| /** |
| ****************************************************************************** |
| * @file stm32h7xx_hal_nand.c |
| * @author MCD Application Team |
| * @brief NAND HAL module driver. |
| * This file provides a generic firmware to drive NAND memories mounted |
| * as external device. |
| * |
| ****************************************************************************** |
| * @attention |
| * |
| * Copyright (c) 2017 STMicroelectronics. |
| * All rights reserved. |
| * |
| * This software is licensed under terms that can be found in the LICENSE file |
| * in the root directory of this software component. |
| * If no LICENSE file comes with this software, it is provided AS-IS. |
| * |
| ****************************************************************************** |
| @verbatim |
| ============================================================================== |
| ##### How to use this driver ##### |
| ============================================================================== |
| [..] |
| This driver is a generic layered driver which contains a set of APIs used to |
| control NAND flash memories. It uses the FMC layer functions to interface |
| with NAND devices. This driver is used as follows: |
| |
| (+) NAND flash memory configuration sequence using the function HAL_NAND_Init() |
| with control and timing parameters for both common and attribute spaces. |
| |
| (+) Read NAND flash memory maker and device IDs using the function |
| HAL_NAND_Read_ID(). The read information is stored in the NAND_ID_TypeDef |
| structure declared by the function caller. |
| |
| (+) Access NAND flash memory by read/write operations using the functions |
| HAL_NAND_Read_Page_8b()/HAL_NAND_Read_SpareArea_8b(), |
| HAL_NAND_Write_Page_8b()/HAL_NAND_Write_SpareArea_8b(), |
| HAL_NAND_Read_Page_16b()/HAL_NAND_Read_SpareArea_16b(), |
| HAL_NAND_Write_Page_16b()/HAL_NAND_Write_SpareArea_16b() |
| to read/write page(s)/spare area(s). These functions use specific device |
| information (Block, page size..) predefined by the user in the NAND_DeviceConfigTypeDef |
| structure. The read/write address information is contained by the Nand_Address_Typedef |
| structure passed as parameter. |
| |
| (+) Perform NAND flash Reset chip operation using the function HAL_NAND_Reset(). |
| |
| (+) Perform NAND flash erase block operation using the function HAL_NAND_Erase_Block(). |
| The erase block address information is contained in the Nand_Address_Typedef |
| structure passed as parameter. |
| |
| (+) Read the NAND flash status operation using the function HAL_NAND_Read_Status(). |
| |
| (+) You can also control the NAND device by calling the control APIs HAL_NAND_ECC_Enable()/ |
| HAL_NAND_ECC_Disable() to respectively enable/disable the ECC code correction |
| feature or the function HAL_NAND_GetECC() to get the ECC correction code. |
| |
| (+) You can monitor the NAND device HAL state by calling the function |
| HAL_NAND_GetState() |
| |
| [..] |
| (@) This driver is a set of generic APIs which handle standard NAND flash operations. |
| If a NAND flash device contains different operations and/or implementations, |
| it should be implemented separately. |
| |
| *** Callback registration *** |
| ============================================= |
| [..] |
| The compilation define USE_HAL_NAND_REGISTER_CALLBACKS when set to 1 |
| allows the user to configure dynamically the driver callbacks. |
| |
| Use Functions HAL_NAND_RegisterCallback() to register a user callback, |
| it allows to register following callbacks: |
| (+) MspInitCallback : NAND MspInit. |
| (+) MspDeInitCallback : NAND MspDeInit. |
| This function takes as parameters the HAL peripheral handle, the Callback ID |
| and a pointer to the user callback function. |
| |
| Use function HAL_NAND_UnRegisterCallback() to reset a callback to the default |
| weak (surcharged) function. It allows to reset following callbacks: |
| (+) MspInitCallback : NAND MspInit. |
| (+) MspDeInitCallback : NAND MspDeInit. |
| This function) takes as parameters the HAL peripheral handle and the Callback ID. |
| |
| By default, after the HAL_NAND_Init and if the state is HAL_NAND_STATE_RESET |
| all callbacks are reset to the corresponding legacy weak (surcharged) functions. |
| Exception done for MspInit and MspDeInit callbacks that are respectively |
| reset to the legacy weak (surcharged) functions in the HAL_NAND_Init |
| and HAL_NAND_DeInit only when these callbacks are null (not registered beforehand). |
| If not, MspInit or MspDeInit are not null, the HAL_NAND_Init and HAL_NAND_DeInit |
| keep and use the user MspInit/MspDeInit callbacks (registered beforehand) |
| |
| Callbacks can be registered/unregistered in READY state only. |
| Exception done for MspInit/MspDeInit callbacks that can be registered/unregistered |
| in READY or RESET state, thus registered (user) MspInit/DeInit callbacks can be used |
| during the Init/DeInit. |
| In that case first register the MspInit/MspDeInit user callbacks |
| using HAL_NAND_RegisterCallback before calling HAL_NAND_DeInit |
| or HAL_NAND_Init function. |
| |
| When The compilation define USE_HAL_NAND_REGISTER_CALLBACKS is set to 0 or |
| not defined, the callback registering feature is not available |
| and weak (surcharged) callbacks are used. |
| |
| @endverbatim |
| ****************************************************************************** |
| */ |
| |
| /* Includes ------------------------------------------------------------------*/ |
| #include "stm32h7xx_hal.h" |
| |
| |
| /** @addtogroup STM32H7xx_HAL_Driver |
| * @{ |
| */ |
| |
| #ifdef HAL_NAND_MODULE_ENABLED |
| |
| /** @defgroup NAND NAND |
| * @brief NAND HAL module driver |
| * @{ |
| */ |
| |
| /* Private typedef -----------------------------------------------------------*/ |
| /* Private Constants ------------------------------------------------------------*/ |
| /* Private macro -------------------------------------------------------------*/ |
| /* Private variables ---------------------------------------------------------*/ |
| /* Private function prototypes -----------------------------------------------*/ |
| /* Exported functions ---------------------------------------------------------*/ |
| |
| /** @defgroup NAND_Exported_Functions NAND Exported Functions |
| * @{ |
| */ |
| |
| /** @defgroup NAND_Exported_Functions_Group1 Initialization and de-initialization functions |
| * @brief Initialization and Configuration functions |
| * |
| @verbatim |
| ============================================================================== |
| ##### NAND Initialization and de-initialization functions ##### |
| ============================================================================== |
| [..] |
| This section provides functions allowing to initialize/de-initialize |
| the NAND memory |
| |
| @endverbatim |
| * @{ |
| */ |
| |
| /** |
| * @brief Perform NAND memory Initialization sequence |
| * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
| * the configuration information for NAND module. |
| * @param ComSpace_Timing pointer to Common space timing structure |
| * @param AttSpace_Timing pointer to Attribute space timing structure |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_NAND_Init(NAND_HandleTypeDef *hnand, FMC_NAND_PCC_TimingTypeDef *ComSpace_Timing, |
| FMC_NAND_PCC_TimingTypeDef *AttSpace_Timing) |
| { |
| /* Check the NAND handle state */ |
| if (hnand == NULL) |
