| /** |
| ****************************************************************************** |
| * @file stm32h7xx_hal_hash.c |
| * @author MCD Application Team |
| * @brief HASH HAL module driver. |
| * This file provides firmware functions to manage the following |
| * functionalities of the HASH peripheral: |
| * + Initialization and de-initialization methods |
| * + HASH or HMAC processing in polling mode |
| * + HASH or HMAC processing in interrupt mode |
| * + HASH or HMAC processing in DMA mode |
| * + Peripheral State methods |
| * + HASH or HMAC processing suspension/resumption |
| * |
| @verbatim |
| =============================================================================== |
| ##### How to use this driver ##### |
| =============================================================================== |
| [..] |
| The HASH HAL driver can be used as follows: |
| |
| (#)Initialize the HASH low level resources by implementing the HAL_HASH_MspInit(): |
| (##) Enable the HASH interface clock using __HASH_CLK_ENABLE() |
| (##) When resorting to interrupt-based APIs (e.g. HAL_HASH_xxx_Start_IT()) |
| (+++) Configure the HASH interrupt priority using HAL_NVIC_SetPriority() |
| (+++) Enable the HASH IRQ handler using HAL_NVIC_EnableIRQ() |
| (+++) In HASH IRQ handler, call HAL_HASH_IRQHandler() API |
| (##) When resorting to DMA-based APIs (e.g. HAL_HASH_xxx_Start_DMA()) |
| (+++) Enable the DMAx interface clock using |
| __DMAx_CLK_ENABLE() |
| (+++) Configure and enable one DMA stream to manage data transfer from |
| memory to peripheral (input stream). Managing data transfer from |
| peripheral to memory can be performed only using CPU. |
| (+++) Associate the initialized DMA handle to the HASH DMA handle |
| using __HAL_LINKDMA() |
| (+++) Configure the priority and enable the NVIC for the transfer complete |
| interrupt on the DMA Stream: use |
| HAL_NVIC_SetPriority() and |
| HAL_NVIC_EnableIRQ() |
| |
| (#)Initialize the HASH HAL using HAL_HASH_Init(). This function: |
| (##) resorts to HAL_HASH_MspInit() for low-level initialization, |
| (##) configures the data type: 1-bit, 8-bit, 16-bit or 32-bit. |
| |
| (#)Three processing schemes are available: |
| (##) Polling mode: processing APIs are blocking functions |
| i.e. they process the data and wait till the digest computation is finished, |
| e.g. HAL_HASH_xxx_Start() for HASH or HAL_HMAC_xxx_Start() for HMAC |
| (##) Interrupt mode: processing APIs are not blocking functions |
| i.e. they process the data under interrupt, |
| e.g. HAL_HASH_xxx_Start_IT() for HASH or HAL_HMAC_xxx_Start_IT() for HMAC |
| (##) DMA mode: processing APIs are not blocking functions and the CPU is |
| not used for data transfer i.e. the data transfer is ensured by DMA, |
| e.g. HAL_HASH_xxx_Start_DMA() for HASH or HAL_HMAC_xxx_Start_DMA() |
| for HMAC. Note that in DMA mode, a call to HAL_HASH_xxx_Finish() |
| is then required to retrieve the digest. |
| |
| (#)When the processing function is called after HAL_HASH_Init(), the HASH peripheral is |
| initialized and processes the buffer fed in input. When the input data have all been |
| fed to the Peripheral, the digest computation can start. |
| |
| (#)Multi-buffer processing is possible in polling, interrupt and DMA modes. |
| (##) In polling mode, only multi-buffer HASH processing is possible. |
| API HAL_HASH_xxx_Accumulate() must be called for each input buffer, except for the last one. |
| User must resort to HAL_HASH_xxx_Accumulate_End() to enter the last one and retrieve as |
| well the computed digest. |
| |
| (##) In interrupt mode, API HAL_HASH_xxx_Accumulate_IT() must be called for each input buffer, |
| except for the last one. |
| User must resort to HAL_HASH_xxx_Accumulate_End_IT() to enter the last one and retrieve as |
| well the computed digest. |
| |
| (##) In DMA mode, multi-buffer HASH and HMAC processing are possible. |
| (+++) HASH processing: once initialization is done, MDMAT bit must be set thru __HAL_HASH_SET_MDMAT() macro. |
| From that point, each buffer can be fed to the Peripheral thru HAL_HASH_xxx_Start_DMA() API. |
| Before entering the last buffer, reset the MDMAT bit with __HAL_HASH_RESET_MDMAT() |
| macro then wrap-up the HASH processing in feeding the last input buffer thru the |
| same API HAL_HASH_xxx_Start_DMA(). The digest can then be retrieved with a call to |
| API HAL_HASH_xxx_Finish(). |
| (+++) HMAC processing (requires to resort to extended functions): |
| after initialization, the key and the first input buffer are entered |
| in the Peripheral with the API HAL_HMACEx_xxx_Step1_2_DMA(). This carries out HMAC step 1 and |
| starts step 2. |
| The following buffers are next entered with the API HAL_HMACEx_xxx_Step2_DMA(). At this |
| point, the HMAC processing is still carrying out step 2. |
| Then, step 2 for the last input buffer and step 3 are carried out by a single call |
| to HAL_HMACEx_xxx_Step2_3_DMA(). |
| |
| The digest can finally be retrieved with a call to API HAL_HASH_xxx_Finish(). |
| |
| |
| (#)Context swapping. |
| (##) Two APIs are available to suspend HASH or HMAC processing: |
| (+++) HAL_HASH_SwFeed_ProcessSuspend() when data are entered by software (polling or IT mode), |
| (+++) HAL_HASH_DMAFeed_ProcessSuspend() when data are entered by DMA. |
| |
| (##) When HASH or HMAC processing is suspended, HAL_HASH_ContextSaving() allows |
| to save in memory the Peripheral context. This context can be restored afterwards |
| to resume the HASH processing thanks to HAL_HASH_ContextRestoring(). |
| |
| (##) Once the HASH Peripheral has been restored to the same configuration as that at suspension |
| time, processing can be restarted with the same API call (same API, same handle, |
| same parameters) as done before the suspension. Relevant parameters to restart at |
| the proper location are internally saved in the HASH handle. |
| |
| (#)Call HAL_HASH_DeInit() to deinitialize the HASH peripheral. |
| |
| *** Remarks on message length *** |
| =================================== |
| [..] |
| (#) HAL in interruption mode (interruptions driven) |
| |
| (##)Due to HASH peripheral hardware design, the peripheral interruption is triggered every 64 bytes. |
| This is why, for driver implementation simplicity’s sake, user is requested to enter a message the |
| length of which is a multiple of 4 bytes. |
| |
| (##) When the message length (in bytes) is not a multiple of words, a specific field exists in HASH_STR |
| to specify which bits to discard at the end of the complete message to process only the message bits |
| and not extra bits. |
| |
| (##) If user needs to perform a hash computation of a large input buffer that is spread around various places |
| in memory and where each piece of this input buffer is not necessarily a multiple of 4 bytes in size, it |
| becomes necessary to use a temporary buffer to format the data accordingly before feeding them to the Peripheral. |
| It is advised to the user to |
| (+++) achieve the first formatting operation by software then enter the data |
| (+++) while the Peripheral is processing the first input set, carry out the second formatting operation by software, to be ready when DINIS occurs. |
| (+++) repeat step 2 until the whole message is processed. |
| |
| [..] |
| (#) HAL in DMA mode |
| |
| (##) Again, due to hardware design, the DMA transfer to feed the data can only be done on a word-basis. |
| The same field described above in HASH_STR is used to specify which bits to discard at the end of the DMA transfer |
| to process only the message bits and not extra bits. Due to hardware implementation, this is possible only at the |
| end of the complete message. When several DMA transfers are needed to enter the message, this is not applicable at |
| the end of the intermediary transfers. |
| |
| (##) Similarly to the interruption-driven mode, it is suggested to the user to format the consecutive chunks of data |
| by software while the DMA transfer and processing is on-going for the first parts of the message. Due to the 32-bit alignment |
| required for the DMA transfer, it is underlined that the software formatting operation is more complex than in the IT mode. |
| |
| *** Callback registration *** |
| =================================== |
| [..] |
| (#) The compilation define USE_HAL_HASH_REGISTER_CALLBACKS when set to 1 |
| allows the user to configure dynamically the driver callbacks. |
| Use function @ref HAL_HASH_RegisterCallback() to register a user callback. |
| |
| (#) Function @ref HAL_HASH_RegisterCallback() allows to register following callbacks: |
| (+) InCpltCallback : callback for input completion. |
| (+) DgstCpltCallback : callback for digest computation completion. |
| (+) ErrorCallback : callback for error. |
| (+) MspInitCallback : HASH MspInit. |
| (+) MspDeInitCallback : HASH MspDeInit. |
| This function takes as parameters the HAL peripheral handle, the Callback ID |
| and a pointer to the user callback function. |
| |
| (#) Use function @ref HAL_HASH_UnRegisterCallback() to reset a callback to the default |
| weak (surcharged) function. |
| @ref HAL_HASH_UnRegisterCallback() takes as parameters the HAL peripheral handle, |
| and the Callback ID. |
| This function allows to reset following callbacks: |
| (+) InCpltCallback : callback for input completion. |
| (+) DgstCpltCallback : callback for digest computation completion. |
| (+) ErrorCallback : callback for error. |
| (+) MspInitCallback : HASH MspInit. |
| (+) MspDeInitCallback : HASH MspDeInit. |
| |
| (#) By default, after the @ref HAL_HASH_Init and if the state is HAL_HASH_STATE_RESET |
| all callbacks are reset to the corresponding legacy weak (surcharged) functions: |
| examples @ref HAL_HASH_InCpltCallback(), @ref HAL_HASH_DgstCpltCallback() |
| Exception done for MspInit and MspDeInit callbacks that are respectively |
| reset to the legacy weak (surcharged) functions in the @ref HAL_HASH_Init |
| and @ref HAL_HASH_DeInit only when these callbacks are null (not registered beforehand) |
| If not, MspInit or MspDeInit are not null, the @ref HAL_HASH_Init and @ref HAL_HASH_DeInit |
| keep and use the user MspInit/MspDeInit callbacks (registered beforehand). |
| |
| Callbacks can be registered/unregistered in READY state only. |
| Exception done for MspInit/MspDeInit callbacks that can be registered/unregistered |
| in READY or RESET state, thus registered (user) MspInit/DeInit callbacks can be used |
| during the Init/DeInit. |
| In that case first register the MspInit/MspDeInit user callbacks |
| using @ref HAL_HASH_RegisterCallback before calling @ref HAL_HASH_DeInit |
| or @ref HAL_HASH_Init function. |
| |
| When The compilation define USE_HAL_HASH_REGISTER_CALLBACKS is set to 0 or |
| not defined, the callback registering feature is not available |
| and weak (surcharged) callbacks are used. |
| |
| @endverbatim |
| ****************************************************************************** |
| * @attention |
| * |
| * <h2><center>© Copyright (c) 2017 STMicroelectronics. |
| * All rights reserved.</center></h2> |
| * |
| * This software component is licensed by ST under BSD 3-Clause license, |
| * the "License"; You may not use this file except in compliance with the |
| * License. You may obtain a copy of the License at: |
| * opensource.org/licenses/BSD-3-Clause |
| * |
| ****************************************************************************** |
| */ |
| |
| /* Includes ------------------------------------------------------------------*/ |
| #include "stm32h7xx_hal.h" |
| |
| |
| /** @addtogroup STM32H7xx_HAL_Driver |
| * @{ |
| */ |
| #if defined (HASH) |
| |
| /** @defgroup HASH HASH |
| * @brief HASH HAL module driver. |
| * @{ |
| */ |
| |
| #ifdef HAL_HASH_MODULE_ENABLED |
| |
| /* Private typedef -----------------------------------------------------------*/ |
| /* Private define ------------------------------------------------------------*/ |
| /** @defgroup HASH_Private_Constants HASH Private Constants |
| * @{ |
| */ |
| |
| /** @defgroup HASH_Digest_Calculation_Status HASH Digest Calculation Status |
| * @{ |
| */ |
| #define HASH_DIGEST_CALCULATION_NOT_STARTED ((uint32_t)0x00000000U) /*!< DCAL not set after input data written in DIN register */ |
| #define HASH_DIGEST_CALCULATION_STARTED ((uint32_t)0x00000001U) /*!< DCAL set after input data written in DIN register */ |
| /** |
| * @} |
| */ |
| |
| /** @defgroup HASH_Number_Of_CSR_Registers HASH Number of Context Swap Registers |
| * @{ |
| */ |
| #define HASH_NUMBER_OF_CSR_REGISTERS 54U /*!< Number of Context Swap Registers */ |
| /** |
| * @} |
| */ |
| |
| /** @defgroup HASH_TimeOut_Value HASH TimeOut Value |
| * @{ |
| */ |
| #define HASH_TIMEOUTVALUE 1000U /*!< Time-out value */ |
| /** |
| * @} |
| */ |
| |
| /** @defgroup HASH_DMA_Suspension_Words_Limit HASH DMA suspension words limit |
| * @{ |
| */ |
| #define HASH_DMA_SUSPENSION_WORDS_LIMIT 20U /*!< Number of words below which DMA suspension is aborted */ |
| /** |
| * @} |
| */ |
| |
| /** |
| * @} |
| */ |
| |
| /* Private macro -------------------------------------------------------------*/ |
| /* Private variables ---------------------------------------------------------*/ |
| /* Private function prototypes -----------------------------------------------*/ |
| /** @defgroup HASH_Private_Functions HASH Private Functions |
| * @{ |
| */ |
| static void HASH_DMAXferCplt(DMA_HandleTypeDef *hdma); |
| static void HASH_DMAError(DMA_HandleTypeDef *hdma); |
| static void HASH_GetDigest(uint8_t *pMsgDigest, uint8_t Size); |
| static HAL_StatusTypeDef HASH_WaitOnFlagUntilTimeout(HASH_HandleTypeDef *hhash, uint32_t Flag, FlagStatus Status, uint32_t Timeout); |
| static HAL_StatusTypeDef HASH_WriteData(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size); |
| static HAL_StatusTypeDef HASH_IT(HASH_HandleTypeDef *hhash); |
| static uint32_t HASH_Write_Block_Data(HASH_HandleTypeDef *hhash); |
| static HAL_StatusTypeDef HMAC_Processing(HASH_HandleTypeDef *hhash, uint32_t Timeout); |
| /** |
| * @} |
| */ |
| |
| /** @defgroup HASH_Exported_Functions HASH Exported Functions |
| * @{ |
| */ |
| |
| /** @defgroup HASH_Exported_Functions_Group1 Initialization and de-initialization functions |
| * @brief Initialization, configuration and call-back functions. |
| * |
| @verbatim |
| =============================================================================== |
| ##### Initialization and de-initialization functions ##### |
| =============================================================================== |
| [..] This section provides functions allowing to: |
| (+) Initialize the HASH according to the specified parameters |
| in the HASH_InitTypeDef and create the associated handle |
| (+) DeInitialize the HASH peripheral |
| (+) Initialize the HASH MCU Specific Package (MSP) |
| (+) DeInitialize the HASH MSP |
| |
| [..] This section provides as well call back functions definitions for user |
| code to manage: |
| (+) Input data transfer to Peripheral completion |
| (+) Calculated digest retrieval completion |
| (+) Error management |
| |
| |
| |
| @endverbatim |
| * @{ |
| */ |
| |
| /** |
| * @brief Initialize the HASH according to the specified parameters in the |
| HASH_HandleTypeDef and create the associated handle. |
| * @note Only MDMAT and DATATYPE bits of HASH Peripheral are set by HAL_HASH_Init(), |
| * other configuration bits are set by HASH or HMAC processing APIs. |
| * @note MDMAT bit is systematically reset by HAL_HASH_Init(). To set it for |
| * multi-buffer HASH processing, user needs to resort to |
| * __HAL_HASH_SET_MDMAT() macro. For HMAC multi-buffer processing, the |
| * relevant APIs manage themselves the MDMAT bit. |
| * @param hhash HASH handle |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_HASH_Init(HASH_HandleTypeDef *hhash) |
