| /** |
| ****************************************************************************** |
| * @file stm32h7xx_hal_rtc.c |
| * @author MCD Application Team |
| * @brief RTC HAL module driver. |
| * This file provides firmware functions to manage the following |
| * functionalities of the Real-Time Clock (RTC) peripheral: |
| * + Initialization/de-initialization |
| * + Calendar (Time and Date) configuration |
| * + Alarms (Alarm A and Alarm B) configuration |
| * + WakeUp Timer configuration |
| * + TimeStamp configuration |
| * + Tampers configuration |
| * + Backup Data Registers configuration |
| * + RTC Tamper and TimeStamp Pins Selection |
| * + Interrupts and flags management |
| * |
| ****************************************************************************** |
| * @attention |
| * |
| * Copyright (c) 2017 STMicroelectronics. |
| * All rights reserved. |
| * |
| * This software is licensed under terms that can be found in the LICENSE file |
| * in the root directory of this software component. |
| * If no LICENSE file comes with this software, it is provided AS-IS. |
| * |
| ****************************************************************************** |
| @verbatim |
| =============================================================================== |
| ##### RTC Operating Condition ##### |
| =============================================================================== |
| [..] The real-time clock (RTC) and the RTC backup registers can be powered |
| from the VBAT voltage when the main VDD supply is powered off. |
| To retain the content of the RTC backup registers and supply the RTC |
| when VDD is turned off, VBAT pin can be connected to an optional |
| standby voltage supplied by a battery or by another source. |
| |
| ##### Backup Domain Reset ##### |
| =============================================================================== |
| [..] The backup domain reset sets all RTC registers and the RCC_BDCR register |
| to their reset values. |
| A backup domain reset is generated when one of the following events occurs: |
| (#) Software reset, triggered by setting the BDRST bit in the |
| RCC Backup domain control register (RCC_BDCR). |
| (#) VDD or VBAT power on, if both supplies have previously been powered off. |
| (#) Tamper detection event resets all data backup registers. |
| |
| ##### Backup Domain Access ##### |
| =================================================================== |
| [..] After reset, the backup domain (RTC registers, RTC backup data |
| registers and backup SRAM) is protected against possible unwanted write |
| accesses. |
| |
| [..] To enable access to the RTC Domain and RTC registers, proceed as follows: |
| (#) Call the function HAL_RCCEx_PeriphCLKConfig with RCC_PERIPHCLK_RTC for |
| PeriphClockSelection and select RTCClockSelection (LSE, LSI or HSEdiv32) |
| (#) Enable RTC Clock using the __HAL_RCC_RTC_ENABLE() macro. |
| |
| ##### How to use RTC Driver ##### |
| =================================================================== |
| [..] |
| (+) Enable the RTC domain access (see description in the section above). |
| (+) Configure the RTC Prescaler (Asynchronous and Synchronous) and RTC hour |
| format using the HAL_RTC_Init() function. |
| |
| *** Time and Date configuration *** |
| =================================== |
| [..] |
| (+) To configure the RTC Calendar (Time and Date) use the HAL_RTC_SetTime() |
| and HAL_RTC_SetDate() functions. |
| (+) To read the RTC Calendar, use the HAL_RTC_GetTime() and HAL_RTC_GetDate() functions. |
| |
| *** Alarm configuration *** |
| =========================== |
| [..] |
| (+) To configure the RTC Alarm use the HAL_RTC_SetAlarm() function. |
| You can also configure the RTC Alarm with interrupt mode using the |
| HAL_RTC_SetAlarm_IT() function. |
| (+) To read the RTC Alarm, use the HAL_RTC_GetAlarm() function. |
| |
| ##### RTC and low power modes ##### |
| =================================================================== |
| [..] The MCU can be woken up from a low power mode by an RTC alternate |
| function. |
| [..] The RTC alternate functions are the RTC alarms (Alarm A and Alarm B), |
| RTC wakeup, RTC tamper event detection and RTC time stamp event detection. |
| These RTC alternate functions can wake up the system from the Stop and |
| Standby low power modes. |
| [..] The system can also wake up from low power modes without depending |
| on an external interrupt (Auto-wakeup mode), by using the RTC alarm |
| or the RTC wakeup events. |
| [..] The RTC provides a programmable time base for waking up from the |
| Stop or Standby mode at regular intervals. |
| Wakeup from STOP and STANDBY modes is possible only when the RTC clock source |
| is LSE or LSI. |
| |
| *** Callback registration *** |
| ============================================= |
| When The compilation define USE_HAL_RTC_REGISTER_CALLBACKS is set to 0 or |
| not defined, the callback registration feature is not available and all callbacks |
| are set to the corresponding weak functions. This is the recommended configuration |
| in order to optimize memory/code consumption footprint/performances. |
| |
| The compilation define USE_RTC_REGISTER_CALLBACKS when set to 1 |
| allows the user to configure dynamically the driver callbacks. |
| Use Function HAL_RTC_RegisterCallback() to register an interrupt callback. |
| |
| Function HAL_RTC_RegisterCallback() allows to register following callbacks: |
| (+) AlarmAEventCallback : RTC Alarm A Event callback. |
| (+) AlarmBEventCallback : RTC Alarm B Event callback. |
| (+) TimeStampEventCallback : RTC TimeStamp Event callback. |
| (+) WakeUpTimerEventCallback : RTC WakeUpTimer Event callback. |
| (+) Tamper1EventCallback : RTC Tamper 1 Event callback. |
| (+) Tamper2EventCallback : RTC Tamper 2 Event callback. |
| (+) Tamper3EventCallback : RTC Tamper 3 Event callback. |
| (+) MspInitCallback : RTC MspInit callback. |
| (+) MspDeInitCallback : RTC MspDeInit callback. |
| This function takes as parameters the HAL peripheral handle, the Callback ID |
| and a pointer to the user callback function. |
| |
| Use function HAL_RTC_UnRegisterCallback() to reset a callback to the default |
| weak function. |
| HAL_RTC_UnRegisterCallback() takes as parameters the HAL peripheral handle, |
| and the Callback ID. |
| This function allows to reset following callbacks: |
| (+) AlarmAEventCallback : RTC Alarm A Event callback. |
| (+) AlarmBEventCallback : RTC Alarm B Event callback. |
| (+) TimeStampEventCallback : RTC TimeStamp Event callback. |
| (+) WakeUpTimerEventCallback : RTC WakeUpTimer Event callback. |
| (+) Tamper1EventCallback : RTC Tamper 1 Event callback. |
| (+) Tamper2EventCallback : RTC Tamper 2 Event callback. |
| (+) Tamper3EventCallback : RTC Tamper 3 Event callback. |
| (+) MspInitCallback : RTC MspInit callback. |
| (+) MspDeInitCallback : RTC MspDeInit callback. |
| |
| By default, after the HAL_RTC_Init() and when the state is HAL_RTC_STATE_RESET, |
| all callbacks are set to the corresponding weak functions : |
| examples AlarmAEventCallback(), WakeUpTimerEventCallback(). |
| Exception done for MspInit and MspDeInit callbacks that are reset to the legacy weak function |
| in the HAL_RTC_Init()/HAL_RTC_DeInit() only when these callbacks are null |
| (not registered beforehand). |
| If not, MspInit or MspDeInit are not null, HAL_RTC_Init()/HAL_RTC_DeInit() |
| keep and use the user MspInit/MspDeInit callbacks (registered beforehand) |
| |
| Callbacks can be registered/unregistered in HAL_RTC_STATE_READY state only. |
| Exception done MspInit/MspDeInit that can be registered/unregistered |
| in HAL_RTC_STATE_READY or HAL_RTC_STATE_RESET state, |
| thus registered (user) MspInit/DeInit callbacks can be used during the Init/DeInit. |
| In that case first register the MspInit/MspDeInit user callbacks |
| using HAL_RTC_RegisterCallback() before calling HAL_RTC_DeInit() |
| or HAL_RTC_Init() function. |
| |
| When The compilation define USE_HAL_RTC_REGISTER_CALLBACKS is set to 0 or |
| not defined, the callback registration feature is not available and all callbacks |
| are set to the corresponding weak functions. |
| @endverbatim |
| |
| */ |
| |
| /* Includes ------------------------------------------------------------------*/ |
| #include "stm32h7xx_hal.h" |
| |
| /** @addtogroup STM32H7xx_HAL_Driver |
| * @{ |
| */ |
| |
| |
| /** @addtogroup RTC |
| * @brief RTC HAL module driver |
| * @{ |
| */ |
| |
| #ifdef HAL_RTC_MODULE_ENABLED |
| |
| /* Private typedef -----------------------------------------------------------*/ |
| /* Private define ------------------------------------------------------------*/ |
| /* Private macro -------------------------------------------------------------*/ |
