCC->PLL1FRACR & RCC_PLL1FRACR_FRACN1) >> RCC_PLL1FRACR_FRACN1_Pos); |
| if (RCC_OscInitStruct->PLL.PLLFRACN != temp1_pllckcfg) |
| { |
| assert_param(IS_RCC_PLLFRACN_VALUE(RCC_OscInitStruct->PLL.PLLFRACN)); |
| /* Disable PLL1FRACEN */ |
| __HAL_RCC_PLLFRACN_DISABLE(); |
| /* Get Start Tick*/ |
| tickstart = HAL_GetTick(); |
| /* Wait at least 2 CK_REF (PLL input source divided by M) period to make sure next latched value will be taken into account. */ |
| while ((HAL_GetTick() - tickstart) < PLL_FRAC_TIMEOUT_VALUE) |
| { |
| } |
| /* Configure PLL1 PLL1FRACN */ |
| __HAL_RCC_PLLFRACN_CONFIG(RCC_OscInitStruct->PLL.PLLFRACN); |
| /* Enable PLL1FRACEN to latch new value. */ |
| __HAL_RCC_PLLFRACN_ENABLE(); |
| } |
| } |
| } |
| } |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Initializes the CPU, AHB and APB buses clocks according to the specified |
| * parameters in the RCC_ClkInitStruct. |
| * @param RCC_ClkInitStruct: pointer to an RCC_OscInitTypeDef structure that |
| * contains the configuration information for the RCC peripheral. |
| * @param FLatency: FLASH Latency, this parameter depend on device selected |
| * |
| * @note The SystemCoreClock CMSIS variable is used to store System Core Clock Frequency |
| * and updated by HAL_InitTick() function called within this function |
| * |
| * @note The HSI is used (enabled by hardware) as system clock source after |
| * start-up from Reset, wake-up from STOP and STANDBY mode, or in case |
| * of failure of the HSE used directly or indirectly as system clock |
| * (if the Clock Security System CSS is enabled). |
| * |
| * @note A switch from one clock source to another occurs only if the target |
| * clock source is ready (clock stable after start-up delay or PLL locked). |
| * If a clock source which is not yet ready is selected, the switch will |
| * occur when the clock source will be ready. |
| * You can use HAL_RCC_GetClockConfig() function to know which clock is |
| * currently used as system clock source. |
| * @note Depending on the device voltage range, the software has to set correctly |
| * D1CPRE[3:0] bits to ensure that Domain1 core clock not exceed the maximum allowed frequency |
| * (for more details refer to section above "Initialization/de-initialization functions") |
| * @retval None |
| */ |
| HAL_StatusTypeDef HAL_RCC_ClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t FLatency) |
| { |
| HAL_StatusTypeDef halstatus; |
| uint32_t tickstart; |
| uint32_t common_system_clock; |
| |
| /* Check Null pointer */ |
| if (RCC_ClkInitStruct == NULL) |
| { |
| return HAL_ERROR; |
| } |
| |
| /* Check the parameters */ |
| assert_param(IS_RCC_CLOCKTYPE(RCC_ClkInitStruct->ClockType)); |
| assert_param(IS_FLASH_LATENCY(FLatency)); |
| |
| /* To correctly read data from FLASH memory, the number of wait states (LATENCY) |
| must be correctly programmed according to the frequency of the CPU clock |
| (HCLK) and the supply voltage of the device. */ |
| |
| /* Increasing the CPU frequency */ |
| if (FLatency > __HAL_FLASH_GET_LATENCY()) |
| { |
| /* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */ |
| __HAL_FLASH_SET_LATENCY(FLatency); |
| |
| /* Check that the new number of wait states is taken into account to access the Flash |
| memory by reading the FLASH_ACR register */ |
| if (__HAL_FLASH_GET_LATENCY() != FLatency) |
| { |
| return HAL_ERROR; |
| } |
| |
| } |
| |
| /* Increasing the BUS frequency divider */ |
| /*-------------------------- D1PCLK1/CDPCLK1 Configuration ---------------------------*/ |
| if (((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_D1PCLK1) == RCC_CLOCKTYPE_D1PCLK1) |
| { |
| #if defined (RCC_D1CFGR_D1PPRE) |
| if ((RCC_ClkInitStruct->APB3CLKDivider) > (RCC->D1CFGR & RCC_D1CFGR_D1PPRE)) |
| { |
| assert_param(IS_RCC_D1PCLK1(RCC_ClkInitStruct->APB3CLKDivider)); |
| MODIFY_REG(RCC->D1CFGR, RCC_D1CFGR_D1PPRE, RCC_ClkInitStruct->APB3CLKDivider); |
| } |
| #else |
| if ((RCC_ClkInitStruct->APB3CLKDivider) > (RCC->CDCFGR1 & RCC_CDCFGR1_CDPPRE)) |
| { |
| assert_param(IS_RCC_CDPCLK1(RCC_ClkInitStruct->APB3CLKDivider)); |
| MODIFY_REG(RCC->CDCFGR1, RCC_CDCFGR1_CDPPRE, RCC_ClkInitStruct->APB3CLKDivider); |
| } |
| #endif |
| } |
| |
| /*-------------------------- PCLK1 Configuration ---------------------------*/ |
| if (((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK1) == RCC_CLOCKTYPE_PCLK1) |
| { |
| #if defined (RCC_D2CFGR_D2PPRE1) |
| if ((RCC_ClkInitStruct->APB1CLKDivider) > (RCC->D2CFGR & RCC_D2CFGR_D2PPRE1)) |
| { |
| assert_param(IS_RCC_PCLK1(RCC_ClkInitStruct->APB1CLKDivider)); |