| { |
| /* Check the hash handle allocation */ |
| if(hhash == NULL) |
| { |
| return HAL_ERROR; |
| } |
| |
| /* Check the parameters */ |
| assert_param(IS_HASH_DATATYPE(hhash->Init.DataType)); |
| |
| #if (USE_HAL_HASH_REGISTER_CALLBACKS == 1) |
| if (hhash->State == HAL_HASH_STATE_RESET) |
| { |
| /* Allocate lock resource and initialize it */ |
| hhash->Lock = HAL_UNLOCKED; |
| |
| /* Reset Callback pointers in HAL_HASH_STATE_RESET only */ |
| hhash->InCpltCallback = HAL_HASH_InCpltCallback; /* Legacy weak (surcharged) input completion callback */ |
| hhash->DgstCpltCallback = HAL_HASH_DgstCpltCallback; /* Legacy weak (surcharged) digest computation completion callback */ |
| hhash->ErrorCallback = HAL_HASH_ErrorCallback; /* Legacy weak (surcharged) error callback */ |
| if(hhash->MspInitCallback == NULL) |
| { |
| hhash->MspInitCallback = HAL_HASH_MspInit; |
| } |
| |
| /* Init the low level hardware */ |
| hhash->MspInitCallback(hhash); |
| } |
| #else |
| if(hhash->State == HAL_HASH_STATE_RESET) |
| { |
| /* Allocate lock resource and initialize it */ |
| hhash->Lock = HAL_UNLOCKED; |
| |
| /* Init the low level hardware */ |
| HAL_HASH_MspInit(hhash); |
| } |
| #endif /* (USE_HAL_HASH_REGISTER_CALLBACKS) */ |
| |
| /* Change the HASH state */ |
| hhash->State = HAL_HASH_STATE_BUSY; |
| |
| /* Reset HashInCount, HashITCounter, HashBuffSize and NbWordsAlreadyPushed */ |
| hhash->HashInCount = 0; |
| hhash->HashBuffSize = 0; |
| hhash->HashITCounter = 0; |
| hhash->NbWordsAlreadyPushed = 0; |
| /* Reset digest calculation bridle (MDMAT bit control) */ |
| hhash->DigestCalculationDisable = RESET; |
| /* Set phase to READY */ |
| hhash->Phase = HAL_HASH_PHASE_READY; |
| /* Reset suspension request flag */ |
| hhash->SuspendRequest = HAL_HASH_SUSPEND_NONE; |
| |
| /* Set the data type bit */ |
| MODIFY_REG(HASH->CR, HASH_CR_DATATYPE, hhash->Init.DataType); |
| /* Reset MDMAT bit */ |
| __HAL_HASH_RESET_MDMAT(); |
| /* Reset HASH handle status */ |
| hhash->Status = HAL_OK; |
| |
| /* Set the HASH state to Ready */ |
| hhash->State = HAL_HASH_STATE_READY; |
| |
| /* Initialise the error code */ |
| hhash->ErrorCode = HAL_HASH_ERROR_NONE; |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief DeInitialize the HASH peripheral. |
| * @param hhash HASH handle. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_HASH_DeInit(HASH_HandleTypeDef *hhash) |
| { |
| /* Check the HASH handle allocation */ |
| if(hhash == NULL) |
| { |
| return HAL_ERROR; |
| } |
| |
| /* Change the HASH state */ |
| hhash->State = HAL_HASH_STATE_BUSY; |
| |
| /* Set the default HASH phase */ |
| hhash->Phase = HAL_HASH_PHASE_READY; |
| |
| /* Reset HashInCount, HashITCounter and HashBuffSize */ |
| hhash->HashInCount = 0; |
| hhash->HashBuffSize = 0; |
| hhash->HashITCounter = 0; |
| /* Reset digest calculation bridle (MDMAT bit control) */ |
| hhash->DigestCalculationDisable = RESET; |
| |
| #if (USE_HAL_HASH_REGISTER_CALLBACKS == 1) |
| if(hhash->MspDeInitCallback == NULL) |
| { |
| hhash->MspDeInitCallback = HAL_HASH_MspDeInit; |
| } |
| |
| /* DeInit the low level hardware */ |
| hhash->MspDeInitCallback(hhash); |
| #else |
| /* DeInit the low level hardware: CLOCK, NVIC */ |
| HAL_HASH_MspDeInit(hhash); |
| #endif /* (USE_HAL_HASH_REGISTER_CALLBACKS) */ |
| |
| |
| /* Reset HASH handle status */ |
| hhash->Status = HAL_OK; |
| |
| /* Set the HASH state to Ready */ |
| hhash->State = HAL_HASH_STATE_RESET; |
| |
| /* Initialise the error code */ |
| hhash->ErrorCode = HAL_HASH_ERROR_NONE; |
| |
| /* Reset multi buffers accumulation flag */ |
| hhash->Accumulation = 0U; |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Initialize the HASH MSP. |
| * @param hhash HASH handle. |
| * @retval None |
| */ |
| __weak void HAL_HASH_MspInit(HASH_HandleTypeDef *hhash) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(hhash); |
| |
| /* NOTE : This function should not be modified; when the callback is needed, |
| HAL_HASH_MspInit() can be implemented in the user file. |
| */ |
| } |
| |
| /** |
| * @brief DeInitialize the HASH MSP. |
| * @param hhash HASH handle. |
| * @retval None |
| */ |
| __weak void HAL_HASH_MspDeInit(HASH_HandleTypeDef *hhash) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(hhash); |
| |
| /* NOTE : This function should not be modified; when the callback is needed, |
| HAL_HASH_MspDeInit() can be implemented in the user file. |
| */ |
| } |
| |
| /** |
| * @brief Input data transfer complete call back. |
| * @note HAL_HASH_InCpltCallback() is called when the complete input message |
| * has been fed to the Peripheral. This API is invoked only when input data are |
| * entered under interruption or thru DMA. |
| * @note In case of HASH or HMAC multi-buffer DMA feeding case (MDMAT bit set), |
| * HAL_HASH_InCpltCallback() is called at the end of each buffer feeding |
| * to the Peripheral. |
| * @param hhash HASH handle. |
| * @retval None |
| */ |
| __weak void HAL_HASH_InCpltCallback(HASH_HandleTypeDef *hhash) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(hhash); |
| |
| /* NOTE : This function should not be modified; when the callback is needed, |
| HAL_HASH_InCpltCallback() can be implemented in the user file. |
| */ |
| } |
| |
| /** |
| * @brief Digest computation complete call back. |
| * @note HAL_HASH_DgstCpltCallback() is used under interruption, is not |
| * relevant with DMA. |
| * @param hhash HASH handle. |
| * @retval None |
| */ |
| __weak void HAL_HASH_DgstCpltCallback(HASH_HandleTypeDef *hhash) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(hhash); |
| |
| /* NOTE : This function should not be modified; when the callback is needed, |
| HAL_HASH_DgstCpltCallback() can be implemented in the user file. |
| */ |
| } |
| |
| /** |
| * @brief Error callback. |
| * @note Code user can resort to hhash->Status (HAL_ERROR, HAL_TIMEOUT,...) |
| * to retrieve the error type. |
| * @param hhash HASH handle. |
| * @retval None |
| */ |
| __weak void HAL_HASH_ErrorCallback(HASH_HandleTypeDef *hhash) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(hhash); |
| |
| /* NOTE : This function should not be modified; when the callback is needed, |
| HAL_HASH_ErrorCallback() can be implemented in the user file. |
| */ |
| } |
| |
| #if (USE_HAL_HASH_REGISTER_CALLBACKS == 1) |
| /** |
| * @brief Register a User HASH Callback |
| * To be used instead of the weak (surcharged) predefined callback |
| * @param hhash HASH handle |
| * @param CallbackID ID of the callback to be registered |
| * This parameter can be one of the following values: |
| * @arg @ref HAL_HASH_INPUTCPLT_CB_ID HASH input completion Callback ID |
| * @arg @ref HAL_HASH_DGSTCPLT_CB_ID HASH digest computation completion Callback ID |
| * @arg @ref HAL_HASH_ERROR_CB_ID HASH error Callback ID |
| * @arg @ref HAL_HASH_MSPINIT_CB_ID HASH MspInit callback ID |
| * @arg @ref HAL_HASH_MSPDEINIT_CB_ID HASH MspDeInit callback ID |
| * @param pCallback pointer to the Callback function |
| * @retval status |
| */ |
| HAL_StatusTypeDef HAL_HASH_RegisterCallback(HASH_HandleTypeDef *hhash, HAL_HASH_CallbackIDTypeDef CallbackID, pHASH_CallbackTypeDef pCallback) |
| { |
| HAL_StatusTypeDef status = HAL_OK; |
| |
| if(pCallback == NULL) |
| { |
| /* Update the error code */ |
| hhash->ErrorCode |= HAL_HASH_ERROR_INVALID_CALLBACK; |
| return HAL_ERROR; |
| } |
| /* Process locked */ |
| __HAL_LOCK(hhash); |
| |
| if(HAL_HASH_STATE_READY == hhash->State) |
| { |
| switch (CallbackID) |
| { |
| case HAL_HASH_INPUTCPLT_CB_ID : |
| hhash->InCpltCallback = pCallback; |
| break; |
| |
| case HAL_HASH_DGSTCPLT_CB_ID : |
| hhash->DgstCpltCallback = pCallback; |
| break; |
| |
| case HAL_HASH_ERROR_CB_ID : |
| hhash->ErrorCallback = pCallback; |
| break; |
| |
| case HAL_HASH_MSPINIT_CB_ID : |
| hhash->MspInitCallback = pCallback; |
| break; |
| |
| case HAL_HASH_MSPDEINIT_CB_ID : |
| hhash->MspDeInitCallback = pCallback; |
| break; |
| |
| default : |
| /* Update the error code */ |
| hhash->ErrorCode |= HAL_HASH_ERROR_INVALID_CALLBACK; |
| /* update return status */ |
| status = HAL_ERROR; |
| break; |
| } |
| } |
| else if(HAL_HASH_STATE_RESET == hhash->State) |
| { |
| switch (CallbackID) |
| { |
| case HAL_HASH_MSPINIT_CB_ID : |
| hhash->MspInitCallback = pCallback; |
| break; |
| |
| case HAL_HASH_MSPDEINIT_CB_ID : |
| hhash->MspDeInitCallback = pCallback; |
| break; |
| |
| default : |
| /* Update the error code */ |
| hhash->ErrorCode |= HAL_HASH_ERROR_INVALID_CALLBACK; |
| /* update return status */ |
| status = HAL_ERROR; |
| break; |
| } |
| } |
| else |
| { |
| /* Update the error code */ |
| hhash->ErrorCode |= HAL_HASH_ERROR_INVALID_CALLBACK; |
| /* update return status */ |
| status = HAL_ERROR; |
| } |
| |
| /* Release Lock */ |
| __HAL_UNLOCK(hhash); |
| return status; |
| } |
| |
| /** |
| * @brief Unregister a HASH Callback |
| * HASH Callback is redirected to the weak (surcharged) predefined callback |
| * @param hhash HASH handle |
| * @param CallbackID ID of the callback to be unregistered |
| * This parameter can be one of the following values: |
| * @arg @ref HAL_HASH_INPUTCPLT_CB_ID HASH input completion Callback ID |
| * @arg @ref HAL_HASH_DGSTCPLT_CB_ID HASH digest computation completion Callback ID |
| * @arg @ref HAL_HASH_ERROR_CB_ID HASH error Callback ID |
| * @arg @ref HAL_HASH_MSPINIT_CB_ID HASH MspInit callback ID |
| * @arg @ref HAL_HASH_MSPDEINIT_CB_ID HASH MspDeInit callback ID |
| * @retval status |
| */ |
| HAL_StatusTypeDef HAL_HASH_UnRegisterCallback(HASH_HandleTypeDef *hhash, HAL_HASH_CallbackIDTypeDef CallbackID) |
| { |
| HAL_StatusTypeDef status = HAL_OK; |
| |
| /* Process locked */ |
| __HAL_LOCK(hhash); |
| |
| if(HAL_HASH_STATE_READY == hhash->State) |
| { |
| switch (CallbackID) |
| { |
| case HAL_HASH_INPUTCPLT_CB_ID : |
| hhash->InCpltCallback = HAL_HASH_InCpltCallback; /* Legacy weak (surcharged) input completion callback */ |
| break; |
| |
| case HAL_HASH_DGSTCPLT_CB_ID : |
| hhash->DgstCpltCallback = HAL_HASH_DgstCpltCallback; /* Legacy weak (surcharged) digest computation completion callback */ |
| break; |
| |
| case HAL_HASH_ERROR_CB_ID : |
| hhash->ErrorCallback = HAL_HASH_ErrorCallback; /* Legacy weak (surcharged) error callback */ |
| break; |
| |
| case HAL_HASH_MSPINIT_CB_ID : |
| hhash->MspInitCallback = HAL_HASH_MspInit; /* Legacy weak (surcharged) Msp Init */ |
| break; |
| |
| case HAL_HASH_MSPDEINIT_CB_ID : |
| hhash->MspDeInitCallback = HAL_HASH_MspDeInit; /* Legacy weak (surcharged) Msp DeInit */ |
| break; |
| |
| default : |
| /* Update the error code */ |
| hhash->ErrorCode |= HAL_HASH_ERROR_INVALID_CALLBACK; |
| /* update return status */ |
| status = HAL_ERROR; |
| break; |
| } |
| } |
| else if(HAL_HASH_STATE_RESET == hhash->State) |
| { |
| switch (CallbackID) |
| { |
| case HAL_HASH_MSPINIT_CB_ID : |
| hhash->MspInitCallback = HAL_HASH_MspInit; /* Legacy weak (surcharged) Msp Init */ |
| break; |
| |
| case HAL_HASH_MSPDEINIT_CB_ID : |
| hhash->MspDeInitCallback = HAL_HASH_MspDeInit; /* Legacy weak (surcharged) Msp DeInit */ |
| break; |
| |
| default : |
| /* Update the error code */ |
| hhash->ErrorCode |= HAL_HASH_ERROR_INVALID_CALLBACK; |
| /* update return status */ |
| status = HAL_ERROR; |
| break; |
| } |
| } |
| else |
| { |
| /* Update the error code */ |
| hhash->ErrorCode |= HAL_HASH_ERROR_INVALID_CALLBACK; |
| /* update return status */ |
| status = HAL_ERROR; |
| } |
| |
| /* Release Lock */ |
| __HAL_UNLOCK(hhash); |
| return status; |
| } |
| #endif /* USE_HAL_HASH_REGISTER_CALLBACKS */ |
| |
| /** |
| * @} |
| */ |
| |
| /** @defgroup HASH_Exported_Functions_Group2 HASH processing functions in polling mode |
| * @brief HASH processing functions using polling mode. |
| * |
| @verbatim |
| =============================================================================== |
| ##### Polling mode HASH processing functions ##### |
| =============================================================================== |
| [..] This section provides functions allowing to calculate in polling mode |
| the hash value using one of the following algorithms: |
| (+) MD5 |
| (++) HAL_HASH_MD5_Start() |
| (++) HAL_HASH_MD5_Accmlt() |
| (++) HAL_HASH_MD5_Accmlt_End() |
| (+) SHA1 |
| (++) HAL_HASH_SHA1_Start() |
| (++) HAL_HASH_SHA1_Accmlt() |
| (++) HAL_HASH_SHA1_Accmlt_End() |
| |
| [..] For a single buffer to be hashed, user can resort to HAL_HASH_xxx_Start(). |
| |
| [..] In case of multi-buffer HASH processing (a single digest is computed while |
| several buffers are fed to the Peripheral), the user can resort to successive calls |
| to HAL_HASH_xxx_Accumulate() and wrap-up the digest computation by a call |
| to HAL_HASH_xxx_Accumulate_End(). |
| |
| @endverbatim |
| * @{ |
| */ |
| |
| /** |
| * @brief Initialize the HASH peripheral in MD5 mode, next process pInBuffer then |
| * read the computed digest. |
| * @note Digest is available in pOutBuffer. |
| * @param hhash HASH handle. |
| * @param pInBuffer pointer to the input buffer (buffer to be hashed). |
| * @param Size length of the input buffer in bytes. |
| * @param pOutBuffer pointer to the computed digest. Digest size is 16 bytes. |
| * @param Timeout Timeout value |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_HASH_MD5_Start(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t* pOutBuffer, uint32_t Timeout) |
| { |
| return HASH_Start(hhash, pInBuffer, Size, pOutBuffer, Timeout, HASH_ALGOSELECTION_MD5); |
| } |
| |
| /** |
| * @brief If not already done, initialize the HASH peripheral in MD5 mode then |
| * processes pInBuffer. |
| * @note Consecutive calls to HAL_HASH_MD5_Accmlt() can be used to feed |
| * several input buffers back-to-back to the Peripheral that will yield a single |
| * HASH signature once all buffers have been entered. Wrap-up of input |
| * buffers feeding and retrieval of digest is done by a call to |
| * HAL_HASH_MD5_Accmlt_End(). |
| * @note Field hhash->Phase of HASH handle is tested to check whether or not |
| * the Peripheral has already been initialized. |
| * @note Digest is not retrieved by this API, user must resort to HAL_HASH_MD5_Accmlt_End() |
| * to read it, feeding at the same time the last input buffer to the Peripheral. |
| * @note The input buffer size (in bytes) must be a multiple of 4 otherwise, the |
| * HASH digest computation is corrupted. Only HAL_HASH_MD5_Accmlt_End() is able |
| * to manage the ending buffer with a length in bytes not a multiple of 4. |
| * @param hhash HASH handle. |
| * @param pInBuffer pointer to the input buffer (buffer to be hashed). |
| * @param Size length of the input buffer in bytes, must be a multiple of 4. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_HASH_MD5_Accmlt(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size) |
| { |
| return HASH_Accumulate(hhash, pInBuffer, Size,HASH_ALGOSELECTION_MD5); |
| } |
| |
| /** |
| * @brief End computation of a single HASH signature after several calls to HAL_HASH_MD5_Accmlt() API. |
| * @note Digest is available in pOutBuffer. |
| * @param hhash HASH handle. |
| * @param pInBuffer pointer to the input buffer (buffer to be hashed). |
| * @param Size length of the input buffer in bytes. |
| * @param pOutBuffer pointer to the computed digest. Digest size is 16 bytes. |
| * @param Timeout Timeout value |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_HASH_MD5_Accmlt_End(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t* pOutBuffer, uint32_t Timeout) |
| { |
| return HASH_Start(hhash, pInBuffer, Size, pOutBuffer, Timeout, HASH_ALGOSELECTION_MD5); |
| } |
| |
| /** |
| * @brief Initialize the HASH peripheral in SHA1 mode, next process pInBuffer then |
| * read the computed digest. |
| * @note Digest is available in pOutBuffer. |
| * @param hhash HASH handle. |