| /* Private variables ---------------------------------------------------------*/ |
| /* Private function prototypes -----------------------------------------------*/ |
| /* Exported functions --------------------------------------------------------*/ |
| |
| /** @addtogroup RTC_Exported_Functions |
| * @{ |
| */ |
| |
| /** @addtogroup RTC_Exported_Functions_Group1 |
| * @brief Initialization and Configuration functions |
| * |
| @verbatim |
| =============================================================================== |
| ##### Initialization and de-initialization functions ##### |
| =============================================================================== |
| [..] This section provides functions allowing to initialize and configure the |
| RTC Prescaler (Synchronous and Asynchronous), RTC Hour format, disable |
| RTC registers Write protection, enter and exit the RTC initialization mode, |
| RTC registers synchronization check and reference clock detection enable. |
| (#) The RTC Prescaler is programmed to generate the RTC 1Hz time base. |
| It is split into 2 programmable prescalers to minimize power consumption. |
| (++) A 7-bit asynchronous prescaler and a 15-bit synchronous prescaler. |
| (++) When both prescalers are used, it is recommended to configure the |
| asynchronous prescaler to a high value to minimize power consumption. |
| (#) All RTC registers are Write protected. Writing to the RTC registers |
| is enabled by writing a key into the Write Protection register, RTC_WPR. |
| (#) To configure the RTC Calendar, user application should enter |
| initialization mode. In this mode, the calendar counter is stopped |
| and its value can be updated. When the initialization sequence is |
| complete, the calendar restarts counting after 4 RTCCLK cycles. |
| (#) To read the calendar through the shadow registers after Calendar |
| initialization, calendar update or after wakeup from low power modes |
| the software must first clear the RSF flag. The software must then |
| wait until it is set again before reading the calendar, which means |
| that the calendar registers have been correctly copied into the |
| RTC_TR and RTC_DR shadow registers.The HAL_RTC_WaitForSynchro() function |
| implements the above software sequence (RSF clear and RSF check). |
| |
| @endverbatim |
| * @{ |
| */ |
| |
| /** |
| * @brief Initialize the RTC peripheral |
| * @param hrtc RTC handle |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_RTC_Init(RTC_HandleTypeDef *hrtc) |
| { |
| HAL_StatusTypeDef status = HAL_ERROR; |
| |
| /* Check RTC handler */ |
| if(hrtc != NULL) |
| { |
| /* Check the parameters */ |
| assert_param(IS_RTC_ALL_INSTANCE(hrtc->Instance)); |
| assert_param(IS_RTC_HOUR_FORMAT(hrtc->Init.HourFormat)); |
| assert_param(IS_RTC_ASYNCH_PREDIV(hrtc->Init.AsynchPrediv)); |
| assert_param(IS_RTC_SYNCH_PREDIV(hrtc->Init.SynchPrediv)); |
| assert_param(IS_RTC_OUTPUT(hrtc->Init.OutPut)); |
| assert_param(IS_RTC_OUTPUT_REMAP(hrtc->Init.OutPutRemap)); |
| assert_param(IS_RTC_OUTPUT_POL(hrtc->Init.OutPutPolarity)); |
| assert_param(IS_RTC_OUTPUT_TYPE(hrtc->Init.OutPutType)); |
| #if defined(TAMP) |
| assert_param(IS_RTC_OUTPUT_PULLUP(hrtc->Init.OutPutPullUp)); |
| #endif /* TAMP */ |
| |
| #if (USE_HAL_RTC_REGISTER_CALLBACKS == 1) |
| if(hrtc->State == HAL_RTC_STATE_RESET) |
| { |
| /* Allocate lock resource and initialize it */ |
| hrtc->Lock = HAL_UNLOCKED; |
| |
| hrtc->AlarmAEventCallback = HAL_RTC_AlarmAEventCallback; /* Legacy weak AlarmAEventCallback */ |
| hrtc->AlarmBEventCallback = HAL_RTCEx_AlarmBEventCallback; /* Legacy weak AlarmBEventCallback */ |
| hrtc->TimeStampEventCallback = HAL_RTCEx_TimeStampEventCallback; /* Legacy weak TimeStampEventCallback */ |
| hrtc->WakeUpTimerEventCallback = HAL_RTCEx_WakeUpTimerEventCallback; /* Legacy weak WakeUpTimerEventCallback */ |
| hrtc->Tamper1EventCallback = HAL_RTCEx_Tamper1EventCallback; /* Legacy weak Tamper1EventCallback */ |
| hrtc->Tamper2EventCallback = HAL_RTCEx_Tamper2EventCallback; /* Legacy weak Tamper2EventCallback */ |
| hrtc->Tamper3EventCallback = HAL_RTCEx_Tamper3EventCallback; /* Legacy weak Tamper3EventCallback */ |
| |
| #if defined(TAMP) |
| hrtc->InternalTamper1EventCallback = HAL_RTCEx_InternalTamper1EventCallback; |
| hrtc->InternalTamper2EventCallback = HAL_RTCEx_InternalTamper2EventCallback; |
| hrtc->InternalTamper3EventCallback = HAL_RTCEx_InternalTamper3EventCallback; |
| hrtc->InternalTamper4EventCallback = HAL_RTCEx_InternalTamper4EventCallback; |
| hrtc->InternalTamper5EventCallback = HAL_RTCEx_InternalTamper5EventCallback; |
| hrtc->InternalTamper6EventCallback = HAL_RTCEx_InternalTamper6EventCallback; |
| hrtc->InternalTamper8EventCallback = HAL_RTCEx_InternalTamper8EventCallback; |
| #endif /* TAMP */ |
| |
| |
| if(hrtc->MspInitCallback == NULL) |
| { |
| hrtc->MspInitCallback = HAL_RTC_MspInit; |
| } |
| /* Init the low level hardware */ |
| hrtc->MspInitCallback(hrtc); |
| |
| if(hrtc->MspDeInitCallback == NULL) |
| { |
| hrtc->MspDeInitCallback = HAL_RTC_MspDeInit; |
| } |
| } |
| #else /* (USE_HAL_RTC_REGISTER_CALLBACKS == 1) */ |
| if(hrtc->State == HAL_RTC_STATE_RESET) |
| { |
| /* Allocate lock resource and initialize it */ |
| hrtc->Lock = HAL_UNLOCKED; |
| |
| /* Initialize RTC MSP */ |
| HAL_RTC_MspInit(hrtc); |
| } |
| #endif /* (USE_HAL_RTC_REGISTER_CALLBACKS == 1) */ |
| |
| /* Set RTC state */ |
| hrtc->State = HAL_RTC_STATE_BUSY; |
| |
| /* Check whether the calendar needs to be initialized */ |
| if (__HAL_RTC_IS_CALENDAR_INITIALIZED(hrtc) == 0U) |
| { |
| /* Disable the write protection for RTC registers */ |
| __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); |
| |
| /* Enter Initialization mode */ |
| status = RTC_EnterInitMode(hrtc); |
| if (status == HAL_OK) |
| { |
| #if defined(TAMP) |
| /* Clear RTC_CR FMT, OSEL, POL and TAMPOE Bits */ |
| hrtc->Instance->CR &= ~(RTC_CR_FMT | RTC_CR_POL | RTC_CR_OSEL | RTC_CR_TAMPOE); |
| #else |
| /* Clear RTC_CR FMT, OSEL and POL Bits */ |
| hrtc->Instance->CR &= ~(RTC_CR_FMT | RTC_CR_OSEL | RTC_CR_POL); |
| #endif /* TAMP */ |
| |
| /* Set RTC_CR register */ |
| hrtc->Instance->CR |= (hrtc->Init.HourFormat | hrtc->Init.OutPut | hrtc->Init.OutPutPolarity); |
| |
| /* Configure the RTC PRER */ |
| hrtc->Instance->PRER = (hrtc->Init.AsynchPrediv << RTC_PRER_PREDIV_A_Pos) | (hrtc->Init.SynchPrediv << RTC_PRER_PREDIV_S_Pos); |
| |
| /* Exit Initialization mode */ |
| status = RTC_ExitInitMode(hrtc); |
| } |
| if(status == HAL_OK) |
| { |
| #if defined(TAMP) |
| hrtc->Instance->CR &= ~(RTC_CR_TAMPALRM_PU | RTC_CR_TAMPALRM_TYPE | RTC_CR_OUT2EN); |
| hrtc->Instance->CR |= (hrtc->Init.OutPutPullUp | hrtc->Init.OutPutType | hrtc->Init.OutPutRemap); |
| #else |
| hrtc->Instance->OR &= ~(RTC_OR_ALARMOUTTYPE | RTC_OR_OUT_RMP); |
| hrtc->Instance->OR |= (hrtc->Init.OutPutType | hrtc->Init.OutPutRemap); |
| #endif /* TAMP */ |
| } |
| |
| /* Enable the write protection for RTC registers */ |
| __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); |
| } |
| else |
| { |
| /* The calendar is already initialized */ |
| status = HAL_OK; |
| } |
| |
| if (status == HAL_OK) |
| { |
| /* Set RTC state */ |
| hrtc->State = HAL_RTC_STATE_READY; |
| } |
| } |
| |
| /* return status */ |
| return status; |
| } |
| |
| /** |
| * @brief DeInitialize the RTC peripheral. |
| * @note This function doesn't reset the RTC Backup Data registers. |
| * @param hrtc RTC handle |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_RTC_DeInit(RTC_HandleTypeDef *hrtc) |
| { |
| HAL_StatusTypeDef status = HAL_ERROR; |
| uint32_t tickstart; |
| |
| /* Check RTC handler */ |
| if(hrtc != NULL) |
| { |
| /* Check the parameters */ |
| assert_param(IS_RTC_ALL_INSTANCE(hrtc->Instance)); |
| |
| /* Set RTC state */ |
| hrtc->State = HAL_RTC_STATE_BUSY; |
| |
| /* Disable the write protection for RTC registers */ |
| __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); |
| |
| /* Enter Initialization mode */ |
| status = RTC_EnterInitMode(hrtc); |
| |
| if (status == HAL_OK) |
| { |
| /* Reset TR, DR and CR registers */ |
| hrtc->Instance->TR = 0x00000000U; |
| hrtc->Instance->DR = ((uint32_t)(RTC_DR_WDU_0 | RTC_DR_MU_0 | RTC_DR_DU_0)); |
| |
| /* Reset All CR bits except CR[2:0] (which cannot be written before bit |
| WUTE of CR is cleared) */ |
| hrtc->Instance->CR = 0x00000000U; |
| |
| /* Wait till WUTWF is set (to be able to reset CR[2:0] and WUTR) and if |
| timeout is reached exit */ |
| tickstart = HAL_GetTick(); |
| |
| #if defined(TAMP) |
| while ((((hrtc->Instance->ICSR) & RTC_ICSR_WUTWF) == 0U) && (status != HAL_TIMEOUT)) |
| #else |
| while ((((hrtc->Instance->ISR) & RTC_ISR_WUTWF) == 0U) && (status != HAL_TIMEOUT)) |
| #endif /* TAMP */ |
| { |
| if((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE) |