| { |
| return HAL_ERROR; |
| } |
| |
| if (hnand->State == HAL_NAND_STATE_RESET) |
| { |
| /* Allocate lock resource and initialize it */ |
| hnand->Lock = HAL_UNLOCKED; |
| |
| #if (USE_HAL_NAND_REGISTER_CALLBACKS == 1) |
| if (hnand->MspInitCallback == NULL) |
| { |
| hnand->MspInitCallback = HAL_NAND_MspInit; |
| } |
| hnand->ItCallback = HAL_NAND_ITCallback; |
| |
| /* Init the low level hardware */ |
| hnand->MspInitCallback(hnand); |
| #else |
| /* Initialize the low level hardware (MSP) */ |
| HAL_NAND_MspInit(hnand); |
| #endif /* (USE_HAL_NAND_REGISTER_CALLBACKS) */ |
| } |
| |
| /* Initialize NAND control Interface */ |
| (void)FMC_NAND_Init(hnand->Instance, &(hnand->Init)); |
| |
| /* Initialize NAND common space timing Interface */ |
| (void)FMC_NAND_CommonSpace_Timing_Init(hnand->Instance, ComSpace_Timing, hnand->Init.NandBank); |
| |
| /* Initialize NAND attribute space timing Interface */ |
| (void)FMC_NAND_AttributeSpace_Timing_Init(hnand->Instance, AttSpace_Timing, hnand->Init.NandBank); |
| |
| /* Enable the NAND device */ |
| __FMC_NAND_ENABLE(hnand->Instance); |
| |
| /* Enable FMC Peripheral */ |
| __FMC_ENABLE(); |
| /* Update the NAND controller state */ |
| hnand->State = HAL_NAND_STATE_READY; |
| |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Perform NAND memory De-Initialization sequence |
| * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
| * the configuration information for NAND module. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_NAND_DeInit(NAND_HandleTypeDef *hnand) |
| { |
| #if (USE_HAL_NAND_REGISTER_CALLBACKS == 1) |
| if (hnand->MspDeInitCallback == NULL) |
| { |
| hnand->MspDeInitCallback = HAL_NAND_MspDeInit; |
| } |
| |
| /* DeInit the low level hardware */ |
| hnand->MspDeInitCallback(hnand); |
| #else |
| /* Initialize the low level hardware (MSP) */ |
| HAL_NAND_MspDeInit(hnand); |
| #endif /* (USE_HAL_NAND_REGISTER_CALLBACKS) */ |
| |
| /* Configure the NAND registers with their reset values */ |
| (void)FMC_NAND_DeInit(hnand->Instance, hnand->Init.NandBank); |
| |
| /* Reset the NAND controller state */ |
| hnand->State = HAL_NAND_STATE_RESET; |
| |
| /* Release Lock */ |
| __HAL_UNLOCK(hnand); |
| |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief NAND MSP Init |
| * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
| * the configuration information for NAND module. |
| * @retval None |
| */ |
| __weak void HAL_NAND_MspInit(NAND_HandleTypeDef *hnand) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(hnand); |
| |
| /* NOTE : This function Should not be modified, when the callback is needed, |
| the HAL_NAND_MspInit could be implemented in the user file |
| */ |
| } |
| |
| /** |
| * @brief NAND MSP DeInit |
| * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
| * the configuration information for NAND module. |
| * @retval None |
| */ |
| __weak void HAL_NAND_MspDeInit(NAND_HandleTypeDef *hnand) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(hnand); |
| |
| /* NOTE : This function Should not be modified, when the callback is needed, |
| the HAL_NAND_MspDeInit could be implemented in the user file |
| */ |
| } |
| |
| |
| /** |
| * @brief This function handles NAND device interrupt request. |
| * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
| * the configuration information for NAND module. |
| * @retval HAL status |
| */ |
| void HAL_NAND_IRQHandler(NAND_HandleTypeDef *hnand) |
| { |
| /* Check NAND interrupt Rising edge flag */ |
| if (__FMC_NAND_GET_FLAG(hnand->Instance, hnand->Init.NandBank, FMC_FLAG_RISING_EDGE)) |
| { |
| /* NAND interrupt callback*/ |
| #if (USE_HAL_NAND_REGISTER_CALLBACKS == 1) |
| hnand->ItCallback(hnand); |
| #else |
| HAL_NAND_ITCallback(hnand); |
| #endif /* (USE_HAL_NAND_REGISTER_CALLBACKS) */ |
| |
| /* Clear NAND interrupt Rising edge pending bit */ |
| __FMC_NAND_CLEAR_FLAG(hnand->Instance, FMC_FLAG_RISING_EDGE); |
| } |
| |
| /* Check NAND interrupt Level flag */ |
| if (__FMC_NAND_GET_FLAG(hnand->Instance, hnand->Init.NandBank, FMC_FLAG_LEVEL)) |
| { |
| /* NAND interrupt callback*/ |
| #if (USE_HAL_NAND_REGISTER_CALLBACKS == 1) |
| hnand->ItCallback(hnand); |
| #else |
| HAL_NAND_ITCallback(hnand); |
| #endif /* (USE_HAL_NAND_REGISTER_CALLBACKS) */ |
| |
| /* Clear NAND interrupt Level pending bit */ |
| __FMC_NAND_CLEAR_FLAG(hnand->Instance, FMC_FLAG_LEVEL); |
| } |
| |
| /* Check NAND interrupt Falling edge flag */ |
| if (__FMC_NAND_GET_FLAG(hnand->Instance, hnand->Init.NandBank, FMC_FLAG_FALLING_EDGE)) |
| { |
| /* NAND interrupt callback*/ |
| #if (USE_HAL_NAND_REGISTER_CALLBACKS == 1) |
| hnand->ItCallback(hnand); |
| #else |
| HAL_NAND_ITCallback(hnand); |
| #endif /* (USE_HAL_NAND_REGISTER_CALLBACKS) */ |
| |
| /* Clear NAND interrupt Falling edge pending bit */ |
| __FMC_NAND_CLEAR_FLAG(hnand->Instance, FMC_FLAG_FALLING_EDGE); |
| } |
| |
| /* Check NAND interrupt FIFO empty flag */ |
| if (__FMC_NAND_GET_FLAG(hnand->Instance, hnand->Init.NandBank, FMC_FLAG_FEMPT)) |
| { |
| /* NAND interrupt callback*/ |
| #if (USE_HAL_NAND_REGISTER_CALLBACKS == 1) |
| hnand->ItCallback(hnand); |
| #else |
| HAL_NAND_ITCallback(hnand); |
| #endif /* (USE_HAL_NAND_REGISTER_CALLBACKS) */ |
| |
| /* Clear NAND interrupt FIFO empty pending bit */ |
| __FMC_NAND_CLEAR_FLAG(hnand->Instance, FMC_FLAG_FEMPT); |
| } |
| |
| } |
| |
| /** |
| * @brief NAND interrupt feature callback |
| * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
| * the configuration information for NAND module. |
| * @retval None |
| */ |
| __weak void HAL_NAND_ITCallback(NAND_HandleTypeDef *hnand) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(hnand); |
| |
| /* NOTE : This function Should not be modified, when the callback is needed, |
| the HAL_NAND_ITCallback could be implemented in the user file |
| */ |
| } |
| |
| /** |
| * @} |
| */ |
| |
| /** @defgroup NAND_Exported_Functions_Group2 Input and Output functions |
| * @brief Input Output and memory control functions |
| * |
| @verbatim |
| ============================================================================== |
| ##### NAND Input and Output functions ##### |
| ============================================================================== |
| [..] |
| This section provides functions allowing to use and control the NAND |
| memory |
| |
| @endverbatim |
| * @{ |
| */ |
| |
| /** |
| * @brief Read the NAND memory electronic signature |
| * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
| * the configuration information for NAND module. |
| * @param pNAND_ID NAND ID structure |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_NAND_Read_ID(NAND_HandleTypeDef *hnand, NAND_IDTypeDef *pNAND_ID) |
| { |
| __IO uint32_t data = 0; |
| __IO uint32_t data1 = 0; |
| uint32_t deviceaddress; |
| |
| /* Check the NAND controller state */ |
| if (hnand->State == HAL_NAND_STATE_BUSY) |
| { |
| return HAL_BUSY; |
| } |
| else if (hnand->State == HAL_NAND_STATE_READY) |
| { |
| /* Process Locked */ |
| __HAL_LOCK(hnand); |
| |
| /* Update the NAND controller state */ |
| hnand->State = HAL_NAND_STATE_BUSY; |
| |
| /* Identify the device address */ |
| deviceaddress = NAND_DEVICE; |
| |
| /* Send Read ID command sequence */ |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_READID; |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00; |
| __DSB(); |
| |
| /* Read the electronic signature from NAND flash */ |