| * @param pInBuffer pointer to the input buffer (buffer to be hashed). |
| * @param Size length of the input buffer in bytes. |
| * @param pOutBuffer pointer to the computed digest. Digest size is 20 bytes. |
| * @param Timeout Timeout value |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_HASH_SHA1_Start(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t* pOutBuffer, uint32_t Timeout) |
| { |
| return HASH_Start(hhash, pInBuffer, Size, pOutBuffer, Timeout, HASH_ALGOSELECTION_SHA1); |
| } |
| |
| /** |
| * @brief If not already done, initialize the HASH peripheral in SHA1 mode then |
| * processes pInBuffer. |
| * @note Consecutive calls to HAL_HASH_SHA1_Accmlt() can be used to feed |
| * several input buffers back-to-back to the Peripheral that will yield a single |
| * HASH signature once all buffers have been entered. Wrap-up of input |
| * buffers feeding and retrieval of digest is done by a call to |
| * HAL_HASH_SHA1_Accmlt_End(). |
| * @note Field hhash->Phase of HASH handle is tested to check whether or not |
| * the Peripheral has already been initialized. |
| * @note Digest is not retrieved by this API, user must resort to HAL_HASH_SHA1_Accmlt_End() |
| * to read it, feeding at the same time the last input buffer to the Peripheral. |
| * @note The input buffer size (in bytes) must be a multiple of 4 otherwise, the |
| * HASH digest computation is corrupted. Only HAL_HASH_SHA1_Accmlt_End() is able |
| * to manage the ending buffer with a length in bytes not a multiple of 4. |
| * @param hhash HASH handle. |
| * @param pInBuffer pointer to the input buffer (buffer to be hashed). |
| * @param Size length of the input buffer in bytes, must be a multiple of 4. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_HASH_SHA1_Accmlt(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size) |
| { |
| return HASH_Accumulate(hhash, pInBuffer, Size,HASH_ALGOSELECTION_SHA1); |
| } |
| |
| /** |
| * @brief End computation of a single HASH signature after several calls to HAL_HASH_SHA1_Accmlt() API. |
| * @note Digest is available in pOutBuffer. |
| * @param hhash HASH handle. |
| * @param pInBuffer pointer to the input buffer (buffer to be hashed). |
| * @param Size length of the input buffer in bytes. |
| * @param pOutBuffer pointer to the computed digest. Digest size is 20 bytes. |
| * @param Timeout Timeout value |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_HASH_SHA1_Accmlt_End(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t* pOutBuffer, uint32_t Timeout) |
| { |
| return HASH_Start(hhash, pInBuffer, Size, pOutBuffer, Timeout, HASH_ALGOSELECTION_SHA1); |
| } |
| |
| /** |
| * @} |
| */ |
| |
| /** @defgroup HASH_Exported_Functions_Group3 HASH processing functions in interrupt mode |
| * @brief HASH processing functions using interrupt mode. |
| * |
| @verbatim |
| =============================================================================== |
| ##### Interruption mode HASH processing functions ##### |
| =============================================================================== |
| [..] This section provides functions allowing to calculate in interrupt mode |
| the hash value using one of the following algorithms: |
| (+) MD5 |
| (++) HAL_HASH_MD5_Start_IT() |
| (++) HAL_HASH_MD5_Accmlt_IT() |
| (++) HAL_HASH_MD5_Accmlt_End_IT() |
| (+) SHA1 |
| (++) HAL_HASH_SHA1_Start_IT() |
| (++) HAL_HASH_SHA1_Accmlt_IT() |
| (++) HAL_HASH_SHA1_Accmlt_End_IT() |
| |
| [..] API HAL_HASH_IRQHandler() manages each HASH interruption. |
| |
| [..] Note that HAL_HASH_IRQHandler() manages as well HASH Peripheral interruptions when in |
| HMAC processing mode. |
| |
| |
| @endverbatim |
| * @{ |
| */ |
| |
| /** |
| * @brief Initialize the HASH peripheral in MD5 mode, next process pInBuffer then |
| * read the computed digest in interruption mode. |
| * @note Digest is available in pOutBuffer. |
| * @param hhash HASH handle. |
| * @param pInBuffer pointer to the input buffer (buffer to be hashed). |
| * @param Size length of the input buffer in bytes. |
| * @param pOutBuffer pointer to the computed digest. Digest size is 16 bytes. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_HASH_MD5_Start_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t* pOutBuffer) |
| { |
| return HASH_Start_IT(hhash, pInBuffer, Size, pOutBuffer,HASH_ALGOSELECTION_MD5); |
| } |
| |
| /** |
| * @brief If not already done, initialize the HASH peripheral in MD5 mode then |
| * processes pInBuffer in interruption mode. |
| * @note Consecutive calls to HAL_HASH_MD5_Accmlt_IT() can be used to feed |
| * several input buffers back-to-back to the Peripheral that will yield a single |
| * HASH signature once all buffers have been entered. Wrap-up of input |
| * buffers feeding and retrieval of digest is done by a call to |
| * HAL_HASH_MD5_Accmlt_End_IT(). |
| * @note Field hhash->Phase of HASH handle is tested to check whether or not |
| * the Peripheral has already been initialized. |
| * @note The input buffer size (in bytes) must be a multiple of 4 otherwise, the |
| * HASH digest computation is corrupted. Only HAL_HASH_MD5_Accmlt_End_IT() is able |
| * to manage the ending buffer with a length in bytes not a multiple of 4. |
| * @param hhash HASH handle. |
| * @param pInBuffer pointer to the input buffer (buffer to be hashed). |
| * @param Size length of the input buffer in bytes, must be a multiple of 4. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_HASH_MD5_Accmlt_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size) |
| { |
| return HASH_Accumulate_IT(hhash, pInBuffer, Size,HASH_ALGOSELECTION_MD5); |
| } |
| |
| /** |
| * @brief End computation of a single HASH signature after several calls to HAL_HASH_MD5_Accmlt_IT() API. |
| * @note Digest is available in pOutBuffer. |
| * @param hhash HASH handle. |
| * @param pInBuffer pointer to the input buffer (buffer to be hashed). |
| * @param Size length of the input buffer in bytes. |
| * @param pOutBuffer pointer to the computed digest. Digest size is 16 bytes. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_HASH_MD5_Accmlt_End_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t* pOutBuffer) |
| { |
| return HASH_Start_IT(hhash, pInBuffer, Size, pOutBuffer,HASH_ALGOSELECTION_MD5); |
| } |
| |
| /** |
| * @brief Initialize the HASH peripheral in SHA1 mode, next process pInBuffer then |
| * read the computed digest in interruption mode. |
| * @note Digest is available in pOutBuffer. |
| * @param hhash HASH handle. |
| * @param pInBuffer pointer to the input buffer (buffer to be hashed). |
| * @param Size length of the input buffer in bytes. |
| * @param pOutBuffer pointer to the computed digest. Digest size is 20 bytes. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_HASH_SHA1_Start_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t* pOutBuffer) |
| { |
| return HASH_Start_IT(hhash, pInBuffer, Size, pOutBuffer,HASH_ALGOSELECTION_SHA1); |
| } |
| |
| |
| /** |
| * @brief If not already done, initialize the HASH peripheral in SHA1 mode then |
| * processes pInBuffer in interruption mode. |
| * @note Consecutive calls to HAL_HASH_SHA1_Accmlt_IT() can be used to feed |
| * several input buffers back-to-back to the Peripheral that will yield a single |
| * HASH signature once all buffers have been entered. Wrap-up of input |
| * buffers feeding and retrieval of digest is done by a call to |
| * HAL_HASH_SHA1_Accmlt_End_IT(). |
| * @note Field hhash->Phase of HASH handle is tested to check whether or not |
| * the Peripheral has already been initialized. |
| * @note The input buffer size (in bytes) must be a multiple of 4 otherwise, the |
| * HASH digest computation is corrupted. Only HAL_HASH_SHA1_Accmlt_End_IT() is able |
| * to manage the ending buffer with a length in bytes not a multiple of 4. |
| * @param hhash HASH handle. |
| * @param pInBuffer pointer to the input buffer (buffer to be hashed). |
| * @param Size length of the input buffer in bytes, must be a multiple of 4. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_HASH_SHA1_Accmlt_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size) |
| { |
| return HASH_Accumulate_IT(hhash, pInBuffer, Size,HASH_ALGOSELECTION_SHA1); |
| } |
| |
| /** |
| * @brief End computation of a single HASH signature after several calls to HAL_HASH_SHA1_Accmlt_IT() API. |
| * @note Digest is available in pOutBuffer. |
| * @param hhash HASH handle. |
| * @param pInBuffer pointer to the input buffer (buffer to be hashed). |
| * @param Size length of the input buffer in bytes. |
| * @param pOutBuffer pointer to the computed digest. Digest size is 20 bytes. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_HASH_SHA1_Accmlt_End_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t* pOutBuffer) |
| { |
| return HASH_Start_IT(hhash, pInBuffer, Size, pOutBuffer,HASH_ALGOSELECTION_SHA1); |
| } |
| |
| /** |
| * @brief Handle HASH interrupt request. |
| * @param hhash HASH handle. |
| * @note HAL_HASH_IRQHandler() handles interrupts in HMAC processing as well. |
| * @note In case of error reported during the HASH interruption processing, |
| * HAL_HASH_ErrorCallback() API is called so that user code can |
| * manage the error. The error type is available in hhash->Status field. |
| * @retval None |
| */ |
| void HAL_HASH_IRQHandler(HASH_HandleTypeDef *hhash) |
| { |
| hhash->Status = HASH_IT(hhash); |
| if (hhash->Status != HAL_OK) |
| { |
| hhash->ErrorCode |= HAL_HASH_ERROR_IT; |
| #if (USE_HAL_HASH_REGISTER_CALLBACKS == 1) |
| hhash->ErrorCallback(hhash); |
| #else |
| HAL_HASH_ErrorCallback(hhash); |
| #endif /* USE_HAL_HASH_REGISTER_CALLBACKS */ |
| /* After error handling by code user, reset HASH handle HAL status */ |
| hhash->Status = HAL_OK; |
| } |
| } |
| |
| /** |
| * @} |
| */ |
| |
| /** @defgroup HASH_Exported_Functions_Group4 HASH processing functions in DMA mode |
| * @brief HASH processing functions using DMA mode. |
| * |
| @verbatim |
| =============================================================================== |
| ##### DMA mode HASH processing functions ##### |
| =============================================================================== |
| [..] This section provides functions allowing to calculate in DMA mode |
| the hash value using one of the following algorithms: |
| (+) MD5 |
| (++) HAL_HASH_MD5_Start_DMA() |
| (++) HAL_HASH_MD5_Finish() |
| (+) SHA1 |
| (++) HAL_HASH_SHA1_Start_DMA() |
| (++) HAL_HASH_SHA1_Finish() |
| |
| [..] When resorting to DMA mode to enter the data in the Peripheral, user must resort |
| to HAL_HASH_xxx_Start_DMA() then read the resulting digest with |
| HAL_HASH_xxx_Finish(). |
| [..] In case of multi-buffer HASH processing, MDMAT bit must first be set before |
| the successive calls to HAL_HASH_xxx_Start_DMA(). Then, MDMAT bit needs to be |
| reset before the last call to HAL_HASH_xxx_Start_DMA(). Digest is finally |
| retrieved thanks to HAL_HASH_xxx_Finish(). |
| |
| @endverbatim |
| * @{ |
| */ |
| |
| /** |
| * @brief Initialize the HASH peripheral in MD5 mode then initiate a DMA transfer |
| * to feed the input buffer to the Peripheral. |
| * @note Once the DMA transfer is finished, HAL_HASH_MD5_Finish() API must |
| * be called to retrieve the computed digest. |
| * @param hhash HASH handle. |
| * @param pInBuffer pointer to the input buffer (buffer to be hashed). |
| * @param Size length of the input buffer in bytes. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_HASH_MD5_Start_DMA(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size) |
| { |
| return HASH_Start_DMA(hhash, pInBuffer, Size, HASH_ALGOSELECTION_MD5); |
| } |
| |
| /** |
| * @brief Return the computed digest in MD5 mode. |
| * @note The API waits for DCIS to be set then reads the computed digest. |
| * @note HAL_HASH_MD5_Finish() can be used as well to retrieve the digest in |
| * HMAC MD5 mode. |
| * @param hhash HASH handle. |
| * @param pOutBuffer pointer to the computed digest. Digest size is 16 bytes. |
| * @param Timeout Timeout value. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_HASH_MD5_Finish(HASH_HandleTypeDef *hhash, uint8_t* pOutBuffer, uint32_t Timeout) |
| { |
| return HASH_Finish(hhash, pOutBuffer, Timeout); |
| } |
| |
| /** |
| * @brief Initialize the HASH peripheral in SHA1 mode then initiate a DMA transfer |
| * to feed the input buffer to the Peripheral. |
| * @note Once the DMA transfer is finished, HAL_HASH_SHA1_Finish() API must |
| * be called to retrieve the computed digest. |
| * @param hhash HASH handle. |
| * @param pInBuffer pointer to the input buffer (buffer to be hashed). |
| * @param Size length of the input buffer in bytes. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_HASH_SHA1_Start_DMA(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size) |
| { |
| return HASH_Start_DMA(hhash, pInBuffer, Size, HASH_ALGOSELECTION_SHA1); |
| } |
| |
| |
| /** |
| * @brief Return the computed digest in SHA1 mode. |
| * @note The API waits for DCIS to be set then reads the computed digest. |
| * @note HAL_HASH_SHA1_Finish() can be used as well to retrieve the digest in |
| * HMAC SHA1 mode. |
| * @param hhash HASH handle. |
| * @param pOutBuffer pointer to the computed digest. Digest size is 20 bytes. |
| * @param Timeout Timeout value. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_HASH_SHA1_Finish(HASH_HandleTypeDef *hhash, uint8_t* pOutBuffer, uint32_t Timeout) |
| { |
| return HASH_Finish(hhash, pOutBuffer, Timeout); |
| } |
| |
| /** |
| * @} |
| */ |
| |
| /** @defgroup HASH_Exported_Functions_Group5 HMAC processing functions in polling mode |
| * @brief HMAC processing functions using polling mode. |
| * |
| @verbatim |
| =============================================================================== |
| ##### Polling mode HMAC processing functions ##### |
| =============================================================================== |
| [..] This section provides functions allowing to calculate in polling mode |
| the HMAC value using one of the following algorithms: |
| (+) MD5 |
| (++) HAL_HMAC_MD5_Start() |
| (+) SHA1 |
| (++) HAL_HMAC_SHA1_Start() |
| |
| |
| @endverbatim |
| * @{ |
| */ |
| |
| /** |
| * @brief Initialize the HASH peripheral in HMAC MD5 mode, next process pInBuffer then |
| * read the computed digest. |
| * @note Digest is available in pOutBuffer. |
| * @note Same key is used for the inner and the outer hash functions; pointer to key and |
| * key size are respectively stored in hhash->Init.pKey and hhash->Init.KeySize. |
| * @param hhash HASH handle. |
| * @param pInBuffer pointer to the input buffer (buffer to be hashed). |
| * @param Size length of the input buffer in bytes. |
| * @param pOutBuffer pointer to the computed digest. Digest size is 16 bytes. |
| * @param Timeout Timeout value. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_HMAC_MD5_Start(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t* pOutBuffer, uint32_t Timeout) |
| { |
| return HMAC_Start(hhash, pInBuffer, Size, pOutBuffer, Timeout, HASH_ALGOSELECTION_MD5); |
| } |
| |
| /** |
| * @brief Initialize the HASH peripheral in HMAC SHA1 mode, next process pInBuffer then |
| * read the computed digest. |
| * @note Digest is available in pOutBuffer. |
| * @note Same key is used for the inner and the outer hash functions; pointer to key and |
| * key size are respectively stored in hhash->Init.pKey and hhash->Init.KeySize. |
| * @param hhash HASH handle. |
| * @param pInBuffer pointer to the input buffer (buffer to be hashed). |
| * @param Size length of the input buffer in bytes. |
| * @param pOutBuffer pointer to the computed digest. Digest size is 20 bytes. |
| * @param Timeout Timeout value. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_HMAC_SHA1_Start(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t* pOutBuffer, uint32_t Timeout) |
| { |