| { |
| /* Enable the write protection for RTC registers */ |
| __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); |
| |
| /* Set RTC state */ |
| hrtc->State = HAL_RTC_STATE_TIMEOUT; |
| status = HAL_TIMEOUT; |
| |
| } |
| } |
| } |
| |
| if (status == HAL_OK) |
| { |
| /* Reset RTC CR register bits [2:0] */ |
| hrtc->Instance->CR = 0x00000000U; |
| |
| /* Reset other RTC registers */ |
| hrtc->Instance->WUTR = RTC_WUTR_WUT; |
| hrtc->Instance->PRER = ((uint32_t)(RTC_PRER_PREDIV_A | 0x000000FFU)); |
| hrtc->Instance->ALRMAR = 0x00000000U; |
| hrtc->Instance->ALRMBR = 0x00000000U; |
| hrtc->Instance->SHIFTR = 0x00000000U; |
| hrtc->Instance->CALR = 0x00000000U; |
| hrtc->Instance->ALRMASSR = 0x00000000U; |
| hrtc->Instance->ALRMBSSR = 0x00000000U; |
| |
| /* Exit initialization mode */ |
| status = RTC_ExitInitMode(hrtc); |
| } |
| |
| if(status == HAL_OK) |
| { |
| #if defined(TAMP) |
| /* Reset TAMP registers */ |
| ((TAMP_TypeDef *)((uint32_t)hrtc->Instance + TAMP_OFFSET))->CR1 = 0xFFFF0000U; |
| ((TAMP_TypeDef *)((uint32_t)hrtc->Instance + TAMP_OFFSET))->CR2 = 0x00000000U; |
| #else |
| /* Reset Tamper configuration register */ |
| hrtc->Instance->TAMPCR = 0x00000000U; |
| |
| /* Reset Option register */ |
| hrtc->Instance->OR = 0x00000000U; |
| #endif /* TAMP */ |
| |
| /* Enable the write protection for RTC registers */ |
| __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); |
| |
| #if (USE_HAL_RTC_REGISTER_CALLBACKS == 1) |
| if(hrtc->MspDeInitCallback == NULL) |
| { |
| hrtc->MspDeInitCallback = HAL_RTC_MspDeInit; |
| } |
| |
| /* DeInit the low level hardware: CLOCK, NVIC.*/ |
| hrtc->MspDeInitCallback(hrtc); |
| #else |
| /* De-Initialize RTC MSP */ |
| HAL_RTC_MspDeInit(hrtc); |
| #endif /* (USE_HAL_RTC_REGISTER_CALLBACKS) */ |
| |
| hrtc->State = HAL_RTC_STATE_RESET; |
| |
| /* Release Lock */ |
| __HAL_UNLOCK(hrtc); |
| } |
| } |
| |
| /* return status */ |
| return status; |
| } |
| |
| #if (USE_HAL_RTC_REGISTER_CALLBACKS == 1) |
| /** |
| * @brief Register a User RTC Callback |
| * To be used instead of the weak predefined callback |
| * @param hrtc RTC handle |
| * @param CallbackID ID of the callback to be registered |
| * This parameter can be one of the following values: |
| * @arg @ref HAL_RTC_ALARM_A_EVENT_CB_ID Alarm A Event Callback ID |
| * @arg @ref HAL_RTC_ALARM_B_EVENT_CB_ID Alarm B Event Callback ID |
| * @arg @ref HAL_RTC_TIMESTAMP_EVENT_CB_ID TimeStamp Event Callback ID |
| * @arg @ref HAL_RTC_WAKEUPTIMER_EVENT_CB_ID WakeUp Timer Event Callback ID |
| * @arg @ref HAL_RTC_TAMPER1_EVENT_CB_ID Tamper 1 Callback ID |
| * @arg @ref HAL_RTC_TAMPER2_EVENT_CB_ID Tamper 2 Callback ID |
| * @arg @ref HAL_RTC_TAMPER3_EVENT_CB_ID Tamper 3 Callback ID |
| * @arg @ref HAL_RTC_INTERNAL_TAMPER1_EVENT_CB_ID Internal Tamper 1 Callback ID |
| * @arg @ref HAL_RTC_INTERNAL_TAMPER2_EVENT_CB_ID Internal Tamper 2 Callback ID |
| * @arg @ref HAL_RTC_INTERNAL_TAMPER3_EVENT_CB_ID Internal Tamper 3 Callback ID |
| * @arg @ref HAL_RTC_INTERNAL_TAMPER4_EVENT_CB_ID Internal Tamper 4 Callback ID |
| * @arg @ref HAL_RTC_INTERNAL_TAMPER5_EVENT_CB_ID Internal Tamper 5 Callback ID |
| * @arg @ref HAL_RTC_INTERNAL_TAMPER6_EVENT_CB_ID Internal Tamper 6 Callback ID |
| * @arg @ref HAL_RTC_INTERNAL_TAMPER8_EVENT_CB_ID Internal Tamper 8 Callback ID |
| * @arg @ref HAL_RTC_MSPINIT_CB_ID Msp Init callback ID |
| * @arg @ref HAL_RTC_MSPDEINIT_CB_ID Msp DeInit callback ID |
| * @param pCallback pointer to the Callback function |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_RTC_RegisterCallback(RTC_HandleTypeDef *hrtc, HAL_RTC_CallbackIDTypeDef CallbackID, pRTC_CallbackTypeDef pCallback) |
| { |
| HAL_StatusTypeDef status = HAL_OK; |
| |
| if(pCallback == NULL) |
| { |
| return HAL_ERROR; |
| } |
| |
| /* Process locked */ |
| __HAL_LOCK(hrtc); |
| |
| if(HAL_RTC_STATE_READY == hrtc->State) |
| { |
| switch (CallbackID) |
| { |
| case HAL_RTC_ALARM_A_EVENT_CB_ID : |
| hrtc->AlarmAEventCallback = pCallback; |
| break; |
| |
| case HAL_RTC_ALARM_B_EVENT_CB_ID : |
| hrtc->AlarmBEventCallback = pCallback; |
| break; |
| |
| case HAL_RTC_TIMESTAMP_EVENT_CB_ID : |
| hrtc->TimeStampEventCallback = pCallback; |
| break; |
| |
| case HAL_RTC_WAKEUPTIMER_EVENT_CB_ID : |
| hrtc->WakeUpTimerEventCallback = pCallback; |
| break; |
| |
| case HAL_RTC_TAMPER1_EVENT_CB_ID : |
| hrtc->Tamper1EventCallback = pCallback; |
| break; |
| |
| case HAL_RTC_TAMPER2_EVENT_CB_ID : |
| hrtc->Tamper2EventCallback = pCallback; |
| break; |
| |
| case HAL_RTC_TAMPER3_EVENT_CB_ID : |
| hrtc->Tamper3EventCallback = pCallback; |
| break; |
| |
| #if defined(TAMP) |
| case HAL_RTC_INTERNAL_TAMPER1_EVENT_CB_ID : |
| hrtc->InternalTamper1EventCallback = pCallback; |
| break; |
| |
| case HAL_RTC_INTERNAL_TAMPER2_EVENT_CB_ID : |
| hrtc->InternalTamper2EventCallback = pCallback; |
| break; |
| |
| case HAL_RTC_INTERNAL_TAMPER3_EVENT_CB_ID : |
| hrtc->InternalTamper3EventCallback = pCallback; |
| break; |
| |
| case HAL_RTC_INTERNAL_TAMPER4_EVENT_CB_ID : |
| hrtc->InternalTamper4EventCallback = pCallback; |
| break; |
| |
| case HAL_RTC_INTERNAL_TAMPER5_EVENT_CB_ID : |
| hrtc->InternalTamper5EventCallback = pCallback; |
| break; |
| |
| case HAL_RTC_INTERNAL_TAMPER6_EVENT_CB_ID : |
| hrtc->InternalTamper6EventCallback = pCallback; |
| break; |
| |
| case HAL_RTC_INTERNAL_TAMPER8_EVENT_CB_ID : |
| hrtc->InternalTamper8EventCallback = pCallback; |
| break; |
| #endif /* TAMP */ |
| |
| case HAL_RTC_MSPINIT_CB_ID : |
| hrtc->MspInitCallback = pCallback; |
| break; |
| |
| case HAL_RTC_MSPDEINIT_CB_ID : |
| hrtc->MspDeInitCallback = pCallback; |
| break; |
| |
| default : |
| /* Return error status */ |
| status = HAL_ERROR; |
| break; |
| } |
| } |
| else if(HAL_RTC_STATE_RESET == hrtc->State) |
| { |
| switch (CallbackID) |
| { |
| case HAL_RTC_MSPINIT_CB_ID : |
| hrtc->MspInitCallback = pCallback; |
| break; |
| |
| case HAL_RTC_MSPDEINIT_CB_ID : |
| hrtc->MspDeInitCallback = pCallback; |
| break; |
| |
| default : |
| /* Return error status */ |
| status = HAL_ERROR; |
| break; |
| } |
| } |
| else |
| { |
| /* Return error status */ |
| status = HAL_ERROR; |
| } |
| |
| /* Release Lock */ |
| __HAL_UNLOCK(hrtc); |
| |
| return status; |
| } |
| |
| /** |
| * @brief Unregister an RTC Callback |
| * RTC callback is redirected to the weak predefined callback |
| * @param hrtc RTC handle |
| * @param CallbackID ID of the callback to be unregistered |
| * This parameter can be one of the following values: |
| * @arg @ref HAL_RTC_ALARM_A_EVENT_CB_ID Alarm A Event Callback ID |
| * @arg @ref HAL_RTC_ALARM_B_EVENT_CB_ID Alarm B Event Callback ID |
| * @arg @ref HAL_RTC_TIMESTAMP_EVENT_CB_ID TimeStamp Event Callback ID |
| * @arg @ref HAL_RTC_WAKEUPTIMER_EVENT_CB_ID WakeUp Timer Event Callback ID |
| * @arg @ref HAL_RTC_TAMPER1_EVENT_CB_ID Tamper 1 Callback ID |
| * @arg @ref HAL_RTC_TAMPER2_EVENT_CB_ID Tamper 2 Callback ID |
| * @arg @ref HAL_RTC_TAMPER3_EVENT_CB_ID Tamper 3 Callback ID |
| * @arg @ref HAL_RTC_INTERNAL_TAMPER1_EVENT_CB_ID Internal Tamper 1 Callback ID |
| * @arg @ref HAL_RTC_INTERNAL_TAMPER2_EVENT_CB_ID Internal Tamper 2 Callback ID |
| * @arg @ref HAL_RTC_INTERNAL_TAMPER3_EVENT_CB_ID Internal Tamper 3 Callback ID |
| * @arg @ref HAL_RTC_INTERNAL_TAMPER4_EVENT_CB_ID Internal Tamper 4 Callback ID |
| * @arg @ref HAL_RTC_INTERNAL_TAMPER5_EVENT_CB_ID Internal Tamper 5 Callback ID |
| * @arg @ref HAL_RTC_INTERNAL_TAMPER6_EVENT_CB_ID Internal Tamper 6 Callback ID |
| * @arg @ref HAL_RTC_INTERNAL_TAMPER8_EVENT_CB_ID Internal Tamper 8 Callback ID |
| * @arg @ref HAL_RTC_MSPINIT_CB_ID Msp Init callback ID |
| * @arg @ref HAL_RTC_MSPDEINIT_CB_ID Msp DeInit callback ID |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_RTC_UnRegisterCallback(RTC_HandleTypeDef *hrtc, HAL_RTC_CallbackIDTypeDef CallbackID) |
| { |
| HAL_StatusTypeDef status = HAL_OK; |
| |
| /* Process locked */ |
| __HAL_LOCK(hrtc); |
| |
| if(HAL_RTC_STATE_READY == hrtc->State) |
| { |
| switch (CallbackID) |
| { |
| case HAL_RTC_ALARM_A_EVENT_CB_ID : |
| hrtc->AlarmAEventCallback = HAL_RTC_AlarmAEventCallback; /* Legacy weak AlarmAEventCallback */ |
| break; |
| |
| case HAL_RTC_ALARM_B_EVENT_CB_ID : |
| hrtc->AlarmBEventCallback = HAL_RTCEx_AlarmBEventCallback; /* Legacy weak AlarmBEventCallback */ |
| break; |
| |
| case HAL_RTC_TIMESTAMP_EVENT_CB_ID : |
| hrtc->TimeStampEventCallback = HAL_RTCEx_TimeStampEventCallback; /* Legacy weak TimeStampEventCallback */ |
| break; |
| |
| case HAL_RTC_WAKEUPTIMER_EVENT_CB_ID : |
| hrtc->WakeUpTimerEventCallback = HAL_RTCEx_WakeUpTimerEventCallback; /* Legacy weak WakeUpTimerEventCallback */ |
| break; |
| |
| case HAL_RTC_TAMPER1_EVENT_CB_ID : |
| hrtc->Tamper1EventCallback = HAL_RTCEx_Tamper1EventCallback; /* Legacy weak Tamper1EventCallback */ |