| if (hnand->Init.MemoryDataWidth == FMC_NAND_MEM_BUS_WIDTH_8) |
| { |
| data = *(__IO uint32_t *)deviceaddress; |
| |
| /* Return the data read */ |
| pNAND_ID->Maker_Id = ADDR_1ST_CYCLE(data); |
| pNAND_ID->Device_Id = ADDR_2ND_CYCLE(data); |
| pNAND_ID->Third_Id = ADDR_3RD_CYCLE(data); |
| pNAND_ID->Fourth_Id = ADDR_4TH_CYCLE(data); |
| } |
| else |
| { |
| data = *(__IO uint32_t *)deviceaddress; |
| data1 = *((__IO uint32_t *)deviceaddress + 4); |
| |
| /* Return the data read */ |
| pNAND_ID->Maker_Id = ADDR_1ST_CYCLE(data); |
| pNAND_ID->Device_Id = ADDR_3RD_CYCLE(data); |
| pNAND_ID->Third_Id = ADDR_1ST_CYCLE(data1); |
| pNAND_ID->Fourth_Id = ADDR_3RD_CYCLE(data1); |
| } |
| |
| /* Update the NAND controller state */ |
| hnand->State = HAL_NAND_STATE_READY; |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hnand); |
| } |
| else |
| { |
| return HAL_ERROR; |
| } |
| |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief NAND memory reset |
| * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
| * the configuration information for NAND module. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_NAND_Reset(NAND_HandleTypeDef *hnand) |
| { |
| uint32_t deviceaddress; |
| |
| /* Check the NAND controller state */ |
| if (hnand->State == HAL_NAND_STATE_BUSY) |
| { |
| return HAL_BUSY; |
| } |
| else if (hnand->State == HAL_NAND_STATE_READY) |
| { |
| /* Process Locked */ |
| __HAL_LOCK(hnand); |
| |
| /* Update the NAND controller state */ |
| hnand->State = HAL_NAND_STATE_BUSY; |
| |
| /* Identify the device address */ |
| deviceaddress = NAND_DEVICE; |
| |
| /* Send NAND reset command */ |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = 0xFF; |
| |
| /* Update the NAND controller state */ |
| hnand->State = HAL_NAND_STATE_READY; |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hnand); |
| } |
| else |
| { |
| return HAL_ERROR; |
| } |
| |
| return HAL_OK; |
| |
| } |
| |
| /** |
| * @brief Configure the device: Enter the physical parameters of the device |
| * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
| * the configuration information for NAND module. |
| * @param pDeviceConfig pointer to NAND_DeviceConfigTypeDef structure |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_NAND_ConfigDevice(NAND_HandleTypeDef *hnand, NAND_DeviceConfigTypeDef *pDeviceConfig) |
| { |
| hnand->Config.PageSize = pDeviceConfig->PageSize; |
| hnand->Config.SpareAreaSize = pDeviceConfig->SpareAreaSize; |
| hnand->Config.BlockSize = pDeviceConfig->BlockSize; |
| hnand->Config.BlockNbr = pDeviceConfig->BlockNbr; |
| hnand->Config.PlaneSize = pDeviceConfig->PlaneSize; |
| hnand->Config.PlaneNbr = pDeviceConfig->PlaneNbr; |
| hnand->Config.ExtraCommandEnable = pDeviceConfig->ExtraCommandEnable; |
| |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Read Page(s) from NAND memory block (8-bits addressing) |
| * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
| * the configuration information for NAND module. |
| * @param pAddress pointer to NAND address structure |
| * @param pBuffer pointer to destination read buffer |
| * @param NumPageToRead number of pages to read from block |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_NAND_Read_Page_8b(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress, uint8_t *pBuffer, |
| uint32_t NumPageToRead) |
| { |
| uint32_t index; |
| uint32_t tickstart; |
| uint32_t deviceaddress; |
| uint32_t numpagesread = 0U; |
| uint32_t nandaddress; |
| uint32_t nbpages = NumPageToRead; |
| uint8_t *buff = pBuffer; |
| |
| /* Check the NAND controller state */ |
| if (hnand->State == HAL_NAND_STATE_BUSY) |
| { |
| return HAL_BUSY; |
| } |
| else if (hnand->State == HAL_NAND_STATE_READY) |
| { |
| /* Process Locked */ |
| __HAL_LOCK(hnand); |
| |
| /* Update the NAND controller state */ |
| hnand->State = HAL_NAND_STATE_BUSY; |
| |
| /* Identify the device address */ |
| deviceaddress = NAND_DEVICE; |
| |
| /* NAND raw address calculation */ |
| nandaddress = ARRAY_ADDRESS(pAddress, hnand); |
| |
| /* Page(s) read loop */ |
| while ((nbpages != 0U) && (nandaddress < ((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)))) |
| { |
| /* Send read page command sequence */ |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_A; |
| __DSB(); |
| |
| /* Cards with page size <= 512 bytes */ |
| if ((hnand->Config.PageSize) <= 512U) |
| { |
| if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U) |
| { |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
| __DSB(); |
| } |
| else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ |
| { |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); |
| __DSB(); |
| } |
| } |
| else /* (hnand->Config.PageSize) > 512 */ |
| { |
| if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U) |
| { |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
| __DSB(); |
| } |
| else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ |
| { |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); |
| __DSB(); |
| } |
| } |
| |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_TRUE1; |
| __DSB(); |
| |
| |
| if (hnand->Config.ExtraCommandEnable == ENABLE) |
| { |
| /* Get tick */ |
| tickstart = HAL_GetTick(); |
| |
| /* Read status until NAND is ready */ |
| while (HAL_NAND_Read_Status(hnand) != NAND_READY) |
| { |
| if ((HAL_GetTick() - tickstart) > NAND_WRITE_TIMEOUT) |
| { |
| /* Update the NAND controller state */ |
| hnand->State = HAL_NAND_STATE_ERROR; |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hnand); |
| |
| return HAL_TIMEOUT; |
| } |
| } |
| |
| /* Go back to read mode */ |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = ((uint8_t)0x00); |
| __DSB(); |
| } |
| |
| /* Get Data into Buffer */ |
| for (index = 0U; index < hnand->Config.PageSize; index++) |
| { |
| *buff = *(uint8_t *)deviceaddress; |
| buff++; |
| } |
| |
| /* Increment read pages number */ |
| numpagesread++; |
| |
| /* Decrement pages to read */ |
| nbpages--; |
| |
| /* Increment the NAND address */ |
| nandaddress = (uint32_t)(nandaddress + 1U); |
| } |
| |
| /* Update the NAND controller state */ |
| hnand->State = HAL_NAND_STATE_READY; |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hnand); |
| } |
| else |
| { |
| return HAL_ERROR; |
| } |
| |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Read Page(s) from NAND memory block (16-bits addressing) |
| * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
| * the configuration information for NAND module. |
| * @param pAddress pointer to NAND address structure |
| * @param pBuffer pointer to destination read buffer. pBuffer should be 16bits aligned |
| * @param NumPageToRead number of pages to read from block |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_NAND_Read_Page_16b(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress, uint16_t *pBuffer, |
| uint32_t NumPageToRead) |
| { |
| uint32_t index; |
| uint32_t tickstart; |
| uint32_t deviceaddress; |
| uint32_t numpagesread = 0U; |
| uint32_t nandaddress; |
| uint32_t nbpages = NumPageToRead; |
| uint16_t *buff = pBuffer; |
| |
| /* Check the NAND controller state */ |
| if (hnand->State == HAL_NAND_STATE_BUSY) |
| { |
| return HAL_BUSY; |
| } |
| else if (hnand->State == HAL_NAND_STATE_READY) |
| { |
| /* Process Locked */ |
| __HAL_LOCK(hnand); |
| |
| /* Update the NAND controller state */ |
| hnand->State = HAL_NAND_STATE_BUSY; |
| |
| /* Identify the device address */ |
| deviceaddress = NAND_DEVICE; |
| |