| MODIFY_REG(RCC->D2CFGR, RCC_D2CFGR_D2PPRE1, (RCC_ClkInitStruct->APB1CLKDivider)); |
| } |
| #else |
| if ((RCC_ClkInitStruct->APB1CLKDivider) > (RCC->CDCFGR2 & RCC_CDCFGR2_CDPPRE1)) |
| { |
| assert_param(IS_RCC_PCLK1(RCC_ClkInitStruct->APB1CLKDivider)); |
| MODIFY_REG(RCC->CDCFGR2, RCC_CDCFGR2_CDPPRE1, (RCC_ClkInitStruct->APB1CLKDivider)); |
| } |
| #endif |
| } |
| /*-------------------------- PCLK2 Configuration ---------------------------*/ |
| if (((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK2) == RCC_CLOCKTYPE_PCLK2) |
| { |
| #if defined(RCC_D2CFGR_D2PPRE2) |
| if ((RCC_ClkInitStruct->APB2CLKDivider) > (RCC->D2CFGR & RCC_D2CFGR_D2PPRE2)) |
| { |
| assert_param(IS_RCC_PCLK2(RCC_ClkInitStruct->APB2CLKDivider)); |
| MODIFY_REG(RCC->D2CFGR, RCC_D2CFGR_D2PPRE2, (RCC_ClkInitStruct->APB2CLKDivider)); |
| } |
| #else |
| if ((RCC_ClkInitStruct->APB2CLKDivider) > (RCC->CDCFGR2 & RCC_CDCFGR2_CDPPRE2)) |
| { |
| assert_param(IS_RCC_PCLK2(RCC_ClkInitStruct->APB2CLKDivider)); |
| MODIFY_REG(RCC->CDCFGR2, RCC_CDCFGR2_CDPPRE2, (RCC_ClkInitStruct->APB2CLKDivider)); |
| } |
| #endif |
| } |
| |
| /*-------------------------- D3PCLK1 Configuration ---------------------------*/ |
| if (((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_D3PCLK1) == RCC_CLOCKTYPE_D3PCLK1) |
| { |
| #if defined(RCC_D3CFGR_D3PPRE) |
| if ((RCC_ClkInitStruct->APB4CLKDivider) > (RCC->D3CFGR & RCC_D3CFGR_D3PPRE)) |
| { |
| assert_param(IS_RCC_D3PCLK1(RCC_ClkInitStruct->APB4CLKDivider)); |
| MODIFY_REG(RCC->D3CFGR, RCC_D3CFGR_D3PPRE, (RCC_ClkInitStruct->APB4CLKDivider)); |
| } |
| #else |
| if ((RCC_ClkInitStruct->APB4CLKDivider) > (RCC->SRDCFGR & RCC_SRDCFGR_SRDPPRE)) |
| { |
| assert_param(IS_RCC_D3PCLK1(RCC_ClkInitStruct->APB4CLKDivider)); |
| MODIFY_REG(RCC->SRDCFGR, RCC_SRDCFGR_SRDPPRE, (RCC_ClkInitStruct->APB4CLKDivider)); |
| } |
| #endif |
| } |
| |
| /*-------------------------- HCLK Configuration --------------------------*/ |
| if (((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_HCLK) == RCC_CLOCKTYPE_HCLK) |
| { |
| #if defined (RCC_D1CFGR_HPRE) |
| if ((RCC_ClkInitStruct->AHBCLKDivider) > (RCC->D1CFGR & RCC_D1CFGR_HPRE)) |
| { |
| /* Set the new HCLK clock divider */ |
| assert_param(IS_RCC_HCLK(RCC_ClkInitStruct->AHBCLKDivider)); |
| MODIFY_REG(RCC->D1CFGR, RCC_D1CFGR_HPRE, RCC_ClkInitStruct->AHBCLKDivider); |
| } |
| #else |
| if ((RCC_ClkInitStruct->AHBCLKDivider) > (RCC->CDCFGR1 & RCC_CDCFGR1_HPRE)) |
| { |
| /* Set the new HCLK clock divider */ |
| assert_param(IS_RCC_HCLK(RCC_ClkInitStruct->AHBCLKDivider)); |
| MODIFY_REG(RCC->CDCFGR1, RCC_CDCFGR1_HPRE, RCC_ClkInitStruct->AHBCLKDivider); |
| } |
| #endif |
| } |
| |
| /*------------------------- SYSCLK Configuration -------------------------*/ |
| if (((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_SYSCLK) == RCC_CLOCKTYPE_SYSCLK) |
| { |
| assert_param(IS_RCC_SYSCLK(RCC_ClkInitStruct->SYSCLKDivider)); |
| assert_param(IS_RCC_SYSCLKSOURCE(RCC_ClkInitStruct->SYSCLKSource)); |
| #if defined(RCC_D1CFGR_D1CPRE) |
| MODIFY_REG(RCC->D1CFGR, RCC_D1CFGR_D1CPRE, RCC_ClkInitStruct->SYSCLKDivider); |
| #else |
| MODIFY_REG(RCC->CDCFGR1, RCC_CDCFGR1_CDCPRE, RCC_ClkInitStruct->SYSCLKDivider); |
| #endif |
| /* HSE is selected as System Clock Source */ |
| if (RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSE) |
| { |
| /* Check the HSE ready flag */ |
| if (__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) == 0U) |
| { |
| return HAL_ERROR; |
| } |
| } |
| /* PLL is selected as System Clock Source */ |
| else if (RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_PLLCLK) |
| { |
| /* Check the PLL ready flag */ |
| if (__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) == 0U) |
| { |
| return HAL_ERROR; |
| } |
| } |
| /* CSI is selected as System Clock Source */ |
| else if (RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_CSI) |
| { |
| /* Check the PLL ready flag */ |
| if (__HAL_RCC_GET_FLAG(RCC_FLAG_CSIRDY) == 0U) |
| { |
| return HAL_ERROR; |
| } |
| } |
| /* HSI is selected as System Clock Source */ |
| else |
| { |
| /* Check the HSI ready flag */ |
| if (__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) == 0U) |
| { |
| return HAL_ERROR; |
| } |
| } |
| MODIFY_REG(RCC->CFGR, RCC_CFGR_SW, RCC_ClkInitStruct->SYSCLKSource); |
| |
| /* Get Start Tick*/ |
| tickstart = HAL_GetTick(); |
| |
| while (__HAL_RCC_GET_SYSCLK_SOURCE() != (RCC_ClkInitStruct->SYSCLKSource << RCC_CFGR_SWS_Pos)) |
| { |
| if ((HAL_GetTick() - tickstart) > CLOCKSWITCH_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| |