| break; |
| |
| case HAL_RTC_TAMPER2_EVENT_CB_ID : |
| hrtc->Tamper2EventCallback = HAL_RTCEx_Tamper2EventCallback; /* Legacy weak Tamper2EventCallback */ |
| break; |
| |
| case HAL_RTC_TAMPER3_EVENT_CB_ID : |
| hrtc->Tamper3EventCallback = HAL_RTCEx_Tamper3EventCallback; /* Legacy weak Tamper3EventCallback */ |
| break; |
| |
| #if defined(TAMP) |
| case HAL_RTC_INTERNAL_TAMPER1_EVENT_CB_ID : |
| hrtc->InternalTamper1EventCallback = HAL_RTCEx_InternalTamper1EventCallback; |
| break; |
| |
| case HAL_RTC_INTERNAL_TAMPER2_EVENT_CB_ID : |
| hrtc->InternalTamper2EventCallback = HAL_RTCEx_InternalTamper2EventCallback; |
| break; |
| |
| case HAL_RTC_INTERNAL_TAMPER3_EVENT_CB_ID : |
| hrtc->InternalTamper3EventCallback = HAL_RTCEx_InternalTamper3EventCallback; |
| break; |
| |
| case HAL_RTC_INTERNAL_TAMPER4_EVENT_CB_ID : |
| hrtc->InternalTamper4EventCallback = HAL_RTCEx_InternalTamper4EventCallback; |
| break; |
| |
| case HAL_RTC_INTERNAL_TAMPER5_EVENT_CB_ID : |
| hrtc->InternalTamper5EventCallback = HAL_RTCEx_InternalTamper5EventCallback; |
| break; |
| |
| case HAL_RTC_INTERNAL_TAMPER6_EVENT_CB_ID : |
| hrtc->InternalTamper6EventCallback = HAL_RTCEx_InternalTamper6EventCallback; |
| break; |
| |
| case HAL_RTC_INTERNAL_TAMPER8_EVENT_CB_ID : |
| hrtc->InternalTamper8EventCallback = HAL_RTCEx_InternalTamper8EventCallback; |
| break; |
| #endif /* TAMP */ |
| |
| case HAL_RTC_MSPINIT_CB_ID : |
| hrtc->MspInitCallback = HAL_RTC_MspInit; |
| break; |
| |
| case HAL_RTC_MSPDEINIT_CB_ID : |
| hrtc->MspDeInitCallback = HAL_RTC_MspDeInit; |
| break; |
| |
| default : |
| /* Return error status */ |
| status = HAL_ERROR; |
| break; |
| } |
| } |
| else if(HAL_RTC_STATE_RESET == hrtc->State) |
| { |
| switch (CallbackID) |
| { |
| case HAL_RTC_MSPINIT_CB_ID : |
| hrtc->MspInitCallback = HAL_RTC_MspInit; |
| break; |
| |
| case HAL_RTC_MSPDEINIT_CB_ID : |
| hrtc->MspDeInitCallback = HAL_RTC_MspDeInit; |
| break; |
| |
| default : |
| /* Return error status */ |
| status = HAL_ERROR; |
| break; |
| } |
| } |
| else |
| { |
| /* Return error status */ |
| status = HAL_ERROR; |
| } |
| |
| /* Release Lock */ |
| __HAL_UNLOCK(hrtc); |
| |
| return status; |
| } |
| #endif /* USE_HAL_RTC_REGISTER_CALLBACKS */ |
| |
| /** |
| * @brief Initialize the RTC MSP. |
| * @param hrtc RTC handle |
| * @retval None |
| */ |
| __weak void HAL_RTC_MspInit(RTC_HandleTypeDef *hrtc) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(hrtc); |
| |
| /* NOTE : This function should not be modified, when the callback is needed, |
| the HAL_RTC_MspInit could be implemented in the user file |
| */ |
| } |
| |
| /** |
| * @brief DeInitialize the RTC MSP. |
| * @param hrtc RTC handle |
| * @retval None |
| */ |
| __weak void HAL_RTC_MspDeInit(RTC_HandleTypeDef *hrtc) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(hrtc); |
| |
| /* NOTE : This function should not be modified, when the callback is needed, |
| the HAL_RTC_MspDeInit could be implemented in the user file |
| */ |
| } |
| |
| /** |
| * @} |
| */ |
| |
| /** @addtogroup RTC_Exported_Functions_Group2 |
| * @brief RTC Time and Date functions |
| * |
| @verbatim |
| =============================================================================== |
| ##### RTC Time and Date functions ##### |
| =============================================================================== |
| |
| [..] This section provides functions allowing to configure Time and Date features |
| |
| @endverbatim |
| * @{ |
| */ |
| |
| /** |
| * @brief Set RTC current time. |
| * @param hrtc RTC handle |
| * @param sTime Pointer to Time structure |
| * @param Format Specifies the format of the entered parameters. |
| * This parameter can be one of the following values: |
| * @arg RTC_FORMAT_BIN: Binary data format |
| * @arg RTC_FORMAT_BCD: BCD data format |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_RTC_SetTime(RTC_HandleTypeDef *hrtc, RTC_TimeTypeDef *sTime, uint32_t Format) |
| { |
| uint32_t tmpreg; |
| HAL_StatusTypeDef status; |
| |
| /* Check the parameters */ |
| assert_param(IS_RTC_FORMAT(Format)); |
| assert_param(IS_RTC_DAYLIGHT_SAVING(sTime->DayLightSaving)); |
| assert_param(IS_RTC_STORE_OPERATION(sTime->StoreOperation)); |
| |
| /* Process Locked */ |
| __HAL_LOCK(hrtc); |
| |
| hrtc->State = HAL_RTC_STATE_BUSY; |
| |
| /* Disable the write protection for RTC registers */ |
| __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); |
| /* Enter Initialization mode */ |
| status = RTC_EnterInitMode(hrtc); |
| if (status == HAL_OK) |
| { |
| if(Format == RTC_FORMAT_BIN) |
| { |
| if((hrtc->Instance->CR & RTC_CR_FMT) != 0U) |
| { |
| assert_param(IS_RTC_HOUR12(sTime->Hours)); |
| assert_param(IS_RTC_HOURFORMAT12(sTime->TimeFormat)); |
| } |
| else |
| { |
| sTime->TimeFormat = 0x00U; |
| assert_param(IS_RTC_HOUR24(sTime->Hours)); |
| } |
| assert_param(IS_RTC_MINUTES(sTime->Minutes)); |
| assert_param(IS_RTC_SECONDS(sTime->Seconds)); |
| |
| tmpreg = (uint32_t)(((uint32_t)RTC_ByteToBcd2(sTime->Hours) << RTC_TR_HU_Pos) | \ |
| ((uint32_t)RTC_ByteToBcd2(sTime->Minutes) << RTC_TR_MNU_Pos) | \ |
| ((uint32_t)RTC_ByteToBcd2(sTime->Seconds) << RTC_TR_SU_Pos) | \ |
| (((uint32_t)sTime->TimeFormat) << RTC_TR_PM_Pos)); |
| } |
| else |
| { |
| if((hrtc->Instance->CR & RTC_CR_FMT) != 0U) |
| { |
| assert_param(IS_RTC_HOUR12(RTC_Bcd2ToByte(sTime->Hours))); |
| assert_param(IS_RTC_HOURFORMAT12(sTime->TimeFormat)); |
| } |
| else |
| { |
| sTime->TimeFormat = 0x00U; |
| assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sTime->Hours))); |
| } |
| assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sTime->Minutes))); |
| assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sTime->Seconds))); |
| tmpreg = (((uint32_t)(sTime->Hours) << RTC_TR_HU_Pos) | \ |
| ((uint32_t)(sTime->Minutes) << RTC_TR_MNU_Pos) | \ |
| ((uint32_t)(sTime->Seconds) << RTC_TR_SU_Pos) | \ |
| ((uint32_t)(sTime->TimeFormat) << RTC_TR_PM_Pos)); |
| } |
| |
| /* Set the RTC_TR register */ |
| hrtc->Instance->TR = (uint32_t)(tmpreg & RTC_TR_RESERVED_MASK); |
| |
| /* Clear the bits to be configured */ |
| hrtc->Instance->CR &= ((uint32_t)~RTC_CR_BKP); |
| |
| /* Configure the RTC_CR register */ |
| hrtc->Instance->CR |= (uint32_t)(sTime->DayLightSaving | sTime->StoreOperation); |
| |
| /* Exit Initialization mode */ |
| status = RTC_ExitInitMode(hrtc); |
| } |
| |
| /* Enable the write protection for RTC registers */ |
| __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); |
| |
| if (status == HAL_OK) |
| { |
| hrtc->State = HAL_RTC_STATE_READY; |
| } |
| |
| /* Process Unlocked */ |
| __HAL_UNLOCK(hrtc); |
| |
| return status; |
| } |
| |
| /** |
| * @brief Get RTC current time. |
| * @param hrtc RTC handle |
| * @param sTime Pointer to Time structure with Hours, Minutes and Seconds fields returned |
| * with input format (BIN or BCD), also SubSeconds field returning the |
| * RTC_SSR register content and SecondFraction field the Synchronous pre-scaler |
| * factor to be used for second fraction ratio computation. |
| * @param Format Specifies the format of the entered parameters. |
| * This parameter can be one of the following values: |
| * @arg RTC_FORMAT_BIN: Binary data format |
| * @arg RTC_FORMAT_BCD: BCD data format |
| * @note You can use SubSeconds and SecondFraction (sTime structure fields returned) to convert SubSeconds |
| * value in second fraction ratio with time unit following generic formula: |
| * Second fraction ratio * time_unit= [(SecondFraction-SubSeconds)/(SecondFraction+1)] * time_unit |
| * This conversion can be performed only if no shift operation is pending (ie. SHFP=0) when PREDIV_S >= SS |
| * @note You must call HAL_RTC_GetDate() after HAL_RTC_GetTime() to unlock the values |
| * in the higher-order calendar shadow registers to ensure consistency between the time and date values. |
| * Reading RTC current time locks the values in calendar shadow registers until Current date is read |
| * to ensure consistency between the time and date values. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_RTC_GetTime(RTC_HandleTypeDef *hrtc, RTC_TimeTypeDef *sTime, uint32_t Format) |
| { |
| uint32_t tmpreg; |
| |
| /* Check the parameters */ |
| assert_param(IS_RTC_FORMAT(Format)); |
| |
| /* Get subseconds structure field from the corresponding register*/ |
| sTime->SubSeconds = (uint32_t)(hrtc->Instance->SSR); |
| |
| /* Get SecondFraction structure field from the corresponding register field*/ |
| sTime->SecondFraction = (uint32_t)(hrtc->Instance->PRER & RTC_PRER_PREDIV_S); |
| |
| /* Get the TR register */ |
| tmpreg = (uint32_t)(hrtc->Instance->TR & RTC_TR_RESERVED_MASK); |
| |
| /* Fill the structure fields with the read parameters */ |