| /* NAND raw address calculation */ |
| nandaddress = ARRAY_ADDRESS(pAddress, hnand); |
| |
| /* Page(s) read loop */ |
| while ((nbpages != 0U) && (nandaddress < ((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)))) |
| { |
| /* Send read page command sequence */ |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_A; |
| __DSB(); |
| |
| /* Cards with page size <= 512 bytes */ |
| if ((hnand->Config.PageSize) <= 512U) |
| { |
| if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U) |
| { |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
| __DSB(); |
| } |
| else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ |
| { |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); |
| __DSB(); |
| } |
| } |
| else /* (hnand->Config.PageSize) > 512 */ |
| { |
| if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U) |
| { |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
| __DSB(); |
| } |
| else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ |
| { |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); |
| __DSB(); |
| } |
| } |
| |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_TRUE1; |
| __DSB(); |
| |
| if (hnand->Config.ExtraCommandEnable == ENABLE) |
| { |
| /* Get tick */ |
| tickstart = HAL_GetTick(); |
| |
| /* Read status until NAND is ready */ |
| while (HAL_NAND_Read_Status(hnand) != NAND_READY) |
| { |
| if ((HAL_GetTick() - tickstart) > NAND_WRITE_TIMEOUT) |
| { |
| /* Update the NAND controller state */ |
| hnand->State = HAL_NAND_STATE_ERROR; |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hnand); |
| |
| return HAL_TIMEOUT; |
| } |
| } |
| |
| /* Go back to read mode */ |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = ((uint8_t)0x00); |
| __DSB(); |
| } |
| |
| /* Calculate PageSize */ |
| if (hnand->Init.MemoryDataWidth == FMC_NAND_MEM_BUS_WIDTH_8) |
| { |
| hnand->Config.PageSize = hnand->Config.PageSize / 2U; |
| } |
| else |
| { |
| /* Do nothing */ |
| /* Keep the same PageSize for FMC_NAND_MEM_BUS_WIDTH_16*/ |
| } |
| |
| /* Get Data into Buffer */ |
| for (index = 0U; index < hnand->Config.PageSize; index++) |
| { |
| *buff = *(uint16_t *)deviceaddress; |
| buff++; |
| } |
| |
| /* Increment read pages number */ |
| numpagesread++; |
| |
| /* Decrement pages to read */ |
| nbpages--; |
| |
| /* Increment the NAND address */ |
| nandaddress = (uint32_t)(nandaddress + 1U); |
| } |
| |
| /* Update the NAND controller state */ |
| hnand->State = HAL_NAND_STATE_READY; |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hnand); |
| } |
| else |
| { |
| return HAL_ERROR; |
| } |
| |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Write Page(s) to NAND memory block (8-bits addressing) |
| * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
| * the configuration information for NAND module. |
| * @param pAddress pointer to NAND address structure |
| * @param pBuffer pointer to source buffer to write |
| * @param NumPageToWrite number of pages to write to block |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_NAND_Write_Page_8b(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress, uint8_t *pBuffer, |
| uint32_t NumPageToWrite) |
| { |
| uint32_t index; |
| uint32_t tickstart; |
| uint32_t deviceaddress; |
| uint32_t numpageswritten = 0U; |
| uint32_t nandaddress; |
| uint32_t nbpages = NumPageToWrite; |
| uint8_t *buff = pBuffer; |
| |
| /* Check the NAND controller state */ |
| if (hnand->State == HAL_NAND_STATE_BUSY) |
| { |
| return HAL_BUSY; |
| } |
| else if (hnand->State == HAL_NAND_STATE_READY) |
| { |
| /* Process Locked */ |
| __HAL_LOCK(hnand); |
| |
| /* Update the NAND controller state */ |
| hnand->State = HAL_NAND_STATE_BUSY; |
| |
| /* Identify the device address */ |
| deviceaddress = NAND_DEVICE; |
| |
| /* NAND raw address calculation */ |
| nandaddress = ARRAY_ADDRESS(pAddress, hnand); |
| |
| /* Page(s) write loop */ |
| while ((nbpages != 0U) && (nandaddress < ((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)))) |
| { |
| /* Send write page command sequence */ |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_A; |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_WRITE0; |
| __DSB(); |
| |
| /* Cards with page size <= 512 bytes */ |
| if ((hnand->Config.PageSize) <= 512U) |
| { |
| if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U) |
| { |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
| __DSB(); |
| } |
| else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ |
| { |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); |
| __DSB(); |
| } |
| } |
| else /* (hnand->Config.PageSize) > 512 */ |
| { |
| if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U) |
| { |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
| __DSB(); |
| } |
| else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ |
| { |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); |
| __DSB(); |
| } |
| } |
| |
| /* Write data to memory */ |
| for (index = 0U; index < hnand->Config.PageSize; index++) |
| { |
| *(__IO uint8_t *)deviceaddress = *buff; |
| buff++; |
| __DSB(); |
| } |
| |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_WRITE_TRUE1; |
| __DSB(); |
| |
| /* Get tick */ |
| tickstart = HAL_GetTick(); |
| |
| /* Read status until NAND is ready */ |
| while (HAL_NAND_Read_Status(hnand) != NAND_READY) |
| { |
| if ((HAL_GetTick() - tickstart) > NAND_WRITE_TIMEOUT) |
| { |
| /* Update the NAND controller state */ |
| hnand->State = HAL_NAND_STATE_ERROR; |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hnand); |
| |
| return HAL_TIMEOUT; |
| } |
| } |
| |
| /* Increment written pages number */ |
| numpageswritten++; |
| |
| /* Decrement pages to write */ |
| nbpages--; |
| |
| /* Increment the NAND address */ |
| nandaddress = (uint32_t)(nandaddress + 1U); |
| } |
| |
| /* Update the NAND controller state */ |
| hnand->State = HAL_NAND_STATE_READY; |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hnand); |
| } |
| else |
| { |
| return HAL_ERROR; |
| } |
| |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Write Page(s) to NAND memory block (16-bits addressing) |
| * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
| * the configuration information for NAND module. |
| * @param pAddress pointer to NAND address structure |
| * @param pBuffer pointer to source buffer to write. pBuffer should be 16bits aligned |
| * @param NumPageToWrite number of pages to write to block |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_NAND_Write_Page_16b(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress, uint16_t *pBuffer, |
| uint32_t NumPageToWrite) |
| { |
| uint32_t index; |
| uint32_t tickstart; |
| uint32_t deviceaddress; |
| uint32_t numpageswritten = 0U; |
| uint32_t nandaddress; |
| uint32_t nbpages = NumPageToWrite; |
| uint16_t *buff = pBuffer; |
| |
| /* Check the NAND controller state */ |
| if (hnand->State == HAL_NAND_STATE_BUSY) |
| { |
| return HAL_BUSY; |
| } |
| else if (hnand->State == HAL_NAND_STATE_READY) |
| { |
| /* Process Locked */ |
| __HAL_LOCK(hnand); |
| |
| /* Update the NAND controller state */ |
| hnand->State = HAL_NAND_STATE_BUSY; |
| |
| /* Identify the device address */ |
| deviceaddress = NAND_DEVICE; |
| |
| /* NAND raw address calculation */ |
| nandaddress = ARRAY_ADDRESS(pAddress, hnand); |
| |
| /* Page(s) write loop */ |
| while ((nbpages != 0U) && (nandaddress < ((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)))) |
| { |