| } |
| |
| /* Decreasing the BUS frequency divider */ |
| /*-------------------------- HCLK Configuration --------------------------*/ |
| if (((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_HCLK) == RCC_CLOCKTYPE_HCLK) |
| { |
| #if defined(RCC_D1CFGR_HPRE) |
| if ((RCC_ClkInitStruct->AHBCLKDivider) < (RCC->D1CFGR & RCC_D1CFGR_HPRE)) |
| { |
| /* Set the new HCLK clock divider */ |
| assert_param(IS_RCC_HCLK(RCC_ClkInitStruct->AHBCLKDivider)); |
| MODIFY_REG(RCC->D1CFGR, RCC_D1CFGR_HPRE, RCC_ClkInitStruct->AHBCLKDivider); |
| } |
| #else |
| if ((RCC_ClkInitStruct->AHBCLKDivider) < (RCC->CDCFGR1 & RCC_CDCFGR1_HPRE)) |
| { |
| /* Set the new HCLK clock divider */ |
| assert_param(IS_RCC_HCLK(RCC_ClkInitStruct->AHBCLKDivider)); |
| MODIFY_REG(RCC->CDCFGR1, RCC_CDCFGR1_HPRE, RCC_ClkInitStruct->AHBCLKDivider); |
| } |
| #endif |
| } |
| |
| /* Decreasing the number of wait states because of lower CPU frequency */ |
| if (FLatency < __HAL_FLASH_GET_LATENCY()) |
| { |
| /* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */ |
| __HAL_FLASH_SET_LATENCY(FLatency); |
| |
| /* Check that the new number of wait states is taken into account to access the Flash |
| memory by reading the FLASH_ACR register */ |
| if (__HAL_FLASH_GET_LATENCY() != FLatency) |
| { |
| return HAL_ERROR; |
| } |
| } |
| |
| /*-------------------------- D1PCLK1/CDPCLK Configuration ---------------------------*/ |
| if (((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_D1PCLK1) == RCC_CLOCKTYPE_D1PCLK1) |
| { |
| #if defined(RCC_D1CFGR_D1PPRE) |
| if ((RCC_ClkInitStruct->APB3CLKDivider) < (RCC->D1CFGR & RCC_D1CFGR_D1PPRE)) |
| { |
| assert_param(IS_RCC_D1PCLK1(RCC_ClkInitStruct->APB3CLKDivider)); |
| MODIFY_REG(RCC->D1CFGR, RCC_D1CFGR_D1PPRE, RCC_ClkInitStruct->APB3CLKDivider); |
| } |
| #else |
| if ((RCC_ClkInitStruct->APB3CLKDivider) < (RCC->CDCFGR1 & RCC_CDCFGR1_CDPPRE)) |
| { |
| assert_param(IS_RCC_CDPCLK1(RCC_ClkInitStruct->APB3CLKDivider)); |
| MODIFY_REG(RCC->CDCFGR1, RCC_CDCFGR1_CDPPRE, RCC_ClkInitStruct->APB3CLKDivider); |
| } |
| #endif |
| } |
| |
| /*-------------------------- PCLK1 Configuration ---------------------------*/ |
| if (((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK1) == RCC_CLOCKTYPE_PCLK1) |
| { |
| #if defined(RCC_D2CFGR_D2PPRE1) |
| if ((RCC_ClkInitStruct->APB1CLKDivider) < (RCC->D2CFGR & RCC_D2CFGR_D2PPRE1)) |
| { |
| assert_param(IS_RCC_PCLK1(RCC_ClkInitStruct->APB1CLKDivider)); |
| MODIFY_REG(RCC->D2CFGR, RCC_D2CFGR_D2PPRE1, (RCC_ClkInitStruct->APB1CLKDivider)); |
| } |
| #else |
| if ((RCC_ClkInitStruct->APB1CLKDivider) < (RCC->CDCFGR2 & RCC_CDCFGR2_CDPPRE1)) |
| { |
| assert_param(IS_RCC_PCLK1(RCC_ClkInitStruct->APB1CLKDivider)); |
| MODIFY_REG(RCC->CDCFGR2, RCC_CDCFGR2_CDPPRE1, (RCC_ClkInitStruct->APB1CLKDivider)); |
| } |
| #endif |
| } |
| |
| /*-------------------------- PCLK2 Configuration ---------------------------*/ |
| if (((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK2) == RCC_CLOCKTYPE_PCLK2) |
| { |
| #if defined (RCC_D2CFGR_D2PPRE2) |
| if ((RCC_ClkInitStruct->APB2CLKDivider) < (RCC->D2CFGR & RCC_D2CFGR_D2PPRE2)) |
| { |
| assert_param(IS_RCC_PCLK2(RCC_ClkInitStruct->APB2CLKDivider)); |
| MODIFY_REG(RCC->D2CFGR, RCC_D2CFGR_D2PPRE2, (RCC_ClkInitStruct->APB2CLKDivider)); |
| } |
| #else |
| if ((RCC_ClkInitStruct->APB2CLKDivider) < (RCC->CDCFGR2 & RCC_CDCFGR2_CDPPRE2)) |
| { |
| assert_param(IS_RCC_PCLK2(RCC_ClkInitStruct->APB2CLKDivider)); |
| MODIFY_REG(RCC->CDCFGR2, RCC_CDCFGR2_CDPPRE2, (RCC_ClkInitStruct->APB2CLKDivider)); |
| } |
| #endif |
| } |
| |
| /*-------------------------- D3PCLK1/SRDPCLK1 Configuration ---------------------------*/ |
| if (((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_D3PCLK1) == RCC_CLOCKTYPE_D3PCLK1) |
| { |
| #if defined(RCC_D3CFGR_D3PPRE) |
| if ((RCC_ClkInitStruct->APB4CLKDivider) < (RCC->D3CFGR & RCC_D3CFGR_D3PPRE)) |
| { |
| assert_param(IS_RCC_D3PCLK1(RCC_ClkInitStruct->APB4CLKDivider)); |
| MODIFY_REG(RCC->D3CFGR, RCC_D3CFGR_D3PPRE, (RCC_ClkInitStruct->APB4CLKDivider)); |
| } |
| #else |
| if ((RCC_ClkInitStruct->APB4CLKDivider) < (RCC->SRDCFGR & RCC_SRDCFGR_SRDPPRE)) |
| { |
| assert_param(IS_RCC_SRDPCLK1(RCC_ClkInitStruct->APB4CLKDivider)); |
| MODIFY_REG(RCC->SRDCFGR, RCC_SRDCFGR_SRDPPRE, (RCC_ClkInitStruct->APB4CLKDivider)); |
| } |
| #endif |
| } |
| |
| /* Update the SystemCoreClock global variable */ |
| #if defined(RCC_D1CFGR_D1CPRE) |
| common_system_clock = HAL_RCC_GetSysClockFreq() >> ((D1CorePrescTable[(RCC->D1CFGR & RCC_D1CFGR_D1CPRE) >> RCC_D1CFGR_D1CPRE_Pos]) & 0x1FU); |