| sTime->Hours = (uint8_t)((tmpreg & (RTC_TR_HT | RTC_TR_HU)) >> RTC_TR_HU_Pos); |
| sTime->Minutes = (uint8_t)((tmpreg & (RTC_TR_MNT | RTC_TR_MNU)) >> RTC_TR_MNU_Pos); |
| sTime->Seconds = (uint8_t)((tmpreg & (RTC_TR_ST | RTC_TR_SU)) >> RTC_TR_SU_Pos); |
| sTime->TimeFormat = (uint8_t)((tmpreg & (RTC_TR_PM)) >> RTC_TR_PM_Pos); |
| |
| /* Check the input parameters format */ |
| if(Format == RTC_FORMAT_BIN) |
| { |
| /* Convert the time structure parameters to Binary format */ |
| sTime->Hours = (uint8_t)RTC_Bcd2ToByte(sTime->Hours); |
| sTime->Minutes = (uint8_t)RTC_Bcd2ToByte(sTime->Minutes); |
| sTime->Seconds = (uint8_t)RTC_Bcd2ToByte(sTime->Seconds); |
| } |
| |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Set RTC current date. |
| * @param hrtc RTC handle |
| * @param sDate Pointer to date structure |
| * @param Format specifies the format of the entered parameters. |
| * This parameter can be one of the following values: |
| * @arg RTC_FORMAT_BIN: Binary data format |
| * @arg RTC_FORMAT_BCD: BCD data format |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_RTC_SetDate(RTC_HandleTypeDef *hrtc, RTC_DateTypeDef *sDate, uint32_t Format) |
| { |
| uint32_t datetmpreg; |
| HAL_StatusTypeDef status; |
| |
| /* Check the parameters */ |
| assert_param(IS_RTC_FORMAT(Format)); |
| |
| /* Process Locked */ |
| __HAL_LOCK(hrtc); |
| |
| hrtc->State = HAL_RTC_STATE_BUSY; |
| |
| if((Format == RTC_FORMAT_BIN) && ((sDate->Month & 0x10U) == 0x10U)) |
| { |
| sDate->Month = (uint8_t)((sDate->Month & (uint8_t)~(0x10U)) + (uint8_t)0x0AU); |
| } |
| |
| assert_param(IS_RTC_WEEKDAY(sDate->WeekDay)); |
| |
| if(Format == RTC_FORMAT_BIN) |
| { |
| assert_param(IS_RTC_YEAR(sDate->Year)); |
| assert_param(IS_RTC_MONTH(sDate->Month)); |
| assert_param(IS_RTC_DATE(sDate->Date)); |
| |
| datetmpreg = (((uint32_t)RTC_ByteToBcd2(sDate->Year) << RTC_DR_YU_Pos) | \ |
| ((uint32_t)RTC_ByteToBcd2(sDate->Month) << RTC_DR_MU_Pos) | \ |
| ((uint32_t)RTC_ByteToBcd2(sDate->Date) << RTC_DR_DU_Pos) | \ |
| ((uint32_t)sDate->WeekDay << RTC_DR_WDU_Pos)); |
| } |
| else |
| { |
| assert_param(IS_RTC_YEAR(RTC_Bcd2ToByte(sDate->Year))); |
| assert_param(IS_RTC_MONTH(RTC_Bcd2ToByte(sDate->Month))); |
| assert_param(IS_RTC_DATE(RTC_Bcd2ToByte(sDate->Date))); |
| |
| datetmpreg = ((((uint32_t)sDate->Year) << RTC_DR_YU_Pos) | \ |
| (((uint32_t)sDate->Month) << RTC_DR_MU_Pos) | \ |
| (((uint32_t)sDate->Date) << RTC_DR_DU_Pos) | \ |
| (((uint32_t)sDate->WeekDay) << RTC_DR_WDU_Pos)); |
| } |
| |
| /* Disable the write protection for RTC registers */ |
| __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); |
| |
| |
| /* Enter Initialization mode */ |
| status = RTC_EnterInitMode(hrtc); |
| if (status == HAL_OK) |
| { |
| /* Set the RTC_DR register */ |
| hrtc->Instance->DR = (uint32_t)(datetmpreg & RTC_DR_RESERVED_MASK); |
| |
| |
| /* Exit Initialization mode */ |
| status = RTC_ExitInitMode(hrtc); |
| } |
| |
| /* Enable the write protection for RTC registers */ |
| __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); |
| |
| if (status == HAL_OK) |
| { |
| hrtc->State = HAL_RTC_STATE_READY; |
| } |
| |
| /* Process Unlocked */ |
| __HAL_UNLOCK(hrtc); |
| |
| return status; |
| |
| |
| } |
| |
| /** |
| * @brief Get RTC current date. |
| * @param hrtc RTC handle |
| * @param sDate Pointer to Date structure |
| * @param Format Specifies the format of the entered parameters. |
| * This parameter can be one of the following values: |
| * @arg RTC_FORMAT_BIN: Binary data format |
| * @arg RTC_FORMAT_BCD: BCD data format |
| * @note You must call HAL_RTC_GetDate() after HAL_RTC_GetTime() to unlock the values |
| * in the higher-order calendar shadow registers to ensure consistency between the time and date values. |
| * Reading RTC current time locks the values in calendar shadow registers until Current date is read. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_RTC_GetDate(RTC_HandleTypeDef *hrtc, RTC_DateTypeDef *sDate, uint32_t Format) |
| { |
| uint32_t datetmpreg; |
| |
| /* Check the parameters */ |
| assert_param(IS_RTC_FORMAT(Format)); |
| |
| /* Get the DR register */ |
| datetmpreg = (uint32_t)(hrtc->Instance->DR & RTC_DR_RESERVED_MASK); |
| |
| /* Fill the structure fields with the read parameters */ |
| sDate->Year = (uint8_t)((datetmpreg & (RTC_DR_YT | RTC_DR_YU)) >> RTC_DR_YU_Pos); |
| sDate->Month = (uint8_t)((datetmpreg & (RTC_DR_MT | RTC_DR_MU)) >> RTC_DR_MU_Pos); |
| sDate->Date = (uint8_t)((datetmpreg & (RTC_DR_DT | RTC_DR_DU)) >> RTC_DR_DU_Pos); |
| sDate->WeekDay = (uint8_t)((datetmpreg & (RTC_DR_WDU)) >> RTC_DR_WDU_Pos); |
| |
| /* Check the input parameters format */ |
| if(Format == RTC_FORMAT_BIN) |
| { |
| /* Convert the date structure parameters to Binary format */ |
| sDate->Year = (uint8_t)RTC_Bcd2ToByte(sDate->Year); |
| sDate->Month = (uint8_t)RTC_Bcd2ToByte(sDate->Month); |
| sDate->Date = (uint8_t)RTC_Bcd2ToByte(sDate->Date); |
| } |
| return HAL_OK; |
| } |
| |
| /** |
| * @} |
| */ |
| |
| /** @addtogroup RTC_Exported_Functions_Group3 |
| * @brief RTC Alarm functions |
| * |
| @verbatim |
| =============================================================================== |
| ##### RTC Alarm functions ##### |
| =============================================================================== |
| |
| [..] This section provides functions allowing to configure Alarm feature |
| |
| @endverbatim |
| * @{ |
| */ |
| /** |
| * @brief Set the specified RTC Alarm. |
| * @param hrtc RTC handle |
| * @param sAlarm Pointer to Alarm structure |
| * @param Format Specifies the format of the entered parameters. |
| * This parameter can be one of the following values: |
| * @arg RTC_FORMAT_BIN: Binary data format |
| * @arg RTC_FORMAT_BCD: BCD data format |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_RTC_SetAlarm(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Format) |
| { |
| uint32_t tickstart; |
| uint32_t tmpreg; |
| uint32_t subsecondtmpreg; |
| |
| /* Check the parameters */ |
| assert_param(IS_RTC_FORMAT(Format)); |
| assert_param(IS_RTC_ALARM(sAlarm->Alarm)); |
| assert_param(IS_RTC_ALARM_MASK(sAlarm->AlarmMask)); |
| assert_param(IS_RTC_ALARM_DATE_WEEKDAY_SEL(sAlarm->AlarmDateWeekDaySel)); |
| assert_param(IS_RTC_ALARM_SUB_SECOND_VALUE(sAlarm->AlarmTime.SubSeconds)); |
| assert_param(IS_RTC_ALARM_SUB_SECOND_MASK(sAlarm->AlarmSubSecondMask)); |
| |
| /* Process Locked */ |
| __HAL_LOCK(hrtc); |
| |
| hrtc->State = HAL_RTC_STATE_BUSY; |
| |
| if(Format == RTC_FORMAT_BIN) |
| { |
| if((hrtc->Instance->CR & RTC_CR_FMT) != 0U) |
| { |
| assert_param(IS_RTC_HOUR12(sAlarm->AlarmTime.Hours)); |
| assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat)); |
| } |
| else |
| { |
| sAlarm->AlarmTime.TimeFormat = 0x00U; |
| assert_param(IS_RTC_HOUR24(sAlarm->AlarmTime.Hours)); |
| } |
| assert_param(IS_RTC_MINUTES(sAlarm->AlarmTime.Minutes)); |
| assert_param(IS_RTC_SECONDS(sAlarm->AlarmTime.Seconds)); |
| |
| if(sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE) |
| { |
| assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(sAlarm->AlarmDateWeekDay)); |
| } |
| else |
| { |
| assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(sAlarm->AlarmDateWeekDay)); |
| } |
| |
| tmpreg = (((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Hours) << RTC_ALRMAR_HU_Pos) | \ |
| ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Minutes) << RTC_ALRMAR_MNU_Pos) | \ |
| ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Seconds) << RTC_ALRMAR_SU_Pos) | \ |
| ((uint32_t)sAlarm->AlarmTime.TimeFormat << RTC_ALRMAR_PM_Pos) | \ |
| ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmDateWeekDay) << RTC_ALRMAR_DU_Pos) | \ |
| ((uint32_t)sAlarm->AlarmDateWeekDaySel) | \ |
| ((uint32_t)sAlarm->AlarmMask)); |
| } |
| else |
| { |
| if((hrtc->Instance->CR & RTC_CR_FMT) != 0U) |
| { |
| assert_param(IS_RTC_HOUR12(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours))); |
| assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat)); |
| } |
| else |
| { |
| sAlarm->AlarmTime.TimeFormat = 0x00U; |
| assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours))); |
| } |
| |
| assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes))); |
| assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds))); |
| |
| if(sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE) |
| { |
| assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay))); |
| } |
| else |
| { |
| assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay))); |
| } |
| |
| tmpreg = (((uint32_t)sAlarm->AlarmTime.Hours << RTC_ALRMAR_HU_Pos) | \ |
| ((uint32_t)sAlarm->AlarmTime.Minutes << RTC_ALRMAR_MNU_Pos) | \ |
| ((uint32_t)sAlarm->AlarmTime.Seconds << RTC_ALRMAR_SU_Pos) | \ |
| ((uint32_t)sAlarm->AlarmTime.TimeFormat << RTC_ALRMAR_PM_Pos) | \ |