| return HMAC_Start(hhash, pInBuffer, Size, pOutBuffer, Timeout, HASH_ALGOSELECTION_SHA1); |
| } |
| |
| /** |
| * @} |
| */ |
| |
| |
| /** @defgroup HASH_Exported_Functions_Group6 HMAC processing functions in interrupt mode |
| * @brief HMAC processing functions using interrupt mode. |
| * |
| @verbatim |
| =============================================================================== |
| ##### Interrupt mode HMAC processing functions ##### |
| =============================================================================== |
| [..] This section provides functions allowing to calculate in interrupt mode |
| the HMAC value using one of the following algorithms: |
| (+) MD5 |
| (++) HAL_HMAC_MD5_Start_IT() |
| (+) SHA1 |
| (++) HAL_HMAC_SHA1_Start_IT() |
| |
| @endverbatim |
| * @{ |
| */ |
| |
| |
| /** |
| * @brief Initialize the HASH peripheral in HMAC MD5 mode, next process pInBuffer then |
| * read the computed digest in interrupt mode. |
| * @note Digest is available in pOutBuffer. |
| * @note Same key is used for the inner and the outer hash functions; pointer to key and |
| * key size are respectively stored in hhash->Init.pKey and hhash->Init.KeySize. |
| * @param hhash HASH handle. |
| * @param pInBuffer pointer to the input buffer (buffer to be hashed). |
| * @param Size length of the input buffer in bytes. |
| * @param pOutBuffer pointer to the computed digest. Digest size is 16 bytes. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_HMAC_MD5_Start_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t* pOutBuffer) |
| { |
| return HMAC_Start_IT(hhash, pInBuffer, Size, pOutBuffer, HASH_ALGOSELECTION_MD5); |
| } |
| |
| /** |
| * @brief Initialize the HASH peripheral in HMAC SHA1 mode, next process pInBuffer then |
| * read the computed digest in interrupt mode. |
| * @note Digest is available in pOutBuffer. |
| * @note Same key is used for the inner and the outer hash functions; pointer to key and |
| * key size are respectively stored in hhash->Init.pKey and hhash->Init.KeySize. |
| * @param hhash HASH handle. |
| * @param pInBuffer pointer to the input buffer (buffer to be hashed). |
| * @param Size length of the input buffer in bytes. |
| * @param pOutBuffer pointer to the computed digest. Digest size is 20 bytes. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_HMAC_SHA1_Start_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t* pOutBuffer) |
| { |
| return HMAC_Start_IT(hhash, pInBuffer, Size, pOutBuffer, HASH_ALGOSELECTION_SHA1); |
| } |
| |
| /** |
| * @} |
| */ |
| |
| |
| |
| /** @defgroup HASH_Exported_Functions_Group7 HMAC processing functions in DMA mode |
| * @brief HMAC processing functions using DMA modes. |
| * |
| @verbatim |
| =============================================================================== |
| ##### DMA mode HMAC processing functions ##### |
| =============================================================================== |
| [..] This section provides functions allowing to calculate in DMA mode |
| the HMAC value using one of the following algorithms: |
| (+) MD5 |
| (++) HAL_HMAC_MD5_Start_DMA() |
| (+) SHA1 |
| (++) HAL_HMAC_SHA1_Start_DMA() |
| |
| [..] When resorting to DMA mode to enter the data in the Peripheral for HMAC processing, |
| user must resort to HAL_HMAC_xxx_Start_DMA() then read the resulting digest |
| with HAL_HASH_xxx_Finish(). |
| |
| @endverbatim |
| * @{ |
| */ |
| |
| |
| /** |
| * @brief Initialize the HASH peripheral in HMAC MD5 mode then initiate the required |
| * DMA transfers to feed the key and the input buffer to the Peripheral. |
| * @note Once the DMA transfers are finished (indicated by hhash->State set back |
| * to HAL_HASH_STATE_READY), HAL_HASH_MD5_Finish() API must be called to retrieve |
| * the computed digest. |
| * @note Same key is used for the inner and the outer hash functions; pointer to key and |
| * key size are respectively stored in hhash->Init.pKey and hhash->Init.KeySize. |
| * @note If MDMAT bit is set before calling this function (multi-buffer |
| * HASH processing case), the input buffer size (in bytes) must be |
| * a multiple of 4 otherwise, the HASH digest computation is corrupted. |
| * For the processing of the last buffer of the thread, MDMAT bit must |
| * be reset and the buffer length (in bytes) doesn't have to be a |
| * multiple of 4. |
| * @param hhash HASH handle. |
| * @param pInBuffer pointer to the input buffer (buffer to be hashed). |
| * @param Size length of the input buffer in bytes. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_HMAC_MD5_Start_DMA(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size) |
| { |
| return HMAC_Start_DMA(hhash, pInBuffer, Size, HASH_ALGOSELECTION_MD5); |
| } |
| |
| |
| /** |
| * @brief Initialize the HASH peripheral in HMAC SHA1 mode then initiate the required |
| * DMA transfers to feed the key and the input buffer to the Peripheral. |
| * @note Once the DMA transfers are finished (indicated by hhash->State set back |
| * to HAL_HASH_STATE_READY), HAL_HASH_SHA1_Finish() API must be called to retrieve |
| * the computed digest. |
| * @note Same key is used for the inner and the outer hash functions; pointer to key and |
| * key size are respectively stored in hhash->Init.pKey and hhash->Init.KeySize. |
| * @note If MDMAT bit is set before calling this function (multi-buffer |
| * HASH processing case), the input buffer size (in bytes) must be |
| * a multiple of 4 otherwise, the HASH digest computation is corrupted. |
| * For the processing of the last buffer of the thread, MDMAT bit must |
| * be reset and the buffer length (in bytes) doesn't have to be a |
| * multiple of 4. |
| * @param hhash HASH handle. |
| * @param pInBuffer pointer to the input buffer (buffer to be hashed). |
| * @param Size length of the input buffer in bytes. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_HMAC_SHA1_Start_DMA(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size) |
| { |
| return HMAC_Start_DMA(hhash, pInBuffer, Size, HASH_ALGOSELECTION_SHA1); |
| } |
| |
| /** |
| * @} |
| */ |
| |
| /** @defgroup HASH_Exported_Functions_Group8 Peripheral states functions |
| * @brief Peripheral State functions. |
| * |
| @verbatim |
| =============================================================================== |
| ##### Peripheral State methods ##### |
| =============================================================================== |
| [..] |
| This section permits to get in run-time the state and the peripheral handle |
| status of the peripheral: |
| (+) HAL_HASH_GetState() |
| (+) HAL_HASH_GetStatus() |
| |
| [..] |
| Additionally, this subsection provides functions allowing to save and restore |
| the HASH or HMAC processing context in case of calculation suspension: |
| (+) HAL_HASH_ContextSaving() |
| (+) HAL_HASH_ContextRestoring() |
| |
| [..] |
| This subsection provides functions allowing to suspend the HASH processing |
| (+) when input are fed to the Peripheral by software |
| (++) HAL_HASH_SwFeed_ProcessSuspend() |
| (+) when input are fed to the Peripheral by DMA |
| (++) HAL_HASH_DMAFeed_ProcessSuspend() |
| |
| |
| |
| @endverbatim |
| * @{ |
| */ |
| |
| /** |
| * @brief Return the HASH handle state. |
| * @note The API yields the current state of the handle (BUSY, READY,...). |
| * @param hhash HASH handle. |
| * @retval HAL HASH state |
| */ |
| HAL_HASH_StateTypeDef HAL_HASH_GetState(HASH_HandleTypeDef *hhash) |
| { |
| return hhash->State; |
| } |
| |
| |
| /** |
| * @brief Return the HASH HAL status. |
| * @note The API yields the HAL status of the handle: it is the result of the |
| * latest HASH processing and allows to report any issue (e.g. HAL_TIMEOUT). |
| * @param hhash HASH handle. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_HASH_GetStatus(HASH_HandleTypeDef *hhash) |
| { |
| return hhash->Status; |
| } |
| |
| /** |
| * @brief Save the HASH context in case of processing suspension. |
| * @param hhash HASH handle. |
| * @param pMemBuffer pointer to the memory buffer where the HASH context |
| * is saved. |
| * @note The IMR, STR, CR then all the CSR registers are saved |
| * in that order. Only the r/w bits are read to be restored later on. |
| * @note By default, all the context swap registers (there are |
| * HASH_NUMBER_OF_CSR_REGISTERS of those) are saved. |
| * @note pMemBuffer points to a buffer allocated by the user. The buffer size |
| * must be at least (HASH_NUMBER_OF_CSR_REGISTERS + 3) * 4 uint8 long. |
| * @retval None |
| */ |
| void HAL_HASH_ContextSaving(HASH_HandleTypeDef *hhash, uint8_t* pMemBuffer) |
| { |
| uint32_t mem_ptr = (uint32_t)pMemBuffer; |
| uint32_t csr_ptr = (uint32_t)HASH->CSR; |
| uint32_t i; |
| |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(hhash); |
| |
| /* Save IMR register content */ |
| *(uint32_t*)(mem_ptr) = READ_BIT(HASH->IMR,HASH_IT_DINI|HASH_IT_DCI); |
| mem_ptr+=4U; |
| /* Save STR register content */ |
| *(uint32_t*)(mem_ptr) = READ_BIT(HASH->STR,HASH_STR_NBLW); |
| mem_ptr+=4U; |
| /* Save CR register content */ |
| *(uint32_t*)(mem_ptr) = READ_BIT(HASH->CR,HASH_CR_DMAE|HASH_CR_DATATYPE|HASH_CR_MODE|HASH_CR_ALGO|HASH_CR_LKEY|HASH_CR_MDMAT); |
| mem_ptr+=4U; |
| /* By default, save all CSRs registers */ |
| for (i = HASH_NUMBER_OF_CSR_REGISTERS; i >0U; i--) |
| { |
| *(uint32_t*)(mem_ptr) = *(uint32_t*)(csr_ptr); |
| mem_ptr+=4U; |
| csr_ptr+=4U; |
| } |
| } |
| |
| |
| /** |
| * @brief Restore the HASH context in case of processing resumption. |
| * @param hhash HASH handle. |
| * @param pMemBuffer pointer to the memory buffer where the HASH context |
| * is stored. |
| * @note The IMR, STR, CR then all the CSR registers are restored |
| * in that order. Only the r/w bits are restored. |
| * @note By default, all the context swap registers (HASH_NUMBER_OF_CSR_REGISTERS |
| * of those) are restored (all of them have been saved by default |
| * beforehand). |
| * @retval None |
| */ |
| void HAL_HASH_ContextRestoring(HASH_HandleTypeDef *hhash, uint8_t* pMemBuffer) |
| { |
| uint32_t mem_ptr = (uint32_t)pMemBuffer; |
| uint32_t csr_ptr = (uint32_t)HASH->CSR; |
| uint32_t i; |
| |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(hhash); |
| |
| /* Restore IMR register content */ |
| WRITE_REG(HASH->IMR, (*(uint32_t*)(mem_ptr))); |
| mem_ptr+=4U; |
| /* Restore STR register content */ |
| WRITE_REG(HASH->STR, (*(uint32_t*)(mem_ptr))); |
| mem_ptr+=4U; |
| /* Restore CR register content */ |
| WRITE_REG(HASH->CR, (*(uint32_t*)(mem_ptr))); |
| mem_ptr+=4U; |
| |
| /* Reset the HASH processor before restoring the Context |
| Swap Registers (CSR) */ |
| __HAL_HASH_INIT(); |
| |
| /* By default, restore all CSR registers */ |
| for (i = HASH_NUMBER_OF_CSR_REGISTERS; i >0U; i--) |
| { |
| WRITE_REG((*(uint32_t*)(csr_ptr)), (*(uint32_t*)(mem_ptr))); |
| mem_ptr+=4U; |
| csr_ptr+=4U; |
| } |
| } |
| |
| |
| /** |
| * @brief Initiate HASH processing suspension when in polling or interruption mode. |
| * @param hhash HASH handle. |
| * @note Set the handle field SuspendRequest to the appropriate value so that |
| * the on-going HASH processing is suspended as soon as the required |
| * conditions are met. Note that the actual suspension is carried out |
| * by the functions HASH_WriteData() in polling mode and HASH_IT() in |
| * interruption mode. |
| * @retval None |
| */ |
| void HAL_HASH_SwFeed_ProcessSuspend(HASH_HandleTypeDef *hhash) |
| { |
| /* Set Handle Suspend Request field */ |
| hhash->SuspendRequest = HAL_HASH_SUSPEND; |
| } |
| |
| /** |
| * @brief Suspend the HASH processing when in DMA mode. |
| * @param hhash HASH handle. |
| * @note When suspension attempt occurs at the very end of a DMA transfer and |
| * all the data have already been entered in the Peripheral, hhash->State is |
| * set to HAL_HASH_STATE_READY and the API returns HAL_ERROR. It is |
| * recommended to wrap-up the processing in reading the digest as usual. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_HASH_DMAFeed_ProcessSuspend(HASH_HandleTypeDef *hhash) |
| { |
| uint32_t tmp_remaining_DMATransferSize_inWords; |
| uint32_t tmp_initial_DMATransferSize_inWords; |
| uint32_t tmp_words_already_pushed; |
| |
| if (hhash->State == HAL_HASH_STATE_READY) |
| { |
| return HAL_ERROR; |
| } |
| else |
| { |
| |
| /* Make sure there is enough time to suspend the processing */ |
| tmp_remaining_DMATransferSize_inWords = ((DMA_Stream_TypeDef *)hhash->hdmain->Instance)->NDTR; |
| |
| if (tmp_remaining_DMATransferSize_inWords <= HASH_DMA_SUSPENSION_WORDS_LIMIT) |
| { |
| /* No suspension attempted since almost to the end of the transferred data. */ |
| /* Best option for user code is to wrap up low priority message hashing */ |
| return HAL_ERROR; |
| } |
| |
| /* Wait for BUSY flag to be reset */ |
| if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_BUSY, SET, HASH_TIMEOUTVALUE) != HAL_OK) |
| { |
| return HAL_TIMEOUT; |
| } |
| |
| if (__HAL_HASH_GET_FLAG(HASH_FLAG_DCIS) != RESET) |
| { |
| return HAL_ERROR; |
| } |
| |
| /* Wait for BUSY flag to be set */ |
| if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_BUSY, RESET, HASH_TIMEOUTVALUE) != HAL_OK) |
| { |
| return HAL_TIMEOUT; |
| } |
| /* Disable DMA channel */ |
| /* Note that the Abort function will |
| - Clear the transfer error flags |
| - Unlock |
| - Set the State |
| */ |
| if (HAL_DMA_Abort(hhash->hdmain) !=HAL_OK) |
| { |
| return HAL_ERROR; |
| } |
| |
| /* Clear DMAE bit */ |
| CLEAR_BIT(HASH->CR,HASH_CR_DMAE); |
| |
| /* Wait for BUSY flag to be reset */ |
| if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_BUSY, SET, HASH_TIMEOUTVALUE) != HAL_OK) |
| { |
| return HAL_TIMEOUT; |
| } |
| |
| if (__HAL_HASH_GET_FLAG(HASH_FLAG_DCIS) != RESET) |
| { |
| return HAL_ERROR; |
| } |
| |
| /* At this point, DMA interface is disabled and no transfer is on-going */ |
| /* Retrieve from the DMA handle how many words remain to be written */ |
| tmp_remaining_DMATransferSize_inWords = ((DMA_Stream_TypeDef *)hhash->hdmain->Instance)->NDTR; |
| |
| if (tmp_remaining_DMATransferSize_inWords == 0U) |
| { |
| /* All the DMA transfer is actually done. Suspension occurred at the very end |
| of the transfer. Either the digest computation is about to start (HASH case) |
| or processing is about to move from one step to another (HMAC case). |
| In both cases, the processing can't be suspended at this point. It is |
| safer to |
| - retrieve the low priority block digest before starting the high |
| priority block processing (HASH case) |
| - re-attempt a new suspension (HMAC case) |
| */ |
| return HAL_ERROR; |
| } |
| else |
| { |
| |
| /* Compute how many words were supposed to be transferred by DMA */ |
| tmp_initial_DMATransferSize_inWords = (((hhash->HashInCount%4U)!=0U) ? ((hhash->HashInCount+3U)/4U): (hhash->HashInCount/4U)); |
| |
| /* If discrepancy between the number of words reported by DMA Peripheral and the numbers of words entered as reported |
| by HASH Peripheral, correct it */ |
| /* tmp_words_already_pushed reflects the number of words that were already pushed before |
| the start of DMA transfer (multi-buffer processing case) */ |
| tmp_words_already_pushed = hhash->NbWordsAlreadyPushed; |
| if (((tmp_words_already_pushed + tmp_initial_DMATransferSize_inWords - tmp_remaining_DMATransferSize_inWords) %16U) != HASH_NBW_PUSHED()) |
| { |
| tmp_remaining_DMATransferSize_inWords--; /* one less word to be transferred again */ |
| } |
| |
| /* Accordingly, update the input pointer that points at the next word to be transferred to the Peripheral by DMA */ |
| hhash->pHashInBuffPtr += 4U * (tmp_initial_DMATransferSize_inWords - tmp_remaining_DMATransferSize_inWords) ; |
| |
| /* And store in HashInCount the remaining size to transfer (in bytes) */ |
| hhash->HashInCount = 4U * tmp_remaining_DMATransferSize_inWords; |
| |
| } |
| |