| #else |
| common_system_clock = HAL_RCC_GetSysClockFreq() >> ((D1CorePrescTable[(RCC->CDCFGR1 & RCC_CDCFGR1_CDCPRE) >> RCC_CDCFGR1_CDCPRE_Pos]) & 0x1FU); |
| #endif |
| |
| #if defined(RCC_D1CFGR_HPRE) |
| SystemD2Clock = (common_system_clock >> ((D1CorePrescTable[(RCC->D1CFGR & RCC_D1CFGR_HPRE) >> RCC_D1CFGR_HPRE_Pos]) & 0x1FU)); |
| #else |
| SystemD2Clock = (common_system_clock >> ((D1CorePrescTable[(RCC->CDCFGR1 & RCC_CDCFGR1_HPRE) >> RCC_CDCFGR1_HPRE_Pos]) & 0x1FU)); |
| #endif |
| |
| #if defined(DUAL_CORE) && defined(CORE_CM4) |
| SystemCoreClock = SystemD2Clock; |
| #else |
| SystemCoreClock = common_system_clock; |
| #endif /* DUAL_CORE && CORE_CM4 */ |
| |
| /* Configure the source of time base considering new system clocks settings*/ |
| halstatus = HAL_InitTick(uwTickPrio); |
| |
| return halstatus; |
| } |
| |
| /** |
| * @} |
| */ |
| |
| /** @defgroup RCC_Exported_Functions_Group2 Peripheral Control functions |
| * @brief RCC clocks control functions |
| * |
| @verbatim |
| =============================================================================== |
| ##### Peripheral Control functions ##### |
| =============================================================================== |
| [..] |
| This subsection provides a set of functions allowing to control the RCC Clocks |
| frequencies. |
| |
| @endverbatim |
| * @{ |
| */ |
| |
| /** |
| * @brief Selects the clock source to output on MCO1 pin(PA8) or on MCO2 pin(PC9). |
| * @note PA8/PC9 should be configured in alternate function mode. |
| * @param RCC_MCOx: specifies the output direction for the clock source. |
| * This parameter can be one of the following values: |
| * @arg RCC_MCO1: Clock source to output on MCO1 pin(PA8). |
| * @arg RCC_MCO2: Clock source to output on MCO2 pin(PC9). |
| * @param RCC_MCOSource: specifies the clock source to output. |
| * This parameter can be one of the following values: |
| * @arg RCC_MCO1SOURCE_HSI: HSI clock selected as MCO1 source |
| * @arg RCC_MCO1SOURCE_LSE: LSE clock selected as MCO1 source |
| * @arg RCC_MCO1SOURCE_HSE: HSE clock selected as MCO1 source |
| * @arg RCC_MCO1SOURCE_PLL1QCLK: PLL1Q clock selected as MCO1 source |
| * @arg RCC_MCO1SOURCE_HSI48: HSI48 (48MHZ) selected as MCO1 source |
| * @arg RCC_MCO2SOURCE_SYSCLK: System clock (SYSCLK) selected as MCO2 source |
| * @arg RCC_MCO2SOURCE_PLL2PCLK: PLL2P clock selected as MCO2 source |
| * @arg RCC_MCO2SOURCE_HSE: HSE clock selected as MCO2 source |
| * @arg RCC_MCO2SOURCE_PLLCLK: PLL1P clock selected as MCO2 source |
| * @arg RCC_MCO2SOURCE_CSICLK: CSI clock selected as MCO2 source |
| * @arg RCC_MCO2SOURCE_LSICLK: LSI clock selected as MCO2 source |
| * @param RCC_MCODiv: specifies the MCOx pre-scaler. |
| * This parameter can be one of the following values: |
| * @arg RCC_MCODIV_1 up to RCC_MCODIV_15 : divider applied to MCOx clock |
| * @retval None |
| */ |
| void HAL_RCC_MCOConfig(uint32_t RCC_MCOx, uint32_t RCC_MCOSource, uint32_t RCC_MCODiv) |
| { |
| GPIO_InitTypeDef GPIO_InitStruct; |
| /* Check the parameters */ |
| assert_param(IS_RCC_MCO(RCC_MCOx)); |
| assert_param(IS_RCC_MCODIV(RCC_MCODiv)); |
| /* RCC_MCO1 */ |
| if (RCC_MCOx == RCC_MCO1) |
| { |
| assert_param(IS_RCC_MCO1SOURCE(RCC_MCOSource)); |
| |
| /* MCO1 Clock Enable */ |
| MCO1_CLK_ENABLE(); |
| |
| /* Configure the MCO1 pin in alternate function mode */ |
| GPIO_InitStruct.Pin = MCO1_PIN; |
| GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; |
| GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH; |
| GPIO_InitStruct.Pull = GPIO_NOPULL; |
| GPIO_InitStruct.Alternate = GPIO_AF0_MCO; |
| HAL_GPIO_Init(MCO1_GPIO_PORT, &GPIO_InitStruct); |
| |
| /* Mask MCO1 and MCO1PRE[3:0] bits then Select MCO1 clock source and pre-scaler */ |
| MODIFY_REG(RCC->CFGR, (RCC_CFGR_MCO1 | RCC_CFGR_MCO1PRE), (RCC_MCOSource | RCC_MCODiv)); |
| } |
| else |
| { |
| assert_param(IS_RCC_MCO2SOURCE(RCC_MCOSource)); |
| |
| /* MCO2 Clock Enable */ |
| MCO2_CLK_ENABLE(); |
| |
| /* Configure the MCO2 pin in alternate function mode */ |
| GPIO_InitStruct.Pin = MCO2_PIN; |
| GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; |
| GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH; |
| GPIO_InitStruct.Pull = GPIO_NOPULL; |
| GPIO_InitStruct.Alternate = GPIO_AF0_MCO; |
| HAL_GPIO_Init(MCO2_GPIO_PORT, &GPIO_InitStruct); |
| |
| /* Mask MCO2 and MCO2PRE[3:0] bits then Select MCO2 clock source and pre-scaler */ |
| MODIFY_REG(RCC->CFGR, (RCC_CFGR_MCO2 | RCC_CFGR_MCO2PRE), (RCC_MCOSource | (RCC_MCODiv << 7U))); |