| /* Send write page command sequence */ |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_A; |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_WRITE0; |
| __DSB(); |
| |
| /* Cards with page size <= 512 bytes */ |
| if ((hnand->Config.PageSize) <= 512U) |
| { |
| if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U) |
| { |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
| __DSB(); |
| } |
| else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ |
| { |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); |
| __DSB(); |
| } |
| } |
| else /* (hnand->Config.PageSize) > 512 */ |
| { |
| if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U) |
| { |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
| __DSB(); |
| } |
| else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ |
| { |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); |
| __DSB(); |
| } |
| } |
| |
| /* Calculate PageSize */ |
| if (hnand->Init.MemoryDataWidth == FMC_NAND_MEM_BUS_WIDTH_8) |
| { |
| hnand->Config.PageSize = hnand->Config.PageSize / 2U; |
| } |
| else |
| { |
| /* Do nothing */ |
| /* Keep the same PageSize for FMC_NAND_MEM_BUS_WIDTH_16*/ |
| } |
| |
| /* Write data to memory */ |
| for (index = 0U; index < hnand->Config.PageSize; index++) |
| { |
| *(__IO uint16_t *)deviceaddress = *buff; |
| buff++; |
| __DSB(); |
| } |
| |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_WRITE_TRUE1; |
| __DSB(); |
| |
| /* Get tick */ |
| tickstart = HAL_GetTick(); |
| |
| /* Read status until NAND is ready */ |
| while (HAL_NAND_Read_Status(hnand) != NAND_READY) |
| { |
| if ((HAL_GetTick() - tickstart) > NAND_WRITE_TIMEOUT) |
| { |
| /* Update the NAND controller state */ |
| hnand->State = HAL_NAND_STATE_ERROR; |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hnand); |
| |
| return HAL_TIMEOUT; |
| } |
| } |
| |
| /* Increment written pages number */ |
| numpageswritten++; |
| |
| /* Decrement pages to write */ |
| nbpages--; |
| |
| /* Increment the NAND address */ |
| nandaddress = (uint32_t)(nandaddress + 1U); |
| } |
| |
| /* Update the NAND controller state */ |
| hnand->State = HAL_NAND_STATE_READY; |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hnand); |
| } |
| else |
| { |
| return HAL_ERROR; |
| } |
| |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Read Spare area(s) from NAND memory (8-bits addressing) |
| * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
| * the configuration information for NAND module. |
| * @param pAddress pointer to NAND address structure |
| * @param pBuffer pointer to source buffer to write |
| * @param NumSpareAreaToRead Number of spare area to read |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_NAND_Read_SpareArea_8b(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress, uint8_t *pBuffer, |
| uint32_t NumSpareAreaToRead) |
| { |
| uint32_t index; |
| uint32_t tickstart; |
| uint32_t deviceaddress; |
| uint32_t numsparearearead = 0U; |
| uint32_t nandaddress; |
| uint32_t columnaddress; |
| uint32_t nbspare = NumSpareAreaToRead; |
| uint8_t *buff = pBuffer; |
| |
| /* Check the NAND controller state */ |
| if (hnand->State == HAL_NAND_STATE_BUSY) |
| { |
| return HAL_BUSY; |
| } |
| else if (hnand->State == HAL_NAND_STATE_READY) |
| { |
| /* Process Locked */ |
| __HAL_LOCK(hnand); |
| |
| /* Update the NAND controller state */ |
| hnand->State = HAL_NAND_STATE_BUSY; |
| |
| /* Identify the device address */ |
| deviceaddress = NAND_DEVICE; |
| |
| /* NAND raw address calculation */ |
| nandaddress = ARRAY_ADDRESS(pAddress, hnand); |
| |
| /* Column in page address */ |
| columnaddress = COLUMN_ADDRESS(hnand); |
| |
| /* Spare area(s) read loop */ |
| while ((nbspare != 0U) && (nandaddress < ((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)))) |
| { |
| /* Cards with page size <= 512 bytes */ |
| if ((hnand->Config.PageSize) <= 512U) |
| { |
| /* Send read spare area command sequence */ |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_C; |
| __DSB(); |
| |
| if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U) |
| { |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
| __DSB(); |
| } |
| else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ |
| { |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); |
| __DSB(); |
| } |
| } |
| else /* (hnand->Config.PageSize) > 512 */ |
| { |
| /* Send read spare area command sequence */ |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_A; |
| __DSB(); |
| |
| if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U) |
| { |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_1ST_CYCLE(columnaddress); |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_2ND_CYCLE(columnaddress); |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
| __DSB(); |
| } |
| else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ |
| { |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_1ST_CYCLE(columnaddress); |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_2ND_CYCLE(columnaddress); |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); |
| __DSB(); |
| } |
| } |
| |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_TRUE1; |
| __DSB(); |
| |
| if (hnand->Config.ExtraCommandEnable == ENABLE) |
| { |
| /* Get tick */ |
| tickstart = HAL_GetTick(); |
| |
| /* Read status until NAND is ready */ |
| while (HAL_NAND_Read_Status(hnand) != NAND_READY) |
| { |
| if ((HAL_GetTick() - tickstart) > NAND_WRITE_TIMEOUT) |
| { |
| /* Update the NAND controller state */ |
| hnand->State = HAL_NAND_STATE_ERROR; |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hnand); |
| |
| return HAL_TIMEOUT; |
| } |
| } |
| |
| /* Go back to read mode */ |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = ((uint8_t)0x00); |
| __DSB(); |
| } |
| |
| /* Get Data into Buffer */ |
| for (index = 0U; index < hnand->Config.SpareAreaSize; index++) |
| { |
| *buff = *(uint8_t *)deviceaddress; |
| buff++; |
| } |
| |
| /* Increment read spare areas number */ |
| numsparearearead++; |
| |
| /* Decrement spare areas to read */ |
| nbspare--; |
| |
| /* Increment the NAND address */ |
| nandaddress = (uint32_t)(nandaddress + 1U); |
| } |
| |
| /* Update the NAND controller state */ |
| hnand->State = HAL_NAND_STATE_READY; |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hnand); |
| } |
| else |
| { |
| return HAL_ERROR; |
| } |
| |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Read Spare area(s) from NAND memory (16-bits addressing) |
| * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
| * the configuration information for NAND module. |
| * @param pAddress pointer to NAND address structure |
| * @param pBuffer pointer to source buffer to write. pBuffer should be 16bits aligned. |
| * @param NumSpareAreaToRead Number of spare area to read |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_NAND_Read_SpareArea_16b(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress, |
| uint16_t *pBuffer, uint32_t NumSpareAreaToRead) |
| { |
| uint32_t index; |
| uint32_t tickstart; |
| uint32_t deviceaddress; |
| uint32_t numsparearearead = 0U; |
| uint32_t nandaddress; |
| uint32_t columnaddress; |
| uint32_t nbspare = NumSpareAreaToRead; |
| uint16_t *buff = pBuffer; |
| |
| /* Check the NAND controller state */ |
| if (hnand->State == HAL_NAND_STATE_BUSY) |
| { |
| return HAL_BUSY; |
| } |
| else if (hnand->State == HAL_NAND_STATE_READY) |
| { |
| /* Process Locked */ |
| __HAL_LOCK(hnand); |