| /* Set State as suspended */ |
| hhash->State = HAL_HASH_STATE_SUSPENDED; |
| |
| return HAL_OK; |
| |
| } |
| } |
| |
| /** |
| * @brief Return the HASH handle error code. |
| * @param hhash pointer to a HASH_HandleTypeDef structure. |
| * @retval HASH Error Code |
| */ |
| uint32_t HAL_HASH_GetError(HASH_HandleTypeDef *hhash) |
| { |
| /* Return HASH Error Code */ |
| return hhash->ErrorCode; |
| } |
| /** |
| * @} |
| */ |
| |
| |
| /** |
| * @} |
| */ |
| |
| /** @defgroup HASH_Private_Functions HASH Private Functions |
| * @{ |
| */ |
| |
| /** |
| * @brief DMA HASH Input Data transfer completion callback. |
| * @param hdma DMA handle. |
| * @note In case of HMAC processing, HASH_DMAXferCplt() initiates |
| * the next DMA transfer for the following HMAC step. |
| * @retval None |
| */ |
| static void HASH_DMAXferCplt(DMA_HandleTypeDef *hdma) |
| { |
| HASH_HandleTypeDef* hhash = ( HASH_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; |
| uint32_t inputaddr; |
| uint32_t buffersize; |
| HAL_StatusTypeDef status ; |
| |
| if (hhash->State != HAL_HASH_STATE_SUSPENDED) |
| { |
| |
| /* Disable the DMA transfer */ |
| CLEAR_BIT(HASH->CR, HASH_CR_DMAE); |
| |
| if (READ_BIT(HASH->CR, HASH_CR_MODE) == 0U) |
| { |
| /* If no HMAC processing, input data transfer is now over */ |
| |
| /* Change the HASH state to ready */ |
| hhash->State = HAL_HASH_STATE_READY; |
| |
| /* Call Input data transfer complete call back */ |
| #if (USE_HAL_HASH_REGISTER_CALLBACKS == 1) |
| hhash->InCpltCallback(hhash); |
| #else |
| HAL_HASH_InCpltCallback(hhash); |
| #endif /* USE_HAL_HASH_REGISTER_CALLBACKS */ |
| |
| } |
| else |
| { |
| /* HMAC processing: depending on the current HMAC step and whether or |
| not multi-buffer processing is on-going, the next step is initiated |
| and MDMAT bit is set. */ |
| |
| |
| if (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_3) |
| { |
| /* This is the end of HMAC processing */ |
| |
| /* Change the HASH state to ready */ |
| hhash->State = HAL_HASH_STATE_READY; |
| |
| /* Call Input data transfer complete call back |
| (note that the last DMA transfer was that of the key |
| for the outer HASH operation). */ |
| #if (USE_HAL_HASH_REGISTER_CALLBACKS == 1) |
| hhash->InCpltCallback(hhash); |
| #else |
| HAL_HASH_InCpltCallback(hhash); |
| #endif /* USE_HAL_HASH_REGISTER_CALLBACKS */ |
| |
| return; |
| } |
| else if (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_1) |
| { |
| inputaddr = (uint32_t)hhash->pHashMsgBuffPtr; /* DMA transfer start address */ |
| buffersize = hhash->HashBuffSize; /* DMA transfer size (in bytes) */ |
| hhash->Phase = HAL_HASH_PHASE_HMAC_STEP_2; /* Move phase from Step 1 to Step 2 */ |
| |
| /* In case of suspension request, save the new starting parameters */ |
| hhash->HashInCount = hhash->HashBuffSize; /* Initial DMA transfer size (in bytes) */ |
| hhash->pHashInBuffPtr = hhash->pHashMsgBuffPtr ; /* DMA transfer start address */ |
| |
| hhash->NbWordsAlreadyPushed = 0U; /* Reset number of words already pushed */ |
| /* Check whether or not digest calculation must be disabled (in case of multi-buffer HMAC processing) */ |
| if (hhash->DigestCalculationDisable != RESET) |
| { |
| /* Digest calculation is disabled: Step 2 must start with MDMAT bit set, |
| no digest calculation will be triggered at the end of the input buffer feeding to the Peripheral */ |
| __HAL_HASH_SET_MDMAT(); |
| } |
| } |
| else /*case (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_2)*/ |
| { |
| if (hhash->DigestCalculationDisable != RESET) |
| { |
| /* No automatic move to Step 3 as a new message buffer will be fed to the Peripheral |
| (case of multi-buffer HMAC processing): |
| DCAL must not be set. |
| Phase remains in Step 2, MDMAT remains set at this point. |
| Change the HASH state to ready and call Input data transfer complete call back. */ |
| hhash->State = HAL_HASH_STATE_READY; |
| #if (USE_HAL_HASH_REGISTER_CALLBACKS == 1) |
| hhash->InCpltCallback(hhash); |
| #else |
| HAL_HASH_InCpltCallback(hhash); |
| #endif /* USE_HAL_HASH_REGISTER_CALLBACKS */ |
| return ; |
| } |
| else |
| { |
| /* Digest calculation is not disabled (case of single buffer input or last buffer |
| of multi-buffer HMAC processing) */ |
| inputaddr = (uint32_t)hhash->Init.pKey; /* DMA transfer start address */ |
| buffersize = hhash->Init.KeySize; /* DMA transfer size (in bytes) */ |
| hhash->Phase = HAL_HASH_PHASE_HMAC_STEP_3; /* Move phase from Step 2 to Step 3 */ |
| /* In case of suspension request, save the new starting parameters */ |
| hhash->HashInCount = hhash->Init.KeySize; /* Initial size for second DMA transfer (input data) */ |
| hhash->pHashInBuffPtr = hhash->Init.pKey ; /* address passed to DMA, now entering data message */ |
| |
| hhash->NbWordsAlreadyPushed = 0U; /* Reset number of words already pushed */ |
| } |
| } |
| |
| /* Configure the Number of valid bits in last word of the message */ |
| __HAL_HASH_SET_NBVALIDBITS(buffersize); |
| |
| /* Set the HASH DMA transfert completion call back */ |
| hhash->hdmain->XferCpltCallback = HASH_DMAXferCplt; |
| |
| /* Enable the DMA In DMA Stream */ |
| status = HAL_DMA_Start_IT(hhash->hdmain, inputaddr, (uint32_t)&HASH->DIN, (((buffersize %4U)!=0U) ? ((buffersize+(4U-(buffersize %4U)))/4U):(buffersize/4U))); |
| |
| /* Enable DMA requests */ |
| SET_BIT(HASH->CR, HASH_CR_DMAE); |
| |
| /* Return function status */ |
| if (status != HAL_OK) |
| { |
| /* Update HASH state machine to error */ |
| hhash->State = HAL_HASH_STATE_ERROR; |
| } |
| else |
| { |
| /* Change HASH state */ |
| hhash->State = HAL_HASH_STATE_READY; |
| } |
| } |
| } |
| |
| return; |
| } |
| |
| /** |
| * @brief DMA HASH communication error callback. |
| * @param hdma DMA handle. |
| * @note HASH_DMAError() callback invokes HAL_HASH_ErrorCallback() that |
| * can contain user code to manage the error. |
| * @retval None |
| */ |
| static void HASH_DMAError(DMA_HandleTypeDef *hdma) |
| { |
| HASH_HandleTypeDef* hhash = ( HASH_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; |
| |
| if (hhash->State != HAL_HASH_STATE_SUSPENDED) |
| { |
| hhash->ErrorCode |= HAL_HASH_ERROR_DMA; |
| /* Set HASH state to ready to prevent any blocking issue in user code |
| present in HAL_HASH_ErrorCallback() */ |
| hhash->State= HAL_HASH_STATE_READY; |
| /* Set HASH handle status to error */ |
| hhash->Status = HAL_ERROR; |
| #if (USE_HAL_HASH_REGISTER_CALLBACKS == 1) |
| hhash->ErrorCallback(hhash); |
| #else |
| HAL_HASH_ErrorCallback(hhash); |
| #endif /* USE_HAL_HASH_REGISTER_CALLBACKS */ |
| /* After error handling by code user, reset HASH handle HAL status */ |
| hhash->Status = HAL_OK; |
| |
| } |
| } |
| |
| /** |
| * @brief Feed the input buffer to the HASH Peripheral. |
| * @param hhash HASH handle. |
| * @param pInBuffer pointer to input buffer. |
| * @param Size the size of input buffer in bytes. |
| * @note HASH_WriteData() regularly reads hhash->SuspendRequest to check whether |
| * or not the HASH processing must be suspended. If this is the case, the |
| * processing is suspended when possible and the Peripheral feeding point reached at |
| * suspension time is stored in the handle for resumption later on. |
| * @retval HAL status |
| */ |
| static HAL_StatusTypeDef HASH_WriteData(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size) |
| { |
| uint32_t buffercounter; |
| __IO uint32_t inputaddr = (uint32_t) pInBuffer; |
| |
| for(buffercounter = 0U; buffercounter < Size; buffercounter+=4U) |
| { |
| /* Write input data 4 bytes at a time */ |
| HASH->DIN = *(uint32_t*)inputaddr; |
| inputaddr+=4U; |
| |
| /* If the suspension flag has been raised and if the processing is not about |
| to end, suspend processing */ |
| if ((hhash->SuspendRequest == HAL_HASH_SUSPEND) && ((buffercounter+4U) < Size)) |
| { |
| /* wait for flag BUSY not set before Wait for DINIS = 1*/ |
| if (buffercounter >=64U) |
| { |
| if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_BUSY, SET, HASH_TIMEOUTVALUE) != HAL_OK) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| /* Wait for DINIS = 1, which occurs when 16 32-bit locations are free |
| in the input buffer */ |
| if (__HAL_HASH_GET_FLAG(HASH_FLAG_DINIS)) |
| { |
| /* Reset SuspendRequest */ |
| hhash->SuspendRequest = HAL_HASH_SUSPEND_NONE; |
| |
| /* Depending whether the key or the input data were fed to the Peripheral, the feeding point |
| reached at suspension time is not saved in the same handle fields */ |
| if ((hhash->Phase == HAL_HASH_PHASE_PROCESS) || (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_2)) |
| { |
| /* Save current reading and writing locations of Input and Output buffers */ |
| hhash->pHashInBuffPtr = (uint8_t *)inputaddr; |
| /* Save the number of bytes that remain to be processed at this point */ |
| hhash->HashInCount = Size - (buffercounter + 4U); |
| } |
| else if ((hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_1) || (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_3)) |
| { |
| /* Save current reading and writing locations of Input and Output buffers */ |
| hhash->pHashKeyBuffPtr = (uint8_t *)inputaddr; |
| /* Save the number of bytes that remain to be processed at this point */ |
| hhash->HashKeyCount = Size - (buffercounter + 4U); |
| } |
| else |
| { |
| /* Unexpected phase: unlock process and report error */ |
| hhash->State = HAL_HASH_STATE_READY; |
| __HAL_UNLOCK(hhash); |
| return HAL_ERROR; |
| } |
| |
| /* Set the HASH state to Suspended and exit to stop entering data */ |
| hhash->State = HAL_HASH_STATE_SUSPENDED; |
| |
| return HAL_OK; |
| } /* if (__HAL_HASH_GET_FLAG(HASH_FLAG_DINIS)) */ |
| } /* if ((hhash->SuspendRequest == HAL_HASH_SUSPEND) && ((buffercounter+4) < Size)) */ |
| } /* for(buffercounter = 0; buffercounter < Size; buffercounter+=4) */ |
| |
| /* At this point, all the data have been entered to the Peripheral: exit */ |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Retrieve the message digest. |
| * @param pMsgDigest pointer to the computed digest. |
| * @param Size message digest size in bytes. |
| * @retval None |
| */ |
| static void HASH_GetDigest(uint8_t *pMsgDigest, uint8_t Size) |
| { |
| uint32_t msgdigest = (uint32_t)pMsgDigest; |
| |
| switch(Size) |
| { |
| /* Read the message digest */ |
| case 16: /* MD5 */ |
| *(uint32_t*)(msgdigest) = __REV(HASH->HR[0]); |
| msgdigest+=4U; |
| *(uint32_t*)(msgdigest) = __REV(HASH->HR[1]); |
| msgdigest+=4U; |
| *(uint32_t*)(msgdigest) = __REV(HASH->HR[2]); |
| msgdigest+=4U; |
| *(uint32_t*)(msgdigest) = __REV(HASH->HR[3]); |
| break; |
| case 20: /* SHA1 */ |
| *(uint32_t*)(msgdigest) = __REV(HASH->HR[0]); |
| msgdigest+=4U; |
| *(uint32_t*)(msgdigest) = __REV(HASH->HR[1]); |
| msgdigest+=4U; |
| *(uint32_t*)(msgdigest) = __REV(HASH->HR[2]); |
| msgdigest+=4U; |
| *(uint32_t*)(msgdigest) = __REV(HASH->HR[3]); |
| msgdigest+=4U; |
| *(uint32_t*)(msgdigest) = __REV(HASH->HR[4]); |
| break; |
| case 28: /* SHA224 */ |
| *(uint32_t*)(msgdigest) = __REV(HASH->HR[0]); |
| msgdigest+=4U; |
| *(uint32_t*)(msgdigest) = __REV(HASH->HR[1]); |
| msgdigest+=4U; |
| *(uint32_t*)(msgdigest) = __REV(HASH->HR[2]); |
| msgdigest+=4U; |
| *(uint32_t*)(msgdigest) = __REV(HASH->HR[3]); |
| msgdigest+=4U; |
| *(uint32_t*)(msgdigest) = __REV(HASH->HR[4]); |
| msgdigest+=4U; |
| *(uint32_t*)(msgdigest) = __REV(HASH_DIGEST->HR[5]); |
| msgdigest+=4U; |
| *(uint32_t*)(msgdigest) = __REV(HASH_DIGEST->HR[6]); |
| break; |
| case 32: /* SHA256 */ |
| *(uint32_t*)(msgdigest) = __REV(HASH->HR[0]); |
| msgdigest+=4U; |
| *(uint32_t*)(msgdigest) = __REV(HASH->HR[1]); |
| msgdigest+=4U; |
| *(uint32_t*)(msgdigest) = __REV(HASH->HR[2]); |
| msgdigest+=4U; |
| *(uint32_t*)(msgdigest) = __REV(HASH->HR[3]); |
| msgdigest+=4U; |
| *(uint32_t*)(msgdigest) = __REV(HASH->HR[4]); |
| msgdigest+=4U; |
| *(uint32_t*)(msgdigest) = __REV(HASH_DIGEST->HR[5]); |
| msgdigest+=4U; |
| *(uint32_t*)(msgdigest) = __REV(HASH_DIGEST->HR[6]); |
| msgdigest+=4U; |
| *(uint32_t*)(msgdigest) = __REV(HASH_DIGEST->HR[7]); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| |
| |
| /** |
| * @brief Handle HASH processing Timeout. |
| * @param hhash HASH handle. |
| * @param Flag specifies the HASH flag to check. |
| * @param Status the Flag status (SET or RESET). |
| * @param Timeout Timeout duration. |
| * @retval HAL status |
| */ |
| static HAL_StatusTypeDef HASH_WaitOnFlagUntilTimeout(HASH_HandleTypeDef *hhash, uint32_t Flag, FlagStatus Status, uint32_t Timeout) |
| { |
| uint32_t tickstart = HAL_GetTick(); |
| |
| /* Wait until flag is set */ |
| if(Status == RESET) |
| { |
| while(__HAL_HASH_GET_FLAG(Flag) == RESET) |
| { |
| /* Check for the Timeout */ |
| if(Timeout != HAL_MAX_DELAY) |
| { |
| if(((HAL_GetTick()-tickstart) > Timeout) || (Timeout == 0U)) |
| { |
| /* Set State to Ready to be able to restart later on */ |
| hhash->State = HAL_HASH_STATE_READY; |
| /* Store time out issue in handle status */ |
| hhash->Status = HAL_TIMEOUT; |
| |
| /* Process Unlocked */ |
| __HAL_UNLOCK(hhash); |
| |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| } |
| else |
| { |
| while(__HAL_HASH_GET_FLAG(Flag) != RESET) |
| { |
| /* Check for the Timeout */ |
| if(Timeout != HAL_MAX_DELAY) |
| { |
| if(((HAL_GetTick()-tickstart) > Timeout) || (Timeout == 0U)) |
| { |
| /* Set State to Ready to be able to restart later on */ |
| hhash->State = HAL_HASH_STATE_READY; |
| /* Store time out issue in handle status */ |
| hhash->Status = HAL_TIMEOUT; |
| |
| /* Process Unlocked */ |
| __HAL_UNLOCK(hhash); |
| |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| } |
| return HAL_OK; |
| } |
| |
| |
| /** |
| * @brief HASH processing in interruption mode. |
| * @param hhash HASH handle. |
| * @note HASH_IT() regularly reads hhash->SuspendRequest to check whether |
| * or not the HASH processing must be suspended. If this is the case, the |
| * processing is suspended when possible and the Peripheral feeding point reached at |
| * suspension time is stored in the handle for resumption later on. |
| * @retval HAL status |
| */ |
| static HAL_StatusTypeDef HASH_IT(HASH_HandleTypeDef *hhash) |
| { |
| if (hhash->State == HAL_HASH_STATE_BUSY) |
| { |
| /* ITCounter must not be equal to 0 at this point. Report an error if this is the case. */ |
| if(hhash->HashITCounter == 0U) |
| { |
| /* Disable Interrupts */ |
| __HAL_HASH_DISABLE_IT(HASH_IT_DINI|HASH_IT_DCI); |
| /* HASH state set back to Ready to prevent any issue in user code |
| present in HAL_HASH_ErrorCallback() */ |
| hhash->State = HAL_HASH_STATE_READY; |
| return HAL_ERROR; |
| } |
| else if (hhash->HashITCounter == 1U) |
| { |
| /* This is the first call to HASH_IT, the first input data are about to be |
| entered in the Peripheral. A specific processing is carried out at this point to |
| start-up the processing. */ |
| hhash->HashITCounter = 2U; |
| } |
| else |
| { |
| /* Cruise speed reached, HashITCounter remains equal to 3 until the end of |
| the HASH processing or the end of the current step for HMAC processing. */ |
| hhash->HashITCounter = 3U; |
| } |
| |
| /* If digest is ready */ |
| if (__HAL_HASH_GET_FLAG(HASH_FLAG_DCIS)) |
| { |
| /* Read the digest */ |
| HASH_GetDigest(hhash->pHashOutBuffPtr, HASH_DIGEST_LENGTH()); |
| |
| /* Disable Interrupts */ |
| __HAL_HASH_DISABLE_IT(HASH_IT_DINI|HASH_IT_DCI); |
| /* Change the HASH state */ |
| hhash->State = HAL_HASH_STATE_READY; |
| /* Reset HASH state machine */ |
| hhash->Phase = HAL_HASH_PHASE_READY; |
| /* Call digest computation complete call back */ |
| #if (USE_HAL_HASH_REGISTER_CALLBACKS == 1) |
| hhash->DgstCpltCallback(hhash); |
| #else |
| HAL_HASH_DgstCpltCallback(hhash); |
| #endif /* USE_HAL_HASH_REGISTER_CALLBACKS */ |
| |
| return HAL_OK; |
| } |
| |
| /* If Peripheral ready to accept new data */ |
| if (__HAL_HASH_GET_FLAG(HASH_FLAG_DINIS)) |