| } |
| } |
| |
| /** |
| * @brief Enables the Clock Security System. |
| * @note If a failure is detected on the HSE oscillator clock, this oscillator |
| * is automatically disabled and an interrupt is generated to inform the |
| * software about the failure (Clock Security System Interrupt, CSSI), |
| * allowing the MCU to perform rescue operations. The CSSI is linked to |
| * the Cortex-M NMI (Non-Mask-able Interrupt) exception vector. |
| * @retval None |
| */ |
| void HAL_RCC_EnableCSS(void) |
| { |
| SET_BIT(RCC->CR, RCC_CR_CSSHSEON) ; |
| } |
| |
| /** |
| * @brief Disables the Clock Security System. |
| * @retval None |
| */ |
| void HAL_RCC_DisableCSS(void) |
| { |
| CLEAR_BIT(RCC->CR, RCC_CR_CSSHSEON); |
| } |
| |
| /** |
| * @brief Returns the SYSCLK frequency |
| * |
| * @note The system frequency computed by this function is not the real |
| * frequency in the chip. It is calculated based on the predefined |
| * constant and the selected clock source: |
| * @note If SYSCLK source is CSI, function returns values based on CSI_VALUE(*) |
| * @note If SYSCLK source is HSI, function returns values based on HSI_VALUE(**) |
| * @note If SYSCLK source is HSE, function returns values based on HSE_VALUE(***) |
| * @note If SYSCLK source is PLL, function returns values based on CSI_VALUE(*), |
| * HSI_VALUE(**) or HSE_VALUE(***) multiplied/divided by the PLL factors. |
| * @note (*) CSI_VALUE is a constant defined in stm32h7xx_hal_conf.h file (default value |
| * 4 MHz) but the real value may vary depending on the variations |
| * in voltage and temperature. |
| * @note (**) HSI_VALUE is a constant defined in stm32h7xx_hal_conf.h file (default value |
| * 64 MHz) but the real value may vary depending on the variations |
| * in voltage and temperature. |
| * @note (***) HSE_VALUE is a constant defined in stm32h7xx_hal_conf.h file (default value |
| * 25 MHz), user has to ensure that HSE_VALUE is same as the real |
| * frequency of the crystal used. Otherwise, this function may |
| * have wrong result. |
| * |
| * @note The result of this function could be not correct when using fractional |
| * value for HSE crystal. |
| * |
| * @note This function can be used by the user application to compute the |
| * baud rate for the communication peripherals or configure other parameters. |
| * |
| * @note Each time SYSCLK changes, this function must be called to update the |
| * right SYSCLK value. Otherwise, any configuration based on this function will be incorrect. |
| * |
| * |
| * @retval SYSCLK frequency |
| */ |
| uint32_t HAL_RCC_GetSysClockFreq(void) |
| { |
| uint32_t pllp, pllsource, pllm, pllfracen, hsivalue; |
| float_t fracn1, pllvco; |
| uint32_t sysclockfreq; |
| |
| /* Get SYSCLK source -------------------------------------------------------*/ |
| |
| switch (RCC->CFGR & RCC_CFGR_SWS) |
| { |
| case RCC_CFGR_SWS_HSI: /* HSI used as system clock source */ |
| |
| if (__HAL_RCC_GET_FLAG(RCC_FLAG_HSIDIV) != 0U) |
| { |
| sysclockfreq = (uint32_t)(HSI_VALUE >> (__HAL_RCC_GET_HSI_DIVIDER() >> 3)); |
| } |
| else |
| { |
| sysclockfreq = (uint32_t) HSI_VALUE; |
| } |
| |
| break; |
| |
| case RCC_CFGR_SWS_CSI: /* CSI used as system clock source */ |
| sysclockfreq = CSI_VALUE; |
| break; |
| |
| case RCC_CFGR_SWS_HSE: /* HSE used as system clock source */ |
| sysclockfreq = HSE_VALUE; |
| break; |
| |
| case RCC_CFGR_SWS_PLL1: /* PLL1 used as system clock source */ |
| |
| /* PLL_VCO = (HSE_VALUE or HSI_VALUE or CSI_VALUE/ PLLM) * PLLN |
| SYSCLK = PLL_VCO / PLLR |
| */ |
| pllsource = (RCC->PLLCKSELR & RCC_PLLCKSELR_PLLSRC); |
| pllm = ((RCC->PLLCKSELR & RCC_PLLCKSELR_DIVM1) >> 4) ; |
| pllfracen = ((RCC-> PLLCFGR & RCC_PLLCFGR_PLL1FRACEN) >> RCC_PLLCFGR_PLL1FRACEN_Pos); |
| fracn1 = (float_t)(uint32_t)(pllfracen * ((RCC->PLL1FRACR & RCC_PLL1FRACR_FRACN1) >> 3)); |
| |
| if (pllm != 0U) |
| { |
| switch (pllsource) |
| { |
| case RCC_PLLSOURCE_HSI: /* HSI used as PLL clock source */ |
| |
| if (__HAL_RCC_GET_FLAG(RCC_FLAG_HSIDIV) != 0U) |
| { |
| hsivalue = (HSI_VALUE >> (__HAL_RCC_GET_HSI_DIVIDER() >> 3)); |
| pllvco = ((float_t)hsivalue / (float_t)pllm) * ((float_t)(uint32_t)(RCC->PLL1DIVR & RCC_PLL1DIVR_N1) + (fracn1 / (float_t)0x2000) + (float_t)1); |
| } |
| else |
| { |
| pllvco = ((float_t)HSI_VALUE / (float_t)pllm) * ((float_t)(uint32_t)(RCC->PLL1DIVR & RCC_PLL1DIVR_N1) + (fracn1 / (float_t)0x2000) + (float_t)1); |
| } |
| break; |
| |
| case RCC_PLLSOURCE_CSI: /* CSI used as PLL clock source */ |