| |
| /* Update the NAND controller state */ |
| hnand->State = HAL_NAND_STATE_BUSY; |
| |
| /* Identify the device address */ |
| deviceaddress = NAND_DEVICE; |
| |
| /* NAND raw address calculation */ |
| nandaddress = ARRAY_ADDRESS(pAddress, hnand); |
| |
| /* Column in page address */ |
| columnaddress = (uint32_t)(COLUMN_ADDRESS(hnand)); |
| |
| /* Spare area(s) read loop */ |
| while ((nbspare != 0U) && (nandaddress < ((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)))) |
| { |
| /* Cards with page size <= 512 bytes */ |
| if ((hnand->Config.PageSize) <= 512U) |
| { |
| /* Send read spare area command sequence */ |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_C; |
| __DSB(); |
| |
| if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U) |
| { |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
| __DSB(); |
| } |
| else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ |
| { |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); |
| __DSB(); |
| } |
| } |
| else /* (hnand->Config.PageSize) > 512 */ |
| { |
| /* Send read spare area command sequence */ |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_A; |
| __DSB(); |
| |
| if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U) |
| { |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_1ST_CYCLE(columnaddress); |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_2ND_CYCLE(columnaddress); |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
| __DSB(); |
| } |
| else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ |
| { |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_1ST_CYCLE(columnaddress); |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_2ND_CYCLE(columnaddress); |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); |
| __DSB(); |
| } |
| } |
| |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_TRUE1; |
| __DSB(); |
| |
| if (hnand->Config.ExtraCommandEnable == ENABLE) |
| { |
| /* Get tick */ |
| tickstart = HAL_GetTick(); |
| |
| /* Read status until NAND is ready */ |
| while (HAL_NAND_Read_Status(hnand) != NAND_READY) |
| { |
| if ((HAL_GetTick() - tickstart) > NAND_WRITE_TIMEOUT) |
| { |
| /* Update the NAND controller state */ |
| hnand->State = HAL_NAND_STATE_ERROR; |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hnand); |
| |
| return HAL_TIMEOUT; |
| } |
| } |
| |
| /* Go back to read mode */ |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = ((uint8_t)0x00); |
| __DSB(); |
| } |
| |
| /* Get Data into Buffer */ |
| for (index = 0U; index < hnand->Config.SpareAreaSize; index++) |
| { |
| *buff = *(uint16_t *)deviceaddress; |
| buff++; |
| } |
| |
| /* Increment read spare areas number */ |
| numsparearearead++; |
| |
| /* Decrement spare areas to read */ |
| nbspare--; |
| |
| /* Increment the NAND address */ |
| nandaddress = (uint32_t)(nandaddress + 1U); |
| } |
| |
| /* Update the NAND controller state */ |
| hnand->State = HAL_NAND_STATE_READY; |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hnand); |
| } |
| else |
| { |
| return HAL_ERROR; |
| } |
| |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Write Spare area(s) to NAND memory (8-bits addressing) |
| * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
| * the configuration information for NAND module. |
| * @param pAddress pointer to NAND address structure |
| * @param pBuffer pointer to source buffer to write |
| * @param NumSpareAreaTowrite number of spare areas to write to block |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_NAND_Write_SpareArea_8b(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress, |
| uint8_t *pBuffer, uint32_t NumSpareAreaTowrite) |
| { |
| uint32_t index; |
| uint32_t tickstart; |
| uint32_t deviceaddress; |
| uint32_t numspareareawritten = 0U; |
| uint32_t nandaddress; |
| uint32_t columnaddress; |
| uint32_t nbspare = NumSpareAreaTowrite; |
| uint8_t *buff = pBuffer; |
| |
| /* Check the NAND controller state */ |
| if (hnand->State == HAL_NAND_STATE_BUSY) |
| { |
| return HAL_BUSY; |
| } |
| else if (hnand->State == HAL_NAND_STATE_READY) |
| { |
| /* Process Locked */ |
| __HAL_LOCK(hnand); |
| |
| /* Update the NAND controller state */ |
| hnand->State = HAL_NAND_STATE_BUSY; |
| |
| /* Identify the device address */ |
| deviceaddress = NAND_DEVICE; |
| |
| /* Page address calculation */ |
| nandaddress = ARRAY_ADDRESS(pAddress, hnand); |
| |
| /* Column in page address */ |
| columnaddress = COLUMN_ADDRESS(hnand); |
| |
| /* Spare area(s) write loop */ |
| while ((nbspare != 0U) && (nandaddress < ((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)))) |
| { |
| /* Cards with page size <= 512 bytes */ |
| if ((hnand->Config.PageSize) <= 512U) |
| { |
| /* Send write Spare area command sequence */ |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_C; |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_WRITE0; |
| __DSB(); |
| |
| if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U) |
| { |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
| __DSB(); |
| } |
| else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ |
| { |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); |
| __DSB(); |
| } |
| } |
| else /* (hnand->Config.PageSize) > 512 */ |
| { |
| /* Send write Spare area command sequence */ |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_A; |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_WRITE0; |
| __DSB(); |
| |
| if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U) |
| { |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_1ST_CYCLE(columnaddress); |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_2ND_CYCLE(columnaddress); |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
| __DSB(); |
| } |
| else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ |
| { |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_1ST_CYCLE(columnaddress); |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_2ND_CYCLE(columnaddress); |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); |
| __DSB(); |
| } |
| } |
| |
| /* Write data to memory */ |
| for (index = 0U; index < hnand->Config.SpareAreaSize; index++) |
| { |
| *(__IO uint8_t *)deviceaddress = *buff; |
| buff++; |
| __DSB(); |
| } |
| |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_WRITE_TRUE1; |
| __DSB(); |
| |
| /* Get tick */ |
| tickstart = HAL_GetTick(); |
| |
| /* Read status until NAND is ready */ |
| while (HAL_NAND_Read_Status(hnand) != NAND_READY) |
| { |
| if ((HAL_GetTick() - tickstart) > NAND_WRITE_TIMEOUT) |
| { |
| /* Update the NAND controller state */ |
| hnand->State = HAL_NAND_STATE_ERROR; |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hnand); |
| |
| return HAL_TIMEOUT; |
| } |
| } |
| |
| /* Increment written spare areas number */ |
| numspareareawritten++; |
| |
| /* Decrement spare areas to write */ |
| nbspare--; |
| |
| /* Increment the NAND address */ |
| nandaddress = (uint32_t)(nandaddress + 1U); |
| } |
| |
| /* Update the NAND controller state */ |
| hnand->State = HAL_NAND_STATE_READY; |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hnand); |
| } |
| else |
| { |
| return HAL_ERROR; |
| } |
| |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Write Spare area(s) to NAND memory (16-bits addressing) |
| * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
| * the configuration information for NAND module. |
| * @param pAddress pointer to NAND address structure |