| { |
| |
| /* If the suspension flag has been raised and if the processing is not about |
| to end, suspend processing */ |
| if ( (hhash->HashInCount != 0U) && (hhash->SuspendRequest == HAL_HASH_SUSPEND)) |
| { |
| /* Disable Interrupts */ |
| __HAL_HASH_DISABLE_IT(HASH_IT_DINI|HASH_IT_DCI); |
| |
| /* Reset SuspendRequest */ |
| hhash->SuspendRequest = HAL_HASH_SUSPEND_NONE; |
| |
| /* Change the HASH state */ |
| hhash->State = HAL_HASH_STATE_SUSPENDED; |
| |
| return HAL_OK; |
| } |
| |
| /* Enter input data in the Peripheral thru HASH_Write_Block_Data() call and |
| check whether the digest calculation has been triggered */ |
| if (HASH_Write_Block_Data(hhash) == HASH_DIGEST_CALCULATION_STARTED) |
| { |
| /* Call Input data transfer complete call back |
| (called at the end of each step for HMAC) */ |
| #if (USE_HAL_HASH_REGISTER_CALLBACKS == 1) |
| hhash->InCpltCallback(hhash); |
| #else |
| HAL_HASH_InCpltCallback(hhash); |
| #endif /* USE_HAL_HASH_REGISTER_CALLBACKS */ |
| |
| if (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_1) |
| { |
| /* Wait until Peripheral is not busy anymore */ |
| if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_BUSY, SET, HASH_TIMEOUTVALUE) != HAL_OK) |
| { |
| /* Disable Interrupts */ |
| __HAL_HASH_DISABLE_IT(HASH_IT_DINI|HASH_IT_DCI); |
| return HAL_TIMEOUT; |
| } |
| /* Initialization start for HMAC STEP 2 */ |
| hhash->Phase = HAL_HASH_PHASE_HMAC_STEP_2; /* Move phase from Step 1 to Step 2 */ |
| __HAL_HASH_SET_NBVALIDBITS(hhash->HashBuffSize); /* Set NBLW for the input message */ |
| hhash->HashInCount = hhash->HashBuffSize; /* Set the input data size (in bytes) */ |
| hhash->pHashInBuffPtr = hhash->pHashMsgBuffPtr; /* Set the input data address */ |
| hhash->HashITCounter = 1; /* Set ITCounter to 1 to indicate the start of a new phase */ |
| __HAL_HASH_ENABLE_IT(HASH_IT_DINI); /* Enable IT (was disabled in HASH_Write_Block_Data) */ |
| } |
| else if (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_2) |
| { |
| /* Wait until Peripheral is not busy anymore */ |
| if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_BUSY, SET, HASH_TIMEOUTVALUE) != HAL_OK) |
| { |
| /* Disable Interrupts */ |
| __HAL_HASH_DISABLE_IT(HASH_IT_DINI|HASH_IT_DCI); |
| return HAL_TIMEOUT; |
| } |
| /* Initialization start for HMAC STEP 3 */ |
| hhash->Phase = HAL_HASH_PHASE_HMAC_STEP_3; /* Move phase from Step 2 to Step 3 */ |
| __HAL_HASH_SET_NBVALIDBITS(hhash->Init.KeySize); /* Set NBLW for the key */ |
| hhash->HashInCount = hhash->Init.KeySize; /* Set the key size (in bytes) */ |
| hhash->pHashInBuffPtr = hhash->Init.pKey; /* Set the key address */ |
| hhash->HashITCounter = 1; /* Set ITCounter to 1 to indicate the start of a new phase */ |
| __HAL_HASH_ENABLE_IT(HASH_IT_DINI); /* Enable IT (was disabled in HASH_Write_Block_Data) */ |
| } |
| else |
| { |
| /* Nothing to do */ |
| } |
| } /* if (HASH_Write_Block_Data(hhash) == HASH_DIGEST_CALCULATION_STARTED) */ |
| } /* if (__HAL_HASH_GET_FLAG(HASH_FLAG_DINIS))*/ |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| else |
| { |
| return HAL_BUSY; |
| } |
| } |
| |
| |
| /** |
| * @brief Write a block of data in HASH Peripheral in interruption mode. |
| * @param hhash HASH handle. |
| * @note HASH_Write_Block_Data() is called under interruption by HASH_IT(). |
| * @retval HAL status |
| */ |
| static uint32_t HASH_Write_Block_Data(HASH_HandleTypeDef *hhash) |
| { |
| uint32_t inputaddr; |
| uint32_t buffercounter; |
| uint32_t inputcounter; |
| uint32_t ret = HASH_DIGEST_CALCULATION_NOT_STARTED; |
| |
| /* If there are more than 64 bytes remaining to be entered */ |
| if(hhash->HashInCount > 64U) |
| { |
| inputaddr = (uint32_t)hhash->pHashInBuffPtr; |
| /* Write the Input block in the Data IN register |
| (16 32-bit words, or 64 bytes are entered) */ |
| for(buffercounter = 0U; buffercounter < 64U; buffercounter+=4U) |
| { |
| HASH->DIN = *(uint32_t*)inputaddr; |
| inputaddr+=4U; |
| } |
| /* If this is the start of input data entering, an additional word |
| must be entered to start up the HASH processing */ |
| if(hhash->HashITCounter == 2U) |
| { |
| HASH->DIN = *(uint32_t*)inputaddr; |
| if(hhash->HashInCount >= 68U) |
| { |
| /* There are still data waiting to be entered in the Peripheral. |
| Decrement buffer counter and set pointer to the proper |
| memory location for the next data entering round. */ |
| hhash->HashInCount -= 68U; |
| hhash->pHashInBuffPtr+= 68U; |
| } |
| else |
| { |
| /* All the input buffer has been fed to the HW. */ |
| hhash->HashInCount = 0U; |
| } |
| } |
| else |
| { |
| /* 64 bytes have been entered and there are still some remaining: |
| Decrement buffer counter and set pointer to the proper |
| memory location for the next data entering round.*/ |
| hhash->HashInCount -= 64U; |
| hhash->pHashInBuffPtr+= 64U; |
| } |
| } |
| else |
| { |
| /* 64 or less bytes remain to be entered. This is the last |
| data entering round. */ |
| |
| /* Get the buffer address */ |
| inputaddr = (uint32_t)hhash->pHashInBuffPtr; |
| /* Get the buffer counter */ |
| inputcounter = hhash->HashInCount; |
| /* Disable Interrupts */ |
| __HAL_HASH_DISABLE_IT(HASH_IT_DINI); |
| |
| /* Write the Input block in the Data IN register */ |
| for(buffercounter = 0U; buffercounter < ((inputcounter+3U)/4U); buffercounter++) |
| { |
| HASH->DIN = *(uint32_t*)inputaddr; |
| inputaddr+=4U; |
| } |
| |
| if (hhash->Accumulation == 1U) |
| { |
| /* Field accumulation is set, API only feeds data to the Peripheral and under interruption. |
| The digest computation will be started when the last buffer data are entered. */ |
| |
| /* Reset multi buffers accumulation flag */ |
| hhash->Accumulation = 0U; |
| /* Change the HASH state */ |
| hhash->State = HAL_HASH_STATE_READY; |
| /* Call Input data transfer complete call back */ |
| #if (USE_HAL_HASH_REGISTER_CALLBACKS == 1) |
| hhash->InCpltCallback(hhash); |
| #else |
| HAL_HASH_InCpltCallback(hhash); |
| #endif /* USE_HAL_HASH_REGISTER_CALLBACKS */ |
| } |
| else |
| { |
| /* Start the Digest calculation */ |
| __HAL_HASH_START_DIGEST(); |
| /* Return indication that digest calculation has started: |
| this return value triggers the call to Input data transfer |
| complete call back as well as the proper transition from |
| one step to another in HMAC mode. */ |
| ret = HASH_DIGEST_CALCULATION_STARTED; |
| } |
| /* Reset buffer counter */ |
| hhash->HashInCount = 0; |
| } |
| |
| /* Return whether or digest calculation has started */ |
| return ret; |
| } |
| |
| /** |
| * @brief HMAC processing in polling mode. |
| * @param hhash HASH handle. |
| * @param Timeout Timeout value. |
| * @retval HAL status |
| */ |
| static HAL_StatusTypeDef HMAC_Processing(HASH_HandleTypeDef *hhash, uint32_t Timeout) |
| { |
| /* Ensure first that Phase is correct */ |
| if ((hhash->Phase != HAL_HASH_PHASE_HMAC_STEP_1) && (hhash->Phase != HAL_HASH_PHASE_HMAC_STEP_2) && (hhash->Phase != HAL_HASH_PHASE_HMAC_STEP_3)) |
| { |
| /* Change the HASH state */ |
| hhash->State = HAL_HASH_STATE_READY; |
| |
| /* Process Unlock */ |
| __HAL_UNLOCK(hhash); |
| |
| /* Return function status */ |
| return HAL_ERROR; |
| } |
| |
| /* HMAC Step 1 processing */ |
| if (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_1) |
| { |
| /************************** STEP 1 ******************************************/ |
| /* Configure the Number of valid bits in last word of the message */ |
| __HAL_HASH_SET_NBVALIDBITS(hhash->Init.KeySize); |
| |
| /* Write input buffer in Data register */ |
| hhash->Status = HASH_WriteData(hhash, hhash->pHashKeyBuffPtr, hhash->HashKeyCount); |
| if (hhash->Status != HAL_OK) |
| { |
| return hhash->Status; |
| } |
| |
| /* Check whether or not key entering process has been suspended */ |
| if (hhash->State == HAL_HASH_STATE_SUSPENDED) |
| { |
| /* Process Unlocked */ |
| __HAL_UNLOCK(hhash); |
| |
| /* Stop right there and return function status */ |
| return HAL_OK; |
| } |
| |
| /* No processing suspension at this point: set DCAL bit. */ |
| __HAL_HASH_START_DIGEST(); |
| |
| /* Wait for BUSY flag to be cleared */ |
| if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_BUSY, SET, Timeout) != HAL_OK) |
| { |
| return HAL_TIMEOUT; |
| } |
| |
| /* Move from Step 1 to Step 2 */ |
| hhash->Phase = HAL_HASH_PHASE_HMAC_STEP_2; |
| |
| } |
| |
| /* HMAC Step 2 processing. |
| After phase check, HMAC_Processing() may |
| - directly start up from this point in resumption case |
| if the same Step 2 processing was suspended previously |
| - or fall through from the Step 1 processing carried out hereabove */ |
| if (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_2) |
| { |
| /************************** STEP 2 ******************************************/ |
| /* Configure the Number of valid bits in last word of the message */ |
| __HAL_HASH_SET_NBVALIDBITS(hhash->HashBuffSize); |
| |
| /* Write input buffer in Data register */ |
| hhash->Status = HASH_WriteData(hhash, hhash->pHashInBuffPtr, hhash->HashInCount); |
| if (hhash->Status != HAL_OK) |
| { |
| return hhash->Status; |
| } |
| |
| /* Check whether or not data entering process has been suspended */ |
| if (hhash->State == HAL_HASH_STATE_SUSPENDED) |
| { |
| /* Process Unlocked */ |
| __HAL_UNLOCK(hhash); |
| |
| /* Stop right there and return function status */ |
| return HAL_OK; |
| } |
| |
| /* No processing suspension at this point: set DCAL bit. */ |
| __HAL_HASH_START_DIGEST(); |
| |
| /* Wait for BUSY flag to be cleared */ |
| if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_BUSY, SET, Timeout) != HAL_OK) |
| { |
| return HAL_TIMEOUT; |
| } |
| |
| /* Move from Step 2 to Step 3 */ |
| hhash->Phase = HAL_HASH_PHASE_HMAC_STEP_3; |
| /* In case Step 1 phase was suspended then resumed, |
| set again Key input buffers and size before moving to |
| next step */ |
| hhash->pHashKeyBuffPtr = hhash->Init.pKey; |
| hhash->HashKeyCount = hhash->Init.KeySize; |
| } |
| |
| |
| /* HMAC Step 3 processing. |
| After phase check, HMAC_Processing() may |
| - directly start up from this point in resumption case |
| if the same Step 3 processing was suspended previously |
| - or fall through from the Step 2 processing carried out hereabove */ |
| if (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_3) |
| { |
| /************************** STEP 3 ******************************************/ |
| /* Configure the Number of valid bits in last word of the message */ |
| __HAL_HASH_SET_NBVALIDBITS(hhash->Init.KeySize); |
| |
| /* Write input buffer in Data register */ |
| hhash->Status = HASH_WriteData(hhash, hhash->pHashKeyBuffPtr, hhash->HashKeyCount); |
| if (hhash->Status != HAL_OK) |
| { |
| return hhash->Status; |
| } |
| |
| /* Check whether or not key entering process has been suspended */ |
| if (hhash->State == HAL_HASH_STATE_SUSPENDED) |
| { |
| /* Process Unlocked */ |
| __HAL_UNLOCK(hhash); |
| |
| /* Stop right there and return function status */ |
| return HAL_OK; |
| } |
| |
| /* No processing suspension at this point: start the Digest calculation. */ |
| __HAL_HASH_START_DIGEST(); |
| |
| /* Wait for DCIS flag to be set */ |
| if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_DCIS, RESET, Timeout) != HAL_OK) |
| { |
| return HAL_TIMEOUT; |
| } |
| |
| /* Read the message digest */ |
| HASH_GetDigest(hhash->pHashOutBuffPtr, HASH_DIGEST_LENGTH()); |
| |
| /* Reset HASH state machine */ |
| hhash->Phase = HAL_HASH_PHASE_READY; |
| } |
| |
| /* Change the HASH state */ |
| hhash->State = HAL_HASH_STATE_READY; |
| |
| /* Process Unlock */ |
| __HAL_UNLOCK(hhash); |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| |
| |
| /** |
| * @brief Initialize the HASH peripheral, next process pInBuffer then |
| * read the computed digest. |
| * @note Digest is available in pOutBuffer. |
| * @param hhash HASH handle. |
| * @param pInBuffer pointer to the input buffer (buffer to be hashed). |
| * @param Size length of the input buffer in bytes. |
| * @param pOutBuffer pointer to the computed digest. |
| * @param Timeout Timeout value. |
| * @param Algorithm HASH algorithm. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HASH_Start(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t* pOutBuffer, uint32_t Timeout, uint32_t Algorithm) |
| { |
| uint8_t *pInBuffer_tmp; /* input data address, input parameter of HASH_WriteData() */ |
| uint32_t Size_tmp; /* input data size (in bytes), input parameter of HASH_WriteData() */ |
| HAL_HASH_StateTypeDef State_tmp = hhash->State; |
| |
| |
| /* Initiate HASH processing in case of start or resumption */ |
| if((State_tmp == HAL_HASH_STATE_READY) || (State_tmp == HAL_HASH_STATE_SUSPENDED)) |
| { |
| /* Check input parameters */ |
| if ((pInBuffer == NULL) || (pOutBuffer == NULL)) |
| { |
| hhash->State = HAL_HASH_STATE_READY; |
| return HAL_ERROR; |
| } |
| |
| /* Process Locked */ |
| __HAL_LOCK(hhash); |
| |
| /* Check if initialization phase has not been already performed */ |
| if(hhash->Phase == HAL_HASH_PHASE_READY) |
| { |
| /* Change the HASH state */ |
| hhash->State = HAL_HASH_STATE_BUSY; |
| |
| /* Select the HASH algorithm, clear HMAC mode and long key selection bit, reset the HASH processor core */ |
| MODIFY_REG(HASH->CR, HASH_CR_LKEY|HASH_CR_ALGO|HASH_CR_MODE|HASH_CR_INIT, Algorithm | HASH_CR_INIT); |
| |
| /* Configure the number of valid bits in last word of the message */ |
| __HAL_HASH_SET_NBVALIDBITS(Size); |
| |
| /* pInBuffer_tmp and Size_tmp are initialized to be used afterwards as |
| input parameters of HASH_WriteData() */ |
| pInBuffer_tmp = pInBuffer; /* pInBuffer_tmp is set to the input data address */ |
| Size_tmp = Size; /* Size_tmp contains the input data size in bytes */ |
| |
| /* Set the phase */ |
| hhash->Phase = HAL_HASH_PHASE_PROCESS; |
| } |
| else if (hhash->Phase == HAL_HASH_PHASE_PROCESS) |
| { |
| /* if the Peripheral has already been initialized, two cases are possible */ |
| |
| /* Process resumption time ... */ |
| if (hhash->State == HAL_HASH_STATE_SUSPENDED) |
| { |
| /* Since this is resumption, pInBuffer_tmp and Size_tmp are not set |
| to the API input parameters but to those saved beforehand by HASH_WriteData() |
| when the processing was suspended */ |
| pInBuffer_tmp = hhash->pHashInBuffPtr; |
| Size_tmp = hhash->HashInCount; |
| } |
| /* ... or multi-buffer HASH processing end */ |
| else |
| { |
| /* pInBuffer_tmp and Size_tmp are initialized to be used afterwards as |
| input parameters of HASH_WriteData() */ |
| pInBuffer_tmp = pInBuffer; |
| Size_tmp = Size; |
| /* Configure the number of valid bits in last word of the message */ |
| __HAL_HASH_SET_NBVALIDBITS(Size); |
| } |
| /* Change the HASH state */ |
| hhash->State = HAL_HASH_STATE_BUSY; |
| } |
| else |
| { |
| /* Phase error */ |
| hhash->State = HAL_HASH_STATE_READY; |
| |
| /* Process Unlocked */ |
| __HAL_UNLOCK(hhash); |
| |
| /* Return function status */ |
| return HAL_ERROR; |
| } |
| |
| |
| /* Write input buffer in Data register */ |
| hhash->Status = HASH_WriteData(hhash, pInBuffer_tmp, Size_tmp); |
| if (hhash->Status != HAL_OK) |
| { |
| return hhash->Status; |
| } |
| |
| /* If the process has not been suspended, carry on to digest calculation */ |
| if (hhash->State != HAL_HASH_STATE_SUSPENDED) |
| { |
| /* Start the Digest calculation */ |
| __HAL_HASH_START_DIGEST(); |
| |
| /* Wait for DCIS flag to be set */ |
| if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_DCIS, RESET, Timeout) != HAL_OK) |
| { |
| return HAL_TIMEOUT; |
| } |
| |
| /* Read the message digest */ |
| HASH_GetDigest(pOutBuffer, HASH_DIGEST_LENGTH()); |
| |
| /* Change the HASH state */ |
| hhash->State = HAL_HASH_STATE_READY; |
| |
| /* Reset HASH state machine */ |
| hhash->Phase = HAL_HASH_PHASE_READY; |
| |
| } |
| |
| /* Process Unlocked */ |
| __HAL_UNLOCK(hhash); |