| pllvco = ((float_t)CSI_VALUE / (float_t)pllm) * ((float_t)(uint32_t)(RCC->PLL1DIVR & RCC_PLL1DIVR_N1) + (fracn1 / (float_t)0x2000) + (float_t)1); |
| break; |
| |
| case RCC_PLLSOURCE_HSE: /* HSE used as PLL clock source */ |
| pllvco = ((float_t)HSE_VALUE / (float_t)pllm) * ((float_t)(uint32_t)(RCC->PLL1DIVR & RCC_PLL1DIVR_N1) + (fracn1 / (float_t)0x2000) + (float_t)1); |
| break; |
| |
| default: |
| pllvco = ((float_t)CSI_VALUE / (float_t)pllm) * ((float_t)(uint32_t)(RCC->PLL1DIVR & RCC_PLL1DIVR_N1) + (fracn1 / (float_t)0x2000) + (float_t)1); |
| break; |
| } |
| pllp = (((RCC->PLL1DIVR & RCC_PLL1DIVR_P1) >> 9) + 1U) ; |
| sysclockfreq = (uint32_t)(float_t)(pllvco / (float_t)pllp); |
| } |
| else |
| { |
| sysclockfreq = 0U; |
| } |
| break; |
| |
| default: |
| sysclockfreq = CSI_VALUE; |
| break; |
| } |
| |
| return sysclockfreq; |
| } |
| |
| |
| /** |
| * @brief Returns the HCLK frequency |
| * @note Each time HCLK changes, this function must be called to update the |
| * right HCLK value. Otherwise, any configuration based on this function will be incorrect. |
| * |
| * @note The SystemD2Clock CMSIS variable is used to store System domain2 Clock Frequency |
| * and updated within this function |
| * @retval HCLK frequency |
| */ |
| uint32_t HAL_RCC_GetHCLKFreq(void) |
| { |
| uint32_t common_system_clock; |
| |
| #if defined(RCC_D1CFGR_D1CPRE) |
| common_system_clock = HAL_RCC_GetSysClockFreq() >> (D1CorePrescTable[(RCC->D1CFGR & RCC_D1CFGR_D1CPRE) >> RCC_D1CFGR_D1CPRE_Pos] & 0x1FU); |
| #else |
| common_system_clock = HAL_RCC_GetSysClockFreq() >> (D1CorePrescTable[(RCC->CDCFGR1 & RCC_CDCFGR1_CDCPRE) >> RCC_CDCFGR1_CDCPRE_Pos] & 0x1FU); |
| #endif |
| |
| #if defined(RCC_D1CFGR_HPRE) |
| SystemD2Clock = (common_system_clock >> ((D1CorePrescTable[(RCC->D1CFGR & RCC_D1CFGR_HPRE) >> RCC_D1CFGR_HPRE_Pos]) & 0x1FU)); |
| #else |
| SystemD2Clock = (common_system_clock >> ((D1CorePrescTable[(RCC->CDCFGR1 & RCC_CDCFGR1_HPRE) >> RCC_CDCFGR1_HPRE_Pos]) & 0x1FU)); |
| #endif |
| |
| #if defined(DUAL_CORE) && defined(CORE_CM4) |
| SystemCoreClock = SystemD2Clock; |
| #else |
| SystemCoreClock = common_system_clock; |
| #endif /* DUAL_CORE && CORE_CM4 */ |
| |
| return SystemD2Clock; |
| } |
| |
| |
| /** |
| * @brief Returns the PCLK1 frequency |
| * @note Each time PCLK1 changes, this function must be called to update the |
| * right PCLK1 value. Otherwise, any configuration based on this function will be incorrect. |
| * @retval PCLK1 frequency |
| */ |
| uint32_t HAL_RCC_GetPCLK1Freq(void) |
| { |
| #if defined (RCC_D2CFGR_D2PPRE1) |
| /* Get HCLK source and Compute PCLK1 frequency ---------------------------*/ |
| return (HAL_RCC_GetHCLKFreq() >> ((D1CorePrescTable[(RCC->D2CFGR & RCC_D2CFGR_D2PPRE1) >> RCC_D2CFGR_D2PPRE1_Pos]) & 0x1FU)); |
| #else |
| /* Get HCLK source and Compute PCLK1 frequency ---------------------------*/ |
| return (HAL_RCC_GetHCLKFreq() >> ((D1CorePrescTable[(RCC->CDCFGR2 & RCC_CDCFGR2_CDPPRE1) >> RCC_CDCFGR2_CDPPRE1_Pos]) & 0x1FU)); |
| #endif |
| } |
| |
| |
| /** |
| * @brief Returns the D2 PCLK2 frequency |
| * @note Each time PCLK2 changes, this function must be called to update the |
| * right PCLK2 value. Otherwise, any configuration based on this function will be incorrect. |
| * @retval PCLK1 frequency |
| */ |
| uint32_t HAL_RCC_GetPCLK2Freq(void) |
| { |
| /* Get HCLK source and Compute PCLK1 frequency ---------------------------*/ |
| #if defined(RCC_D2CFGR_D2PPRE2) |
| return (HAL_RCC_GetHCLKFreq() >> ((D1CorePrescTable[(RCC->D2CFGR & RCC_D2CFGR_D2PPRE2) >> RCC_D2CFGR_D2PPRE2_Pos]) & 0x1FU)); |
| #else |
| return (HAL_RCC_GetHCLKFreq() >> ((D1CorePrescTable[(RCC->CDCFGR2 & RCC_CDCFGR2_CDPPRE2) >> RCC_CDCFGR2_CDPPRE2_Pos]) & 0x1FU)); |
| #endif |
| } |
| |
| /** |
| * @brief Configures the RCC_OscInitStruct according to the internal |
| * RCC configuration registers. |
| * @param RCC_OscInitStruct: pointer to an RCC_OscInitTypeDef structure that |
| * will be configured. |
| * @retval None |
| */ |
| void HAL_RCC_GetOscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct) |
| { |
| /* Set all possible values for the Oscillator type parameter ---------------*/ |
| RCC_OscInitStruct->OscillatorType = RCC_OSCILLATORTYPE_HSE | RCC_OSCILLATORTYPE_HSI | RCC_OSCILLATORTYPE_CSI | \ |
| RCC_OSCILLATORTYPE_LSE | RCC_OSCILLATORTYPE_LSI | RCC_OSCILLATORTYPE_HSI48; |
| |
| /* Get the HSE configuration -----------------------------------------------*/ |
| #if defined(RCC_CR_HSEEXT) |
| if ((RCC->CR & (RCC_CR_HSEBYP | RCC_CR_HSEEXT)) == RCC_CR_HSEBYP) |
| { |