| ((uint32_t)sAlarm->AlarmDateWeekDay << RTC_ALRMAR_DU_Pos) | \ |
| ((uint32_t)sAlarm->AlarmDateWeekDaySel) | \ |
| ((uint32_t)sAlarm->AlarmMask)); |
| } |
| |
| /* Configure the Alarm A or Alarm B Sub Second registers */ |
| subsecondtmpreg = (uint32_t)((uint32_t)(sAlarm->AlarmTime.SubSeconds) | (uint32_t)(sAlarm->AlarmSubSecondMask)); |
| |
| /* Disable the write protection for RTC registers */ |
| __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); |
| |
| /* Configure the Alarm register */ |
| if(sAlarm->Alarm == RTC_ALARM_A) |
| { |
| /* Disable the Alarm A interrupt */ |
| __HAL_RTC_ALARMA_DISABLE(hrtc); |
| /* Clear flag alarm A */ |
| __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRAF); |
| /* In case of interrupt mode is used, the interrupt source must disabled */ |
| __HAL_RTC_ALARM_DISABLE_IT(hrtc, RTC_IT_ALRA); |
| |
| tickstart = HAL_GetTick(); |
| /* Wait till RTC ALRAWF flag is set and if timeout is reached exit */ |
| #if defined(TAMP) |
| while (READ_BIT(hrtc->Instance->ICSR, RTC_FLAG_ALRAWF) == 0U) |
| #else |
| while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAWF) == 0U) |
| #endif /* TAMP */ |
| { |
| if((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE) |
| { |
| /* Enable the write protection for RTC registers */ |
| __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); |
| |
| hrtc->State = HAL_RTC_STATE_TIMEOUT; |
| |
| /* Process Unlocked */ |
| __HAL_UNLOCK(hrtc); |
| |
| return HAL_TIMEOUT; |
| } |
| } |
| |
| hrtc->Instance->ALRMAR = (uint32_t)tmpreg; |
| /* Configure the Alarm A Sub Second register */ |
| hrtc->Instance->ALRMASSR = subsecondtmpreg; |
| /* Configure the Alarm state: Enable Alarm */ |
| __HAL_RTC_ALARMA_ENABLE(hrtc); |
| } |
| else |
| { |
| /* Disable the Alarm B interrupt */ |
| __HAL_RTC_ALARMB_DISABLE(hrtc); |
| /* Clear flag alarm B */ |
| __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRBF); |
| /* In case of interrupt mode is used, the interrupt source must disabled */ |
| __HAL_RTC_ALARM_DISABLE_IT(hrtc, RTC_IT_ALRB); |
| |
| tickstart = HAL_GetTick(); |
| /* Wait till RTC ALRBWF flag is set and if timeout is reached exit */ |
| #if defined(TAMP) |
| while (READ_BIT(hrtc->Instance->ICSR, RTC_FLAG_ALRBWF) == 0U) |
| #else |
| while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRBWF) == 0U) |
| #endif /* TAMP */ |
| { |
| if((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE) |
| { |
| /* Enable the write protection for RTC registers */ |
| __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); |
| |
| hrtc->State = HAL_RTC_STATE_TIMEOUT; |
| |
| /* Process Unlocked */ |
| __HAL_UNLOCK(hrtc); |
| |
| return HAL_TIMEOUT; |
| } |
| } |
| |
| hrtc->Instance->ALRMBR = (uint32_t)tmpreg; |
| /* Configure the Alarm B Sub Second register */ |
| hrtc->Instance->ALRMBSSR = subsecondtmpreg; |
| /* Configure the Alarm state: Enable Alarm */ |
| __HAL_RTC_ALARMB_ENABLE(hrtc); |
| } |
| |
| /* Enable the write protection for RTC registers */ |
| __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); |
| |
| /* Change RTC state */ |
| hrtc->State = HAL_RTC_STATE_READY; |
| |
| /* Process Unlocked */ |
| __HAL_UNLOCK(hrtc); |
| |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Set the specified RTC Alarm with Interrupt. |
| * @param hrtc RTC handle |
| * @param sAlarm Pointer to Alarm structure |
| * @param Format Specifies the format of the entered parameters. |
| * This parameter can be one of the following values: |
| * @arg RTC_FORMAT_BIN: Binary data format |
| * @arg RTC_FORMAT_BCD: BCD data format |
| * @note The Alarm register can only be written when the corresponding Alarm |
| * is disabled (Use the HAL_RTC_DeactivateAlarm()). |
| * @note The HAL_RTC_SetTime() must be called before enabling the Alarm feature. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_RTC_SetAlarm_IT(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Format) |
| { |
| uint32_t tickstart; |
| uint32_t tmpreg; |
| uint32_t subsecondtmpreg; |
| |
| /* Check the parameters */ |
| assert_param(IS_RTC_FORMAT(Format)); |
| assert_param(IS_RTC_ALARM(sAlarm->Alarm)); |
| assert_param(IS_RTC_ALARM_MASK(sAlarm->AlarmMask)); |
| assert_param(IS_RTC_ALARM_DATE_WEEKDAY_SEL(sAlarm->AlarmDateWeekDaySel)); |
| assert_param(IS_RTC_ALARM_SUB_SECOND_VALUE(sAlarm->AlarmTime.SubSeconds)); |
| assert_param(IS_RTC_ALARM_SUB_SECOND_MASK(sAlarm->AlarmSubSecondMask)); |
| |
| /* Process Locked */ |
| __HAL_LOCK(hrtc); |
| |
| hrtc->State = HAL_RTC_STATE_BUSY; |
| |
| if(Format == RTC_FORMAT_BIN) |
| { |
| if((hrtc->Instance->CR & RTC_CR_FMT) != 0U) |
| { |
| assert_param(IS_RTC_HOUR12(sAlarm->AlarmTime.Hours)); |
| assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat)); |
| } |
| else |
| { |
| sAlarm->AlarmTime.TimeFormat = 0x00U; |
| assert_param(IS_RTC_HOUR24(sAlarm->AlarmTime.Hours)); |
| } |
| assert_param(IS_RTC_MINUTES(sAlarm->AlarmTime.Minutes)); |
| assert_param(IS_RTC_SECONDS(sAlarm->AlarmTime.Seconds)); |
| |
| if(sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE) |
| { |
| assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(sAlarm->AlarmDateWeekDay)); |
| } |
| else |
| { |
| assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(sAlarm->AlarmDateWeekDay)); |
| } |
| |
| tmpreg = (((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Hours) << RTC_ALRMAR_HU_Pos) | \ |
| ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Minutes) << RTC_ALRMAR_MNU_Pos) | \ |
| ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Seconds) << RTC_ALRMAR_SU_Pos) | \ |
| ((uint32_t)sAlarm->AlarmTime.TimeFormat << RTC_ALRMAR_PM_Pos) | \ |
| ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmDateWeekDay) << RTC_ALRMAR_DU_Pos) | \ |
| ((uint32_t)sAlarm->AlarmDateWeekDaySel) | \ |
| ((uint32_t)sAlarm->AlarmMask)); |
| } |
| else |
| { |
| if((hrtc->Instance->CR & RTC_CR_FMT) != 0U) |
| { |
| assert_param(IS_RTC_HOUR12(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours))); |
| assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat)); |
| } |
| else |
| { |
| sAlarm->AlarmTime.TimeFormat = 0x00U; |
| assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours))); |
| } |
| |
| assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes))); |
| assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds))); |
| |
| if(sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE) |
| { |
| assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay))); |
| } |
| else |
| { |
| assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay))); |
| } |
| |
| tmpreg = (((uint32_t)sAlarm->AlarmTime.Hours << RTC_ALRMAR_HU_Pos) | \ |
| ((uint32_t)sAlarm->AlarmTime.Minutes << RTC_ALRMAR_MNU_Pos) | \ |
| ((uint32_t)sAlarm->AlarmTime.Seconds << RTC_ALRMAR_SU_Pos) | \ |
| ((uint32_t)sAlarm->AlarmTime.TimeFormat << RTC_ALRMAR_PM_Pos) | \ |
| ((uint32_t)sAlarm->AlarmDateWeekDay << RTC_ALRMAR_DU_Pos) | \ |
| ((uint32_t)sAlarm->AlarmDateWeekDaySel) | \ |
| ((uint32_t)sAlarm->AlarmMask)); |
| } |
| /* Configure the Alarm A or Alarm B Sub Second registers */ |
| subsecondtmpreg = (uint32_t)((uint32_t)(sAlarm->AlarmTime.SubSeconds) | (uint32_t)(sAlarm->AlarmSubSecondMask)); |
| |
| /* Disable the write protection for RTC registers */ |
| __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); |
| |
| /* Configure the Alarm register */ |
| if(sAlarm->Alarm == RTC_ALARM_A) |
| { |
| /* Disable the Alarm A interrupt */ |
| __HAL_RTC_ALARMA_DISABLE(hrtc); |
| |
| /* Clear flag alarm A */ |
| __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRAF); |
| |
| tickstart = HAL_GetTick(); |
| /* Wait till RTC ALRAWF flag is set and if timeout is reached exit */ |
| #if defined(TAMP) |
| while (READ_BIT(hrtc->Instance->ICSR, RTC_FLAG_ALRAWF) == 0U) |
| #else |
| while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAWF) == 0U) |
| #endif /* TAMP */ |
| { |
| if((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE) |
| { |
| /* Enable the write protection for RTC registers */ |
| __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); |
| |
| hrtc->State = HAL_RTC_STATE_TIMEOUT; |
| |
| /* Process Unlocked */ |
| __HAL_UNLOCK(hrtc); |
| |
| return HAL_TIMEOUT; |
| } |
| } |
| |
| hrtc->Instance->ALRMAR = (uint32_t)tmpreg; |
| /* Configure the Alarm A Sub Second register */ |
| hrtc->Instance->ALRMASSR = subsecondtmpreg; |
| /* Configure the Alarm state: Enable Alarm */ |
| __HAL_RTC_ALARMA_ENABLE(hrtc); |
| /* Configure the Alarm interrupt */ |
| __HAL_RTC_ALARM_ENABLE_IT(hrtc, RTC_IT_ALRA); |
| } |
| else |
| { |
| /* Disable the Alarm B interrupt */ |
| __HAL_RTC_ALARMB_DISABLE(hrtc); |
| |
| /* Clear flag alarm B */ |
| __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRBF); |
| |
| tickstart = HAL_GetTick(); |
| /* Wait till RTC ALRBWF flag is set and if timeout is reached exit */ |