| * @param pBuffer pointer to source buffer to write. pBuffer should be 16bits aligned. |
| * @param NumSpareAreaTowrite number of spare areas to write to block |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_NAND_Write_SpareArea_16b(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress, |
| uint16_t *pBuffer, uint32_t NumSpareAreaTowrite) |
| { |
| uint32_t index; |
| uint32_t tickstart; |
| uint32_t deviceaddress; |
| uint32_t numspareareawritten = 0U; |
| uint32_t nandaddress; |
| uint32_t columnaddress; |
| uint32_t nbspare = NumSpareAreaTowrite; |
| uint16_t *buff = pBuffer; |
| |
| /* Check the NAND controller state */ |
| if (hnand->State == HAL_NAND_STATE_BUSY) |
| { |
| return HAL_BUSY; |
| } |
| else if (hnand->State == HAL_NAND_STATE_READY) |
| { |
| /* Process Locked */ |
| __HAL_LOCK(hnand); |
| |
| /* Update the NAND controller state */ |
| hnand->State = HAL_NAND_STATE_BUSY; |
| |
| /* Identify the device address */ |
| deviceaddress = NAND_DEVICE; |
| |
| /* NAND raw address calculation */ |
| nandaddress = ARRAY_ADDRESS(pAddress, hnand); |
| |
| /* Column in page address */ |
| columnaddress = (uint32_t)(COLUMN_ADDRESS(hnand)); |
| |
| /* Spare area(s) write loop */ |
| while ((nbspare != 0U) && (nandaddress < ((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)))) |
| { |
| /* Cards with page size <= 512 bytes */ |
| if ((hnand->Config.PageSize) <= 512U) |
| { |
| /* Send write Spare area command sequence */ |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_C; |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_WRITE0; |
| __DSB(); |
| |
| if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U) |
| { |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
| __DSB(); |
| } |
| else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ |
| { |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); |
| __DSB(); |
| } |
| } |
| else /* (hnand->Config.PageSize) > 512 */ |
| { |
| /* Send write Spare area command sequence */ |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_A; |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_WRITE0; |
| __DSB(); |
| |
| if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U) |
| { |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_1ST_CYCLE(columnaddress); |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_2ND_CYCLE(columnaddress); |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
| __DSB(); |
| } |
| else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ |
| { |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_1ST_CYCLE(columnaddress); |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_2ND_CYCLE(columnaddress); |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); |
| __DSB(); |
| } |
| } |
| |
| /* Write data to memory */ |
| for (index = 0U; index < hnand->Config.SpareAreaSize; index++) |
| { |
| *(__IO uint16_t *)deviceaddress = *buff; |
| buff++; |
| __DSB(); |
| } |
| |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_WRITE_TRUE1; |
| __DSB(); |
| |
| /* Get tick */ |
| tickstart = HAL_GetTick(); |
| |
| /* Read status until NAND is ready */ |
| while (HAL_NAND_Read_Status(hnand) != NAND_READY) |
| { |
| if ((HAL_GetTick() - tickstart) > NAND_WRITE_TIMEOUT) |
| { |
| /* Update the NAND controller state */ |
| hnand->State = HAL_NAND_STATE_ERROR; |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hnand); |
| |
| return HAL_TIMEOUT; |
| } |
| } |
| |
| /* Increment written spare areas number */ |
| numspareareawritten++; |
| |
| /* Decrement spare areas to write */ |
| nbspare--; |
| |
| /* Increment the NAND address */ |
| nandaddress = (uint32_t)(nandaddress + 1U); |
| } |
| |
| /* Update the NAND controller state */ |
| hnand->State = HAL_NAND_STATE_READY; |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hnand); |
| } |
| else |
| { |
| return HAL_ERROR; |
| } |
| |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief NAND memory Block erase |
| * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
| * the configuration information for NAND module. |
| * @param pAddress pointer to NAND address structure |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_NAND_Erase_Block(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress) |
| { |
| uint32_t deviceaddress; |
| |
| /* Check the NAND controller state */ |
| if (hnand->State == HAL_NAND_STATE_BUSY) |
| { |
| return HAL_BUSY; |
| } |
| else if (hnand->State == HAL_NAND_STATE_READY) |
| { |
| /* Process Locked */ |
| __HAL_LOCK(hnand); |
| |
| /* Update the NAND controller state */ |
| hnand->State = HAL_NAND_STATE_BUSY; |
| |
| /* Identify the device address */ |
| deviceaddress = NAND_DEVICE; |
| |
| /* Send Erase block command sequence */ |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_ERASE0; |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(ARRAY_ADDRESS(pAddress, hnand)); |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(ARRAY_ADDRESS(pAddress, hnand)); |
| __DSB(); |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(ARRAY_ADDRESS(pAddress, hnand)); |
| __DSB(); |
| |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_ERASE1; |
| __DSB(); |
| |
| /* Update the NAND controller state */ |
| hnand->State = HAL_NAND_STATE_READY; |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hnand); |
| } |
| else |
| { |
| return HAL_ERROR; |
| } |
| |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Increment the NAND memory address |
| * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
| * the configuration information for NAND module. |
| * @param pAddress pointer to NAND address structure |
| * @retval The new status of the increment address operation. It can be: |
| * - NAND_VALID_ADDRESS: When the new address is valid address |
| * - NAND_INVALID_ADDRESS: When the new address is invalid address |
| */ |
| uint32_t HAL_NAND_Address_Inc(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress) |
| { |
| uint32_t status = NAND_VALID_ADDRESS; |
| |
| /* Increment page address */ |
| pAddress->Page++; |
| |
| /* Check NAND address is valid */ |
| if (pAddress->Page == hnand->Config.BlockSize) |
| { |
| pAddress->Page = 0; |
| pAddress->Block++; |
| |
| if (pAddress->Block == hnand->Config.PlaneSize) |
| { |
| pAddress->Block = 0; |
| pAddress->Plane++; |
| |
| if (pAddress->Plane == (hnand->Config.PlaneNbr)) |
| { |
| status = NAND_INVALID_ADDRESS; |
| } |
| } |
| } |
| |
| return (status); |
| } |
| |
| #if (USE_HAL_NAND_REGISTER_CALLBACKS == 1) |
| /** |
| * @brief Register a User NAND Callback |
| * To be used instead of the weak (surcharged) predefined callback |
| * @param hnand : NAND handle |
| * @param CallbackId : ID of the callback to be registered |
| * This parameter can be one of the following values: |
| * @arg @ref HAL_NAND_MSP_INIT_CB_ID NAND MspInit callback ID |
| * @arg @ref HAL_NAND_MSP_DEINIT_CB_ID NAND MspDeInit callback ID |
| * @arg @ref HAL_NAND_IT_CB_ID NAND IT callback ID |
| * @param pCallback : pointer to the Callback function |
| * @retval status |
| */ |
| HAL_StatusTypeDef HAL_NAND_RegisterCallback(NAND_HandleTypeDef *hnand, HAL_NAND_CallbackIDTypeDef CallbackId, |
| pNAND_CallbackTypeDef pCallback) |
| { |
| HAL_StatusTypeDef status = HAL_OK; |
| |
| if (pCallback == NULL) |
| { |
| return HAL_ERROR; |
| } |
| |
| /* Process locked */ |
| __HAL_LOCK(hnand); |
| |
| if (hnand->State == HAL_NAND_STATE_READY) |
| { |
| switch (CallbackId) |
| { |
| case HAL_NAND_MSP_INIT_CB_ID : |