| RCC_OscInitStruct->HSEState = RCC_HSE_BYPASS; |
| } |
| else if ((RCC->CR & (RCC_CR_HSEBYP | RCC_CR_HSEEXT)) == (RCC_CR_HSEBYP | RCC_CR_HSEEXT)) |
| { |
| RCC_OscInitStruct->HSEState = RCC_HSE_BYPASS_DIGITAL; |
| } |
| else if ((RCC->CR & RCC_CR_HSEON) == RCC_CR_HSEON) |
| { |
| RCC_OscInitStruct->HSEState = RCC_HSE_ON; |
| } |
| else |
| { |
| RCC_OscInitStruct->HSEState = RCC_HSE_OFF; |
| } |
| #else |
| if ((RCC->CR & RCC_CR_HSEBYP) == RCC_CR_HSEBYP) |
| { |
| RCC_OscInitStruct->HSEState = RCC_HSE_BYPASS; |
| } |
| else if ((RCC->CR & RCC_CR_HSEON) == RCC_CR_HSEON) |
| { |
| RCC_OscInitStruct->HSEState = RCC_HSE_ON; |
| } |
| else |
| { |
| RCC_OscInitStruct->HSEState = RCC_HSE_OFF; |
| } |
| #endif /* RCC_CR_HSEEXT */ |
| |
| /* Get the CSI configuration -----------------------------------------------*/ |
| if ((RCC->CR & RCC_CR_CSION) == RCC_CR_CSION) |
| { |
| RCC_OscInitStruct->CSIState = RCC_CSI_ON; |
| } |
| else |
| { |
| RCC_OscInitStruct->CSIState = RCC_CSI_OFF; |
| } |
| |
| #if defined(RCC_VER_X) |
| if (HAL_GetREVID() <= REV_ID_Y) |
| { |
| RCC_OscInitStruct->CSICalibrationValue = (uint32_t)(READ_BIT(RCC->HSICFGR, HAL_RCC_REV_Y_CSITRIM_Msk) >> HAL_RCC_REV_Y_CSITRIM_Pos); |
| } |
| else |
| { |
| RCC_OscInitStruct->CSICalibrationValue = (uint32_t)(READ_BIT(RCC->CSICFGR, RCC_CSICFGR_CSITRIM) >> RCC_CSICFGR_CSITRIM_Pos); |
| } |
| #else |
| RCC_OscInitStruct->CSICalibrationValue = (uint32_t)(READ_BIT(RCC->CSICFGR, RCC_CSICFGR_CSITRIM) >> RCC_CSICFGR_CSITRIM_Pos); |
| #endif /*RCC_VER_X*/ |
| |
| /* Get the HSI configuration -----------------------------------------------*/ |
| if ((RCC->CR & RCC_CR_HSION) == RCC_CR_HSION) |
| { |
| RCC_OscInitStruct->HSIState = RCC_HSI_ON; |
| } |
| else |
| { |
| RCC_OscInitStruct->HSIState = RCC_HSI_OFF; |
| } |
| |
| #if defined(RCC_VER_X) |
| if (HAL_GetREVID() <= REV_ID_Y) |
| { |
| RCC_OscInitStruct->HSICalibrationValue = (uint32_t)(READ_BIT(RCC->HSICFGR, HAL_RCC_REV_Y_HSITRIM_Msk) >> HAL_RCC_REV_Y_HSITRIM_Pos); |
| } |
| else |
| { |
| RCC_OscInitStruct->HSICalibrationValue = (uint32_t)(READ_BIT(RCC->HSICFGR, RCC_HSICFGR_HSITRIM) >> RCC_HSICFGR_HSITRIM_Pos); |
| } |
| #else |
| RCC_OscInitStruct->HSICalibrationValue = (uint32_t)(READ_BIT(RCC->HSICFGR, RCC_HSICFGR_HSITRIM) >> RCC_HSICFGR_HSITRIM_Pos); |
| #endif /*RCC_VER_X*/ |
| |
| /* Get the LSE configuration -----------------------------------------------*/ |
| #if defined(RCC_BDCR_LSEEXT) |
| if ((RCC->BDCR & (RCC_BDCR_LSEBYP | RCC_BDCR_LSEEXT)) == RCC_BDCR_LSEBYP) |
| { |
| RCC_OscInitStruct->LSEState = RCC_LSE_BYPASS; |
| } |
| else if ((RCC->BDCR & (RCC_BDCR_LSEBYP | RCC_BDCR_LSEEXT)) == (RCC_BDCR_LSEBYP | RCC_BDCR_LSEEXT)) |
| { |
| RCC_OscInitStruct->LSEState = RCC_LSE_BYPASS_DIGITAL; |
| } |
| else if ((RCC->BDCR & RCC_BDCR_LSEON) == RCC_BDCR_LSEON) |
| { |
| RCC_OscInitStruct->LSEState = RCC_LSE_ON; |
| } |
| else |
| { |
| RCC_OscInitStruct->LSEState = RCC_LSE_OFF; |
| } |
| #else |
| if ((RCC->BDCR & RCC_BDCR_LSEBYP) == RCC_BDCR_LSEBYP) |
| { |
| RCC_OscInitStruct->LSEState = RCC_LSE_BYPASS; |
| } |
| else if ((RCC->BDCR & RCC_BDCR_LSEON) == RCC_BDCR_LSEON) |
| { |
| RCC_OscInitStruct->LSEState = RCC_LSE_ON; |
| } |
| else |
| { |
| RCC_OscInitStruct->LSEState = RCC_LSE_OFF; |
| } |
| #endif /* RCC_BDCR_LSEEXT */ |
| |
| /* Get the LSI configuration -----------------------------------------------*/ |
| if ((RCC->CSR & RCC_CSR_LSION) == RCC_CSR_LSION) |
| { |
| RCC_OscInitStruct->LSIState = RCC_LSI_ON; |
| } |
| else |
| { |
| RCC_OscInitStruct->LSIState = RCC_LSI_OFF; |
| } |
| |
| /* Get the HSI48 configuration ---------------------------------------------*/ |
| if ((RCC->CR & RCC_CR_HSI48ON) == RCC_CR_HSI48ON) |
| { |
| RCC_OscInitStruct->HSI48State = RCC_HSI48_ON; |
| } |
| else |
| { |
| RCC_OscInitStruct->HSI48State = RCC_HSI48_OFF; |
| } |
| |
| /* Get the PLL configuration -----------------------------------------------*/ |
| if ((RCC->CR & RCC_CR_PLLON) == RCC_CR_PLLON) |
| { |
| RCC_OscInitStruct->PLL.PLLState = RCC_PLL_ON; |
| } |
| else |
| { |
| RCC_OscInitStruct->PLL.PLLState = RCC_PLL_OFF; |
| } |
| RCC_OscInitStruct->PLL.PLLSource = (uint32_t)(RCC->PLLCKSELR & RCC_PLLCKSELR_PLLSRC); |
| RCC_OscInitStruct->PLL.PLLM = (uint32_t)((RCC->PLLCKSELR & RCC_PLLCKSELR_DIVM1) >> RCC_PLLCKSELR_DIVM1_Pos); |
| RCC_OscInitStruct->PLL.PLLN = (uint32_t)((RCC->PLL1DIVR & RCC_PLL1DIVR_N1) >> RCC_PLL1DIVR_N1_Pos) + 1U; |
| RCC_OscInitStruct->PLL.PLLR = (uint32_t)((RCC->PLL1DIVR & RCC_PLL1DIVR_R1) >> RCC_PLL1DIVR_R1_Pos) + 1U; |