| #if defined(TAMP) |
| while (READ_BIT(hrtc->Instance->ICSR, RTC_FLAG_ALRBWF) == 0U) |
| #else |
| while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRBWF) == 0U) |
| #endif /* TAMP */ |
| { |
| if((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE) |
| { |
| /* Enable the write protection for RTC registers */ |
| __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); |
| |
| hrtc->State = HAL_RTC_STATE_TIMEOUT; |
| |
| /* Process Unlocked */ |
| __HAL_UNLOCK(hrtc); |
| |
| return HAL_TIMEOUT; |
| } |
| } |
| |
| hrtc->Instance->ALRMBR = (uint32_t)tmpreg; |
| /* Configure the Alarm B Sub Second register */ |
| hrtc->Instance->ALRMBSSR = subsecondtmpreg; |
| /* Configure the Alarm state: Enable Alarm */ |
| __HAL_RTC_ALARMB_ENABLE(hrtc); |
| /* Configure the Alarm interrupt */ |
| __HAL_RTC_ALARM_ENABLE_IT(hrtc, RTC_IT_ALRB); |
| } |
| |
| /* RTC Alarm Interrupt Configuration: EXTI configuration */ |
| #if defined(DUAL_CORE) |
| if (HAL_GetCurrentCPUID() == CM7_CPUID) |
| { |
| __HAL_RTC_ALARM_EXTI_ENABLE_IT(); |
| } |
| else |
| { |
| __HAL_RTC_ALARM_EXTID2_ENABLE_IT(); |
| } |
| #else /* SINGLE_CORE */ |
| __HAL_RTC_ALARM_EXTI_ENABLE_IT(); |
| #endif |
| |
| __HAL_RTC_ALARM_EXTI_ENABLE_RISING_EDGE(); |
| |
| /* Enable the write protection for RTC registers */ |
| __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); |
| |
| hrtc->State = HAL_RTC_STATE_READY; |
| |
| /* Process Unlocked */ |
| __HAL_UNLOCK(hrtc); |
| |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Deactivate the specified RTC Alarm. |
| * @param hrtc RTC handle |
| * @param Alarm Specifies the Alarm. |
| * This parameter can be one of the following values: |
| * @arg RTC_ALARM_A: AlarmA |
| * @arg RTC_ALARM_B: AlarmB |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_RTC_DeactivateAlarm(RTC_HandleTypeDef *hrtc, uint32_t Alarm) |
| { |
| uint32_t tickstart; |
| |
| /* Check the parameters */ |
| assert_param(IS_RTC_ALARM(Alarm)); |
| |
| /* Process Locked */ |
| __HAL_LOCK(hrtc); |
| |
| hrtc->State = HAL_RTC_STATE_BUSY; |
| |
| /* Disable the write protection for RTC registers */ |
| __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); |
| |
| if(Alarm == RTC_ALARM_A) |
| { |
| /* AlarmA */ |
| __HAL_RTC_ALARMA_DISABLE(hrtc); |
| |
| /* In case of interrupt mode is used, the interrupt source must disabled */ |
| __HAL_RTC_ALARM_DISABLE_IT(hrtc, RTC_IT_ALRA); |
| |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till RTC ALRxWF flag is set and if timeout is reached exit */ |
| #if defined(TAMP) |
| while (READ_BIT(hrtc->Instance->ICSR, RTC_FLAG_ALRAWF) == 0U) |
| #else |
| while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAWF) == 0U) |
| #endif /* TAMP */ |
| { |
| if((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE) |
| { |
| /* Enable the write protection for RTC registers */ |
| __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); |
| |
| hrtc->State = HAL_RTC_STATE_TIMEOUT; |
| |
| /* Process Unlocked */ |
| __HAL_UNLOCK(hrtc); |
| |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| else |
| { |
| /* AlarmB */ |
| __HAL_RTC_ALARMB_DISABLE(hrtc); |
| |
| /* In case of interrupt mode is used, the interrupt source must disabled */ |
| __HAL_RTC_ALARM_DISABLE_IT(hrtc, RTC_IT_ALRB); |
| |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till RTC ALRxWF flag is set and if timeout is reached exit */ |
| #if defined(TAMP) |
| while (READ_BIT(hrtc->Instance->ICSR, RTC_FLAG_ALRBWF) == 0U) |
| #else |
| while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRBWF) == 0U) |
| #endif /* TAMP */ |
| { |
| if((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE) |
| { |
| /* Enable the write protection for RTC registers */ |
| __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); |
| |
| hrtc->State = HAL_RTC_STATE_TIMEOUT; |
| |
| /* Process Unlocked */ |
| __HAL_UNLOCK(hrtc); |
| |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| /* Enable the write protection for RTC registers */ |
| __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); |
| |
| hrtc->State = HAL_RTC_STATE_READY; |
| |
| /* Process Unlocked */ |
| __HAL_UNLOCK(hrtc); |
| |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Get the RTC Alarm value and masks. |
| * @param hrtc RTC handle |
| * @param sAlarm Pointer to Date structure |
| * @param Alarm Specifies the Alarm. |
| * This parameter can be one of the following values: |
| * @arg RTC_ALARM_A: AlarmA |
| * @arg RTC_ALARM_B: AlarmB |
| * @param Format Specifies the format of the entered parameters. |
| * This parameter can be one of the following values: |
| * @arg RTC_FORMAT_BIN: Binary data format |
| * @arg RTC_FORMAT_BCD: BCD data format |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_RTC_GetAlarm(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Alarm, uint32_t Format) |
| { |
| uint32_t tmpreg; |
| uint32_t subsecondtmpreg; |
| |
| /* Check the parameters */ |
| assert_param(IS_RTC_FORMAT(Format)); |
| assert_param(IS_RTC_ALARM(Alarm)); |
| |
| if(Alarm == RTC_ALARM_A) |
| { |
| /* AlarmA */ |
| sAlarm->Alarm = RTC_ALARM_A; |
| |
| tmpreg = (uint32_t)(hrtc->Instance->ALRMAR); |
| subsecondtmpreg = (uint32_t)((hrtc->Instance->ALRMASSR) & RTC_ALRMASSR_SS); |
| |
| /* Fill the structure with the read parameters */ |
| sAlarm->AlarmTime.Hours = (uint8_t)((tmpreg & (RTC_ALRMAR_HT | RTC_ALRMAR_HU)) >> RTC_ALRMAR_HU_Pos); |
| sAlarm->AlarmTime.Minutes = (uint8_t)((tmpreg & (RTC_ALRMAR_MNT | RTC_ALRMAR_MNU)) >> RTC_ALRMAR_MNU_Pos); |
| sAlarm->AlarmTime.Seconds = (uint8_t)((tmpreg & (RTC_ALRMAR_ST | RTC_ALRMAR_SU)) >> RTC_ALRMAR_SU_Pos); |
| sAlarm->AlarmTime.TimeFormat = (uint8_t)((tmpreg & RTC_ALRMAR_PM) >> RTC_ALRMAR_PM_Pos); |
| sAlarm->AlarmTime.SubSeconds = (uint32_t) subsecondtmpreg; |
| sAlarm->AlarmDateWeekDay = (uint8_t)((tmpreg & (RTC_ALRMAR_DT | RTC_ALRMAR_DU)) >> RTC_ALRMAR_DU_Pos); |
| sAlarm->AlarmDateWeekDaySel = (uint32_t)(tmpreg & RTC_ALRMAR_WDSEL); |
| sAlarm->AlarmMask = (uint32_t)(tmpreg & RTC_ALARMMASK_ALL); |
| } |
| else |
| { |
| sAlarm->Alarm = RTC_ALARM_B; |
| |
| tmpreg = (uint32_t)(hrtc->Instance->ALRMBR); |
| subsecondtmpreg = (uint32_t)((hrtc->Instance->ALRMBSSR) & RTC_ALRMBSSR_SS); |
| |
| /* Fill the structure with the read parameters */ |
| sAlarm->AlarmTime.Hours = (uint8_t)((tmpreg & (RTC_ALRMBR_HT | RTC_ALRMBR_HU)) >> RTC_ALRMBR_HU_Pos); |
| sAlarm->AlarmTime.Minutes = (uint8_t)((tmpreg & (RTC_ALRMBR_MNT | RTC_ALRMBR_MNU)) >> RTC_ALRMBR_MNU_Pos); |
| sAlarm->AlarmTime.Seconds = (uint8_t)((tmpreg & (RTC_ALRMBR_ST | RTC_ALRMBR_SU)) >> RTC_ALRMBR_SU_Pos); |
| sAlarm->AlarmTime.TimeFormat = (uint8_t)((tmpreg & RTC_ALRMBR_PM) >> RTC_ALRMBR_PM_Pos); |
| sAlarm->AlarmTime.SubSeconds = (uint32_t) subsecondtmpreg; |
| sAlarm->AlarmDateWeekDay = (uint8_t)((tmpreg & (RTC_ALRMBR_DT | RTC_ALRMBR_DU)) >> RTC_ALRMBR_DU_Pos); |
| sAlarm->AlarmDateWeekDaySel = (uint32_t)(tmpreg & RTC_ALRMBR_WDSEL); |
| sAlarm->AlarmMask = (uint32_t)(tmpreg & RTC_ALARMMASK_ALL); |
| } |
| |
| if(Format == RTC_FORMAT_BIN) |
| { |
| sAlarm->AlarmTime.Hours = RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours); |
| sAlarm->AlarmTime.Minutes = RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes); |
| sAlarm->AlarmTime.Seconds = RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds); |
| sAlarm->AlarmDateWeekDay = RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay); |
| } |
| |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Handle Alarm interrupt request. |
| * @param hrtc RTC handle |
| * @retval None |
| */ |
| void HAL_RTC_AlarmIRQHandler(RTC_HandleTypeDef *hrtc) |
| { |
| /* Clear the EXTI's line Flag for RTC Alarm */ |
| #if defined(DUAL_CORE) |
| if(HAL_GetCurrentCPUID() == CM7_CPUID) |
| { |
| __HAL_RTC_ALARM_EXTI_CLEAR_FLAG(); |
| } |
| else |
| { |
| __HAL_RTC_ALARM_EXTID2_CLEAR_FLAG(); |
| } |
| #else /* SINGLE_CORE */ |
| __HAL_RTC_ALARM_EXTI_CLEAR_FLAG(); |
| #endif /* DUAL_CORE */ |
| |
| #if defined(TAMP) |
| /* Get interrupt status */ |
| uint32_t tmp = hrtc->Instance->MISR; |
| |
| if((tmp & RTC_FLAG_ALRAF) != 0u) |
| { |
| /* Clear the AlarmA interrupt pending bit */ |
| __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRAF); |
| |
| /* Call Alarm A Callback */ |
| #if (USE_HAL_RTC_REGISTER_CALLBACKS == 1) |
| hrtc->AlarmAEventCallback(hrtc); |
| #else /* (USE_HAL_RTC_REGISTER_CALLBACKS == 1) */ |
| HAL_RTC_AlarmAEventCallback(hrtc); |
| #endif /* (USE_HAL_RTC_REGISTER_CALLBACKS == 1) */ |
| } |
| |
| if((tmp & RTC_MISR_ALRBMF) != 0u) |
| { |
| /* Clear the AlarmB interrupt pending bit */ |
| hrtc->Instance->SCR = RTC_SCR_CALRBF; |
| |
| /* Call Alarm B Callback */ |
| #if (USE_HAL_RTC_REGISTER_CALLBACKS == 1) |
| hrtc->AlarmBEventCallback(hrtc); |