| hnand->MspInitCallback = pCallback; |
| break; |
| case HAL_NAND_MSP_DEINIT_CB_ID : |
| hnand->MspDeInitCallback = pCallback; |
| break; |
| case HAL_NAND_IT_CB_ID : |
| hnand->ItCallback = pCallback; |
| break; |
| default : |
| /* update return status */ |
| status = HAL_ERROR; |
| break; |
| } |
| } |
| else if (hnand->State == HAL_NAND_STATE_RESET) |
| { |
| switch (CallbackId) |
| { |
| case HAL_NAND_MSP_INIT_CB_ID : |
| hnand->MspInitCallback = pCallback; |
| break; |
| case HAL_NAND_MSP_DEINIT_CB_ID : |
| hnand->MspDeInitCallback = pCallback; |
| break; |
| default : |
| /* update return status */ |
| status = HAL_ERROR; |
| break; |
| } |
| } |
| else |
| { |
| /* update return status */ |
| status = HAL_ERROR; |
| } |
| |
| /* Release Lock */ |
| __HAL_UNLOCK(hnand); |
| return status; |
| } |
| |
| /** |
| * @brief Unregister a User NAND Callback |
| * NAND Callback is redirected to the weak (surcharged) predefined callback |
| * @param hnand : NAND handle |
| * @param CallbackId : ID of the callback to be unregistered |
| * This parameter can be one of the following values: |
| * @arg @ref HAL_NAND_MSP_INIT_CB_ID NAND MspInit callback ID |
| * @arg @ref HAL_NAND_MSP_DEINIT_CB_ID NAND MspDeInit callback ID |
| * @arg @ref HAL_NAND_IT_CB_ID NAND IT callback ID |
| * @retval status |
| */ |
| HAL_StatusTypeDef HAL_NAND_UnRegisterCallback(NAND_HandleTypeDef *hnand, HAL_NAND_CallbackIDTypeDef CallbackId) |
| { |
| HAL_StatusTypeDef status = HAL_OK; |
| |
| /* Process locked */ |
| __HAL_LOCK(hnand); |
| |
| if (hnand->State == HAL_NAND_STATE_READY) |
| { |
| switch (CallbackId) |
| { |
| case HAL_NAND_MSP_INIT_CB_ID : |
| hnand->MspInitCallback = HAL_NAND_MspInit; |
| break; |
| case HAL_NAND_MSP_DEINIT_CB_ID : |
| hnand->MspDeInitCallback = HAL_NAND_MspDeInit; |
| break; |
| case HAL_NAND_IT_CB_ID : |
| hnand->ItCallback = HAL_NAND_ITCallback; |
| break; |
| default : |
| /* update return status */ |
| status = HAL_ERROR; |
| break; |
| } |
| } |
| else if (hnand->State == HAL_NAND_STATE_RESET) |
| { |
| switch (CallbackId) |
| { |
| case HAL_NAND_MSP_INIT_CB_ID : |
| hnand->MspInitCallback = HAL_NAND_MspInit; |
| break; |
| case HAL_NAND_MSP_DEINIT_CB_ID : |
| hnand->MspDeInitCallback = HAL_NAND_MspDeInit; |
| break; |
| default : |
| /* update return status */ |
| status = HAL_ERROR; |
| break; |
| } |
| } |
| else |
| { |
| /* update return status */ |
| status = HAL_ERROR; |
| } |
| |
| /* Release Lock */ |
| __HAL_UNLOCK(hnand); |
| return status; |
| } |
| #endif /* USE_HAL_NAND_REGISTER_CALLBACKS */ |
| |
| /** |
| * @} |
| */ |
| |
| /** @defgroup NAND_Exported_Functions_Group3 Peripheral Control functions |
| * @brief management functions |
| * |
| @verbatim |
| ============================================================================== |
| ##### NAND Control functions ##### |
| ============================================================================== |
| [..] |
| This subsection provides a set of functions allowing to control dynamically |
| the NAND interface. |
| |
| @endverbatim |
| * @{ |
| */ |
| |
| |
| /** |
| * @brief Enables dynamically NAND ECC feature. |
| * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
| * the configuration information for NAND module. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_NAND_ECC_Enable(NAND_HandleTypeDef *hnand) |
| { |
| /* Check the NAND controller state */ |
| if (hnand->State == HAL_NAND_STATE_BUSY) |
| { |
| return HAL_BUSY; |
| } |
| else if (hnand->State == HAL_NAND_STATE_READY) |
| { |
| /* Update the NAND state */ |
| hnand->State = HAL_NAND_STATE_BUSY; |
| |
| /* Enable ECC feature */ |
| (void)FMC_NAND_ECC_Enable(hnand->Instance, hnand->Init.NandBank); |
| |
| /* Update the NAND state */ |
| hnand->State = HAL_NAND_STATE_READY; |
| } |
| else |
| { |
| return HAL_ERROR; |
| } |
| |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Disables dynamically FMC_NAND ECC feature. |
| * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
| * the configuration information for NAND module. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_NAND_ECC_Disable(NAND_HandleTypeDef *hnand) |
| { |
| /* Check the NAND controller state */ |
| if (hnand->State == HAL_NAND_STATE_BUSY) |
| { |
| return HAL_BUSY; |
| } |
| else if (hnand->State == HAL_NAND_STATE_READY) |
| { |
| /* Update the NAND state */ |
| hnand->State = HAL_NAND_STATE_BUSY; |
| |
| /* Disable ECC feature */ |
| (void)FMC_NAND_ECC_Disable(hnand->Instance, hnand->Init.NandBank); |
| |
| /* Update the NAND state */ |
| hnand->State = HAL_NAND_STATE_READY; |
| } |
| else |
| { |
| return HAL_ERROR; |
| } |
| |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Disables dynamically NAND ECC feature. |
| * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
| * the configuration information for NAND module. |
| * @param ECCval pointer to ECC value |
| * @param Timeout maximum timeout to wait |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_NAND_GetECC(NAND_HandleTypeDef *hnand, uint32_t *ECCval, uint32_t Timeout) |
| { |
| HAL_StatusTypeDef status; |
| |
| /* Check the NAND controller state */ |
| if (hnand->State == HAL_NAND_STATE_BUSY) |
| { |
| return HAL_BUSY; |
| } |
| else if (hnand->State == HAL_NAND_STATE_READY) |
| { |
| /* Update the NAND state */ |
| hnand->State = HAL_NAND_STATE_BUSY; |
| |
| /* Get NAND ECC value */ |
| status = FMC_NAND_GetECC(hnand->Instance, ECCval, hnand->Init.NandBank, Timeout); |
| |
| /* Update the NAND state */ |
| hnand->State = HAL_NAND_STATE_READY; |
| } |
| else |
| { |
| return HAL_ERROR; |
| } |
| |
| return status; |
| } |
| |
| /** |
| * @} |
| */ |
| |
| |
| /** @defgroup NAND_Exported_Functions_Group4 Peripheral State functions |
| * @brief Peripheral State functions |
| * |
| @verbatim |
| ============================================================================== |
| ##### NAND State functions ##### |
| ============================================================================== |
| [..] |
| This subsection permits to get in run-time the status of the NAND controller |
| and the data flow. |
| |
| @endverbatim |
| * @{ |
| */ |
| |
| /** |
| * @brief return the NAND state |
| * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
| * the configuration information for NAND module. |
| * @retval HAL state |
| */ |
| HAL_NAND_StateTypeDef HAL_NAND_GetState(NAND_HandleTypeDef *hnand) |
| { |
| return hnand->State; |
| } |
| |
| /** |
| * @brief NAND memory read status |
| * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
| * the configuration information for NAND module. |
| * @retval NAND status |
| */ |
| uint32_t HAL_NAND_Read_Status(NAND_HandleTypeDef *hnand) |
| { |
| uint32_t data; |
| uint32_t deviceaddress; |
| UNUSED(hnand); |
| |
| /* Identify the device address */ |
| deviceaddress = NAND_DEVICE; |
| |
| /* Send Read status operation command */ |
| *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_STATUS; |
| |
| /* Read status register data */ |
| data = *(__IO uint8_t *)deviceaddress; |
| |
| /* Return the status */ |
| if ((data & NAND_ERROR) == NAND_ERROR) |
| { |
| return NAND_ERROR; |
| } |
| else if ((data & NAND_READY) == NAND_READY) |
| { |
| return NAND_READY; |
| } |
| else |
| { |
| return NAND_BUSY; |
| } |
| } |
| |
| /** |
| * @} |
| */ |
| |
| /** |
| * @} |
| */ |
| |
| /** |
| * @} |
| */ |
| |
| #endif /* HAL_NAND_MODULE_ENABLED */ |
| |
| /** |
| * @} |
| */ |
| |