| RCC_OscInitStruct->PLL.PLLP = (uint32_t)((RCC->PLL1DIVR & RCC_PLL1DIVR_P1) >> RCC_PLL1DIVR_P1_Pos) + 1U; |
| RCC_OscInitStruct->PLL.PLLQ = (uint32_t)((RCC->PLL1DIVR & RCC_PLL1DIVR_Q1) >> RCC_PLL1DIVR_Q1_Pos) + 1U; |
| RCC_OscInitStruct->PLL.PLLRGE = (uint32_t)((RCC->PLLCFGR & RCC_PLLCFGR_PLL1RGE)); |
| RCC_OscInitStruct->PLL.PLLVCOSEL = (uint32_t)((RCC->PLLCFGR & RCC_PLLCFGR_PLL1VCOSEL) >> RCC_PLLCFGR_PLL1VCOSEL_Pos); |
| RCC_OscInitStruct->PLL.PLLFRACN = (uint32_t)(((RCC->PLL1FRACR & RCC_PLL1FRACR_FRACN1) >> RCC_PLL1FRACR_FRACN1_Pos)); |
| } |
| |
| /** |
| * @brief Configures the RCC_ClkInitStruct according to the internal |
| * RCC configuration registers. |
| * @param RCC_ClkInitStruct: pointer to an RCC_ClkInitTypeDef structure that |
| * will be configured. |
| * @param pFLatency: Pointer on the Flash Latency. |
| * @retval None |
| */ |
| void HAL_RCC_GetClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t *pFLatency) |
| { |
| /* Set all possible values for the Clock type parameter --------------------*/ |
| RCC_ClkInitStruct->ClockType = RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_D1PCLK1 | RCC_CLOCKTYPE_PCLK1 | |
| RCC_CLOCKTYPE_PCLK2 | RCC_CLOCKTYPE_D3PCLK1 ; |
| |
| /* Get the SYSCLK configuration --------------------------------------------*/ |
| RCC_ClkInitStruct->SYSCLKSource = (uint32_t)(RCC->CFGR & RCC_CFGR_SW); |
| |
| #if defined(RCC_D1CFGR_D1CPRE) |
| /* Get the SYSCLK configuration ----------------------------------------------*/ |
| RCC_ClkInitStruct->SYSCLKDivider = (uint32_t)(RCC->D1CFGR & RCC_D1CFGR_D1CPRE); |
| |
| /* Get the D1HCLK configuration ----------------------------------------------*/ |
| RCC_ClkInitStruct->AHBCLKDivider = (uint32_t)(RCC->D1CFGR & RCC_D1CFGR_HPRE); |
| |
| /* Get the APB3 configuration ----------------------------------------------*/ |
| RCC_ClkInitStruct->APB3CLKDivider = (uint32_t)(RCC->D1CFGR & RCC_D1CFGR_D1PPRE); |
| |
| /* Get the APB1 configuration ----------------------------------------------*/ |
| RCC_ClkInitStruct->APB1CLKDivider = (uint32_t)(RCC->D2CFGR & RCC_D2CFGR_D2PPRE1); |
| |
| /* Get the APB2 configuration ----------------------------------------------*/ |
| RCC_ClkInitStruct->APB2CLKDivider = (uint32_t)(RCC->D2CFGR & RCC_D2CFGR_D2PPRE2); |
| |
| /* Get the APB4 configuration ----------------------------------------------*/ |
| RCC_ClkInitStruct->APB4CLKDivider = (uint32_t)(RCC->D3CFGR & RCC_D3CFGR_D3PPRE); |
| #else |
| /* Get the SYSCLK configuration ----------------------------------------------*/ |
| RCC_ClkInitStruct->SYSCLKDivider = (uint32_t)(RCC->CDCFGR1 & RCC_CDCFGR1_CDCPRE); |
| |
| /* Get the D1HCLK configuration ----------------------------------------------*/ |
| RCC_ClkInitStruct->AHBCLKDivider = (uint32_t)(RCC->CDCFGR1 & RCC_CDCFGR1_HPRE); |
| |
| /* Get the APB3 configuration ----------------------------------------------*/ |
| RCC_ClkInitStruct->APB3CLKDivider = (uint32_t)(RCC->CDCFGR1 & RCC_CDCFGR1_CDPPRE); |
| |
| /* Get the APB1 configuration ----------------------------------------------*/ |
| RCC_ClkInitStruct->APB1CLKDivider = (uint32_t)(RCC->CDCFGR2 & RCC_CDCFGR2_CDPPRE1); |
| |
| /* Get the APB2 configuration ----------------------------------------------*/ |
| RCC_ClkInitStruct->APB2CLKDivider = (uint32_t)(RCC->CDCFGR2 & RCC_CDCFGR2_CDPPRE2); |
| |
| /* Get the APB4 configuration ----------------------------------------------*/ |
| RCC_ClkInitStruct->APB4CLKDivider = (uint32_t)(RCC->SRDCFGR & RCC_SRDCFGR_SRDPPRE); |
| #endif |
| |
| /* Get the Flash Wait State (Latency) configuration ------------------------*/ |
| *pFLatency = (uint32_t)(FLASH->ACR & FLASH_ACR_LATENCY); |
| } |
| |
| /** |
| * @brief This function handles the RCC CSS interrupt request. |
| * @note This API should be called under the NMI_Handler(). |
| * @retval None |
| */ |
| void HAL_RCC_NMI_IRQHandler(void) |
| { |
| /* Check RCC CSSF flag */ |
| if (__HAL_RCC_GET_IT(RCC_IT_CSS)) |
| { |
| /* RCC Clock Security System interrupt user callback */ |
| HAL_RCC_CSSCallback(); |
| |
| /* Clear RCC CSS pending bit */ |
| __HAL_RCC_CLEAR_IT(RCC_IT_CSS); |
| } |
| } |
| |
| /** |
| * @brief RCC Clock Security System interrupt callback |
| * @retval none |
| */ |
| __weak void HAL_RCC_CSSCallback(void) |
| { |
| /* NOTE : This function Should not be modified, when the callback is needed, |
| the HAL_RCC_CSSCallback could be implemented in the user file |
| */ |
| } |
| |
| /** |
| * @} |
| */ |
| |
| /** |
| * @} |
| */ |
| |
| #endif /* HAL_RCC_MODULE_ENABLED */ |
| /** |
| * @} |
| */ |
| |
| /** |
| * @} |
| */ |
| |