| #else /* (USE_HAL_RTC_REGISTER_CALLBACKS == 1) */ |
| HAL_RTCEx_AlarmBEventCallback(hrtc); |
| #endif /* (USE_HAL_RTC_REGISTER_CALLBACKS == 1) */ |
| } |
| #else |
| /* Get the AlarmA interrupt source enable status */ |
| if(__HAL_RTC_ALARM_GET_IT_SOURCE(hrtc, RTC_IT_ALRA) != 0U) |
| { |
| /* Get the pending status of the AlarmA Interrupt */ |
| if(__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAF) != 0U) |
| { |
| /* Clear the AlarmA interrupt pending bit */ |
| __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRAF); |
| |
| #if (USE_HAL_RTC_REGISTER_CALLBACKS == 1) |
| hrtc->AlarmAEventCallback(hrtc); |
| #else /* (USE_HAL_RTC_REGISTER_CALLBACKS == 1) */ |
| HAL_RTC_AlarmAEventCallback(hrtc); |
| #endif /* (USE_HAL_RTC_REGISTER_CALLBACKS == 1) */ |
| } |
| } |
| |
| /* Get the AlarmB interrupt source enable status */ |
| if(__HAL_RTC_ALARM_GET_IT_SOURCE(hrtc, RTC_IT_ALRB) != 0U) |
| { |
| /* Get the pending status of the AlarmB Interrupt */ |
| if(__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRBF) != 0U) |
| { |
| /* Clear the AlarmB interrupt pending bit */ |
| __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRBF); |
| |
| /* AlarmB callback */ |
| #if (USE_HAL_RTC_REGISTER_CALLBACKS == 1) |
| hrtc->AlarmBEventCallback(hrtc); |
| #else /* (USE_HAL_RTC_REGISTER_CALLBACKS == 1) */ |
| HAL_RTCEx_AlarmBEventCallback(hrtc); |
| #endif /* (USE_HAL_RTC_REGISTER_CALLBACKS == 1) */ |
| } |
| } |
| #endif /* TAMP */ |
| |
| /* Change RTC state */ |
| hrtc->State = HAL_RTC_STATE_READY; |
| } |
| |
| /** |
| * @brief Alarm A callback. |
| * @param hrtc RTC handle |
| * @retval None |
| */ |
| __weak void HAL_RTC_AlarmAEventCallback(RTC_HandleTypeDef *hrtc) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(hrtc); |
| |
| /* NOTE : This function should not be modified, when the callback is needed, |
| the HAL_RTC_AlarmAEventCallback could be implemented in the user file |
| */ |
| } |
| |
| /** |
| * @brief Handle AlarmA Polling request. |
| * @param hrtc RTC handle |
| * @param Timeout Timeout duration |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_RTC_PollForAlarmAEvent(RTC_HandleTypeDef *hrtc, uint32_t Timeout) |
| { |
| |
| uint32_t tickstart = HAL_GetTick(); |
| |
| while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAF) == 0U) |
| { |
| if(Timeout != HAL_MAX_DELAY) |
| { |
| if(((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U)) |
| { |
| hrtc->State = HAL_RTC_STATE_TIMEOUT; |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| |
| /* Clear the Alarm interrupt pending bit */ |
| __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRAF); |
| |
| /* Change RTC state */ |
| hrtc->State = HAL_RTC_STATE_READY; |
| |
| return HAL_OK; |
| } |
| |
| /** |
| * @} |
| */ |
| |
| /** @addtogroup RTC_Exported_Functions_Group4 |
| * @brief Peripheral Control functions |
| * |
| @verbatim |
| =============================================================================== |
| ##### Peripheral Control functions ##### |
| =============================================================================== |
| [..] |
| This subsection provides functions allowing to |
| (+) Wait for RTC Time and Date Synchronization |
| |
| @endverbatim |
| * @{ |
| */ |
| |
| /** |
| * @brief Wait until the RTC Time and Date registers (RTC_TR and RTC_DR) are |
| * synchronized with RTC APB clock. |
| * @note The RTC Resynchronization mode is write protected, use the |
| * __HAL_RTC_WRITEPROTECTION_DISABLE() before calling this function. |
| * @note To read the calendar through the shadow registers after Calendar |
| * initialization, calendar update or after wakeup from low power modes |
| * the software must first clear the RSF flag. |
| * The software must then wait until it is set again before reading |
| * the calendar, which means that the calendar registers have been |
| * correctly copied into the RTC_TR and RTC_DR shadow registers. |
| * @param hrtc RTC handle |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_RTC_WaitForSynchro(RTC_HandleTypeDef *hrtc) |
| { |
| uint32_t tickstart; |
| |
| /* Clear RSF flag, keep reserved bits at reset values (setting other flags has no effect) */ |
| #if defined(TAMP) |
| hrtc->Instance->ICSR = ((uint32_t)(RTC_RSF_MASK & RTC_ICSR_RESERVED_MASK)); |
| #else |
| hrtc->Instance->ISR = ((uint32_t)(RTC_RSF_MASK & RTC_ISR_RESERVED_MASK)); |
| #endif /* TAMP */ |
| |
| tickstart = HAL_GetTick(); |
| |
| /* Wait the registers to be synchronised */ |
| #if defined(TAMP) |
| while ((hrtc->Instance->ICSR & RTC_ICSR_RSF) == 0U) |
| #else |
| while ((hrtc->Instance->ISR & RTC_ISR_RSF) == 0U) |
| #endif /* TAMP */ |
| { |
| if((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| |
| return HAL_OK; |
| } |
| |
| /** |
| * @} |
| */ |
| |
| /** @addtogroup RTC_Exported_Functions_Group5 |
| * @brief Peripheral State functions |
| * |
| @verbatim |
| =============================================================================== |
| ##### Peripheral State functions ##### |
| =============================================================================== |
| [..] |
| This subsection provides functions allowing to |
| (+) Get RTC state |
| |
| @endverbatim |
| * @{ |
| */ |
| /** |
| * @brief Return the RTC handle state. |
| * @param hrtc RTC handle |
| * @retval HAL state |
| */ |
| HAL_RTCStateTypeDef HAL_RTC_GetState(RTC_HandleTypeDef *hrtc) |
| { |
| /* Return RTC handle state */ |
| return hrtc->State; |
| } |
| |
| /** |
| * @} |
| */ |
| |
| /** |
| * @} |
| */ |
| |
| /** @addtogroup RTC_Private_Functions |
| * @{ |
| */ |
| /** |
| * @brief Enter the RTC Initialization mode. |
| * @note The RTC Initialization mode is write protected, use the |
| * __HAL_RTC_WRITEPROTECTION_DISABLE() before calling this function. |
| * @param hrtc RTC handle |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef RTC_EnterInitMode(RTC_HandleTypeDef *hrtc) |
| { |
| uint32_t tickstart; |
| HAL_StatusTypeDef status = HAL_OK; |
| /* Check if the Initialization mode is set */ |
| #if defined(TAMP) |
| if ((hrtc->Instance->ICSR & RTC_ICSR_INITF) == 0U) |
| { |
| /* Set the Initialization mode */ |
| SET_BIT(hrtc->Instance->ICSR, RTC_ICSR_INIT); |
| |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till RTC is in INIT state and if timeout is reached exit */ |
| while (((hrtc->Instance->ICSR & RTC_ICSR_INITF) == 0U) && (status != HAL_TIMEOUT)) |
| #else |
| if ((hrtc->Instance->ISR & RTC_ISR_INITF) == 0U) |
| { |
| /* Set the Initialization mode */ |
| hrtc->Instance->ISR = (uint32_t)RTC_INIT_MASK; |
| |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till RTC is in INIT state and if timeout is reached exit */ |
| while (((hrtc->Instance->ISR & RTC_ISR_INITF) == 0U) && (status != HAL_TIMEOUT)) |
| #endif /* TAMP */ |
| { |
| if((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE) |
| { |
| status = HAL_TIMEOUT; |
| hrtc->State = HAL_RTC_STATE_TIMEOUT; |
| } |
| } |
| } |
| |
| return status; |
| } |
| |
| /** |
| * @brief Exit the RTC Initialization mode. |
| * @param hrtc RTC handle |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef RTC_ExitInitMode(RTC_HandleTypeDef *hrtc) |
| { |
| HAL_StatusTypeDef status = HAL_OK; |
| |
| /* Check if the Initialization mode is set */ |
| |
| /* Exit Initialization mode */ |
| #if defined(TAMP) |
| CLEAR_BIT(RTC->ICSR, RTC_ICSR_INIT); |
| #else |
| CLEAR_BIT(RTC->ISR, RTC_ISR_INIT); |
| #endif /* TAMP */ |
| |
| /* If CR_BYPSHAD bit = 0, wait for synchro */ |
| if (READ_BIT(RTC->CR, RTC_CR_BYPSHAD) == 0U) |
| { |
| if (HAL_RTC_WaitForSynchro(hrtc) != HAL_OK) |
| { |
| hrtc->State = HAL_RTC_STATE_TIMEOUT; |
| status = HAL_TIMEOUT; |
| } |
| } |
| else |
| { |
| /* Clear BYPSHAD bit */ |
| CLEAR_BIT(RTC->CR, RTC_CR_BYPSHAD); |
| if (HAL_RTC_WaitForSynchro(hrtc) != HAL_OK) |
| { |
| hrtc->State = HAL_RTC_STATE_TIMEOUT; |
| status = HAL_TIMEOUT; |
| } |
| /* Restore BYPSHAD bit */ |
| SET_BIT(RTC->CR, RTC_CR_BYPSHAD); |
| } |
| |
| return status; |
| } |
| |
| /** |
| * @brief Convert a 2 digit decimal to BCD format. |
| * @param Value Byte to be converted |
| * @retval Converted byte |
| */ |
| uint8_t RTC_ByteToBcd2(uint8_t Value) |
| { |
| uint32_t bcdhigh = 0U; |
| uint8_t bcdlow = Value; |
| |
| while (bcdlow >= 10U) |
| { |
| bcdhigh++; |
| bcdlow -= 10U; |
| } |
| |
| return ((uint8_t)(bcdhigh << 4U) | bcdlow); |
| } |
| |
| /** |
| * @brief Convert from 2 digit BCD to Binary. |
| * @param Value BCD value to be converted |
| * @retval Converted word |
| */ |
| uint8_t RTC_Bcd2ToByte(uint8_t Value) |
| { |
| uint8_t tmp; |
| tmp = ((Value & 0xF0U) >> 4U) * 10U; |
| return (tmp + (Value & 0x0FU)); |
| } |
| |
| /** |
| * @} |
| */ |
| |
| #endif /* HAL_RTC_MODULE_ENABLED */ |
| /** |
| * @} |
| */ |
| |
| /** |
| * @} |
| */ |
| |