| |
| /* Return function status */ |
| return HAL_OK; |
| |
| } |
| else |
| { |
| return HAL_BUSY; |
| } |
| } |
| |
| |
| /** |
| * @brief If not already done, initialize the HASH peripheral then |
| * processes pInBuffer. |
| * @note Field hhash->Phase of HASH handle is tested to check whether or not |
| * the Peripheral has already been initialized. |
| * @note The input buffer size (in bytes) must be a multiple of 4 otherwise, the |
| * HASH digest computation is corrupted. |
| * @param hhash HASH handle. |
| * @param pInBuffer pointer to the input buffer (buffer to be hashed). |
| * @param Size length of the input buffer in bytes, must be a multiple of 4. |
| * @param Algorithm HASH algorithm. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HASH_Accumulate(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint32_t Algorithm) |
| { |
| uint8_t *pInBuffer_tmp; /* input data address, input parameter of HASH_WriteData() */ |
| uint32_t Size_tmp; /* input data size (in bytes), input parameter of HASH_WriteData() */ |
| HAL_HASH_StateTypeDef State_tmp = hhash->State; |
| |
| /* Make sure the input buffer size (in bytes) is a multiple of 4 */ |
| if ((Size % 4U) != 0U) |
| { |
| return HAL_ERROR; |
| } |
| |
| /* Initiate HASH processing in case of start or resumption */ |
| if((State_tmp == HAL_HASH_STATE_READY) || (State_tmp == HAL_HASH_STATE_SUSPENDED)) |
| { |
| /* Check input parameters */ |
| if ((pInBuffer == NULL) || (Size == 0U)) |
| { |
| hhash->State = HAL_HASH_STATE_READY; |
| return HAL_ERROR; |
| } |
| |
| /* Process Locked */ |
| __HAL_LOCK(hhash); |
| |
| /* If resuming the HASH processing */ |
| if (hhash->State == HAL_HASH_STATE_SUSPENDED) |
| { |
| /* Change the HASH state */ |
| hhash->State = HAL_HASH_STATE_BUSY; |
| |
| /* Since this is resumption, pInBuffer_tmp and Size_tmp are not set |
| to the API input parameters but to those saved beforehand by HASH_WriteData() |
| when the processing was suspended */ |
| pInBuffer_tmp = hhash->pHashInBuffPtr; /* pInBuffer_tmp is set to the input data address */ |
| Size_tmp = hhash->HashInCount; /* Size_tmp contains the input data size in bytes */ |
| |
| } |
| else |
| { |
| /* Change the HASH state */ |
| hhash->State = HAL_HASH_STATE_BUSY; |
| |
| /* pInBuffer_tmp and Size_tmp are initialized to be used afterwards as |
| input parameters of HASH_WriteData() */ |
| pInBuffer_tmp = pInBuffer; /* pInBuffer_tmp is set to the input data address */ |
| Size_tmp = Size; /* Size_tmp contains the input data size in bytes */ |
| |
| /* Check if initialization phase has already be performed */ |
| if(hhash->Phase == HAL_HASH_PHASE_READY) |
| { |
| /* Select the HASH algorithm, clear HMAC mode and long key selection bit, reset the HASH processor core */ |
| MODIFY_REG(HASH->CR, HASH_CR_LKEY|HASH_CR_ALGO|HASH_CR_MODE|HASH_CR_INIT, Algorithm | HASH_CR_INIT); |
| } |
| |
| /* Set the phase */ |
| hhash->Phase = HAL_HASH_PHASE_PROCESS; |
| |
| } |
| |
| /* Write input buffer in Data register */ |
| hhash->Status = HASH_WriteData(hhash, pInBuffer_tmp, Size_tmp); |
| if (hhash->Status != HAL_OK) |
| { |
| return hhash->Status; |
| } |
| |
| /* If the process has not been suspended, move the state to Ready */ |
| if (hhash->State != HAL_HASH_STATE_SUSPENDED) |
| { |
| /* Change the HASH state */ |
| hhash->State = HAL_HASH_STATE_READY; |
| } |
| |
| /* Process Unlocked */ |
| __HAL_UNLOCK(hhash); |
| |
| /* Return function status */ |
| return HAL_OK; |
| |
| } |
| else |
| { |
| return HAL_BUSY; |
| } |
| |
| |
| } |
| |
| |
| /** |
| * @brief If not already done, initialize the HASH peripheral then |
| * processes pInBuffer in interruption mode. |
| * @note Field hhash->Phase of HASH handle is tested to check whether or not |
| * the Peripheral has already been initialized. |
| * @note The input buffer size (in bytes) must be a multiple of 4 otherwise, the |
| * HASH digest computation is corrupted. |
| * @param hhash HASH handle. |
| * @param pInBuffer pointer to the input buffer (buffer to be hashed). |
| * @param Size length of the input buffer in bytes, must be a multiple of 4. |
| * @param Algorithm HASH algorithm. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HASH_Accumulate_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint32_t Algorithm) |
| { |
| HAL_HASH_StateTypeDef State_tmp = hhash->State; |
| __IO uint32_t inputaddr = (uint32_t) pInBuffer; |
| uint32_t SizeVar = Size; |
| |
| /* Make sure the input buffer size (in bytes) is a multiple of 4 */ |
| if ((Size % 4U) != 0U) |
| { |
| return HAL_ERROR; |
| } |
| |
| /* Initiate HASH processing in case of start or resumption */ |
| if((State_tmp == HAL_HASH_STATE_READY) || (State_tmp == HAL_HASH_STATE_SUSPENDED)) |
| { |
| /* Check input parameters */ |
| if ((pInBuffer == NULL) || (Size == 0U)) |
| { |
| hhash->State = HAL_HASH_STATE_READY; |
| return HAL_ERROR; |
| } |
| |
| /* Process Locked */ |
| __HAL_LOCK(hhash); |
| |
| /* If resuming the HASH processing */ |
| if (hhash->State == HAL_HASH_STATE_SUSPENDED) |
| { |
| /* Change the HASH state */ |
| hhash->State = HAL_HASH_STATE_BUSY; |
| } |
| else |
| { |
| /* Change the HASH state */ |
| hhash->State = HAL_HASH_STATE_BUSY; |
| |
| /* Check if initialization phase has already be performed */ |
| if(hhash->Phase == HAL_HASH_PHASE_READY) |
| { |
| /* Select the HASH algorithm, clear HMAC mode and long key selection bit, reset the HASH processor core */ |
| MODIFY_REG(HASH->CR, HASH_CR_LKEY|HASH_CR_ALGO|HASH_CR_MODE|HASH_CR_INIT, Algorithm | HASH_CR_INIT); |
| hhash->HashITCounter = 1; |
| } |
| else |
| { |
| hhash->HashITCounter = 3; /* 'cruise-speed' reached during a previous buffer processing */ |
| } |
| |
| /* Set the phase */ |
| hhash->Phase = HAL_HASH_PHASE_PROCESS; |
| |
| /* If DINIS is equal to 0 (for example if an incomplete block has been previously |
| fed to the Peripheral), the DINIE interruption won't be triggered when DINIE is set. |
| Therefore, first words are manually entered until DINIS raises, or until there |
| is not more data to enter. */ |
| while((!(__HAL_HASH_GET_FLAG(HASH_FLAG_DINIS))) && (SizeVar > 0U)) |
| { |
| |
| /* Write input data 4 bytes at a time */ |
| HASH->DIN = *(uint32_t*)inputaddr; |
| inputaddr+=4U; |
| SizeVar-=4U; |
| } |
| |
| /* If DINIS is still not set or if all the data have been fed, stop here */ |
| if ((!(__HAL_HASH_GET_FLAG(HASH_FLAG_DINIS))) || (SizeVar == 0U)) |
| { |
| /* Change the HASH state */ |
| hhash->State = HAL_HASH_STATE_READY; |
| |
| /* Process Unlock */ |
| __HAL_UNLOCK(hhash); |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| |
| /* otherwise, carry on in interrupt-mode */ |
| hhash->HashInCount = SizeVar; /* Counter used to keep track of number of data |
| to be fed to the Peripheral */ |
| hhash->pHashInBuffPtr = (uint8_t *)inputaddr; /* Points at data which will be fed to the Peripheral at |
| the next interruption */ |
| /* In case of suspension, hhash->HashInCount and hhash->pHashInBuffPtr contain |
| the information describing where the HASH process is stopped. |
| These variables are used later on to resume the HASH processing at the |
| correct location. */ |
| |
| } |
| |
| /* Set multi buffers accumulation flag */ |
| hhash->Accumulation = 1U; |
| |
| /* Process Unlock */ |
| __HAL_UNLOCK(hhash); |
| |
| /* Enable Data Input interrupt */ |
| __HAL_HASH_ENABLE_IT(HASH_IT_DINI); |
| |
| /* Return function status */ |
| return HAL_OK; |
| |
| } |
| else |
| { |
| return HAL_BUSY; |
| } |
| |
| } |
| |
| |
| |
| /** |
| * @brief Initialize the HASH peripheral, next process pInBuffer then |
| * read the computed digest in interruption mode. |
| * @note Digest is available in pOutBuffer. |
| * @param hhash HASH handle. |
| * @param pInBuffer pointer to the input buffer (buffer to be hashed). |
| * @param Size length of the input buffer in bytes. |
| * @param pOutBuffer pointer to the computed digest. |
| * @param Algorithm HASH algorithm. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HASH_Start_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t* pOutBuffer, uint32_t Algorithm) |
| { |
| HAL_HASH_StateTypeDef State_tmp = hhash->State; |
| __IO uint32_t inputaddr = (uint32_t) pInBuffer; |
| uint32_t polling_step = 0U; |
| uint32_t initialization_skipped = 0U; |
| uint32_t SizeVar = Size; |
| |
| /* If State is ready or suspended, start or resume IT-based HASH processing */ |
| if((State_tmp == HAL_HASH_STATE_READY) || (State_tmp == HAL_HASH_STATE_SUSPENDED)) |
| { |
| /* Check input parameters */ |
| if ((pInBuffer == NULL) || (Size == 0U) || (pOutBuffer == NULL)) |
| { |
| hhash->State = HAL_HASH_STATE_READY; |
| return HAL_ERROR; |
| } |
| |
| /* Process Locked */ |
| __HAL_LOCK(hhash); |
| |
| /* Change the HASH state */ |
| hhash->State = HAL_HASH_STATE_BUSY; |
| |
| /* Initialize IT counter */ |
| hhash->HashITCounter = 1; |
| |
| /* Check if initialization phase has already be performed */ |
| if(hhash->Phase == HAL_HASH_PHASE_READY) |
| { |
| /* Select the HASH algorithm, clear HMAC mode and long key selection bit, reset the HASH processor core */ |
| MODIFY_REG(HASH->CR, HASH_CR_LKEY|HASH_CR_ALGO|HASH_CR_MODE|HASH_CR_INIT, Algorithm | HASH_CR_INIT); |
| |
| /* Configure the number of valid bits in last word of the message */ |
| __HAL_HASH_SET_NBVALIDBITS(SizeVar); |
| |
| |
| hhash->HashInCount = SizeVar; /* Counter used to keep track of number of data |
| to be fed to the Peripheral */ |
| hhash->pHashInBuffPtr = pInBuffer; /* Points at data which will be fed to the Peripheral at |
| the next interruption */ |
| /* In case of suspension, hhash->HashInCount and hhash->pHashInBuffPtr contain |
| the information describing where the HASH process is stopped. |
| These variables are used later on to resume the HASH processing at the |
| correct location. */ |
| |
| hhash->pHashOutBuffPtr = pOutBuffer; /* Points at the computed digest */ |
| } |
| else |
| { |
| initialization_skipped = 1; /* info user later on in case of multi-buffer */ |
| } |
| |
| /* Set the phase */ |
| hhash->Phase = HAL_HASH_PHASE_PROCESS; |
| |
| /* If DINIS is equal to 0 (for example if an incomplete block has been previously |
| fed to the Peripheral), the DINIE interruption won't be triggered when DINIE is set. |
| Therefore, first words are manually entered until DINIS raises. */ |
| while((!(__HAL_HASH_GET_FLAG(HASH_FLAG_DINIS))) && (SizeVar > 3U)) |
| { |
| polling_step = 1U; /* note that some words are entered before enabling the interrupt */ |
| |
| /* Write input data 4 bytes at a time */ |
| HASH->DIN = *(uint32_t*)inputaddr; |
| inputaddr+=4U; |
| SizeVar-=4U; |
| } |
| |
| if (polling_step == 1U) |
| { |
| if (SizeVar == 0U) |
| { |
| /* If all the data have been entered at this point, it only remains to |
| read the digest */ |
| hhash->pHashOutBuffPtr = pOutBuffer; /* Points at the computed digest */ |
| |
| /* Start the Digest calculation */ |
| __HAL_HASH_START_DIGEST(); |
| /* Process Unlock */ |
| __HAL_UNLOCK(hhash); |
| |
| /* Enable Interrupts */ |
| __HAL_HASH_ENABLE_IT(HASH_IT_DCI); |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| else if (__HAL_HASH_GET_FLAG(HASH_FLAG_DINIS)) |
| { |
| /* It remains data to enter and the Peripheral is ready to trigger DINIE, |
| carry on as usual. |
| Update HashInCount and pHashInBuffPtr accordingly. */ |
| hhash->HashInCount = SizeVar; |
| hhash->pHashInBuffPtr = (uint8_t *)inputaddr; |
| __HAL_HASH_SET_NBVALIDBITS(SizeVar); /* Update the configuration of the number of valid bits in last word of the message */ |
| hhash->pHashOutBuffPtr = pOutBuffer; /* Points at the computed digest */ |
| if (initialization_skipped == 1U) |
| { |
| hhash->HashITCounter = 3; /* 'cruise-speed' reached during a previous buffer processing */ |
| } |
| } |
| else |
| { |
| /* DINIS is not set but it remains a few data to enter (not enough for a full word). |
| Manually enter the last bytes before enabling DCIE. */ |
| __HAL_HASH_SET_NBVALIDBITS(SizeVar); |
| HASH->DIN = *(uint32_t*)inputaddr; |
| |
| /* Start the Digest calculation */ |
| hhash->pHashOutBuffPtr = pOutBuffer; /* Points at the computed digest */ |
| __HAL_HASH_START_DIGEST(); |
| /* Process Unlock */ |
| __HAL_UNLOCK(hhash); |
| |
| /* Enable Interrupts */ |
| __HAL_HASH_ENABLE_IT(HASH_IT_DCI); |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| } /* if (polling_step == 1) */ |
| |
| |
| /* Process Unlock */ |
| __HAL_UNLOCK(hhash); |
| |
| /* Enable Interrupts */ |
| __HAL_HASH_ENABLE_IT(HASH_IT_DINI|HASH_IT_DCI); |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| else |
| { |
| return HAL_BUSY; |
| } |
| |
| } |
| |
| |
| /** |
| * @brief Initialize the HASH peripheral then initiate a DMA transfer |
| * to feed the input buffer to the Peripheral. |
| * @note If MDMAT bit is set before calling this function (multi-buffer |
| * HASH processing case), the input buffer size (in bytes) must be |
| * a multiple of 4 otherwise, the HASH digest computation is corrupted. |
| * For the processing of the last buffer of the thread, MDMAT bit must |
| * be reset and the buffer length (in bytes) doesn't have to be a |
| * multiple of 4. |
| * @param hhash HASH handle. |
| * @param pInBuffer pointer to the input buffer (buffer to be hashed). |
| * @param Size length of the input buffer in bytes. |
| * @param Algorithm HASH algorithm. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HASH_Start_DMA(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint32_t Algorithm) |
| { |
| uint32_t inputaddr; |
| uint32_t inputSize; |
| HAL_StatusTypeDef status ; |
| HAL_HASH_StateTypeDef State_tmp = hhash->State; |
| |
| |
| /* Make sure the input buffer size (in bytes) is a multiple of 4 when MDMAT bit is set |
| (case of multi-buffer HASH processing) */ |
| assert_param(IS_HASH_DMA_MULTIBUFFER_SIZE(Size)); |
| |
| /* If State is ready or suspended, start or resume polling-based HASH processing */ |
| if((State_tmp == HAL_HASH_STATE_READY) || (State_tmp == HAL_HASH_STATE_SUSPENDED)) |
| { |
| /* Check input parameters */ |
| if ( (pInBuffer == NULL ) || (Size == 0U) || |
| /* Check phase coherency. Phase must be |
| either READY (fresh start) |
| or PROCESS (multi-buffer HASH management) */ |
| ((hhash->Phase != HAL_HASH_PHASE_READY) && (!(IS_HASH_PROCESSING(hhash))))) |
| { |
| hhash->State = HAL_HASH_STATE_READY; |
| return HAL_ERROR; |
| } |
| |
| |
| /* Process Locked */ |
| __HAL_LOCK(hhash); |
| |
| /* If not a resumption case */ |
| if (hhash->State == HAL_HASH_STATE_READY) |
| { |
| /* Change the HASH state */ |
| hhash->State = HAL_HASH_STATE_BUSY; |
| |
| /* Check if initialization phase has already been performed. |
| If Phase is already set to HAL_HASH_PHASE_PROCESS, this means the |
| API is processing a new input data message in case of multi-buffer HASH |
| computation. */ |
| if(hhash->Phase == HAL_HASH_PHASE_READY) |
| { |
| /* Select the HASH algorithm, clear HMAC mode and long key selection bit, reset the HASH processor core */ |
| MODIFY_REG(HASH->CR, HASH_CR_LKEY|HASH_CR_ALGO|HASH_CR_MODE|HASH_CR_INIT, Algorithm | HASH_CR_INIT); |
| |
| /* Set the phase */ |
| hhash->Phase = HAL_HASH_PHASE_PROCESS; |
| } |
| |
| /* Configure the Number of valid bits in last word of the message */ |
| __HAL_HASH_SET_NBVALIDBITS(Size); |
| |
| inputaddr = (uint32_t)pInBuffer; /* DMA transfer start address */ |
| inputSize = Size; /* DMA transfer size (in bytes) */ |
| |
| /* In case of suspension request, save the starting parameters */ |
| hhash->pHashInBuffPtr = pInBuffer; /* DMA transfer start address */ |
| hhash->HashInCount = Size; /* DMA transfer size (in bytes) */ |
| |
| } |
| /* If resumption case */ |
| else |
| { |
| /* Change the HASH state */ |
| hhash->State = HAL_HASH_STATE_BUSY; |
| |
| /* Resumption case, inputaddr and inputSize are not set to the API input parameters |
| but to those saved beforehand by HAL_HASH_DMAFeed_ProcessSuspend() when the |
| processing was suspended */ |
| inputaddr = (uint32_t)hhash->pHashInBuffPtr; /* DMA transfer start address */ |
| inputSize = hhash->HashInCount; /* DMA transfer size (in bytes) */ |
| |
| } |
| |
| /* Set the HASH DMA transfert complete callback */ |
| hhash->hdmain->XferCpltCallback = HASH_DMAXferCplt; |
| /* Set the DMA error callback */ |
| hhash->hdmain->XferErrorCallback = HASH_DMAError; |
| |
| /* Store number of words already pushed to manage proper DMA processing suspension */ |
| hhash->NbWordsAlreadyPushed = HASH_NBW_PUSHED(); |
| |
| /* Enable the DMA In DMA Stream */ |
| status = HAL_DMA_Start_IT(hhash->hdmain, inputaddr, (uint32_t)&HASH->DIN, (((inputSize %4U)!=0U) ? ((inputSize+(4U-(inputSize %4U)))/4U):(inputSize/4U))); |
| |
| /* Enable DMA requests */ |
| SET_BIT(HASH->CR, HASH_CR_DMAE); |
| |
| /* Process Unlock */ |
| __HAL_UNLOCK(hhash); |
| |
| /* Return function status */ |
| if (status != HAL_OK) |
| { |
| /* Update HASH state machine to error */ |
| hhash->State = HAL_HASH_STATE_ERROR; |
| } |
| |
| return status; |
| } |
| else |
| { |
| return HAL_BUSY; |
| } |
| } |
| |
| /** |
| * @brief Return the computed digest. |
| * @note The API waits for DCIS to be set then reads the computed digest. |
| * @param hhash HASH handle. |
| * @param pOutBuffer pointer to the computed digest. |
| * @param Timeout Timeout value. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HASH_Finish(HASH_HandleTypeDef *hhash, uint8_t* pOutBuffer, uint32_t Timeout) |
| { |
| |
| if(hhash->State == HAL_HASH_STATE_READY) |
| { |
| /* Check parameter */ |
| if (pOutBuffer == NULL) |
| { |
| return HAL_ERROR; |
| } |
| |
| /* Process Locked */ |
| __HAL_LOCK(hhash); |
| |
| /* Change the HASH state to busy */ |
| hhash->State = HAL_HASH_STATE_BUSY; |
| |
| /* Wait for DCIS flag to be set */ |
| if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_DCIS, RESET, Timeout) != HAL_OK) |
| { |
| return HAL_TIMEOUT; |
| } |
| |
| /* Read the message digest */ |
| HASH_GetDigest(pOutBuffer, HASH_DIGEST_LENGTH()); |
| |
| /* Change the HASH state to ready */ |
| hhash->State = HAL_HASH_STATE_READY; |
| |
| /* Reset HASH state machine */ |
| hhash->Phase = HAL_HASH_PHASE_READY; |
| |
| /* Process UnLock */ |
| __HAL_UNLOCK(hhash); |
| |
| /* Return function status */ |
| return HAL_OK; |
| |
| } |
| else |
| { |
| return HAL_BUSY; |
| } |
| |
| } |
| |
| |
| /** |
| * @brief Initialize the HASH peripheral in HMAC mode, next process pInBuffer then |
| * read the computed digest. |
| * @note Digest is available in pOutBuffer. |
| * @note Same key is used for the inner and the outer hash functions; pointer to key and |
| * key size are respectively stored in hhash->Init.pKey and hhash->Init.KeySize. |
| * @param hhash HASH handle. |
| * @param pInBuffer pointer to the input buffer (buffer to be hashed). |
| * @param Size length of the input buffer in bytes. |
| * @param pOutBuffer pointer to the computed digest. |
| * @param Timeout Timeout value. |
| * @param Algorithm HASH algorithm. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HMAC_Start(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t* pOutBuffer, uint32_t Timeout, uint32_t Algorithm) |
| { |
| HAL_HASH_StateTypeDef State_tmp = hhash->State; |
| |
| /* If State is ready or suspended, start or resume polling-based HASH processing */ |
| if((State_tmp == HAL_HASH_STATE_READY) || (State_tmp == HAL_HASH_STATE_SUSPENDED)) |
| { |
| /* Check input parameters */ |
| if ((pInBuffer == NULL) || (Size == 0U) || (hhash->Init.pKey == NULL) || (hhash->Init.KeySize == 0U) || (pOutBuffer == NULL)) |
| { |
| hhash->State = HAL_HASH_STATE_READY; |
| return HAL_ERROR; |
| } |
| |
| /* Process Locked */ |
| __HAL_LOCK(hhash); |
| |
| /* Change the HASH state */ |
| hhash->State = HAL_HASH_STATE_BUSY; |
| |
| /* Check if initialization phase has already be performed */ |
| if(hhash->Phase == HAL_HASH_PHASE_READY) |
| { |
| /* Check if key size is larger than 64 bytes, accordingly set LKEY and the other setting bits */ |
| if(hhash->Init.KeySize > 64U) |
| { |
| MODIFY_REG(HASH->CR, HASH_CR_LKEY|HASH_CR_ALGO|HASH_CR_MODE|HASH_CR_INIT, Algorithm | HASH_ALGOMODE_HMAC | HASH_HMAC_KEYTYPE_LONGKEY | HASH_CR_INIT); |
| } |
| else |
| { |
| MODIFY_REG(HASH->CR, HASH_CR_LKEY|HASH_CR_ALGO|HASH_CR_MODE|HASH_CR_INIT, Algorithm | HASH_ALGOMODE_HMAC | HASH_CR_INIT); |
| } |
| /* Set the phase to Step 1 */ |
| hhash->Phase = HAL_HASH_PHASE_HMAC_STEP_1; |
| /* Resort to hhash internal fields to feed the Peripheral. |
| Parameters will be updated in case of suspension to contain the proper |
| information at resumption time. */ |
| hhash->pHashOutBuffPtr = pOutBuffer; /* Output digest address */ |
| hhash->pHashInBuffPtr = pInBuffer; /* Input data address, HMAC_Processing input parameter for Step 2 */ |
| hhash->HashInCount = Size; /* Input data size, HMAC_Processing input parameter for Step 2 */ |
| hhash->HashBuffSize = Size; /* Store the input buffer size for the whole HMAC process */ |
| hhash->pHashKeyBuffPtr = hhash->Init.pKey; /* Key address, HMAC_Processing input parameter for Step 1 and Step 3 */ |
| hhash->HashKeyCount = hhash->Init.KeySize; /* Key size, HMAC_Processing input parameter for Step 1 and Step 3 */ |
| } |
| |
| /* Carry out HMAC processing */ |
| return HMAC_Processing(hhash, Timeout); |
| |
| } |
| else |
| { |
| return HAL_BUSY; |
| } |
| } |
| |
| |
| |
| /** |
| * @brief Initialize the HASH peripheral in HMAC mode, next process pInBuffer then |
| * read the computed digest in interruption mode. |
| * @note Digest is available in pOutBuffer. |
| * @note Same key is used for the inner and the outer hash functions; pointer to key and |
| * key size are respectively stored in hhash->Init.pKey and hhash->Init.KeySize. |
| * @param hhash HASH handle. |
| * @param pInBuffer pointer to the input buffer (buffer to be hashed). |
| * @param Size length of the input buffer in bytes. |
| * @param pOutBuffer pointer to the computed digest. |
| * @param Algorithm HASH algorithm. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HMAC_Start_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t* pOutBuffer, uint32_t Algorithm) |
| { |
| HAL_HASH_StateTypeDef State_tmp = hhash->State; |
| |
| /* If State is ready or suspended, start or resume IT-based HASH processing */ |
| if((State_tmp == HAL_HASH_STATE_READY) || (State_tmp == HAL_HASH_STATE_SUSPENDED)) |
| { |
| /* Check input parameters */ |
| if ((pInBuffer == NULL) || (Size == 0U) || (hhash->Init.pKey == NULL) || (hhash->Init.KeySize == 0U) || (pOutBuffer == NULL)) |
| { |
| hhash->State = HAL_HASH_STATE_READY; |
| return HAL_ERROR; |
| } |
| |
| /* Process Locked */ |
| __HAL_LOCK(hhash); |
| |
| /* Change the HASH state */ |
| hhash->State = HAL_HASH_STATE_BUSY; |
| |
| /* Initialize IT counter */ |
| hhash->HashITCounter = 1; |
| |
| /* Check if initialization phase has already be performed */ |
| if (hhash->Phase == HAL_HASH_PHASE_READY) |
| { |
| /* Check if key size is larger than 64 bytes, accordingly set LKEY and the other setting bits */ |
| if(hhash->Init.KeySize > 64U) |
| { |
| MODIFY_REG(HASH->CR, HASH_CR_LKEY|HASH_CR_ALGO|HASH_CR_MODE|HASH_CR_INIT, Algorithm | HASH_ALGOMODE_HMAC | HASH_HMAC_KEYTYPE_LONGKEY | HASH_CR_INIT); |
| } |
| else |
| { |
| MODIFY_REG(HASH->CR, HASH_CR_LKEY|HASH_CR_ALGO|HASH_CR_MODE|HASH_CR_INIT, Algorithm | HASH_ALGOMODE_HMAC | HASH_CR_INIT); |
| } |
| |
| /* Resort to hhash internal fields hhash->pHashInBuffPtr and hhash->HashInCount |
| to feed the Peripheral whatever the HMAC step. |
| Lines below are set to start HMAC Step 1 processing where key is entered first. */ |
| hhash->HashInCount = hhash->Init.KeySize; /* Key size */ |
| hhash->pHashInBuffPtr = hhash->Init.pKey ; /* Key address */ |
| |
| /* Store input and output parameters in handle fields to manage steps transition |
| or possible HMAC suspension/resumption */ |
| hhash->pHashKeyBuffPtr = hhash->Init.pKey; /* Key address */ |
| hhash->pHashMsgBuffPtr = pInBuffer; /* Input message address */ |
| hhash->HashBuffSize = Size; /* Input message size (in bytes) */ |
| hhash->pHashOutBuffPtr = pOutBuffer; /* Output digest address */ |
| |
| /* Configure the number of valid bits in last word of the key */ |
| __HAL_HASH_SET_NBVALIDBITS(hhash->Init.KeySize); |
| |
| /* Set the phase to Step 1 */ |
| hhash->Phase = HAL_HASH_PHASE_HMAC_STEP_1; |
| } |
| else if ((hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_1) || (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_3)) |
| { |
| /* Restart IT-based HASH processing after Step 1 or Step 3 suspension */ |
| |
| } |
| else if (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_2) |
| { |
| /* Restart IT-based HASH processing after Step 2 suspension */ |
| |
| } |
| else |
| { |
| /* Error report as phase incorrect */ |
| /* Process Unlock */ |
| __HAL_UNLOCK(hhash); |
| hhash->State = HAL_HASH_STATE_READY; |
| return HAL_ERROR; |
| } |
| |
| /* Process Unlock */ |
| __HAL_UNLOCK(hhash); |
| |
| /* Enable Interrupts */ |
| __HAL_HASH_ENABLE_IT(HASH_IT_DINI|HASH_IT_DCI); |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| else |
| { |
| return HAL_BUSY; |
| } |
| |
| } |
| |
| |
| |
| /** |
| * @brief Initialize the HASH peripheral in HMAC mode then initiate the required |
| * DMA transfers to feed the key and the input buffer to the Peripheral. |
| * @note Same key is used for the inner and the outer hash functions; pointer to key and |
| * key size are respectively stored in hhash->Init.pKey and hhash->Init.KeySize. |
| * @note In case of multi-buffer HMAC processing, the input buffer size (in bytes) must |
| * be a multiple of 4 otherwise, the HASH digest computation is corrupted. |
| * Only the length of the last buffer of the thread doesn't have to be a |
| * multiple of 4. |
| * @param hhash HASH handle. |
| * @param pInBuffer pointer to the input buffer (buffer to be hashed). |
| * @param Size length of the input buffer in bytes. |
| * @param Algorithm HASH algorithm. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HMAC_Start_DMA(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint32_t Algorithm) |
| { |
| uint32_t inputaddr; |
| uint32_t inputSize; |
| HAL_StatusTypeDef status ; |
| HAL_HASH_StateTypeDef State_tmp = hhash->State; |
| /* Make sure the input buffer size (in bytes) is a multiple of 4 when digest calculation |
| is disabled (multi-buffer HMAC processing, MDMAT bit to be set) */ |
| assert_param(IS_HMAC_DMA_MULTIBUFFER_SIZE(hhash, Size)); |
| /* If State is ready or suspended, start or resume DMA-based HASH processing */ |
| if((State_tmp == HAL_HASH_STATE_READY) || (State_tmp == HAL_HASH_STATE_SUSPENDED)) |
| { |
| /* Check input parameters */ |
| if ((pInBuffer == NULL ) || (Size == 0U) || (hhash->Init.pKey == NULL ) || (hhash->Init.KeySize == 0U) || |
| /* Check phase coherency. Phase must be |
| either READY (fresh start) |
| or one of HMAC PROCESS steps (multi-buffer HASH management) */ |
| ((hhash->Phase != HAL_HASH_PHASE_READY) && (!(IS_HMAC_PROCESSING(hhash))))) |
| { |
| hhash->State = HAL_HASH_STATE_READY; |
| return HAL_ERROR; |
| } |
| |
| |
| /* Process Locked */ |
| __HAL_LOCK(hhash); |
| |
| /* If not a case of resumption after suspension */ |
| if (hhash->State == HAL_HASH_STATE_READY) |
| { |
| /* Check whether or not initialization phase has already be performed */ |
| if(hhash->Phase == HAL_HASH_PHASE_READY) |
| { |
| /* Change the HASH state */ |
| hhash->State = HAL_HASH_STATE_BUSY; |
| /* Check if key size is larger than 64 bytes, accordingly set LKEY and the other setting bits. |
| At the same time, ensure MDMAT bit is cleared. */ |
| if(hhash->Init.KeySize > 64U) |
| { |
| MODIFY_REG(HASH->CR, HASH_CR_MDMAT|HASH_CR_LKEY|HASH_CR_ALGO|HASH_CR_MODE|HASH_CR_INIT, Algorithm | HASH_ALGOMODE_HMAC | HASH_HMAC_KEYTYPE_LONGKEY | HASH_CR_INIT); |
| } |
| else |
| { |
| MODIFY_REG(HASH->CR, HASH_CR_MDMAT|HASH_CR_LKEY|HASH_CR_ALGO|HASH_CR_MODE|HASH_CR_INIT, Algorithm | HASH_ALGOMODE_HMAC | HASH_CR_INIT); |
| } |
| /* Store input aparameters in handle fields to manage steps transition |
| or possible HMAC suspension/resumption */ |
| hhash->HashInCount = hhash->Init.KeySize; /* Initial size for first DMA transfer (key size) */ |
| hhash->pHashKeyBuffPtr = hhash->Init.pKey; /* Key address */ |
| hhash->pHashInBuffPtr = hhash->Init.pKey ; /* First address passed to DMA (key address at Step 1) */ |
| hhash->pHashMsgBuffPtr = pInBuffer; /* Input data address */ |
| hhash->HashBuffSize = Size; /* input data size (in bytes) */ |
| |
| /* Set DMA input parameters */ |
| inputaddr = (uint32_t)(hhash->Init.pKey); /* Address passed to DMA (start by entering Key message) */ |
| inputSize = hhash->Init.KeySize; /* Size for first DMA transfer (in bytes) */ |
| |
| /* Configure the number of valid bits in last word of the key */ |
| __HAL_HASH_SET_NBVALIDBITS(hhash->Init.KeySize); |
| |
| /* Set the phase to Step 1 */ |
| hhash->Phase = HAL_HASH_PHASE_HMAC_STEP_1; |
| |
| } |
| else if (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_2) |
| { |
| /* Process a new input data message in case of multi-buffer HMAC processing |
| (this is not a resumption case) */ |
| |
| /* Change the HASH state */ |
| hhash->State = HAL_HASH_STATE_BUSY; |
| |
| /* Save input parameters to be able to manage possible suspension/resumption */ |
| hhash->HashInCount = Size; /* Input message address */ |
| hhash->pHashInBuffPtr = pInBuffer; /* Input message size in bytes */ |
| |
| /* Set DMA input parameters */ |
| inputaddr = (uint32_t)pInBuffer; /* Input message address */ |
| inputSize = Size; /* Input message size in bytes */ |
| |
| if (hhash->DigestCalculationDisable == RESET) |
| { |
| /* This means this is the last buffer of the multi-buffer sequence: DCAL needs to be set. */ |
| __HAL_HASH_RESET_MDMAT(); |
| __HAL_HASH_SET_NBVALIDBITS(inputSize); |
| } |
| } |
| else |
| { |
| /* Phase not aligned with handle READY state */ |
| __HAL_UNLOCK(hhash); |
| /* Return function status */ |
| return HAL_ERROR; |
| } |
| } |
| else |
| { |
| /* Resumption case (phase may be Step 1, 2 or 3) */ |
| |
| /* Change the HASH state */ |
| hhash->State = HAL_HASH_STATE_BUSY; |
| |
| /* Set DMA input parameters at resumption location; |
| inputaddr and inputSize are not set to the API input parameters |
| but to those saved beforehand by HAL_HASH_DMAFeed_ProcessSuspend() when the |
| processing was suspended. */ |
| inputaddr = (uint32_t)(hhash->pHashInBuffPtr); /* Input message address */ |
| inputSize = hhash->HashInCount; /* Input message size in bytes */ |
| } |
| |
| |
| /* Set the HASH DMA transfert complete callback */ |
| hhash->hdmain->XferCpltCallback = HASH_DMAXferCplt; |
| /* Set the DMA error callback */ |
| hhash->hdmain->XferErrorCallback = HASH_DMAError; |
| |
| /* Store number of words already pushed to manage proper DMA processing suspension */ |
| hhash->NbWordsAlreadyPushed = HASH_NBW_PUSHED(); |
| |
| /* Enable the DMA In DMA Stream */ |
| status = HAL_DMA_Start_IT(hhash->hdmain, inputaddr, (uint32_t)&HASH->DIN, (((inputSize %4U)!=0U) ? ((inputSize+(4U-(inputSize %4U)))/4U):(inputSize/4U))); |
| /* Enable DMA requests */ |
| SET_BIT(HASH->CR, HASH_CR_DMAE); |
| |
| /* Process Unlocked */ |
| __HAL_UNLOCK(hhash); |
| |
| /* Return function status */ |
| if (status != HAL_OK) |
| { |
| /* Update HASH state machine to error */ |
| hhash->State = HAL_HASH_STATE_ERROR; |
| } |
| |
| /* Return function status */ |
| return status; |
| } |
| else |
| { |
| return HAL_BUSY; |
| } |
| } |
| /** |
| * @} |
| */ |
| |
| #endif /* HAL_HASH_MODULE_ENABLED */ |
| |
| /** |
| * @} |
| */ |
| #endif /* HASH*/ |
| /** |
| * @} |
| */ |
| |
| |
| |
| /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ |