| /** |
| ****************************************************************************** |
| * @file stm32h7xx_hal_fdcan.c |
| * @author MCD Application Team |
| * @brief FDCAN HAL module driver. |
| * This file provides firmware functions to manage the following |
| * functionalities of the Flexible DataRate Controller Area Network |
| * (FDCAN) peripheral: |
| * + Initialization and de-initialization functions |
| * + IO operation functions |
| * + Peripheral Configuration and Control functions |
| * + Peripheral State and Error functions |
| ****************************************************************************** |
| * @attention |
| * |
| * Copyright (c) 2017 STMicroelectronics. |
| * All rights reserved. |
| * |
| * This software is licensed under terms that can be found in the LICENSE file |
| * in the root directory of this software component. |
| * If no LICENSE file comes with this software, it is provided AS-IS. |
| * |
| ****************************************************************************** |
| @verbatim |
| ============================================================================== |
| ##### How to use this driver ##### |
| ============================================================================== |
| [..] |
| (#) Initialize the FDCAN peripheral using HAL_FDCAN_Init function. |
| |
| (#) If needed , configure the reception filters and optional features using |
| the following configuration functions: |
| (++) HAL_FDCAN_ConfigClockCalibration |
| (++) HAL_FDCAN_ConfigFilter |
| (++) HAL_FDCAN_ConfigGlobalFilter |
| (++) HAL_FDCAN_ConfigExtendedIdMask |
| (++) HAL_FDCAN_ConfigRxFifoOverwrite |
| (++) HAL_FDCAN_ConfigFifoWatermark |
| (++) HAL_FDCAN_ConfigRamWatchdog |
| (++) HAL_FDCAN_ConfigTimestampCounter |
| (++) HAL_FDCAN_EnableTimestampCounter |
| (++) HAL_FDCAN_DisableTimestampCounter |
| (++) HAL_FDCAN_ConfigTimeoutCounter |
| (++) HAL_FDCAN_EnableTimeoutCounter |
| (++) HAL_FDCAN_DisableTimeoutCounter |
| (++) HAL_FDCAN_ConfigTxDelayCompensation |
| (++) HAL_FDCAN_EnableTxDelayCompensation |
| (++) HAL_FDCAN_DisableTxDelayCompensation |
| (++) HAL_FDCAN_EnableISOMode |
| (++) HAL_FDCAN_DisableISOMode |
| (++) HAL_FDCAN_EnableEdgeFiltering |
| (++) HAL_FDCAN_DisableEdgeFiltering |
| (++) HAL_FDCAN_TT_ConfigOperation |
| (++) HAL_FDCAN_TT_ConfigReferenceMessage |
| (++) HAL_FDCAN_TT_ConfigTrigger |
| |
| (#) Start the FDCAN module using HAL_FDCAN_Start function. At this level |
| the node is active on the bus: it can send and receive messages. |
| |
| (#) The following Tx control functions can only be called when the FDCAN |
| module is started: |
| (++) HAL_FDCAN_AddMessageToTxFifoQ |
| (++) HAL_FDCAN_EnableTxBufferRequest |
| (++) HAL_FDCAN_AbortTxRequest |
| |
| (#) After having submitted a Tx request in Tx Fifo or Queue, it is possible to |
| get Tx buffer location used to place the Tx request thanks to |
| HAL_FDCAN_GetLatestTxFifoQRequestBuffer API. |
| It is then possible to abort later on the corresponding Tx Request using |
| HAL_FDCAN_AbortTxRequest API. |
| |
| (#) When a message is received into the FDCAN message RAM, it can be |
| retrieved using the HAL_FDCAN_GetRxMessage function. |
| |
| (#) Calling the HAL_FDCAN_Stop function stops the FDCAN module by entering |
| it to initialization mode and re-enabling access to configuration |
| registers through the configuration functions listed here above. |
| |
| (#) All other control functions can be called any time after initialization |
| phase, no matter if the FDCAN module is started or stopped. |
| |
| *** Polling mode operation *** |
| ============================== |
| [..] |
| (#) Reception and transmission states can be monitored via the following |
| functions: |
| (++) HAL_FDCAN_IsRxBufferMessageAvailable |
| (++) HAL_FDCAN_IsTxBufferMessagePending |
| (++) HAL_FDCAN_GetRxFifoFillLevel |
| (++) HAL_FDCAN_GetTxFifoFreeLevel |
| |
| *** Interrupt mode operation *** |
| ================================ |
| [..] |
| (#) There are two interrupt lines: line 0 and 1. |
| By default, all interrupts are assigned to line 0. Interrupt lines |
| can be configured using HAL_FDCAN_ConfigInterruptLines function. |
| |
| (#) Notifications are activated using HAL_FDCAN_ActivateNotification |
| function. Then, the process can be controlled through one of the |
| available user callbacks: HAL_FDCAN_xxxCallback. |
| |
| *** Callback registration *** |
| ============================================= |
| |
| The compilation define USE_HAL_FDCAN_REGISTER_CALLBACKS when set to 1 |
| allows the user to configure dynamically the driver callbacks. |
| Use Function HAL_FDCAN_RegisterCallback() or HAL_FDCAN_RegisterXXXCallback() |
| to register an interrupt callback. |
| |
| Function HAL_FDCAN_RegisterCallback() allows to register following callbacks: |
| (+) TxFifoEmptyCallback : Tx Fifo Empty Callback. |
| (+) RxBufferNewMessageCallback : Rx Buffer New Message Callback. |
| (+) HighPriorityMessageCallback : High Priority Message Callback. |
| (+) TimestampWraparoundCallback : Timestamp Wraparound Callback. |
| (+) TimeoutOccurredCallback : Timeout Occurred Callback. |
| (+) ErrorCallback : Error Callback. |
| (+) MspInitCallback : FDCAN MspInit. |
| (+) MspDeInitCallback : FDCAN MspDeInit. |
| This function takes as parameters the HAL peripheral handle, the Callback ID |
| and a pointer to the user callback function. |
| |
| For specific callbacks ClockCalibrationCallback, TxEventFifoCallback, RxFifo0Callback, RxFifo1Callback, |
| TxBufferCompleteCallback, TxBufferAbortCallback, ErrorStatusCallback, TT_ScheduleSyncCallback, TT_TimeMarkCallback, |
| TT_StopWatchCallback and TT_GlobalTimeCallback, use dedicated register callbacks: |
| respectively HAL_FDCAN_RegisterClockCalibrationCallback(), HAL_FDCAN_RegisterTxEventFifoCallback(), |
| HAL_FDCAN_RegisterRxFifo0Callback(), HAL_FDCAN_RegisterRxFifo1Callback(), |
| HAL_FDCAN_RegisterTxBufferCompleCallback(), HAL_FDCAN_RegisterTxBufferAbortCallback(), |
| HAL_FDCAN_RegisterErrorStatusCallback(), HAL_FDCAN_TT_RegisterScheduleSyncCallback(), |
| HAL_FDCAN_TT_RegisterTimeMarkCallback(), HAL_FDCAN_TT_RegisterStopWatchCallback() and |
| HAL_FDCAN_TT_RegisterGlobalTimeCallback(). |
| |
| Use function HAL_FDCAN_UnRegisterCallback() to reset a callback to the default |
| weak function. |
| HAL_FDCAN_UnRegisterCallback takes as parameters the HAL peripheral handle, |
| and the Callback ID. |
| This function allows to reset following callbacks: |
| (+) TxFifoEmptyCallback : Tx Fifo Empty Callback. |
| (+) RxBufferNewMessageCallback : Rx Buffer New Message Callback. |
| (+) HighPriorityMessageCallback : High Priority Message Callback. |
| (+) TimestampWraparoundCallback : Timestamp Wraparound Callback. |
| (+) TimeoutOccurredCallback : Timeout Occurred Callback. |
| (+) ErrorCallback : Error Callback. |
| (+) MspInitCallback : FDCAN MspInit. |
| (+) MspDeInitCallback : FDCAN MspDeInit. |
| |
| For specific callbacks ClockCalibrationCallback, TxEventFifoCallback, RxFifo0Callback, |
| RxFifo1Callback, TxBufferCompleteCallback, TxBufferAbortCallback, TT_ScheduleSyncCallback, |
| TT_TimeMarkCallback, TT_StopWatchCallback and TT_GlobalTimeCallback, use dedicated |
| register callbacks: respectively HAL_FDCAN_UnRegisterClockCalibrationCallback(), |
| HAL_FDCAN_UnRegisterTxEventFifoCallback(), HAL_FDCAN_UnRegisterRxFifo0Callback(), |
| HAL_FDCAN_UnRegisterRxFifo1Callback(), HAL_FDCAN_UnRegisterTxBufferCompleCallback(), |
| HAL_FDCAN_UnRegisterTxBufferAbortCallback(), HAL_FDCAN_UnRegisterErrorStatusCallback(), |
| HAL_FDCAN_TT_UnRegisterScheduleSyncCallback(), HAL_FDCAN_TT_UnRegisterTimeMarkCallback(), |
| HAL_FDCAN_TT_UnRegisterStopWatchCallback() and HAL_FDCAN_TT_UnRegisterGlobalTimeCallback(). |
| |
| By default, after the HAL_FDCAN_Init() and when the state is HAL_FDCAN_STATE_RESET, |
| all callbacks are set to the corresponding weak functions: |
| examples HAL_FDCAN_ErrorCallback(). |
| Exception done for MspInit and MspDeInit functions that are |
| reset to the legacy weak function in the HAL_FDCAN_Init()/ HAL_FDCAN_DeInit() only when |
| these callbacks are null (not registered beforehand). |
| if not, MspInit or MspDeInit are not null, the HAL_FDCAN_Init()/ HAL_FDCAN_DeInit() |
| keep and use the user MspInit/MspDeInit callbacks (registered beforehand) |
| |
| Callbacks can be registered/unregistered in HAL_FDCAN_STATE_READY state only. |
| Exception done MspInit/MspDeInit that can be registered/unregistered |
| in HAL_FDCAN_STATE_READY or HAL_FDCAN_STATE_RESET state, |
| thus registered (user) MspInit/DeInit callbacks can be used during the Init/DeInit. |
| In that case first register the MspInit/MspDeInit user callbacks |
| using HAL_FDCAN_RegisterCallback() before calling HAL_FDCAN_DeInit() |
| or HAL_FDCAN_Init() function. |
| |
| When The compilation define USE_HAL_FDCAN_REGISTER_CALLBACKS is set to 0 or |
| not defined, the callback registration feature is not available and all callbacks |
| are set to the corresponding weak functions. |
| |
| @endverbatim |
| ****************************************************************************** |
| */ |
| |
| /* Includes ------------------------------------------------------------------*/ |
| #include "stm32h7xx_hal.h" |
| |
| #if defined(FDCAN1) |
| |
| /** @addtogroup STM32H7xx_HAL_Driver |
| * @{ |
| */ |
| |
| /** @defgroup FDCAN FDCAN |
| * @brief FDCAN HAL module driver |
| * @{ |
| */ |
| |
| #ifdef HAL_FDCAN_MODULE_ENABLED |
| |
| /* Private typedef -----------------------------------------------------------*/ |
| /* Private define ------------------------------------------------------------*/ |
| /** @addtogroup FDCAN_Private_Constants |
| * @{ |
| */ |
| #define FDCAN_TIMEOUT_VALUE 10U |
| #define FDCAN_TIMEOUT_COUNT 50U |
| |
| #define FDCAN_TX_EVENT_FIFO_MASK (FDCAN_IR_TEFL | FDCAN_IR_TEFF | FDCAN_IR_TEFW | FDCAN_IR_TEFN) |
| #define FDCAN_RX_FIFO0_MASK (FDCAN_IR_RF0L | FDCAN_IR_RF0F | FDCAN_IR_RF0W | FDCAN_IR_RF0N) |
| #define FDCAN_RX_FIFO1_MASK (FDCAN_IR_RF1L | FDCAN_IR_RF1F | FDCAN_IR_RF1W | FDCAN_IR_RF1N) |
| #define FDCAN_ERROR_MASK (FDCAN_IR_ELO | FDCAN_IR_WDI | FDCAN_IR_PEA | FDCAN_IR_PED | FDCAN_IR_ARA) |
| #define FDCAN_ERROR_STATUS_MASK (FDCAN_IR_EP | FDCAN_IR_EW | FDCAN_IR_BO) |
| #define FDCAN_TT_SCHEDULE_SYNC_MASK (FDCAN_TTIR_SBC | FDCAN_TTIR_SMC | FDCAN_TTIR_CSM | FDCAN_TTIR_SOG) |
| #define FDCAN_TT_TIME_MARK_MASK (FDCAN_TTIR_RTMI | FDCAN_TTIR_TTMI) |
| #define FDCAN_TT_GLOBAL_TIME_MASK (FDCAN_TTIR_GTW | FDCAN_TTIR_GTD) |
| #define FDCAN_TT_DISTURBING_ERROR_MASK (FDCAN_TTIR_GTE | FDCAN_TTIR_TXU | FDCAN_TTIR_TXO | \ |
| FDCAN_TTIR_SE1 | FDCAN_TTIR_SE2 | FDCAN_TTIR_ELC) |
| #define FDCAN_TT_FATAL_ERROR_MASK (FDCAN_TTIR_IWT | FDCAN_TTIR_WT | FDCAN_TTIR_AW | FDCAN_TTIR_CER) |
| |
| #define FDCAN_ELEMENT_MASK_STDID ((uint32_t)0x1FFC0000U) /* Standard Identifier */ |
| #define FDCAN_ELEMENT_MASK_EXTID ((uint32_t)0x1FFFFFFFU) /* Extended Identifier */ |
| #define FDCAN_ELEMENT_MASK_RTR ((uint32_t)0x20000000U) /* Remote Transmission Request */ |
| #define FDCAN_ELEMENT_MASK_XTD ((uint32_t)0x40000000U) /* Extended Identifier */ |
| #define FDCAN_ELEMENT_MASK_ESI ((uint32_t)0x80000000U) /* Error State Indicator */ |
| #define FDCAN_ELEMENT_MASK_TS ((uint32_t)0x0000FFFFU) /* Timestamp */ |
| #define FDCAN_ELEMENT_MASK_DLC ((uint32_t)0x000F0000U) /* Data Length Code */ |
| #define FDCAN_ELEMENT_MASK_BRS ((uint32_t)0x00100000U) /* Bit Rate Switch */ |
| #define FDCAN_ELEMENT_MASK_FDF ((uint32_t)0x00200000U) /* FD Format */ |
| #define FDCAN_ELEMENT_MASK_EFC ((uint32_t)0x00800000U) /* Event FIFO Control */ |
| #define FDCAN_ELEMENT_MASK_MM ((uint32_t)0xFF000000U) /* Message Marker */ |
| #define FDCAN_ELEMENT_MASK_FIDX ((uint32_t)0x7F000000U) /* Filter Index */ |
| #define FDCAN_ELEMENT_MASK_ANMF ((uint32_t)0x80000000U) /* Accepted Non-matching Frame */ |
| #define FDCAN_ELEMENT_MASK_ET ((uint32_t)0x00C00000U) /* Event type */ |
| |
| #define FDCAN_MESSAGE_RAM_SIZE 0x2800U |
| #define FDCAN_MESSAGE_RAM_END_ADDRESS (SRAMCAN_BASE + FDCAN_MESSAGE_RAM_SIZE - 0x4U) /* Message RAM width is 4 Bytes */ |
| |
| /** |
| * @} |
| */ |
| |
| /* Private macro -------------------------------------------------------------*/ |
| /* Private variables ---------------------------------------------------------*/ |
| /** @addtogroup FDCAN_Private_Variables |
| * @{ |
| */ |
| static const uint8_t DLCtoBytes[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 12, 16, 20, 24, 32, 48, 64}; |
| /** |
| * @} |
| */ |
| |
| /* Private function prototypes -----------------------------------------------*/ |
| /** @addtogroup FDCAN_Private_Functions_Prototypes |
| * @{ |
| */ |
| static HAL_StatusTypeDef FDCAN_CalcultateRamBlockAddresses(FDCAN_HandleTypeDef *hfdcan); |
| static void FDCAN_CopyMessageToRAM(const FDCAN_HandleTypeDef *hfdcan, const FDCAN_TxHeaderTypeDef *pTxHeader, |
| const uint8_t *pTxData, uint32_t BufferIndex); |
| /** |
| * @} |
| */ |
| |
| /* Exported functions --------------------------------------------------------*/ |
| /** @defgroup FDCAN_Exported_Functions FDCAN Exported Functions |
| * @{ |
| */ |
| |
| /** @defgroup FDCAN_Exported_Functions_Group1 Initialization and de-initialization functions |
| * @brief Initialization and Configuration functions |
| * |
| @verbatim |
| ============================================================================== |
| ##### Initialization and de-initialization functions ##### |
| ============================================================================== |
| [..] This section provides functions allowing to: |
| (+) Initialize and configure the FDCAN. |
| (+) De-initialize the FDCAN. |
| (+) Enter FDCAN peripheral in power down mode. |
| (+) Exit power down mode. |
| (+) Register callbacks. |
| (+) Unregister callbacks. |
| |
| @endverbatim |
| * @{ |
| */ |
| |
| /** |
| * @brief Initializes the FDCAN peripheral according to the specified |
| * parameters in the FDCAN_InitTypeDef structure. |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_FDCAN_Init(FDCAN_HandleTypeDef *hfdcan) |
| { |
| uint32_t tickstart; |
| HAL_StatusTypeDef status; |
| const uint32_t CvtEltSize[] = {0, 0, 0, 0, 0, 1, 2, 3, 4, 0, 5, 0, 0, 0, 6, 0, 0, 0, 7}; |
| |
| /* Check FDCAN handle */ |
| if (hfdcan == NULL) |
| { |
| return HAL_ERROR; |
| } |
| |
| /* Check FDCAN instance */ |
| if (hfdcan->Instance == FDCAN1) |
| { |
| hfdcan->ttcan = (TTCAN_TypeDef *)((uint32_t)hfdcan->Instance + 0x100U); |
| } |
| |
| /* Check function parameters */ |
| assert_param(IS_FDCAN_ALL_INSTANCE(hfdcan->Instance)); |
| assert_param(IS_FDCAN_FRAME_FORMAT(hfdcan->Init.FrameFormat)); |
| assert_param(IS_FDCAN_MODE(hfdcan->Init.Mode)); |
| assert_param(IS_FUNCTIONAL_STATE(hfdcan->Init.AutoRetransmission)); |
| assert_param(IS_FUNCTIONAL_STATE(hfdcan->Init.TransmitPause)); |
| assert_param(IS_FUNCTIONAL_STATE(hfdcan->Init.ProtocolException)); |
| assert_param(IS_FDCAN_NOMINAL_PRESCALER(hfdcan->Init.NominalPrescaler)); |
| assert_param(IS_FDCAN_NOMINAL_SJW(hfdcan->Init.NominalSyncJumpWidth)); |
| assert_param(IS_FDCAN_NOMINAL_TSEG1(hfdcan->Init.NominalTimeSeg1)); |
| assert_param(IS_FDCAN_NOMINAL_TSEG2(hfdcan->Init.NominalTimeSeg2)); |
| if (hfdcan->Init.FrameFormat == FDCAN_FRAME_FD_BRS) |
| { |
| assert_param(IS_FDCAN_DATA_PRESCALER(hfdcan->Init.DataPrescaler)); |
| assert_param(IS_FDCAN_DATA_SJW(hfdcan->Init.DataSyncJumpWidth)); |
| assert_param(IS_FDCAN_DATA_TSEG1(hfdcan->Init.DataTimeSeg1)); |
| assert_param(IS_FDCAN_DATA_TSEG2(hfdcan->Init.DataTimeSeg2)); |
| } |
| assert_param(IS_FDCAN_MAX_VALUE(hfdcan->Init.StdFiltersNbr, 128U)); |
| assert_param(IS_FDCAN_MAX_VALUE(hfdcan->Init.ExtFiltersNbr, 64U)); |
| assert_param(IS_FDCAN_MAX_VALUE(hfdcan->Init.RxFifo0ElmtsNbr, 64U)); |
| if (hfdcan->Init.RxFifo0ElmtsNbr > 0U) |
| { |
| assert_param(IS_FDCAN_DATA_SIZE(hfdcan->Init.RxFifo0ElmtSize)); |
| } |
| assert_param(IS_FDCAN_MAX_VALUE(hfdcan->Init.RxFifo1ElmtsNbr, 64U)); |
| if (hfdcan->Init.RxFifo1ElmtsNbr > 0U) |
| { |
| assert_param(IS_FDCAN_DATA_SIZE(hfdcan->Init.RxFifo1ElmtSize)); |
| } |
| assert_param(IS_FDCAN_MAX_VALUE(hfdcan->Init.RxBuffersNbr, 64U)); |
| if (hfdcan->Init.RxBuffersNbr > 0U) |
| { |
| assert_param(IS_FDCAN_DATA_SIZE(hfdcan->Init.RxBufferSize)); |
| } |
| assert_param(IS_FDCAN_MAX_VALUE(hfdcan->Init.TxEventsNbr, 32U)); |
| assert_param(IS_FDCAN_MAX_VALUE((hfdcan->Init.TxBuffersNbr + hfdcan->Init.TxFifoQueueElmtsNbr), 32U)); |
| if (hfdcan->Init.TxFifoQueueElmtsNbr > 0U) |
| { |
| assert_param(IS_FDCAN_TX_FIFO_QUEUE_MODE(hfdcan->Init.TxFifoQueueMode)); |
| } |
| if ((hfdcan->Init.TxBuffersNbr + hfdcan->Init.TxFifoQueueElmtsNbr) > 0U) |
| { |
| assert_param(IS_FDCAN_DATA_SIZE(hfdcan->Init.TxElmtSize)); |
| } |
| |
| #if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1 |
| if (hfdcan->State == HAL_FDCAN_STATE_RESET) |
| { |
| /* Allocate lock resource and initialize it */ |
| hfdcan->Lock = HAL_UNLOCKED; |
| |
| /* Reset callbacks to legacy functions */ |
| hfdcan->ClockCalibrationCallback = HAL_FDCAN_ClockCalibrationCallback; /* ClockCalibrationCallback */ |
| hfdcan->TxEventFifoCallback = HAL_FDCAN_TxEventFifoCallback; /* TxEventFifoCallback */ |
| hfdcan->RxFifo0Callback = HAL_FDCAN_RxFifo0Callback; /* RxFifo0Callback */ |
| hfdcan->RxFifo1Callback = HAL_FDCAN_RxFifo1Callback; /* RxFifo1Callback */ |
| hfdcan->TxFifoEmptyCallback = HAL_FDCAN_TxFifoEmptyCallback; /* TxFifoEmptyCallback */ |
| hfdcan->TxBufferCompleteCallback = HAL_FDCAN_TxBufferCompleteCallback; /* TxBufferCompleteCallback */ |
| hfdcan->TxBufferAbortCallback = HAL_FDCAN_TxBufferAbortCallback; /* TxBufferAbortCallback */ |
| hfdcan->RxBufferNewMessageCallback = HAL_FDCAN_RxBufferNewMessageCallback; /* RxBufferNewMessageCallback */ |
| hfdcan->HighPriorityMessageCallback = HAL_FDCAN_HighPriorityMessageCallback; /* HighPriorityMessageCallback */ |
| hfdcan->TimestampWraparoundCallback = HAL_FDCAN_TimestampWraparoundCallback; /* TimestampWraparoundCallback */ |
| hfdcan->TimeoutOccurredCallback = HAL_FDCAN_TimeoutOccurredCallback; /* TimeoutOccurredCallback */ |
| hfdcan->ErrorCallback = HAL_FDCAN_ErrorCallback; /* ErrorCallback */ |
| hfdcan->ErrorStatusCallback = HAL_FDCAN_ErrorStatusCallback; /* ErrorStatusCallback */ |
| hfdcan->TT_ScheduleSyncCallback = HAL_FDCAN_TT_ScheduleSyncCallback; /* TT_ScheduleSyncCallback */ |
| hfdcan->TT_TimeMarkCallback = HAL_FDCAN_TT_TimeMarkCallback; /* TT_TimeMarkCallback */ |
| hfdcan->TT_StopWatchCallback = HAL_FDCAN_TT_StopWatchCallback; /* TT_StopWatchCallback */ |
| hfdcan->TT_GlobalTimeCallback = HAL_FDCAN_TT_GlobalTimeCallback; /* TT_GlobalTimeCallback */ |
| |
| if (hfdcan->MspInitCallback == NULL) |
| { |
| hfdcan->MspInitCallback = HAL_FDCAN_MspInit; /* Legacy weak MspInit */ |
| } |
| |
| /* Init the low level hardware: CLOCK, NVIC */ |
| hfdcan->MspInitCallback(hfdcan); |
| } |
| #else |
| if (hfdcan->State == HAL_FDCAN_STATE_RESET) |
| { |
| /* Allocate lock resource and initialize it */ |
| hfdcan->Lock = HAL_UNLOCKED; |
| |
| /* Init the low level hardware: CLOCK, NVIC */ |
| HAL_FDCAN_MspInit(hfdcan); |
| } |
| #endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */ |
| |
| /* Exit from Sleep mode */ |
| CLEAR_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_CSR); |
| |
| /* Get tick */ |
| tickstart = HAL_GetTick(); |
| |
| /* Check Sleep mode acknowledge */ |
| while ((hfdcan->Instance->CCCR & FDCAN_CCCR_CSA) == FDCAN_CCCR_CSA) |
| { |
| if ((HAL_GetTick() - tickstart) > FDCAN_TIMEOUT_VALUE) |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT; |
| |
| /* Change FDCAN state */ |
| hfdcan->State = HAL_FDCAN_STATE_ERROR; |
| |
| return HAL_ERROR; |
| } |
| } |
| |
| /* Request initialisation */ |
| SET_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_INIT); |
| |
| /* Get tick */ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait until the INIT bit into CCCR register is set */ |
| while ((hfdcan->Instance->CCCR & FDCAN_CCCR_INIT) == 0U) |
| { |
| /* Check for the Timeout */ |
| if ((HAL_GetTick() - tickstart) > FDCAN_TIMEOUT_VALUE) |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT; |
| |
| /* Change FDCAN state */ |
| hfdcan->State = HAL_FDCAN_STATE_ERROR; |
| |
| return HAL_ERROR; |
| } |
| } |
| |
| /* Enable configuration change */ |
| SET_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_CCE); |
| |
| /* Set the no automatic retransmission */ |
| if (hfdcan->Init.AutoRetransmission == ENABLE) |
| { |
| CLEAR_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_DAR); |
| } |
| else |
| { |
| SET_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_DAR); |
| } |
| |
| /* Set the transmit pause feature */ |
| if (hfdcan->Init.TransmitPause == ENABLE) |
| { |
| SET_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_TXP); |
| } |
| else |
| { |
| CLEAR_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_TXP); |
| } |
| |
| /* Set the Protocol Exception Handling */ |
| if (hfdcan->Init.ProtocolException == ENABLE) |
| { |
| CLEAR_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_PXHD); |
| } |
| else |
| { |
| SET_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_PXHD); |
| } |
| |
| /* Set FDCAN Frame Format */ |
| MODIFY_REG(hfdcan->Instance->CCCR, FDCAN_FRAME_FD_BRS, hfdcan->Init.FrameFormat); |
| |
| /* Reset FDCAN Operation Mode */ |
| CLEAR_BIT(hfdcan->Instance->CCCR, (FDCAN_CCCR_TEST | FDCAN_CCCR_MON | FDCAN_CCCR_ASM)); |
| CLEAR_BIT(hfdcan->Instance->TEST, FDCAN_TEST_LBCK); |
| |
| /* Set FDCAN Operating Mode: |
| | Normal | Restricted | Bus | Internal | External |
| | | Operation | Monitoring | LoopBack | LoopBack |
| CCCR.TEST | 0 | 0 | 0 | 1 | 1 |
| CCCR.MON | 0 | 0 | 1 | 1 | 0 |
| TEST.LBCK | 0 | 0 | 0 | 1 | 1 |
| CCCR.ASM | 0 | 1 | 0 | 0 | 0 |
| */ |
| if (hfdcan->Init.Mode == FDCAN_MODE_RESTRICTED_OPERATION) |
| { |
| /* Enable Restricted Operation mode */ |
| SET_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_ASM); |
| } |
| else if (hfdcan->Init.Mode != FDCAN_MODE_NORMAL) |
| { |
| if (hfdcan->Init.Mode != FDCAN_MODE_BUS_MONITORING) |
| { |
| /* Enable write access to TEST register */ |
| SET_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_TEST); |
| |
| /* Enable LoopBack mode */ |
| SET_BIT(hfdcan->Instance->TEST, FDCAN_TEST_LBCK); |
| |
| if (hfdcan->Init.Mode == FDCAN_MODE_INTERNAL_LOOPBACK) |
| { |
| SET_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_MON); |
| } |
| } |
| else |
| { |
| /* Enable bus monitoring mode */ |
| SET_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_MON); |
| } |
| } |
| else |
| { |
| /* Nothing to do: normal mode */ |
| } |
| |
| /* Set the nominal bit timing register */ |
| hfdcan->Instance->NBTP = ((((uint32_t)hfdcan->Init.NominalSyncJumpWidth - 1U) << FDCAN_NBTP_NSJW_Pos) | \ |
| (((uint32_t)hfdcan->Init.NominalTimeSeg1 - 1U) << FDCAN_NBTP_NTSEG1_Pos) | \ |
| (((uint32_t)hfdcan->Init.NominalTimeSeg2 - 1U) << FDCAN_NBTP_NTSEG2_Pos) | \ |
| (((uint32_t)hfdcan->Init.NominalPrescaler - 1U) << FDCAN_NBTP_NBRP_Pos)); |
| |
| /* If FD operation with BRS is selected, set the data bit timing register */ |
| if (hfdcan->Init.FrameFormat == FDCAN_FRAME_FD_BRS) |
| { |
| hfdcan->Instance->DBTP = ((((uint32_t)hfdcan->Init.DataSyncJumpWidth - 1U) << FDCAN_DBTP_DSJW_Pos) | \ |
| (((uint32_t)hfdcan->Init.DataTimeSeg1 - 1U) << FDCAN_DBTP_DTSEG1_Pos) | \ |
| (((uint32_t)hfdcan->Init.DataTimeSeg2 - 1U) << FDCAN_DBTP_DTSEG2_Pos) | \ |
| (((uint32_t)hfdcan->Init.DataPrescaler - 1U) << FDCAN_DBTP_DBRP_Pos)); |
| } |
| |
| if (hfdcan->Init.TxFifoQueueElmtsNbr > 0U) |
| { |
| /* Select between Tx FIFO and Tx Queue operation modes */ |
| SET_BIT(hfdcan->Instance->TXBC, hfdcan->Init.TxFifoQueueMode); |
| } |
| |
| /* Configure Tx element size */ |
| if ((hfdcan->Init.TxBuffersNbr + hfdcan->Init.TxFifoQueueElmtsNbr) > 0U) |
| { |
| MODIFY_REG(hfdcan->Instance->TXESC, FDCAN_TXESC_TBDS, CvtEltSize[hfdcan->Init.TxElmtSize]); |
| } |
| |
| /* Configure Rx FIFO 0 element size */ |
| if (hfdcan->Init.RxFifo0ElmtsNbr > 0U) |
| { |
| MODIFY_REG(hfdcan->Instance->RXESC, FDCAN_RXESC_F0DS, |
| (CvtEltSize[hfdcan->Init.RxFifo0ElmtSize] << FDCAN_RXESC_F0DS_Pos)); |
| } |
| |
| /* Configure Rx FIFO 1 element size */ |
| if (hfdcan->Init.RxFifo1ElmtsNbr > 0U) |
| { |
| MODIFY_REG(hfdcan->Instance->RXESC, FDCAN_RXESC_F1DS, |
| (CvtEltSize[hfdcan->Init.RxFifo1ElmtSize] << FDCAN_RXESC_F1DS_Pos)); |
| } |
| |
| /* Configure Rx buffer element size */ |
| if (hfdcan->Init.RxBuffersNbr > 0U) |
| { |
| MODIFY_REG(hfdcan->Instance->RXESC, FDCAN_RXESC_RBDS, |
| (CvtEltSize[hfdcan->Init.RxBufferSize] << FDCAN_RXESC_RBDS_Pos)); |
| } |
| |
| /* By default operation mode is set to Event-driven communication. |
| If Time-triggered communication is needed, user should call the |
| HAL_FDCAN_TT_ConfigOperation function just after the HAL_FDCAN_Init */ |
| if (hfdcan->Instance == FDCAN1) |
| { |
| CLEAR_BIT(hfdcan->ttcan->TTOCF, FDCAN_TTOCF_OM); |
| } |
| |
| /* Initialize the Latest Tx FIFO/Queue request buffer index */ |
| hfdcan->LatestTxFifoQRequest = 0U; |
| |
| /* Initialize the error code */ |
| hfdcan->ErrorCode = HAL_FDCAN_ERROR_NONE; |
| |
| /* Initialize the FDCAN state */ |
| hfdcan->State = HAL_FDCAN_STATE_READY; |
| |
| /* Calculate each RAM block address */ |
| status = FDCAN_CalcultateRamBlockAddresses(hfdcan); |
| |
| /* Return function status */ |
| return status; |
| } |
| |
| /** |
| * @brief Deinitializes the FDCAN peripheral registers to their default reset values. |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_FDCAN_DeInit(FDCAN_HandleTypeDef *hfdcan) |
| { |
| /* Check FDCAN handle */ |
| if (hfdcan == NULL) |
| { |
| return HAL_ERROR; |
| } |
| |
| /* Check function parameters */ |
| assert_param(IS_FDCAN_ALL_INSTANCE(hfdcan->Instance)); |
| |
| /* Stop the FDCAN module: return value is voluntary ignored */ |
| (void)HAL_FDCAN_Stop(hfdcan); |
| |
| /* Disable Interrupt lines */ |
| CLEAR_BIT(hfdcan->Instance->ILE, (FDCAN_INTERRUPT_LINE0 | FDCAN_INTERRUPT_LINE1)); |
| |
| #if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1 |
| if (hfdcan->MspDeInitCallback == NULL) |
| { |
| hfdcan->MspDeInitCallback = HAL_FDCAN_MspDeInit; /* Legacy weak MspDeInit */ |
| } |
| |
| /* DeInit the low level hardware: CLOCK, NVIC */ |
| hfdcan->MspDeInitCallback(hfdcan); |
| #else |
| /* DeInit the low level hardware: CLOCK, NVIC */ |
| HAL_FDCAN_MspDeInit(hfdcan); |
| #endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */ |
| |
| /* Reset the FDCAN ErrorCode */ |
| hfdcan->ErrorCode = HAL_FDCAN_ERROR_NONE; |
| |
| /* Change FDCAN state */ |
| hfdcan->State = HAL_FDCAN_STATE_RESET; |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Initializes the FDCAN MSP. |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @retval None |
| */ |
| __weak void HAL_FDCAN_MspInit(FDCAN_HandleTypeDef *hfdcan) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(hfdcan); |
| /* NOTE: This function Should not be modified, when the callback is needed, |
| the HAL_FDCAN_MspInit could be implemented in the user file |
| */ |
| } |
| |
| /** |
| * @brief DeInitializes the FDCAN MSP. |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @retval None |
| */ |
| __weak void HAL_FDCAN_MspDeInit(FDCAN_HandleTypeDef *hfdcan) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(hfdcan); |
| /* NOTE: This function Should not be modified, when the callback is needed, |
| the HAL_FDCAN_MspDeInit could be implemented in the user file |
| */ |
| } |
| |
| /** |
| * @brief Enter FDCAN peripheral in sleep mode. |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_FDCAN_EnterPowerDownMode(FDCAN_HandleTypeDef *hfdcan) |
| { |
| uint32_t tickstart; |
| |
| /* Request clock stop */ |
| SET_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_CSR); |
| |
| /* Get tick */ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait until FDCAN is ready for power down */ |
| while ((hfdcan->Instance->CCCR & FDCAN_CCCR_CSA) == 0U) |
| { |
| if ((HAL_GetTick() - tickstart) > FDCAN_TIMEOUT_VALUE) |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT; |
| |
| /* Change FDCAN state */ |
| hfdcan->State = HAL_FDCAN_STATE_ERROR; |
| |
| return HAL_ERROR; |
| } |
| } |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Exit power down mode. |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_FDCAN_ExitPowerDownMode(FDCAN_HandleTypeDef *hfdcan) |
| { |
| uint32_t tickstart; |
| |
| /* Reset clock stop request */ |
| CLEAR_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_CSR); |
| |
| /* Get tick */ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait until FDCAN exits sleep mode */ |
| while ((hfdcan->Instance->CCCR & FDCAN_CCCR_CSA) == FDCAN_CCCR_CSA) |
| { |
| if ((HAL_GetTick() - tickstart) > FDCAN_TIMEOUT_VALUE) |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT; |
| |
| /* Change FDCAN state */ |
| hfdcan->State = HAL_FDCAN_STATE_ERROR; |
| |
| return HAL_ERROR; |
| } |
| } |
| |
| /* Enter normal operation */ |
| CLEAR_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_INIT); |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| |
| #if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1 |
| /** |
| * @brief Register a FDCAN CallBack. |
| * To be used instead of the weak predefined callback |
| * @param hfdcan pointer to a FDCAN_HandleTypeDef structure that contains |
| * the configuration information for FDCAN module |
| * @param CallbackID ID of the callback to be registered |
| * This parameter can be one of the following values: |
| * @arg @ref HAL_FDCAN_TX_FIFO_EMPTY_CB_ID Tx Fifo Empty callback ID |
| * @arg @ref HAL_FDCAN_RX_BUFFER_NEW_MSG_CB_ID Rx buffer new message callback ID |
| * @arg @ref HAL_FDCAN_HIGH_PRIO_MESSAGE_CB_ID High priority message callback ID |
| * @arg @ref HAL_FDCAN_TIMESTAMP_WRAPAROUND_CB_ID Timestamp wraparound callback ID |
| * @arg @ref HAL_FDCAN_TIMEOUT_OCCURRED_CB_ID Timeout occurred callback ID |
| * @arg @ref HAL_FDCAN_ERROR_CALLBACK_CB_ID Error callback ID |
| * @arg @ref HAL_FDCAN_MSPINIT_CB_ID MspInit callback ID |
| * @arg @ref HAL_FDCAN_MSPDEINIT_CB_ID MspDeInit callback ID |
| * @param pCallback pointer to the Callback function |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_FDCAN_RegisterCallback(FDCAN_HandleTypeDef *hfdcan, HAL_FDCAN_CallbackIDTypeDef CallbackID, |
| void (* pCallback)(FDCAN_HandleTypeDef *_hFDCAN)) |
| { |
| HAL_StatusTypeDef status = HAL_OK; |
| |
| if (pCallback == NULL) |
| { |
| /* Update the error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; |
| |
| return HAL_ERROR; |
| } |
| |
| if (hfdcan->State == HAL_FDCAN_STATE_READY) |
| { |
| switch (CallbackID) |
| { |
| case HAL_FDCAN_TX_FIFO_EMPTY_CB_ID : |
| hfdcan->TxFifoEmptyCallback = pCallback; |
| break; |
| |
| case HAL_FDCAN_RX_BUFFER_NEW_MSG_CB_ID : |
| hfdcan->RxBufferNewMessageCallback = pCallback; |
| break; |
| |
| case HAL_FDCAN_HIGH_PRIO_MESSAGE_CB_ID : |
| hfdcan->HighPriorityMessageCallback = pCallback; |
| break; |
| |
| case HAL_FDCAN_TIMESTAMP_WRAPAROUND_CB_ID : |
| hfdcan->TimestampWraparoundCallback = pCallback; |
| break; |
| |
| case HAL_FDCAN_TIMEOUT_OCCURRED_CB_ID : |
| hfdcan->TimeoutOccurredCallback = pCallback; |
| break; |
| |
| case HAL_FDCAN_ERROR_CALLBACK_CB_ID : |
| hfdcan->ErrorCallback = pCallback; |
| break; |
| |
| case HAL_FDCAN_MSPINIT_CB_ID : |
| hfdcan->MspInitCallback = pCallback; |
| break; |
| |
| case HAL_FDCAN_MSPDEINIT_CB_ID : |
| hfdcan->MspDeInitCallback = pCallback; |
| break; |
| |
| default : |
| /* Update the error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; |
| |
| /* Return error status */ |
| status = HAL_ERROR; |
| break; |
| } |
| } |
| else if (hfdcan->State == HAL_FDCAN_STATE_RESET) |
| { |
| switch (CallbackID) |
| { |
| case HAL_FDCAN_MSPINIT_CB_ID : |
| hfdcan->MspInitCallback = pCallback; |
| break; |
| |
| case HAL_FDCAN_MSPDEINIT_CB_ID : |
| hfdcan->MspDeInitCallback = pCallback; |
| break; |
| |
| default : |
| /* Update the error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; |
| |
| /* Return error status */ |
| status = HAL_ERROR; |
| break; |
| } |
| } |
| else |
| { |
| /* Update the error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; |
| |
| /* Return error status */ |
| status = HAL_ERROR; |
| } |
| |
| return status; |
| } |
| |
| /** |
| * @brief Unregister a FDCAN CallBack. |
| * FDCAN callback is redirected to the weak predefined callback |
| * @param hfdcan pointer to a FDCAN_HandleTypeDef structure that contains |
| * the configuration information for FDCAN module |
| * @param CallbackID ID of the callback to be unregistered |
| * This parameter can be one of the following values: |
| * @arg @ref HAL_FDCAN_TX_FIFO_EMPTY_CB_ID Tx Fifo Empty callback ID |
| * @arg @ref HAL_FDCAN_RX_BUFFER_NEW_MSG_CB_ID Rx buffer new message callback ID |
| * @arg @ref HAL_FDCAN_HIGH_PRIO_MESSAGE_CB_ID High priority message callback ID |
| * @arg @ref HAL_FDCAN_TIMESTAMP_WRAPAROUND_CB_ID Timestamp wraparound callback ID |
| * @arg @ref HAL_FDCAN_TIMEOUT_OCCURRED_CB_ID Timeout occurred callback ID |
| * @arg @ref HAL_FDCAN_ERROR_CALLBACK_CB_ID Error callback ID |
| * @arg @ref HAL_FDCAN_MSPINIT_CB_ID MspInit callback ID |
| * @arg @ref HAL_FDCAN_MSPDEINIT_CB_ID MspDeInit callback ID |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_FDCAN_UnRegisterCallback(FDCAN_HandleTypeDef *hfdcan, HAL_FDCAN_CallbackIDTypeDef CallbackID) |
| { |
| HAL_StatusTypeDef status = HAL_OK; |
| |
| if (hfdcan->State == HAL_FDCAN_STATE_READY) |
| { |
| switch (CallbackID) |
| { |
| case HAL_FDCAN_TX_FIFO_EMPTY_CB_ID : |
| hfdcan->TxFifoEmptyCallback = HAL_FDCAN_TxFifoEmptyCallback; |
| break; |
| |
| case HAL_FDCAN_RX_BUFFER_NEW_MSG_CB_ID : |
| hfdcan->RxBufferNewMessageCallback = HAL_FDCAN_RxBufferNewMessageCallback; |
| break; |
| |
| case HAL_FDCAN_HIGH_PRIO_MESSAGE_CB_ID : |
| hfdcan->HighPriorityMessageCallback = HAL_FDCAN_HighPriorityMessageCallback; |
| break; |
| |
| case HAL_FDCAN_TIMESTAMP_WRAPAROUND_CB_ID : |
| hfdcan->TimestampWraparoundCallback = HAL_FDCAN_TimestampWraparoundCallback; |
| break; |
| |
| case HAL_FDCAN_TIMEOUT_OCCURRED_CB_ID : |
| hfdcan->TimeoutOccurredCallback = HAL_FDCAN_TimeoutOccurredCallback; |
| break; |
| |
| case HAL_FDCAN_ERROR_CALLBACK_CB_ID : |
| hfdcan->ErrorCallback = HAL_FDCAN_ErrorCallback; |
| break; |
| |
| case HAL_FDCAN_MSPINIT_CB_ID : |
| hfdcan->MspInitCallback = HAL_FDCAN_MspInit; |
| break; |
| |
| case HAL_FDCAN_MSPDEINIT_CB_ID : |
| hfdcan->MspDeInitCallback = HAL_FDCAN_MspDeInit; |
| break; |
| |
| default : |
| /* Update the error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; |
| |
| /* Return error status */ |
| status = HAL_ERROR; |
| break; |
| } |
| } |
| else if (hfdcan->State == HAL_FDCAN_STATE_RESET) |
| { |
| switch (CallbackID) |
| { |
| case HAL_FDCAN_MSPINIT_CB_ID : |
| hfdcan->MspInitCallback = HAL_FDCAN_MspInit; |
| break; |
| |
| case HAL_FDCAN_MSPDEINIT_CB_ID : |
| hfdcan->MspDeInitCallback = HAL_FDCAN_MspDeInit; |
| break; |
| |
| default : |
| /* Update the error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; |
| |
| /* Return error status */ |
| status = HAL_ERROR; |
| break; |
| } |
| } |
| else |
| { |
| /* Update the error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; |
| |
| /* Return error status */ |
| status = HAL_ERROR; |
| } |
| |
| return status; |
| } |
| |
| /** |
| * @brief Register Clock Calibration FDCAN Callback |
| * To be used instead of the weak HAL_FDCAN_ClockCalibrationCallback() predefined callback |
| * @param hfdcan FDCAN handle |
| * @param pCallback pointer to the Clock Calibration Callback function |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_FDCAN_RegisterClockCalibrationCallback(FDCAN_HandleTypeDef *hfdcan, |
| pFDCAN_ClockCalibrationCallbackTypeDef pCallback) |
| { |
| HAL_StatusTypeDef status = HAL_OK; |
| |
| if (pCallback == NULL) |
| { |
| /* Update the error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; |
| return HAL_ERROR; |
| } |
| |
| if (hfdcan->State == HAL_FDCAN_STATE_READY) |
| { |
| hfdcan->ClockCalibrationCallback = pCallback; |
| } |
| else |
| { |
| /* Update the error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; |
| |
| /* Return error status */ |
| status = HAL_ERROR; |
| } |
| |
| return status; |
| } |
| |
| /** |
| * @brief UnRegister the Clock Calibration FDCAN Callback |
| * Clock Calibration FDCAN Callback is redirected to the weak |
| * HAL_FDCAN_ClockCalibrationCallback() predefined callback |
| * @param hfdcan FDCAN handle |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_FDCAN_UnRegisterClockCalibrationCallback(FDCAN_HandleTypeDef *hfdcan) |
| { |
| HAL_StatusTypeDef status = HAL_OK; |
| |
| if (hfdcan->State == HAL_FDCAN_STATE_READY) |
| { |
| hfdcan->ClockCalibrationCallback = HAL_FDCAN_ClockCalibrationCallback; /* Legacy weak ClockCalibrationCallback */ |
| } |
| else |
| { |
| /* Update the error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; |
| |
| /* Return error status */ |
| status = HAL_ERROR; |
| } |
| |
| return status; |
| } |
| |
| /** |
| * @brief Register Tx Event Fifo FDCAN Callback |
| * To be used instead of the weak HAL_FDCAN_TxEventFifoCallback() predefined callback |
| * @param hfdcan FDCAN handle |
| * @param pCallback pointer to the Tx Event Fifo Callback function |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_FDCAN_RegisterTxEventFifoCallback(FDCAN_HandleTypeDef *hfdcan, |
| pFDCAN_TxEventFifoCallbackTypeDef pCallback) |
| { |
| HAL_StatusTypeDef status = HAL_OK; |
| |
| if (pCallback == NULL) |
| { |
| /* Update the error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; |
| return HAL_ERROR; |
| } |
| |
| if (hfdcan->State == HAL_FDCAN_STATE_READY) |
| { |
| hfdcan->TxEventFifoCallback = pCallback; |
| } |
| else |
| { |
| /* Update the error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; |
| |
| /* Return error status */ |
| status = HAL_ERROR; |
| } |
| |
| return status; |
| } |
| |
| /** |
| * @brief UnRegister the Tx Event Fifo FDCAN Callback |
| * Tx Event Fifo FDCAN Callback is redirected to the weak HAL_FDCAN_TxEventFifoCallback() predefined callback |
| * @param hfdcan FDCAN handle |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_FDCAN_UnRegisterTxEventFifoCallback(FDCAN_HandleTypeDef *hfdcan) |
| { |
| HAL_StatusTypeDef status = HAL_OK; |
| |
| if (hfdcan->State == HAL_FDCAN_STATE_READY) |
| { |
| hfdcan->TxEventFifoCallback = HAL_FDCAN_TxEventFifoCallback; /* Legacy weak TxEventFifoCallback */ |
| } |
| else |
| { |
| /* Update the error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; |
| |
| /* Return error status */ |
| status = HAL_ERROR; |
| } |
| |
| return status; |
| } |
| |
| /** |
| * @brief Register Rx Fifo 0 FDCAN Callback |
| * To be used instead of the weak HAL_FDCAN_RxFifo0Callback() predefined callback |
| * @param hfdcan FDCAN handle |
| * @param pCallback pointer to the Rx Fifo 0 Callback function |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_FDCAN_RegisterRxFifo0Callback(FDCAN_HandleTypeDef *hfdcan, |
| pFDCAN_RxFifo0CallbackTypeDef pCallback) |
| { |
| HAL_StatusTypeDef status = HAL_OK; |
| |
| if (pCallback == NULL) |
| { |
| /* Update the error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; |
| return HAL_ERROR; |
| } |
| |
| if (hfdcan->State == HAL_FDCAN_STATE_READY) |
| { |
| hfdcan->RxFifo0Callback = pCallback; |
| } |
| else |
| { |
| /* Update the error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; |
| |
| /* Return error status */ |
| status = HAL_ERROR; |
| } |
| |
| return status; |
| } |
| |
| /** |
| * @brief UnRegister the Rx Fifo 0 FDCAN Callback |
| * Rx Fifo 0 FDCAN Callback is redirected to the weak HAL_FDCAN_RxFifo0Callback() predefined callback |
| * @param hfdcan FDCAN handle |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_FDCAN_UnRegisterRxFifo0Callback(FDCAN_HandleTypeDef *hfdcan) |
| { |
| HAL_StatusTypeDef status = HAL_OK; |
| |
| if (hfdcan->State == HAL_FDCAN_STATE_READY) |
| { |
| hfdcan->RxFifo0Callback = HAL_FDCAN_RxFifo0Callback; /* Legacy weak RxFifo0Callback */ |
| } |
| else |
| { |
| /* Update the error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; |
| |
| /* Return error status */ |
| status = HAL_ERROR; |
| } |
| |
| return status; |
| } |
| |
| /** |
| * @brief Register Rx Fifo 1 FDCAN Callback |
| * To be used instead of the weak HAL_FDCAN_RxFifo1Callback() predefined callback |
| * @param hfdcan FDCAN handle |
| * @param pCallback pointer to the Rx Fifo 1 Callback function |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_FDCAN_RegisterRxFifo1Callback(FDCAN_HandleTypeDef *hfdcan, |
| pFDCAN_RxFifo1CallbackTypeDef pCallback) |
| { |
| HAL_StatusTypeDef status = HAL_OK; |
| |
| if (pCallback == NULL) |
| { |
| /* Update the error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; |
| return HAL_ERROR; |
| } |
| |
| if (hfdcan->State == HAL_FDCAN_STATE_READY) |
| { |
| hfdcan->RxFifo1Callback = pCallback; |
| } |
| else |
| { |
| /* Update the error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; |
| |
| /* Return error status */ |
| status = HAL_ERROR; |
| } |
| |
| return status; |
| } |
| |
| /** |
| * @brief UnRegister the Rx Fifo 1 FDCAN Callback |
| * Rx Fifo 1 FDCAN Callback is redirected to the weak HAL_FDCAN_RxFifo1Callback() predefined callback |
| * @param hfdcan FDCAN handle |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_FDCAN_UnRegisterRxFifo1Callback(FDCAN_HandleTypeDef *hfdcan) |
| { |
| HAL_StatusTypeDef status = HAL_OK; |
| |
| if (hfdcan->State == HAL_FDCAN_STATE_READY) |
| { |
| hfdcan->RxFifo1Callback = HAL_FDCAN_RxFifo1Callback; /* Legacy weak RxFifo1Callback */ |
| } |
| else |
| { |
| /* Update the error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; |
| |
| /* Return error status */ |
| status = HAL_ERROR; |
| } |
| |
| return status; |
| } |
| |
| /** |
| * @brief Register Tx Buffer Complete FDCAN Callback |
| * To be used instead of the weak HAL_FDCAN_TxBufferCompleteCallback() predefined callback |
| * @param hfdcan FDCAN handle |
| * @param pCallback pointer to the Tx Buffer Complete Callback function |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_FDCAN_RegisterTxBufferCompleteCallback(FDCAN_HandleTypeDef *hfdcan, |
| pFDCAN_TxBufferCompleteCallbackTypeDef pCallback) |
| { |
| HAL_StatusTypeDef status = HAL_OK; |
| |
| if (pCallback == NULL) |
| { |
| /* Update the error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; |
| return HAL_ERROR; |
| } |
| |
| if (hfdcan->State == HAL_FDCAN_STATE_READY) |
| { |
| hfdcan->TxBufferCompleteCallback = pCallback; |
| } |
| else |
| { |
| /* Update the error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; |
| |
| /* Return error status */ |
| status = HAL_ERROR; |
| } |
| |
| return status; |
| } |
| |
| /** |
| * @brief UnRegister the Tx Buffer Complete FDCAN Callback |
| * Tx Buffer Complete FDCAN Callback is redirected to |
| * the weak HAL_FDCAN_TxBufferCompleteCallback() predefined callback |
| * @param hfdcan FDCAN handle |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_FDCAN_UnRegisterTxBufferCompleteCallback(FDCAN_HandleTypeDef *hfdcan) |
| { |
| HAL_StatusTypeDef status = HAL_OK; |
| |
| if (hfdcan->State == HAL_FDCAN_STATE_READY) |
| { |
| hfdcan->TxBufferCompleteCallback = HAL_FDCAN_TxBufferCompleteCallback; /* Legacy weak TxBufferCompleteCallback */ |
| } |
| else |
| { |
| /* Update the error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; |
| |
| /* Return error status */ |
| status = HAL_ERROR; |
| } |
| |
| return status; |
| } |
| |
| /** |
| * @brief Register Tx Buffer Abort FDCAN Callback |
| * To be used instead of the weak HAL_FDCAN_TxBufferAbortCallback() predefined callback |
| * @param hfdcan FDCAN handle |
| * @param pCallback pointer to the Tx Buffer Abort Callback function |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_FDCAN_RegisterTxBufferAbortCallback(FDCAN_HandleTypeDef *hfdcan, |
| pFDCAN_TxBufferAbortCallbackTypeDef pCallback) |
| { |
| HAL_StatusTypeDef status = HAL_OK; |
| |
| if (pCallback == NULL) |
| { |
| /* Update the error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; |
| return HAL_ERROR; |
| } |
| |
| if (hfdcan->State == HAL_FDCAN_STATE_READY) |
| { |
| hfdcan->TxBufferAbortCallback = pCallback; |
| } |
| else |
| { |
| /* Update the error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; |
| |
| /* Return error status */ |
| status = HAL_ERROR; |
| } |
| |
| return status; |
| } |
| |
| /** |
| * @brief UnRegister the Tx Buffer Abort FDCAN Callback |
| * Tx Buffer Abort FDCAN Callback is redirected to |
| * the weak HAL_FDCAN_TxBufferAbortCallback() predefined callback |
| * @param hfdcan FDCAN handle |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_FDCAN_UnRegisterTxBufferAbortCallback(FDCAN_HandleTypeDef *hfdcan) |
| { |
| HAL_StatusTypeDef status = HAL_OK; |
| |
| if (hfdcan->State == HAL_FDCAN_STATE_READY) |
| { |
| hfdcan->TxBufferAbortCallback = HAL_FDCAN_TxBufferAbortCallback; /* Legacy weak TxBufferAbortCallback */ |
| } |
| else |
| { |
| /* Update the error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; |
| |
| /* Return error status */ |
| status = HAL_ERROR; |
| } |
| |
| return status; |
| } |
| |
| /** |
| * @brief Register Error Status FDCAN Callback |
| * To be used instead of the weak HAL_FDCAN_ErrorStatusCallback() predefined callback |
| * @param hfdcan FDCAN handle |
| * @param pCallback pointer to the Error Status Callback function |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_FDCAN_RegisterErrorStatusCallback(FDCAN_HandleTypeDef *hfdcan, |
| pFDCAN_ErrorStatusCallbackTypeDef pCallback) |
| { |
| HAL_StatusTypeDef status = HAL_OK; |
| |
| if (pCallback == NULL) |
| { |
| /* Update the error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; |
| return HAL_ERROR; |
| } |
| |
| if (hfdcan->State == HAL_FDCAN_STATE_READY) |
| { |
| hfdcan->ErrorStatusCallback = pCallback; |
| } |
| else |
| { |
| /* Update the error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; |
| |
| /* Return error status */ |
| status = HAL_ERROR; |
| } |
| |
| return status; |
| } |
| |
| /** |
| * @brief UnRegister the Error Status FDCAN Callback |
| * Error Status FDCAN Callback is redirected to the weak HAL_FDCAN_ErrorStatusCallback() predefined callback |
| * @param hfdcan FDCAN handle |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_FDCAN_UnRegisterErrorStatusCallback(FDCAN_HandleTypeDef *hfdcan) |
| { |
| HAL_StatusTypeDef status = HAL_OK; |
| |
| if (hfdcan->State == HAL_FDCAN_STATE_READY) |
| { |
| hfdcan->ErrorStatusCallback = HAL_FDCAN_ErrorStatusCallback; /* Legacy weak ErrorStatusCallback */ |
| } |
| else |
| { |
| /* Update the error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; |
| |
| /* Return error status */ |
| status = HAL_ERROR; |
| } |
| |
| return status; |
| } |
| |
| /** |
| * @brief Register TT Schedule Synchronization FDCAN Callback |
| * To be used instead of the weak HAL_FDCAN_TT_ScheduleSyncCallback() predefined callback |
| * @param hfdcan FDCAN handle |
| * @param pCallback pointer to the TT Schedule Synchronization Callback function |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_FDCAN_RegisterTTScheduleSyncCallback(FDCAN_HandleTypeDef *hfdcan, |
| pFDCAN_TT_ScheduleSyncCallbackTypeDef pCallback) |
| { |
| HAL_StatusTypeDef status = HAL_OK; |
| |
| if (pCallback == NULL) |
| { |
| /* Update the error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; |
| return HAL_ERROR; |
| } |
| |
| if (hfdcan->State == HAL_FDCAN_STATE_READY) |
| { |
| hfdcan->TT_ScheduleSyncCallback = pCallback; |
| } |
| else |
| { |
| /* Update the error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; |
| |
| /* Return error status */ |
| status = HAL_ERROR; |
| } |
| |
| return status; |
| } |
| |
| /** |
| * @brief UnRegister the TT Schedule Synchronization FDCAN Callback |
| * TT Schedule Synchronization Callback is redirected to the weak |
| * HAL_FDCAN_TT_ScheduleSyncCallback() predefined callback |
| * @param hfdcan FDCAN handle |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_FDCAN_UnRegisterTTScheduleSyncCallback(FDCAN_HandleTypeDef *hfdcan) |
| { |
| HAL_StatusTypeDef status = HAL_OK; |
| |
| if (hfdcan->State == HAL_FDCAN_STATE_READY) |
| { |
| hfdcan->TT_ScheduleSyncCallback = HAL_FDCAN_TT_ScheduleSyncCallback; /* Legacy weak TT_ScheduleSyncCallback */ |
| } |
| else |
| { |
| /* Update the error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; |
| |
| /* Return error status */ |
| status = HAL_ERROR; |
| } |
| |
| return status; |
| } |
| |
| /** |
| * @brief Register TT Time Mark FDCAN Callback |
| * To be used instead of the weak HAL_FDCAN_TT_TimeMarkCallback() predefined callback |
| * @param hfdcan FDCAN handle |
| * @param pCallback pointer to the TT Time Mark Callback function |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_FDCAN_RegisterTTTimeMarkCallback(FDCAN_HandleTypeDef *hfdcan, |
| pFDCAN_TT_TimeMarkCallbackTypeDef pCallback) |
| { |
| HAL_StatusTypeDef status = HAL_OK; |
| |
| if (pCallback == NULL) |
| { |
| /* Update the error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; |
| return HAL_ERROR; |
| } |
| |
| if (hfdcan->State == HAL_FDCAN_STATE_READY) |
| { |
| hfdcan->TT_TimeMarkCallback = pCallback; |
| } |
| else |
| { |
| /* Update the error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; |
| |
| /* Return error status */ |
| status = HAL_ERROR; |
| } |
| |
| return status; |
| } |
| |
| /** |
| * @brief UnRegister the TT Time Mark FDCAN Callback |
| * TT Time Mark Callback is redirected to the weak HAL_FDCAN_TT_TimeMarkCallback() predefined callback |
| * @param hfdcan FDCAN handle |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_FDCAN_UnRegisterTTTimeMarkCallback(FDCAN_HandleTypeDef *hfdcan) |
| { |
| HAL_StatusTypeDef status = HAL_OK; |
| |
| if (hfdcan->State == HAL_FDCAN_STATE_READY) |
| { |
| hfdcan->TT_TimeMarkCallback = HAL_FDCAN_TT_TimeMarkCallback; /* Legacy weak TT_TimeMarkCallback */ |
| } |
| else |
| { |
| /* Update the error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; |
| |
| /* Return error status */ |
| status = HAL_ERROR; |
| } |
| |
| return status; |
| } |
| |
| /** |
| * @brief Register TT Stop Watch FDCAN Callback |
| * To be used instead of the weak HAL_FDCAN_TT_StopWatchCallback() predefined callback |
| * @param hfdcan FDCAN handle |
| * @param pCallback pointer to the TT Stop Watch Callback function |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_FDCAN_RegisterTTStopWatchCallback(FDCAN_HandleTypeDef *hfdcan, |
| pFDCAN_TT_StopWatchCallbackTypeDef pCallback) |
| { |
| HAL_StatusTypeDef status = HAL_OK; |
| |
| if (pCallback == NULL) |
| { |
| /* Update the error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; |
| return HAL_ERROR; |
| } |
| |
| if (hfdcan->State == HAL_FDCAN_STATE_READY) |
| { |
| hfdcan->TT_StopWatchCallback = pCallback; |
| } |
| else |
| { |
| /* Update the error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; |
| |
| /* Return error status */ |
| status = HAL_ERROR; |
| } |
| |
| return status; |
| } |
| |
| /** |
| * @brief UnRegister the TT Stop Watch FDCAN Callback |
| * TT Stop Watch Callback is redirected to the weak HAL_FDCAN_TT_StopWatchCallback() predefined callback |
| * @param hfdcan FDCAN handle |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_FDCAN_UnRegisterTTStopWatchCallback(FDCAN_HandleTypeDef *hfdcan) |
| { |
| HAL_StatusTypeDef status = HAL_OK; |
| |
| if (hfdcan->State == HAL_FDCAN_STATE_READY) |
| { |
| hfdcan->TT_StopWatchCallback = HAL_FDCAN_TT_StopWatchCallback; /* Legacy weak TT_StopWatchCallback */ |
| } |
| else |
| { |
| /* Update the error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; |
| |
| /* Return error status */ |
| status = HAL_ERROR; |
| } |
| |
| return status; |
| } |
| |
| /** |
| * @brief Register TT Global Time FDCAN Callback |
| * To be used instead of the weak HAL_FDCAN_TT_GlobalTimeCallback() predefined callback |
| * @param hfdcan FDCAN handle |
| * @param pCallback pointer to the TT Global Time Callback function |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_FDCAN_RegisterTTGlobalTimeCallback(FDCAN_HandleTypeDef *hfdcan, |
| pFDCAN_TT_GlobalTimeCallbackTypeDef pCallback) |
| { |
| HAL_StatusTypeDef status = HAL_OK; |
| |
| if (pCallback == NULL) |
| { |
| /* Update the error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; |
| return HAL_ERROR; |
| } |
| |
| if (hfdcan->State == HAL_FDCAN_STATE_READY) |
| { |
| hfdcan->TT_GlobalTimeCallback = pCallback; |
| } |
| else |
| { |
| /* Update the error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; |
| |
| /* Return error status */ |
| status = HAL_ERROR; |
| } |
| |
| return status; |
| } |
| |
| /** |
| * @brief UnRegister the TT Global Time FDCAN Callback |
| * TT Global Time Callback is redirected to the weak HAL_FDCAN_TT_GlobalTimeCallback() predefined callback |
| * @param hfdcan FDCAN handle |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_FDCAN_UnRegisterTTGlobalTimeCallback(FDCAN_HandleTypeDef *hfdcan) |
| { |
| HAL_StatusTypeDef status = HAL_OK; |
| |
| if (hfdcan->State == HAL_FDCAN_STATE_READY) |
| { |
| hfdcan->TT_GlobalTimeCallback = HAL_FDCAN_TT_GlobalTimeCallback; /* Legacy weak TT_GlobalTimeCallback */ |
| } |
| else |
| { |
| /* Update the error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; |
| |
| /* Return error status */ |
| status = HAL_ERROR; |
| } |
| |
| return status; |
| } |
| |
| #endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */ |
| |
| /** |
| * @} |
| */ |
| |
| /** @defgroup FDCAN_Exported_Functions_Group2 Configuration functions |
| * @brief FDCAN Configuration functions. |
| * |
| @verbatim |
| ============================================================================== |
| ##### Configuration functions ##### |
| ============================================================================== |
| [..] This section provides functions allowing to: |
| (+) HAL_FDCAN_ConfigClockCalibration : Configure the FDCAN clock calibration unit |
| (+) HAL_FDCAN_GetClockCalibrationState : Get the clock calibration state |
| (+) HAL_FDCAN_ResetClockCalibrationState : Reset the clock calibration state |
| (+) HAL_FDCAN_GetClockCalibrationCounter : Get the clock calibration counters values |
| (+) HAL_FDCAN_ConfigFilter : Configure the FDCAN reception filters |
| (+) HAL_FDCAN_ConfigGlobalFilter : Configure the FDCAN global filter |
| (+) HAL_FDCAN_ConfigExtendedIdMask : Configure the extended ID mask |
| (+) HAL_FDCAN_ConfigRxFifoOverwrite : Configure the Rx FIFO operation mode |
| (+) HAL_FDCAN_ConfigFifoWatermark : Configure the FIFO watermark |
| (+) HAL_FDCAN_ConfigRamWatchdog : Configure the RAM watchdog |
| (+) HAL_FDCAN_ConfigTimestampCounter : Configure the timestamp counter |
| (+) HAL_FDCAN_EnableTimestampCounter : Enable the timestamp counter |
| (+) HAL_FDCAN_DisableTimestampCounter : Disable the timestamp counter |
| (+) HAL_FDCAN_GetTimestampCounter : Get the timestamp counter value |
| (+) HAL_FDCAN_ResetTimestampCounter : Reset the timestamp counter to zero |
| (+) HAL_FDCAN_ConfigTimeoutCounter : Configure the timeout counter |
| (+) HAL_FDCAN_EnableTimeoutCounter : Enable the timeout counter |
| (+) HAL_FDCAN_DisableTimeoutCounter : Disable the timeout counter |
| (+) HAL_FDCAN_GetTimeoutCounter : Get the timeout counter value |
| (+) HAL_FDCAN_ResetTimeoutCounter : Reset the timeout counter to its start value |
| (+) HAL_FDCAN_ConfigTxDelayCompensation : Configure the transmitter delay compensation |
| (+) HAL_FDCAN_EnableTxDelayCompensation : Enable the transmitter delay compensation |
| (+) HAL_FDCAN_DisableTxDelayCompensation : Disable the transmitter delay compensation |
| (+) HAL_FDCAN_EnableISOMode : Enable ISO 11898-1 protocol mode |
| (+) HAL_FDCAN_DisableISOMode : Disable ISO 11898-1 protocol mode |
| (+) HAL_FDCAN_EnableEdgeFiltering : Enable edge filtering during bus integration |
| (+) HAL_FDCAN_DisableEdgeFiltering : Disable edge filtering during bus integration |
| |
| @endverbatim |
| * @{ |
| */ |
| |
| /** |
| * @brief Configure the FDCAN clock calibration unit according to the specified |
| * parameters in the FDCAN_ClkCalUnitTypeDef structure. |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @param sCcuConfig pointer to an FDCAN_ClkCalUnitTypeDef structure that |
| * contains the clock calibration information |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_FDCAN_ConfigClockCalibration(FDCAN_HandleTypeDef *hfdcan, |
| const FDCAN_ClkCalUnitTypeDef *sCcuConfig) |
| { |
| /* Check function parameters */ |
| assert_param(IS_FDCAN_CLOCK_CALIBRATION(sCcuConfig->ClockCalibration)); |
| if (sCcuConfig->ClockCalibration == FDCAN_CLOCK_CALIBRATION_DISABLE) |
| { |
| assert_param(IS_FDCAN_CKDIV(sCcuConfig->ClockDivider)); |
| } |
| else |
| { |
| assert_param(IS_FDCAN_MAX_VALUE(sCcuConfig->MinOscClkPeriods, 0xFFU)); |
| assert_param(IS_FDCAN_CALIBRATION_FIELD_LENGTH(sCcuConfig->CalFieldLength)); |
| assert_param(IS_FDCAN_MIN_VALUE(sCcuConfig->TimeQuantaPerBitTime, 4U)); |
| assert_param(IS_FDCAN_MAX_VALUE(sCcuConfig->TimeQuantaPerBitTime, 0x25U)); |
| assert_param(IS_FDCAN_MAX_VALUE(sCcuConfig->WatchdogStartValue, 0xFFFFU)); |
| } |
| |
| /* FDCAN1 should be initialized in order to use clock calibration */ |
| if (hfdcan->Instance != FDCAN1) |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_PARAM; |
| |
| return HAL_ERROR; |
| } |
| |
| if (hfdcan->State == HAL_FDCAN_STATE_READY) |
| { |
| if (sCcuConfig->ClockCalibration == FDCAN_CLOCK_CALIBRATION_DISABLE) |
| { |
| /* Bypass clock calibration */ |
| SET_BIT(FDCAN_CCU->CCFG, FDCANCCU_CCFG_BCC); |
| |
| /* Configure clock divider */ |
| MODIFY_REG(FDCAN_CCU->CCFG, FDCANCCU_CCFG_CDIV, |
| (sCcuConfig->ClockDivider << FDCANCCU_CCFG_CDIV_Pos)); |
| } |
| else /* sCcuConfig->ClockCalibration == ENABLE */ |
| { |
| /* Clock calibration unit generates time quanta clock */ |
| CLEAR_BIT(FDCAN_CCU->CCFG, FDCANCCU_CCFG_BCC); |
| |
| /* Configure clock calibration unit */ |
| MODIFY_REG(FDCAN_CCU->CCFG, |
| (FDCANCCU_CCFG_TQBT | FDCANCCU_CCFG_CFL | FDCANCCU_CCFG_OCPM), |
| ((sCcuConfig->TimeQuantaPerBitTime << FDCANCCU_CCFG_TQBT_Pos) | |
| sCcuConfig->CalFieldLength | (sCcuConfig->MinOscClkPeriods << FDCANCCU_CCFG_OCPM_Pos))); |
| |
| /* Configure the start value of the calibration watchdog counter */ |
| MODIFY_REG(FDCAN_CCU->CWD, FDCANCCU_CWD_WDC, sCcuConfig->WatchdogStartValue); |
| } |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| else |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY; |
| |
| return HAL_ERROR; |
| } |
| } |
| |
| /** |
| * @brief Get the clock calibration state. |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @retval State clock calibration state (can be a value of @arg FDCAN_calibration_state) |
| */ |
| uint32_t HAL_FDCAN_GetClockCalibrationState(const FDCAN_HandleTypeDef *hfdcan) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(hfdcan); |
| |
| return (FDCAN_CCU->CSTAT & FDCANCCU_CSTAT_CALS); |
| } |
| |
| /** |
| * @brief Reset the clock calibration state. |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_FDCAN_ResetClockCalibrationState(FDCAN_HandleTypeDef *hfdcan) |
| { |
| /* FDCAN1 should be initialized in order to use clock calibration */ |
| if (hfdcan->Instance != FDCAN1) |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_PARAM; |
| |
| return HAL_ERROR; |
| } |
| |
| if (hfdcan->State == HAL_FDCAN_STATE_READY) |
| { |
| /* Calibration software reset */ |
| SET_BIT(FDCAN_CCU->CCFG, FDCANCCU_CCFG_SWR); |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| else |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY; |
| |
| return HAL_ERROR; |
| } |
| } |
| |
| /** |
| * @brief Get the clock calibration counter value. |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @param Counter clock calibration counter. |
| * This parameter can be a value of @arg FDCAN_calibration_counter. |
| * @retval Value clock calibration counter value |
| */ |
| uint32_t HAL_FDCAN_GetClockCalibrationCounter(const FDCAN_HandleTypeDef *hfdcan, uint32_t Counter) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(hfdcan); |
| |
| /* Check function parameters */ |
| assert_param(IS_FDCAN_CALIBRATION_COUNTER(Counter)); |
| |
| if (Counter == FDCAN_CALIB_TIME_QUANTA_COUNTER) |
| { |
| return ((FDCAN_CCU->CSTAT & FDCANCCU_CSTAT_TQC) >> FDCANCCU_CSTAT_TQC_Pos); |
| } |
| else if (Counter == FDCAN_CALIB_CLOCK_PERIOD_COUNTER) |
| { |
| return (FDCAN_CCU->CSTAT & FDCANCCU_CSTAT_OCPC); |
| } |
| else /* Counter == FDCAN_CALIB_WATCHDOG_COUNTER */ |
| { |
| return ((FDCAN_CCU->CWD & FDCANCCU_CWD_WDV) >> FDCANCCU_CWD_WDV_Pos); |
| } |
| } |
| |
| /** |
| * @brief Configure the FDCAN reception filter according to the specified |
| * parameters in the FDCAN_FilterTypeDef structure. |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @param sFilterConfig pointer to an FDCAN_FilterTypeDef structure that |
| * contains the filter configuration information |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_FDCAN_ConfigFilter(FDCAN_HandleTypeDef *hfdcan, const FDCAN_FilterTypeDef *sFilterConfig) |
| { |
| uint32_t FilterElementW1; |
| uint32_t FilterElementW2; |
| uint32_t *FilterAddress; |
| HAL_FDCAN_StateTypeDef state = hfdcan->State; |
| |
| if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY)) |
| { |
| /* Check function parameters */ |
| assert_param(IS_FDCAN_ID_TYPE(sFilterConfig->IdType)); |
| assert_param(IS_FDCAN_FILTER_CFG(sFilterConfig->FilterConfig)); |
| if (sFilterConfig->FilterConfig == FDCAN_FILTER_TO_RXBUFFER) |
| { |
| assert_param(IS_FDCAN_MAX_VALUE(sFilterConfig->RxBufferIndex, 63U)); |
| assert_param(IS_FDCAN_MAX_VALUE(sFilterConfig->IsCalibrationMsg, 1U)); |
| } |
| |
| if (sFilterConfig->IdType == FDCAN_STANDARD_ID) |
| { |
| /* Check function parameters */ |
| assert_param(IS_FDCAN_MAX_VALUE(sFilterConfig->FilterIndex, (hfdcan->Init.StdFiltersNbr - 1U))); |
| assert_param(IS_FDCAN_MAX_VALUE(sFilterConfig->FilterID1, 0x7FFU)); |
| if (sFilterConfig->FilterConfig != FDCAN_FILTER_TO_RXBUFFER) |
| { |
| assert_param(IS_FDCAN_MAX_VALUE(sFilterConfig->FilterID2, 0x7FFU)); |
| assert_param(IS_FDCAN_STD_FILTER_TYPE(sFilterConfig->FilterType)); |
| } |
| |
| /* Build filter element */ |
| if (sFilterConfig->FilterConfig == FDCAN_FILTER_TO_RXBUFFER) |
| { |
| FilterElementW1 = ((FDCAN_FILTER_TO_RXBUFFER << 27U) | |
| (sFilterConfig->FilterID1 << 16U) | |
| (sFilterConfig->IsCalibrationMsg << 8U) | |
| sFilterConfig->RxBufferIndex); |
| } |
| else |
| { |
| FilterElementW1 = ((sFilterConfig->FilterType << 30U) | |
| (sFilterConfig->FilterConfig << 27U) | |
| (sFilterConfig->FilterID1 << 16U) | |
| sFilterConfig->FilterID2); |
| } |
| |
| /* Calculate filter address */ |
| FilterAddress = (uint32_t *)(hfdcan->msgRam.StandardFilterSA + (sFilterConfig->FilterIndex * 4U)); |
| |
| /* Write filter element to the message RAM */ |
| *FilterAddress = FilterElementW1; |
| } |
| else /* sFilterConfig->IdType == FDCAN_EXTENDED_ID */ |
| { |
| /* Check function parameters */ |
| assert_param(IS_FDCAN_MAX_VALUE(sFilterConfig->FilterIndex, (hfdcan->Init.ExtFiltersNbr - 1U))); |
| assert_param(IS_FDCAN_MAX_VALUE(sFilterConfig->FilterID1, 0x1FFFFFFFU)); |
| if (sFilterConfig->FilterConfig != FDCAN_FILTER_TO_RXBUFFER) |
| { |
| assert_param(IS_FDCAN_MAX_VALUE(sFilterConfig->FilterID2, 0x1FFFFFFFU)); |
| assert_param(IS_FDCAN_EXT_FILTER_TYPE(sFilterConfig->FilterType)); |
| } |
| |
| /* Build first word of filter element */ |
| FilterElementW1 = ((sFilterConfig->FilterConfig << 29U) | sFilterConfig->FilterID1); |
| |
| /* Build second word of filter element */ |
| if (sFilterConfig->FilterConfig == FDCAN_FILTER_TO_RXBUFFER) |
| { |
| FilterElementW2 = sFilterConfig->RxBufferIndex; |
| } |
| else |
| { |
| FilterElementW2 = ((sFilterConfig->FilterType << 30U) | sFilterConfig->FilterID2); |
| } |
| |
| /* Calculate filter address */ |
| FilterAddress = (uint32_t *)(hfdcan->msgRam.ExtendedFilterSA + (sFilterConfig->FilterIndex * 4U * 2U)); |
| |
| /* Write filter element to the message RAM */ |
| *FilterAddress = FilterElementW1; |
| FilterAddress++; |
| *FilterAddress = FilterElementW2; |
| } |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| else |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED; |
| |
| return HAL_ERROR; |
| } |
| } |
| |
| /** |
| * @brief Configure the FDCAN global filter. |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @param NonMatchingStd Defines how received messages with 11-bit IDs that |
| * do not match any element of the filter list are treated. |
| * This parameter can be a value of @arg FDCAN_Non_Matching_Frames. |
| * @param NonMatchingExt Defines how received messages with 29-bit IDs that |
| * do not match any element of the filter list are treated. |
| * This parameter can be a value of @arg FDCAN_Non_Matching_Frames. |
| * @param RejectRemoteStd Filter or reject all the remote 11-bit IDs frames. |
| * This parameter can be a value of @arg FDCAN_Reject_Remote_Frames. |
| * @param RejectRemoteExt Filter or reject all the remote 29-bit IDs frames. |
| * This parameter can be a value of @arg FDCAN_Reject_Remote_Frames. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_FDCAN_ConfigGlobalFilter(FDCAN_HandleTypeDef *hfdcan, |
| uint32_t NonMatchingStd, |
| uint32_t NonMatchingExt, |
| uint32_t RejectRemoteStd, |
| uint32_t RejectRemoteExt) |
| { |
| /* Check function parameters */ |
| assert_param(IS_FDCAN_NON_MATCHING(NonMatchingStd)); |
| assert_param(IS_FDCAN_NON_MATCHING(NonMatchingExt)); |
| assert_param(IS_FDCAN_REJECT_REMOTE(RejectRemoteStd)); |
| assert_param(IS_FDCAN_REJECT_REMOTE(RejectRemoteExt)); |
| |
| if (hfdcan->State == HAL_FDCAN_STATE_READY) |
| { |
| /* Configure global filter */ |
| hfdcan->Instance->GFC = ((NonMatchingStd << FDCAN_GFC_ANFS_Pos) | |
| (NonMatchingExt << FDCAN_GFC_ANFE_Pos) | |
| (RejectRemoteStd << FDCAN_GFC_RRFS_Pos) | |
| (RejectRemoteExt << FDCAN_GFC_RRFE_Pos)); |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| else |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY; |
| |
| return HAL_ERROR; |
| } |
| } |
| |
| /** |
| * @brief Configure the extended ID mask. |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @param Mask Extended ID Mask. |
| * This parameter must be a number between 0 and 0x1FFFFFFF. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_FDCAN_ConfigExtendedIdMask(FDCAN_HandleTypeDef *hfdcan, uint32_t Mask) |
| { |
| /* Check function parameters */ |
| assert_param(IS_FDCAN_MAX_VALUE(Mask, 0x1FFFFFFFU)); |
| |
| if (hfdcan->State == HAL_FDCAN_STATE_READY) |
| { |
| /* Configure the extended ID mask */ |
| hfdcan->Instance->XIDAM = Mask; |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| else |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY; |
| |
| return HAL_ERROR; |
| } |
| } |
| |
| /** |
| * @brief Configure the Rx FIFO operation mode. |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @param RxFifo Rx FIFO. |
| * This parameter can be one of the following values: |
| * @arg FDCAN_RX_FIFO0: Rx FIFO 0 |
| * @arg FDCAN_RX_FIFO1: Rx FIFO 1 |
| * @param OperationMode operation mode. |
| * This parameter can be a value of @arg FDCAN_Rx_FIFO_operation_mode. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_FDCAN_ConfigRxFifoOverwrite(FDCAN_HandleTypeDef *hfdcan, uint32_t RxFifo, uint32_t OperationMode) |
| { |
| /* Check function parameters */ |
| assert_param(IS_FDCAN_RX_FIFO(RxFifo)); |
| assert_param(IS_FDCAN_RX_FIFO_MODE(OperationMode)); |
| |
| if (hfdcan->State == HAL_FDCAN_STATE_READY) |
| { |
| if (RxFifo == FDCAN_RX_FIFO0) |
| { |
| /* Select FIFO 0 Operation Mode */ |
| MODIFY_REG(hfdcan->Instance->RXF0C, FDCAN_RXF0C_F0OM, (OperationMode << FDCAN_RXF0C_F0OM_Pos)); |
| } |
| else /* RxFifo == FDCAN_RX_FIFO1 */ |
| { |
| /* Select FIFO 1 Operation Mode */ |
| MODIFY_REG(hfdcan->Instance->RXF1C, FDCAN_RXF1C_F1OM, (OperationMode << FDCAN_RXF1C_F1OM_Pos)); |
| } |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| else |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY; |
| |
| return HAL_ERROR; |
| } |
| } |
| |
| /** |
| * @brief Configure the FIFO watermark. |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @param FIFO select the FIFO to be configured. |
| * This parameter can be a value of @arg FDCAN_FIFO_watermark. |
| * @param Watermark level for FIFO watermark interrupt. |
| * This parameter must be a number between: |
| * - 0 and 32, if FIFO is FDCAN_CFG_TX_EVENT_FIFO |
| * - 0 and 64, if FIFO is FDCAN_CFG_RX_FIFO0 or FDCAN_CFG_RX_FIFO1 |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_FDCAN_ConfigFifoWatermark(FDCAN_HandleTypeDef *hfdcan, uint32_t FIFO, uint32_t Watermark) |
| { |
| /* Check function parameters */ |
| assert_param(IS_FDCAN_FIFO_WATERMARK(FIFO)); |
| if (FIFO == FDCAN_CFG_TX_EVENT_FIFO) |
| { |
| assert_param(IS_FDCAN_MAX_VALUE(Watermark, 32U)); |
| } |
| else /* (FIFO == FDCAN_CFG_RX_FIFO0) || (FIFO == FDCAN_CFG_RX_FIFO1) */ |
| { |
| assert_param(IS_FDCAN_MAX_VALUE(Watermark, 64U)); |
| } |
| |
| if (hfdcan->State == HAL_FDCAN_STATE_READY) |
| { |
| /* Set the level for FIFO watermark interrupt */ |
| if (FIFO == FDCAN_CFG_TX_EVENT_FIFO) |
| { |
| MODIFY_REG(hfdcan->Instance->TXEFC, FDCAN_TXEFC_EFWM, (Watermark << FDCAN_TXEFC_EFWM_Pos)); |
| } |
| else if (FIFO == FDCAN_CFG_RX_FIFO0) |
| { |
| MODIFY_REG(hfdcan->Instance->RXF0C, FDCAN_RXF0C_F0WM, (Watermark << FDCAN_RXF0C_F0WM_Pos)); |
| } |
| else /* FIFO == FDCAN_CFG_RX_FIFO1 */ |
| { |
| MODIFY_REG(hfdcan->Instance->RXF1C, FDCAN_RXF1C_F1WM, (Watermark << FDCAN_RXF1C_F1WM_Pos)); |
| } |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| else |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY; |
| |
| return HAL_ERROR; |
| } |
| } |
| |
| /** |
| * @brief Configure the RAM watchdog. |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @param CounterStartValue Start value of the Message RAM Watchdog Counter, |
| * This parameter must be a number between 0x00 and 0xFF, |
| * with the reset value of 0x00 the counter is disabled. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_FDCAN_ConfigRamWatchdog(FDCAN_HandleTypeDef *hfdcan, uint32_t CounterStartValue) |
| { |
| /* Check function parameters */ |
| assert_param(IS_FDCAN_MAX_VALUE(CounterStartValue, 0xFFU)); |
| |
| if (hfdcan->State == HAL_FDCAN_STATE_READY) |
| { |
| /* Configure the RAM watchdog counter start value */ |
| MODIFY_REG(hfdcan->Instance->RWD, FDCAN_RWD_WDC, CounterStartValue); |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| else |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY; |
| |
| return HAL_ERROR; |
| } |
| } |
| |
| /** |
| * @brief Configure the timestamp counter. |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @param TimestampPrescaler Timestamp Counter Prescaler. |
| * This parameter can be a value of @arg FDCAN_Timestamp_Prescaler. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_FDCAN_ConfigTimestampCounter(FDCAN_HandleTypeDef *hfdcan, uint32_t TimestampPrescaler) |
| { |
| /* Check function parameters */ |
| assert_param(IS_FDCAN_TIMESTAMP_PRESCALER(TimestampPrescaler)); |
| |
| if (hfdcan->State == HAL_FDCAN_STATE_READY) |
| { |
| /* Configure prescaler */ |
| MODIFY_REG(hfdcan->Instance->TSCC, FDCAN_TSCC_TCP, TimestampPrescaler); |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| else |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY; |
| |
| return HAL_ERROR; |
| } |
| } |
| |
| /** |
| * @brief Enable the timestamp counter. |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @param TimestampOperation Timestamp counter operation. |
| * This parameter can be a value of @arg FDCAN_Timestamp. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_FDCAN_EnableTimestampCounter(FDCAN_HandleTypeDef *hfdcan, uint32_t TimestampOperation) |
| { |
| /* Check function parameters */ |
| assert_param(IS_FDCAN_TIMESTAMP(TimestampOperation)); |
| |
| if (hfdcan->State == HAL_FDCAN_STATE_READY) |
| { |
| /* Enable timestamp counter */ |
| MODIFY_REG(hfdcan->Instance->TSCC, FDCAN_TSCC_TSS, TimestampOperation); |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| else |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY; |
| |
| return HAL_ERROR; |
| } |
| } |
| |
| /** |
| * @brief Disable the timestamp counter. |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_FDCAN_DisableTimestampCounter(FDCAN_HandleTypeDef *hfdcan) |
| { |
| if (hfdcan->State == HAL_FDCAN_STATE_READY) |
| { |
| /* Disable timestamp counter */ |
| CLEAR_BIT(hfdcan->Instance->TSCC, FDCAN_TSCC_TSS); |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| else |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY; |
| |
| return HAL_ERROR; |
| } |
| } |
| |
| /** |
| * @brief Get the timestamp counter value. |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @retval Timestamp counter value |
| */ |
| uint16_t HAL_FDCAN_GetTimestampCounter(const FDCAN_HandleTypeDef *hfdcan) |
| { |
| return (uint16_t)(hfdcan->Instance->TSCV); |
| } |
| |
| /** |
| * @brief Reset the timestamp counter to zero. |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_FDCAN_ResetTimestampCounter(FDCAN_HandleTypeDef *hfdcan) |
| { |
| if ((hfdcan->Instance->TSCC & FDCAN_TSCC_TSS) != FDCAN_TIMESTAMP_EXTERNAL) |
| { |
| /* Reset timestamp counter. |
| Actually any write operation to TSCV clears the counter */ |
| CLEAR_REG(hfdcan->Instance->TSCV); |
| } |
| else |
| { |
| /* Update error code. |
| Unable to reset external counter */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_SUPPORTED; |
| |
| return HAL_ERROR; |
| } |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Configure the timeout counter. |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @param TimeoutOperation Timeout counter operation. |
| * This parameter can be a value of @arg FDCAN_Timeout_Operation. |
| * @param TimeoutPeriod Start value of the timeout down-counter. |
| * This parameter must be a number between 0x0000 and 0xFFFF |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_FDCAN_ConfigTimeoutCounter(FDCAN_HandleTypeDef *hfdcan, uint32_t TimeoutOperation, |
| uint32_t TimeoutPeriod) |
| { |
| /* Check function parameters */ |
| assert_param(IS_FDCAN_TIMEOUT(TimeoutOperation)); |
| assert_param(IS_FDCAN_MAX_VALUE(TimeoutPeriod, 0xFFFFU)); |
| |
| if (hfdcan->State == HAL_FDCAN_STATE_READY) |
| { |
| /* Select timeout operation and configure period */ |
| MODIFY_REG(hfdcan->Instance->TOCC, |
| (FDCAN_TOCC_TOS | FDCAN_TOCC_TOP), (TimeoutOperation | (TimeoutPeriod << FDCAN_TOCC_TOP_Pos))); |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| else |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY; |
| |
| return HAL_ERROR; |
| } |
| } |
| |
| /** |
| * @brief Enable the timeout counter. |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_FDCAN_EnableTimeoutCounter(FDCAN_HandleTypeDef *hfdcan) |
| { |
| if (hfdcan->State == HAL_FDCAN_STATE_READY) |
| { |
| /* Enable timeout counter */ |
| SET_BIT(hfdcan->Instance->TOCC, FDCAN_TOCC_ETOC); |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| else |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY; |
| |
| return HAL_ERROR; |
| } |
| } |
| |
| /** |
| * @brief Disable the timeout counter. |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_FDCAN_DisableTimeoutCounter(FDCAN_HandleTypeDef *hfdcan) |
| { |
| if (hfdcan->State == HAL_FDCAN_STATE_READY) |
| { |
| /* Disable timeout counter */ |
| CLEAR_BIT(hfdcan->Instance->TOCC, FDCAN_TOCC_ETOC); |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| else |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY; |
| |
| return HAL_ERROR; |
| } |
| } |
| |
| /** |
| * @brief Get the timeout counter value. |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @retval Timeout counter value |
| */ |
| uint16_t HAL_FDCAN_GetTimeoutCounter(const FDCAN_HandleTypeDef *hfdcan) |
| { |
| return (uint16_t)(hfdcan->Instance->TOCV); |
| } |
| |
| /** |
| * @brief Reset the timeout counter to its start value. |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_FDCAN_ResetTimeoutCounter(FDCAN_HandleTypeDef *hfdcan) |
| { |
| if ((hfdcan->Instance->TOCC & FDCAN_TOCC_TOS) == FDCAN_TIMEOUT_CONTINUOUS) |
| { |
| /* Reset timeout counter to start value */ |
| CLEAR_REG(hfdcan->Instance->TOCV); |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| else |
| { |
| /* Update error code. |
| Unable to reset counter: controlled only by FIFO empty state */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_SUPPORTED; |
| |
| return HAL_ERROR; |
| } |
| } |
| |
| /** |
| * @brief Configure the transmitter delay compensation. |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @param TdcOffset Transmitter Delay Compensation Offset. |
| * This parameter must be a number between 0x00 and 0x7F. |
| * @param TdcFilter Transmitter Delay Compensation Filter Window Length. |
| * This parameter must be a number between 0x00 and 0x7F. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_FDCAN_ConfigTxDelayCompensation(FDCAN_HandleTypeDef *hfdcan, uint32_t TdcOffset, |
| uint32_t TdcFilter) |
| { |
| /* Check function parameters */ |
| assert_param(IS_FDCAN_MAX_VALUE(TdcOffset, 0x7FU)); |
| assert_param(IS_FDCAN_MAX_VALUE(TdcFilter, 0x7FU)); |
| |
| if (hfdcan->State == HAL_FDCAN_STATE_READY) |
| { |
| /* Configure TDC offset and filter window */ |
| hfdcan->Instance->TDCR = ((TdcFilter << FDCAN_TDCR_TDCF_Pos) | (TdcOffset << FDCAN_TDCR_TDCO_Pos)); |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| else |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY; |
| |
| return HAL_ERROR; |
| } |
| } |
| |
| /** |
| * @brief Enable the transmitter delay compensation. |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_FDCAN_EnableTxDelayCompensation(FDCAN_HandleTypeDef *hfdcan) |
| { |
| if (hfdcan->State == HAL_FDCAN_STATE_READY) |
| { |
| /* Enable transmitter delay compensation */ |
| SET_BIT(hfdcan->Instance->DBTP, FDCAN_DBTP_TDC); |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| else |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY; |
| |
| return HAL_ERROR; |
| } |
| } |
| |
| /** |
| * @brief Disable the transmitter delay compensation. |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_FDCAN_DisableTxDelayCompensation(FDCAN_HandleTypeDef *hfdcan) |
| { |
| if (hfdcan->State == HAL_FDCAN_STATE_READY) |
| { |
| /* Disable transmitter delay compensation */ |
| CLEAR_BIT(hfdcan->Instance->DBTP, FDCAN_DBTP_TDC); |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| else |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY; |
| |
| return HAL_ERROR; |
| } |
| } |
| |
| /** |
| * @brief Enable ISO 11898-1 protocol mode. |
| * CAN FD frame format is according to ISO 11898-1 standard. |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_FDCAN_EnableISOMode(FDCAN_HandleTypeDef *hfdcan) |
| { |
| if (hfdcan->State == HAL_FDCAN_STATE_READY) |
| { |
| /* Disable Non ISO protocol mode */ |
| CLEAR_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_NISO); |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| else |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY; |
| |
| return HAL_ERROR; |
| } |
| } |
| |
| /** |
| * @brief Disable ISO 11898-1 protocol mode. |
| * CAN FD frame format is according to Bosch CAN FD specification V1.0. |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_FDCAN_DisableISOMode(FDCAN_HandleTypeDef *hfdcan) |
| { |
| if (hfdcan->State == HAL_FDCAN_STATE_READY) |
| { |
| /* Enable Non ISO protocol mode */ |
| SET_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_NISO); |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| else |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY; |
| |
| return HAL_ERROR; |
| } |
| } |
| |
| /** |
| * @brief Enable edge filtering during bus integration. |
| * Two consecutive dominant tq are required to detect an edge for hard synchronization. |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_FDCAN_EnableEdgeFiltering(FDCAN_HandleTypeDef *hfdcan) |
| { |
| if (hfdcan->State == HAL_FDCAN_STATE_READY) |
| { |
| /* Enable edge filtering */ |
| SET_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_EFBI); |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| else |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY; |
| |
| return HAL_ERROR; |
| } |
| } |
| |
| /** |
| * @brief Disable edge filtering during bus integration. |
| * One dominant tq is required to detect an edge for hard synchronization. |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_FDCAN_DisableEdgeFiltering(FDCAN_HandleTypeDef *hfdcan) |
| { |
| if (hfdcan->State == HAL_FDCAN_STATE_READY) |
| { |
| /* Disable edge filtering */ |
| CLEAR_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_EFBI); |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| else |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY; |
| |
| return HAL_ERROR; |
| } |
| } |
| |
| /** |
| * @} |
| */ |
| |
| /** @defgroup FDCAN_Exported_Functions_Group3 Control functions |
| * @brief Control functions |
| * |
| @verbatim |
| ============================================================================== |
| ##### Control functions ##### |
| ============================================================================== |
| [..] This section provides functions allowing to: |
| (+) HAL_FDCAN_Start : Start the FDCAN module |
| (+) HAL_FDCAN_Stop : Stop the FDCAN module and enable access to configuration registers |
| (+) HAL_FDCAN_AddMessageToTxFifoQ : Add a message to the Tx FIFO/Queue and activate the corresponding |
| transmission request |
| (+) HAL_FDCAN_AddMessageToTxBuffer : Add a message to a dedicated Tx buffer |
| (+) HAL_FDCAN_EnableTxBufferRequest : Enable transmission request |
| (+) HAL_FDCAN_GetLatestTxFifoQRequestBuffer : Get Tx buffer index of latest Tx FIFO/Queue request |
| (+) HAL_FDCAN_AbortTxRequest : Abort transmission request |
| (+) HAL_FDCAN_GetRxMessage : Get an FDCAN frame from the Rx Buffer/FIFO zone into the |
| message RAM |
| (+) HAL_FDCAN_GetTxEvent : Get an FDCAN Tx event from the Tx Event FIFO zone |
| into the message RAM |
| (+) HAL_FDCAN_GetHighPriorityMessageStatus : Get high priority message status |
| (+) HAL_FDCAN_GetProtocolStatus : Get protocol status |
| (+) HAL_FDCAN_GetErrorCounters : Get error counter values |
| (+) HAL_FDCAN_IsRxBufferMessageAvailable : Check if a new message is received in the selected Rx buffer |
| (+) HAL_FDCAN_IsTxBufferMessagePending : Check if a transmission request is pending |
| on the selected Tx buffer |
| (+) HAL_FDCAN_GetRxFifoFillLevel : Return Rx FIFO fill level |
| (+) HAL_FDCAN_GetTxFifoFreeLevel : Return Tx FIFO free level |
| (+) HAL_FDCAN_IsRestrictedOperationMode : Check if the FDCAN peripheral entered Restricted Operation Mode |
| (+) HAL_FDCAN_ExitRestrictedOperationMode : Exit Restricted Operation Mode |
| |
| @endverbatim |
| * @{ |
| */ |
| |
| /** |
| * @brief Start the FDCAN module. |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_FDCAN_Start(FDCAN_HandleTypeDef *hfdcan) |
| { |
| if (hfdcan->State == HAL_FDCAN_STATE_READY) |
| { |
| /* Change FDCAN peripheral state */ |
| hfdcan->State = HAL_FDCAN_STATE_BUSY; |
| |
| /* Request leave initialisation */ |
| CLEAR_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_INIT); |
| |
| /* Reset the FDCAN ErrorCode */ |
| hfdcan->ErrorCode = HAL_FDCAN_ERROR_NONE; |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| else |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY; |
| |
| return HAL_ERROR; |
| } |
| } |
| |
| /** |
| * @brief Stop the FDCAN module and enable access to configuration registers. |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_FDCAN_Stop(FDCAN_HandleTypeDef *hfdcan) |
| { |
| uint32_t Counter = 0U; |
| |
| if (hfdcan->State == HAL_FDCAN_STATE_BUSY) |
| { |
| /* Request initialisation */ |
| SET_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_INIT); |
| |
| /* Wait until the INIT bit into CCCR register is set */ |
| while ((hfdcan->Instance->CCCR & FDCAN_CCCR_INIT) == 0U) |
| { |
| /* Check for the Timeout */ |
| if (Counter > FDCAN_TIMEOUT_COUNT) |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT; |
| |
| /* Change FDCAN state */ |
| hfdcan->State = HAL_FDCAN_STATE_ERROR; |
| |
| return HAL_ERROR; |
| } |
| |
| /* Increment counter */ |
| Counter++; |
| } |
| |
| /* Reset counter */ |
| Counter = 0U; |
| |
| /* Exit from Sleep mode */ |
| CLEAR_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_CSR); |
| |
| /* Wait until FDCAN exits sleep mode */ |
| while ((hfdcan->Instance->CCCR & FDCAN_CCCR_CSA) == FDCAN_CCCR_CSA) |
| { |
| /* Check for the Timeout */ |
| if (Counter > FDCAN_TIMEOUT_COUNT) |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT; |
| |
| /* Change FDCAN state */ |
| hfdcan->State = HAL_FDCAN_STATE_ERROR; |
| |
| return HAL_ERROR; |
| } |
| |
| /* Increment counter */ |
| Counter++; |
| } |
| |
| /* Enable configuration change */ |
| SET_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_CCE); |
| |
| /* Reset Latest Tx FIFO/Queue Request Buffer Index */ |
| hfdcan->LatestTxFifoQRequest = 0U; |
| |
| /* Change FDCAN peripheral state */ |
| hfdcan->State = HAL_FDCAN_STATE_READY; |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| else |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_STARTED; |
| |
| return HAL_ERROR; |
| } |
| } |
| |
| /** |
| * @brief Add a message to the Tx FIFO/Queue and activate the corresponding transmission request |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @param pTxHeader pointer to a FDCAN_TxHeaderTypeDef structure. |
| * @param pTxData pointer to a buffer containing the payload of the Tx frame. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_FDCAN_AddMessageToTxFifoQ(FDCAN_HandleTypeDef *hfdcan, const FDCAN_TxHeaderTypeDef *pTxHeader, |
| const uint8_t *pTxData) |
| { |
| uint32_t PutIndex; |
| |
| /* Check function parameters */ |
| assert_param(IS_FDCAN_ID_TYPE(pTxHeader->IdType)); |
| if (pTxHeader->IdType == FDCAN_STANDARD_ID) |
| { |
| assert_param(IS_FDCAN_MAX_VALUE(pTxHeader->Identifier, 0x7FFU)); |
| } |
| else /* pTxHeader->IdType == FDCAN_EXTENDED_ID */ |
| { |
| assert_param(IS_FDCAN_MAX_VALUE(pTxHeader->Identifier, 0x1FFFFFFFU)); |
| } |
| assert_param(IS_FDCAN_FRAME_TYPE(pTxHeader->TxFrameType)); |
| assert_param(IS_FDCAN_DLC(pTxHeader->DataLength)); |
| assert_param(IS_FDCAN_ESI(pTxHeader->ErrorStateIndicator)); |
| assert_param(IS_FDCAN_BRS(pTxHeader->BitRateSwitch)); |
| assert_param(IS_FDCAN_FDF(pTxHeader->FDFormat)); |
| assert_param(IS_FDCAN_EFC(pTxHeader->TxEventFifoControl)); |
| assert_param(IS_FDCAN_MAX_VALUE(pTxHeader->MessageMarker, 0xFFU)); |
| |
| if (hfdcan->State == HAL_FDCAN_STATE_BUSY) |
| { |
| /* Check that the Tx FIFO/Queue has an allocated area into the RAM */ |
| if ((hfdcan->Instance->TXBC & FDCAN_TXBC_TFQS) == 0U) |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_PARAM; |
| |
| return HAL_ERROR; |
| } |
| |
| /* Check that the Tx FIFO/Queue is not full */ |
| if ((hfdcan->Instance->TXFQS & FDCAN_TXFQS_TFQF) != 0U) |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_FIFO_FULL; |
| |
| return HAL_ERROR; |
| } |
| else |
| { |
| /* Retrieve the Tx FIFO PutIndex */ |
| PutIndex = ((hfdcan->Instance->TXFQS & FDCAN_TXFQS_TFQPI) >> FDCAN_TXFQS_TFQPI_Pos); |
| |
| /* Add the message to the Tx FIFO/Queue */ |
| FDCAN_CopyMessageToRAM(hfdcan, pTxHeader, pTxData, PutIndex); |
| |
| /* Activate the corresponding transmission request */ |
| hfdcan->Instance->TXBAR = ((uint32_t)1 << PutIndex); |
| |
| /* Store the Latest Tx FIFO/Queue Request Buffer Index */ |
| hfdcan->LatestTxFifoQRequest = ((uint32_t)1 << PutIndex); |
| } |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| else |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_STARTED; |
| |
| return HAL_ERROR; |
| } |
| } |
| |
| /** |
| * @brief Add a message to a dedicated Tx buffer |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @param pTxHeader pointer to a FDCAN_TxHeaderTypeDef structure. |
| * @param pTxData pointer to a buffer containing the payload of the Tx frame. |
| * @param BufferIndex index of the buffer to be configured. |
| * This parameter can be a value of @arg FDCAN_Tx_location. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_FDCAN_AddMessageToTxBuffer(FDCAN_HandleTypeDef *hfdcan, const FDCAN_TxHeaderTypeDef *pTxHeader, |
| const uint8_t *pTxData, uint32_t BufferIndex) |
| { |
| HAL_FDCAN_StateTypeDef state = hfdcan->State; |
| |
| /* Check function parameters */ |
| assert_param(IS_FDCAN_ID_TYPE(pTxHeader->IdType)); |
| if (pTxHeader->IdType == FDCAN_STANDARD_ID) |
| { |
| assert_param(IS_FDCAN_MAX_VALUE(pTxHeader->Identifier, 0x7FFU)); |
| } |
| else /* pTxHeader->IdType == FDCAN_EXTENDED_ID */ |
| { |
| assert_param(IS_FDCAN_MAX_VALUE(pTxHeader->Identifier, 0x1FFFFFFFU)); |
| } |
| assert_param(IS_FDCAN_FRAME_TYPE(pTxHeader->TxFrameType)); |
| assert_param(IS_FDCAN_DLC(pTxHeader->DataLength)); |
| assert_param(IS_FDCAN_ESI(pTxHeader->ErrorStateIndicator)); |
| assert_param(IS_FDCAN_BRS(pTxHeader->BitRateSwitch)); |
| assert_param(IS_FDCAN_FDF(pTxHeader->FDFormat)); |
| assert_param(IS_FDCAN_EFC(pTxHeader->TxEventFifoControl)); |
| assert_param(IS_FDCAN_MAX_VALUE(pTxHeader->MessageMarker, 0xFFU)); |
| assert_param(IS_FDCAN_TX_LOCATION(BufferIndex)); |
| |
| if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY)) |
| { |
| /* Check that the selected buffer has an allocated area into the RAM */ |
| if (POSITION_VAL(BufferIndex) >= ((hfdcan->Instance->TXBC & FDCAN_TXBC_NDTB) >> FDCAN_TXBC_NDTB_Pos)) |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_PARAM; |
| |
| return HAL_ERROR; |
| } |
| |
| /* Check that there is no transmission request pending for the selected buffer */ |
| if ((hfdcan->Instance->TXBRP & BufferIndex) != 0U) |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_PENDING; |
| |
| return HAL_ERROR; |
| } |
| else |
| { |
| /* Add the message to the Tx buffer */ |
| FDCAN_CopyMessageToRAM(hfdcan, pTxHeader, pTxData, POSITION_VAL(BufferIndex)); |
| } |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| else |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED; |
| |
| return HAL_ERROR; |
| } |
| } |
| |
| /** |
| * @brief Enable transmission request. |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @param BufferIndex buffer index. |
| * This parameter can be any combination of @arg FDCAN_Tx_location. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_FDCAN_EnableTxBufferRequest(FDCAN_HandleTypeDef *hfdcan, uint32_t BufferIndex) |
| { |
| if (hfdcan->State == HAL_FDCAN_STATE_BUSY) |
| { |
| /* Add transmission request */ |
| hfdcan->Instance->TXBAR = BufferIndex; |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| else |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_STARTED; |
| |
| return HAL_ERROR; |
| } |
| } |
| |
| /** |
| * @brief Get Tx buffer index of latest Tx FIFO/Queue request |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @retval Tx buffer index of last Tx FIFO/Queue request |
| * - Any value of @arg FDCAN_Tx_location if Tx request has been submitted. |
| * - 0 if no Tx FIFO/Queue request have been submitted. |
| */ |
| uint32_t HAL_FDCAN_GetLatestTxFifoQRequestBuffer(const FDCAN_HandleTypeDef *hfdcan) |
| { |
| /* Return Last Tx FIFO/Queue Request Buffer */ |
| return hfdcan->LatestTxFifoQRequest; |
| } |
| |
| /** |
| * @brief Abort transmission request |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @param BufferIndex buffer index. |
| * This parameter can be any combination of @arg FDCAN_Tx_location. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_FDCAN_AbortTxRequest(FDCAN_HandleTypeDef *hfdcan, uint32_t BufferIndex) |
| { |
| if (hfdcan->State == HAL_FDCAN_STATE_BUSY) |
| { |
| /* Add cancellation request */ |
| hfdcan->Instance->TXBCR = BufferIndex; |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| else |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_STARTED; |
| |
| return HAL_ERROR; |
| } |
| } |
| |
| /** |
| * @brief Get an FDCAN frame from the Rx Buffer/FIFO zone into the message RAM. |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @param RxLocation Location of the received message to be read. |
| * This parameter can be a value of @arg FDCAN_Rx_location. |
| * @param pRxHeader pointer to a FDCAN_RxHeaderTypeDef structure. |
| * @param pRxData pointer to a buffer where the payload of the Rx frame will be stored. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_FDCAN_GetRxMessage(FDCAN_HandleTypeDef *hfdcan, uint32_t RxLocation, |
| FDCAN_RxHeaderTypeDef *pRxHeader, uint8_t *pRxData) |
| { |
| uint32_t *RxAddress; |
| uint8_t *pData; |
| uint32_t ByteCounter; |
| uint32_t GetIndex = 0; |
| HAL_FDCAN_StateTypeDef state = hfdcan->State; |
| |
| if (state == HAL_FDCAN_STATE_BUSY) |
| { |
| if (RxLocation == FDCAN_RX_FIFO0) /* Rx element is assigned to the Rx FIFO 0 */ |
| { |
| /* Check that the Rx FIFO 0 has an allocated area into the RAM */ |
| if ((hfdcan->Instance->RXF0C & FDCAN_RXF0C_F0S) == 0U) |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_PARAM; |
| |
| return HAL_ERROR; |
| } |
| |
| /* Check that the Rx FIFO 0 is not empty */ |
| if ((hfdcan->Instance->RXF0S & FDCAN_RXF0S_F0FL) == 0U) |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_FIFO_EMPTY; |
| |
| return HAL_ERROR; |
| } |
| else |
| { |
| /* Check that the Rx FIFO 0 is full & overwrite mode is on */ |
| if (((hfdcan->Instance->RXF0S & FDCAN_RXF0S_F0F) >> FDCAN_RXF0S_F0F_Pos) == 1U) |
| { |
| if (((hfdcan->Instance->RXF0C & FDCAN_RXF0C_F0OM) >> FDCAN_RXF0C_F0OM_Pos) == FDCAN_RX_FIFO_OVERWRITE) |
| { |
| /* When overwrite status is on discard first message in FIFO */ |
| GetIndex = 1U; |
| } |
| } |
| |
| /* Calculate Rx FIFO 0 element index */ |
| GetIndex += ((hfdcan->Instance->RXF0S & FDCAN_RXF0S_F0GI) >> FDCAN_RXF0S_F0GI_Pos); |
| |
| /* Calculate Rx FIFO 0 element address */ |
| RxAddress = (uint32_t *)(hfdcan->msgRam.RxFIFO0SA + (GetIndex * hfdcan->Init.RxFifo0ElmtSize * 4U)); |
| } |
| } |
| else if (RxLocation == FDCAN_RX_FIFO1) /* Rx element is assigned to the Rx FIFO 1 */ |
| { |
| /* Check that the Rx FIFO 1 has an allocated area into the RAM */ |
| if ((hfdcan->Instance->RXF1C & FDCAN_RXF1C_F1S) == 0U) |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_PARAM; |
| |
| return HAL_ERROR; |
| } |
| |
| /* Check that the Rx FIFO 1 is not empty */ |
| if ((hfdcan->Instance->RXF1S & FDCAN_RXF1S_F1FL) == 0U) |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_FIFO_EMPTY; |
| |
| return HAL_ERROR; |
| } |
| else |
| { |
| /* Check that the Rx FIFO 1 is full & overwrite mode is on */ |
| if (((hfdcan->Instance->RXF1S & FDCAN_RXF1S_F1F) >> FDCAN_RXF1S_F1F_Pos) == 1U) |
| { |
| if (((hfdcan->Instance->RXF1C & FDCAN_RXF1C_F1OM) >> FDCAN_RXF1C_F1OM_Pos) == FDCAN_RX_FIFO_OVERWRITE) |
| { |
| /* When overwrite status is on discard first message in FIFO */ |
| GetIndex = 1U; |
| } |
| } |
| |
| /* Calculate Rx FIFO 1 element index */ |
| GetIndex += ((hfdcan->Instance->RXF1S & FDCAN_RXF1S_F1GI) >> FDCAN_RXF1S_F1GI_Pos); |
| |
| /* Calculate Rx FIFO 1 element address */ |
| RxAddress = (uint32_t *)(hfdcan->msgRam.RxFIFO1SA + (GetIndex * hfdcan->Init.RxFifo1ElmtSize * 4U)); |
| } |
| } |
| else /* Rx element is assigned to a dedicated Rx buffer */ |
| { |
| /* Check that the selected buffer has an allocated area into the RAM */ |
| if (RxLocation >= hfdcan->Init.RxBuffersNbr) |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_PARAM; |
| |
| return HAL_ERROR; |
| } |
| else |
| { |
| /* Calculate Rx buffer address */ |
| RxAddress = (uint32_t *)(hfdcan->msgRam.RxBufferSA + (RxLocation * hfdcan->Init.RxBufferSize * 4U)); |
| } |
| } |
| |
| /* Retrieve IdType */ |
| pRxHeader->IdType = *RxAddress & FDCAN_ELEMENT_MASK_XTD; |
| |
| /* Retrieve Identifier */ |
| if (pRxHeader->IdType == FDCAN_STANDARD_ID) /* Standard ID element */ |
| { |
| pRxHeader->Identifier = ((*RxAddress & FDCAN_ELEMENT_MASK_STDID) >> 18U); |
| } |
| else /* Extended ID element */ |
| { |
| pRxHeader->Identifier = (*RxAddress & FDCAN_ELEMENT_MASK_EXTID); |
| } |
| |
| /* Retrieve RxFrameType */ |
| pRxHeader->RxFrameType = (*RxAddress & FDCAN_ELEMENT_MASK_RTR); |
| |
| /* Retrieve ErrorStateIndicator */ |
| pRxHeader->ErrorStateIndicator = (*RxAddress & FDCAN_ELEMENT_MASK_ESI); |
| |
| /* Increment RxAddress pointer to second word of Rx FIFO element */ |
| RxAddress++; |
| |
| /* Retrieve RxTimestamp */ |
| pRxHeader->RxTimestamp = (*RxAddress & FDCAN_ELEMENT_MASK_TS); |
| |
| /* Retrieve DataLength */ |
| pRxHeader->DataLength = ((*RxAddress & FDCAN_ELEMENT_MASK_DLC) >> 16U); |
| |
| /* Retrieve BitRateSwitch */ |
| pRxHeader->BitRateSwitch = (*RxAddress & FDCAN_ELEMENT_MASK_BRS); |
| |
| /* Retrieve FDFormat */ |
| pRxHeader->FDFormat = (*RxAddress & FDCAN_ELEMENT_MASK_FDF); |
| |
| /* Retrieve FilterIndex */ |
| pRxHeader->FilterIndex = ((*RxAddress & FDCAN_ELEMENT_MASK_FIDX) >> 24U); |
| |
| /* Retrieve NonMatchingFrame */ |
| pRxHeader->IsFilterMatchingFrame = ((*RxAddress & FDCAN_ELEMENT_MASK_ANMF) >> 31U); |
| |
| /* Increment RxAddress pointer to payload of Rx FIFO element */ |
| RxAddress++; |
| |
| /* Retrieve Rx payload */ |
| pData = (uint8_t *)RxAddress; |
| for (ByteCounter = 0; ByteCounter < DLCtoBytes[pRxHeader->DataLength]; ByteCounter++) |
| { |
| pRxData[ByteCounter] = pData[ByteCounter]; |
| } |
| |
| if (RxLocation == FDCAN_RX_FIFO0) /* Rx element is assigned to the Rx FIFO 0 */ |
| { |
| /* Acknowledge the Rx FIFO 0 that the oldest element is read so that it increments the GetIndex */ |
| hfdcan->Instance->RXF0A = GetIndex; |
| } |
| else if (RxLocation == FDCAN_RX_FIFO1) /* Rx element is assigned to the Rx FIFO 1 */ |
| { |
| /* Acknowledge the Rx FIFO 1 that the oldest element is read so that it increments the GetIndex */ |
| hfdcan->Instance->RXF1A = GetIndex; |
| } |
| else /* Rx element is assigned to a dedicated Rx buffer */ |
| { |
| /* Clear the New Data flag of the current Rx buffer */ |
| if (RxLocation < FDCAN_RX_BUFFER32) |
| { |
| hfdcan->Instance->NDAT1 = ((uint32_t)1U << RxLocation); |
| } |
| else /* FDCAN_RX_BUFFER32 <= RxLocation <= FDCAN_RX_BUFFER63 */ |
| { |
| hfdcan->Instance->NDAT2 = ((uint32_t)1U << (RxLocation & 0x1FU)); |
| } |
| } |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| else |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_STARTED; |
| |
| return HAL_ERROR; |
| } |
| } |
| |
| /** |
| * @brief Get an FDCAN Tx event from the Tx Event FIFO zone into the message RAM. |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @param pTxEvent pointer to a FDCAN_TxEventFifoTypeDef structure. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_FDCAN_GetTxEvent(FDCAN_HandleTypeDef *hfdcan, FDCAN_TxEventFifoTypeDef *pTxEvent) |
| { |
| uint32_t *TxEventAddress; |
| uint32_t GetIndex; |
| HAL_FDCAN_StateTypeDef state = hfdcan->State; |
| |
| /* Check function parameters */ |
| assert_param(IS_FDCAN_MIN_VALUE(hfdcan->Init.TxEventsNbr, 1U)); |
| |
| if (state == HAL_FDCAN_STATE_BUSY) |
| { |
| /* Check that the Tx Event FIFO has an allocated area into the RAM */ |
| if ((hfdcan->Instance->TXEFC & FDCAN_TXEFC_EFS) == 0U) |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_PARAM; |
| |
| return HAL_ERROR; |
| } |
| |
| /* Check that the Tx event FIFO is not empty */ |
| if ((hfdcan->Instance->TXEFS & FDCAN_TXEFS_EFFL) == 0U) |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_FIFO_EMPTY; |
| |
| return HAL_ERROR; |
| } |
| |
| /* Calculate Tx event FIFO element address */ |
| GetIndex = ((hfdcan->Instance->TXEFS & FDCAN_TXEFS_EFGI) >> FDCAN_TXEFS_EFGI_Pos); |
| TxEventAddress = (uint32_t *)(hfdcan->msgRam.TxEventFIFOSA + (GetIndex * 2U * 4U)); |
| |
| /* Retrieve IdType */ |
| pTxEvent->IdType = *TxEventAddress & FDCAN_ELEMENT_MASK_XTD; |
| |
| /* Retrieve Identifier */ |
| if (pTxEvent->IdType == FDCAN_STANDARD_ID) /* Standard ID element */ |
| { |
| pTxEvent->Identifier = ((*TxEventAddress & FDCAN_ELEMENT_MASK_STDID) >> 18U); |
| } |
| else /* Extended ID element */ |
| { |
| pTxEvent->Identifier = (*TxEventAddress & FDCAN_ELEMENT_MASK_EXTID); |
| } |
| |
| /* Retrieve TxFrameType */ |
| pTxEvent->TxFrameType = (*TxEventAddress & FDCAN_ELEMENT_MASK_RTR); |
| |
| /* Retrieve ErrorStateIndicator */ |
| pTxEvent->ErrorStateIndicator = (*TxEventAddress & FDCAN_ELEMENT_MASK_ESI); |
| |
| /* Increment TxEventAddress pointer to second word of Tx Event FIFO element */ |
| TxEventAddress++; |
| |
| /* Retrieve TxTimestamp */ |
| pTxEvent->TxTimestamp = (*TxEventAddress & FDCAN_ELEMENT_MASK_TS); |
| |
| /* Retrieve DataLength */ |
| pTxEvent->DataLength = ((*TxEventAddress & FDCAN_ELEMENT_MASK_DLC) >> 16U); |
| |
| /* Retrieve BitRateSwitch */ |
| pTxEvent->BitRateSwitch = (*TxEventAddress & FDCAN_ELEMENT_MASK_BRS); |
| |
| /* Retrieve FDFormat */ |
| pTxEvent->FDFormat = (*TxEventAddress & FDCAN_ELEMENT_MASK_FDF); |
| |
| /* Retrieve EventType */ |
| pTxEvent->EventType = (*TxEventAddress & FDCAN_ELEMENT_MASK_ET); |
| |
| /* Retrieve MessageMarker */ |
| pTxEvent->MessageMarker = ((*TxEventAddress & FDCAN_ELEMENT_MASK_MM) >> 24U); |
| |
| /* Acknowledge the Tx Event FIFO that the oldest element is read so that it increments the GetIndex */ |
| hfdcan->Instance->TXEFA = GetIndex; |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| else |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_STARTED; |
| |
| return HAL_ERROR; |
| } |
| } |
| |
| /** |
| * @brief Get high priority message status. |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @param HpMsgStatus pointer to an FDCAN_HpMsgStatusTypeDef structure. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_FDCAN_GetHighPriorityMessageStatus(const FDCAN_HandleTypeDef *hfdcan, |
| FDCAN_HpMsgStatusTypeDef *HpMsgStatus) |
| { |
| HpMsgStatus->FilterList = ((hfdcan->Instance->HPMS & FDCAN_HPMS_FLST) >> FDCAN_HPMS_FLST_Pos); |
| HpMsgStatus->FilterIndex = ((hfdcan->Instance->HPMS & FDCAN_HPMS_FIDX) >> FDCAN_HPMS_FIDX_Pos); |
| HpMsgStatus->MessageStorage = (hfdcan->Instance->HPMS & FDCAN_HPMS_MSI); |
| HpMsgStatus->MessageIndex = (hfdcan->Instance->HPMS & FDCAN_HPMS_BIDX); |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Get protocol status. |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @param ProtocolStatus pointer to an FDCAN_ProtocolStatusTypeDef structure. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_FDCAN_GetProtocolStatus(const FDCAN_HandleTypeDef *hfdcan, |
| FDCAN_ProtocolStatusTypeDef *ProtocolStatus) |
| { |
| uint32_t StatusReg; |
| |
| /* Read the protocol status register */ |
| StatusReg = READ_REG(hfdcan->Instance->PSR); |
| |
| /* Fill the protocol status structure */ |
| ProtocolStatus->LastErrorCode = (StatusReg & FDCAN_PSR_LEC); |
| ProtocolStatus->DataLastErrorCode = ((StatusReg & FDCAN_PSR_DLEC) >> FDCAN_PSR_DLEC_Pos); |
| ProtocolStatus->Activity = (StatusReg & FDCAN_PSR_ACT); |
| ProtocolStatus->ErrorPassive = ((StatusReg & FDCAN_PSR_EP) >> FDCAN_PSR_EP_Pos); |
| ProtocolStatus->Warning = ((StatusReg & FDCAN_PSR_EW) >> FDCAN_PSR_EW_Pos); |
| ProtocolStatus->BusOff = ((StatusReg & FDCAN_PSR_BO) >> FDCAN_PSR_BO_Pos); |
| ProtocolStatus->RxESIflag = ((StatusReg & FDCAN_PSR_RESI) >> FDCAN_PSR_RESI_Pos); |
| ProtocolStatus->RxBRSflag = ((StatusReg & FDCAN_PSR_RBRS) >> FDCAN_PSR_RBRS_Pos); |
| ProtocolStatus->RxFDFflag = ((StatusReg & FDCAN_PSR_REDL) >> FDCAN_PSR_REDL_Pos); |
| ProtocolStatus->ProtocolException = ((StatusReg & FDCAN_PSR_PXE) >> FDCAN_PSR_PXE_Pos); |
| ProtocolStatus->TDCvalue = ((StatusReg & FDCAN_PSR_TDCV) >> FDCAN_PSR_TDCV_Pos); |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Get error counter values. |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @param ErrorCounters pointer to an FDCAN_ErrorCountersTypeDef structure. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_FDCAN_GetErrorCounters(const FDCAN_HandleTypeDef *hfdcan, |
| FDCAN_ErrorCountersTypeDef *ErrorCounters) |
| { |
| uint32_t CountersReg; |
| |
| /* Read the error counters register */ |
| CountersReg = READ_REG(hfdcan->Instance->ECR); |
| |
| /* Fill the error counters structure */ |
| ErrorCounters->TxErrorCnt = ((CountersReg & FDCAN_ECR_TEC) >> FDCAN_ECR_TEC_Pos); |
| ErrorCounters->RxErrorCnt = ((CountersReg & FDCAN_ECR_REC) >> FDCAN_ECR_REC_Pos); |
| ErrorCounters->RxErrorPassive = ((CountersReg & FDCAN_ECR_RP) >> FDCAN_ECR_RP_Pos); |
| ErrorCounters->ErrorLogging = ((CountersReg & FDCAN_ECR_CEL) >> FDCAN_ECR_CEL_Pos); |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Check if a new message is received in the selected Rx buffer. |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @param RxBufferIndex Rx buffer index. |
| * This parameter must be a number between 0 and 63. |
| * @retval Status |
| * - 0 : No new message on RxBufferIndex. |
| * - 1 : New message received on RxBufferIndex. |
| */ |
| uint32_t HAL_FDCAN_IsRxBufferMessageAvailable(FDCAN_HandleTypeDef *hfdcan, uint32_t RxBufferIndex) |
| { |
| /* Check function parameters */ |
| assert_param(IS_FDCAN_MAX_VALUE(RxBufferIndex, 63U)); |
| uint32_t NewData1 = hfdcan->Instance->NDAT1; |
| uint32_t NewData2 = hfdcan->Instance->NDAT2; |
| |
| /* Check new message reception on the selected buffer */ |
| if (((RxBufferIndex < 32U) && ((NewData1 & (uint32_t)((uint32_t)1 << RxBufferIndex)) == 0U)) || |
| ((RxBufferIndex >= 32U) && ((NewData2 & (uint32_t)((uint32_t)1 << (RxBufferIndex & 0x1FU))) == 0U))) |
| { |
| return 0; |
| } |
| |
| /* Clear the New Data flag of the current Rx buffer */ |
| if (RxBufferIndex < 32U) |
| { |
| hfdcan->Instance->NDAT1 = ((uint32_t)1 << RxBufferIndex); |
| } |
| else /* 32 <= RxBufferIndex <= 63 */ |
| { |
| hfdcan->Instance->NDAT2 = ((uint32_t)1 << (RxBufferIndex & 0x1FU)); |
| } |
| |
| return 1; |
| } |
| |
| /** |
| * @brief Check if a transmission request is pending on the selected Tx buffer. |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @param TxBufferIndex Tx buffer index. |
| * This parameter can be any combination of @arg FDCAN_Tx_location. |
| * @retval Status |
| * - 0 : No pending transmission request on TxBufferIndex. |
| * - 1 : Pending transmission request on TxBufferIndex. |
| */ |
| uint32_t HAL_FDCAN_IsTxBufferMessagePending(const FDCAN_HandleTypeDef *hfdcan, uint32_t TxBufferIndex) |
| { |
| /* Check pending transmission request on the selected buffer */ |
| if ((hfdcan->Instance->TXBRP & TxBufferIndex) == 0U) |
| { |
| return 0; |
| } |
| return 1; |
| } |
| |
| /** |
| * @brief Return Rx FIFO fill level. |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @param RxFifo Rx FIFO. |
| * This parameter can be one of the following values: |
| * @arg FDCAN_RX_FIFO0: Rx FIFO 0 |
| * @arg FDCAN_RX_FIFO1: Rx FIFO 1 |
| * @retval Rx FIFO fill level. |
| */ |
| uint32_t HAL_FDCAN_GetRxFifoFillLevel(const FDCAN_HandleTypeDef *hfdcan, uint32_t RxFifo) |
| { |
| uint32_t FillLevel; |
| |
| /* Check function parameters */ |
| assert_param(IS_FDCAN_RX_FIFO(RxFifo)); |
| |
| if (RxFifo == FDCAN_RX_FIFO0) |
| { |
| FillLevel = hfdcan->Instance->RXF0S & FDCAN_RXF0S_F0FL; |
| } |
| else /* RxFifo == FDCAN_RX_FIFO1 */ |
| { |
| FillLevel = hfdcan->Instance->RXF1S & FDCAN_RXF1S_F1FL; |
| } |
| |
| /* Return Rx FIFO fill level */ |
| return FillLevel; |
| } |
| |
| /** |
| * @brief Return Tx FIFO free level: number of consecutive free Tx FIFO |
| * elements starting from Tx FIFO GetIndex. |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @retval Tx FIFO free level. |
| */ |
| uint32_t HAL_FDCAN_GetTxFifoFreeLevel(const FDCAN_HandleTypeDef *hfdcan) |
| { |
| uint32_t FreeLevel; |
| |
| FreeLevel = hfdcan->Instance->TXFQS & FDCAN_TXFQS_TFFL; |
| |
| /* Return Tx FIFO free level */ |
| return FreeLevel; |
| } |
| |
| /** |
| * @brief Check if the FDCAN peripheral entered Restricted Operation Mode. |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @retval Status |
| * - 0 : Normal FDCAN operation. |
| * - 1 : Restricted Operation Mode active. |
| */ |
| uint32_t HAL_FDCAN_IsRestrictedOperationMode(const FDCAN_HandleTypeDef *hfdcan) |
| { |
| uint32_t OperationMode; |
| |
| /* Get Operation Mode */ |
| OperationMode = ((hfdcan->Instance->CCCR & FDCAN_CCCR_ASM) >> FDCAN_CCCR_ASM_Pos); |
| |
| return OperationMode; |
| } |
| |
| /** |
| * @brief Exit Restricted Operation Mode. |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_FDCAN_ExitRestrictedOperationMode(FDCAN_HandleTypeDef *hfdcan) |
| { |
| HAL_FDCAN_StateTypeDef state = hfdcan->State; |
| |
| if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY)) |
| { |
| /* Exit Restricted Operation mode */ |
| CLEAR_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_ASM); |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| else |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED; |
| |
| return HAL_ERROR; |
| } |
| } |
| |
| /** |
| * @} |
| */ |
| |
| /** @defgroup FDCAN_Exported_Functions_Group4 TT Configuration and control functions |
| * @brief TT Configuration and control functions |
| * |
| @verbatim |
| ============================================================================== |
| ##### TT Configuration and control functions ##### |
| ============================================================================== |
| [..] This section provides functions allowing to: |
| (+) HAL_FDCAN_TT_ConfigOperation : Initialize TT operation parameters |
| (+) HAL_FDCAN_TT_ConfigReferenceMessage : Configure the reference message |
| (+) HAL_FDCAN_TT_ConfigTrigger : Configure the FDCAN trigger |
| (+) HAL_FDCAN_TT_SetGlobalTime : Schedule global time adjustment |
| (+) HAL_FDCAN_TT_SetClockSynchronization : Schedule TUR numerator update |
| (+) HAL_FDCAN_TT_ConfigStopWatch : Configure stop watch source and polarity |
| (+) HAL_FDCAN_TT_ConfigRegisterTimeMark : Configure register time mark pulse generation |
| (+) HAL_FDCAN_TT_EnableRegisterTimeMarkPulse : Enable register time mark pulse generation |
| (+) HAL_FDCAN_TT_DisableRegisterTimeMarkPulse : Disable register time mark pulse generation |
| (+) HAL_FDCAN_TT_EnableTriggerTimeMarkPulse : Enable trigger time mark pulse generation |
| (+) HAL_FDCAN_TT_DisableTriggerTimeMarkPulse : Disable trigger time mark pulse generation |
| (+) HAL_FDCAN_TT_EnableHardwareGapControl : Enable gap control by input pin fdcan1_evt |
| (+) HAL_FDCAN_TT_DisableHardwareGapControl : Disable gap control by input pin fdcan1_evt |
| (+) HAL_FDCAN_TT_EnableTimeMarkGapControl : Enable gap control (finish only) by register time mark IT |
| (+) HAL_FDCAN_TT_DisableTimeMarkGapControl : Disable gap control by register time mark interrupt |
| (+) HAL_FDCAN_TT_SetNextIsGap : Transmit next reference message with Next_is_Gap = "1" |
| (+) HAL_FDCAN_TT_SetEndOfGap : Finish a Gap by requesting start of reference message |
| (+) HAL_FDCAN_TT_ConfigExternalSyncPhase : Configure target phase used for external synchronization |
| (+) HAL_FDCAN_TT_EnableExternalSynchronization : Synchronize the phase of the FDCAN schedule to an external |
| schedule |
| (+) HAL_FDCAN_TT_DisableExternalSynchronization : Disable external schedule synchronization |
| (+) HAL_FDCAN_TT_GetOperationStatus : Get TT operation status |
| |
| @endverbatim |
| * @{ |
| */ |
| |
| /** |
| * @brief Initialize TT operation parameters. |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @param pTTParams pointer to a FDCAN_TT_ConfigTypeDef structure. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_FDCAN_TT_ConfigOperation(FDCAN_HandleTypeDef *hfdcan, const FDCAN_TT_ConfigTypeDef *pTTParams) |
| { |
| uint32_t tickstart; |
| uint32_t RAMcounter; |
| uint32_t StartAddress; |
| |
| /* Check function parameters */ |
| assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance)); |
| assert_param(IS_FDCAN_TT_TUR_NUMERATOR(pTTParams->TURNumerator)); |
| assert_param(IS_FDCAN_TT_TUR_DENOMINATOR(pTTParams->TURDenominator)); |
| assert_param(IS_FDCAN_TT_TIME_MASTER(pTTParams->TimeMaster)); |
| assert_param(IS_FDCAN_MAX_VALUE(pTTParams->SyncDevLimit, 7U)); |
| assert_param(IS_FDCAN_MAX_VALUE(pTTParams->InitRefTrigOffset, 127U)); |
| assert_param(IS_FDCAN_MAX_VALUE(pTTParams->TriggerMemoryNbr, 64U)); |
| assert_param(IS_FDCAN_TT_CYCLE_START_SYNC(pTTParams->CycleStartSync)); |
| assert_param(IS_FDCAN_TT_STOP_WATCH_TRIGGER(pTTParams->StopWatchTrigSel)); |
| assert_param(IS_FDCAN_TT_EVENT_TRIGGER(pTTParams->EventTrigSel)); |
| if (pTTParams->TimeMaster == FDCAN_TT_POTENTIAL_MASTER) |
| { |
| assert_param(IS_FDCAN_TT_BASIC_CYCLES_NUMBER(pTTParams->BasicCyclesNbr)); |
| } |
| if (pTTParams->OperationMode != FDCAN_TT_COMMUNICATION_LEVEL0) |
| { |
| assert_param(IS_FDCAN_TT_OPERATION(pTTParams->GapEnable)); |
| assert_param(IS_FDCAN_MAX_VALUE(pTTParams->AppWdgLimit, 255U)); |
| assert_param(IS_FDCAN_TT_EVENT_TRIGGER_POLARITY(pTTParams->EvtTrigPolarity)); |
| assert_param(IS_FDCAN_TT_TX_ENABLE_WINDOW(pTTParams->TxEnableWindow)); |
| assert_param(IS_FDCAN_MAX_VALUE(pTTParams->ExpTxTrigNbr, 4095U)); |
| } |
| if (pTTParams->OperationMode != FDCAN_TT_COMMUNICATION_LEVEL1) |
| { |
| assert_param(IS_FDCAN_TT_TUR_LEVEL_0_2(pTTParams->TURNumerator, pTTParams->TURDenominator)); |
| assert_param(IS_FDCAN_TT_EXTERNAL_CLK_SYNC(pTTParams->ExternalClkSync)); |
| assert_param(IS_FDCAN_TT_GLOBAL_TIME_FILTERING(pTTParams->GlobalTimeFilter)); |
| assert_param(IS_FDCAN_TT_AUTO_CLK_CALIBRATION(pTTParams->ClockCalibration)); |
| } |
| else |
| { |
| assert_param(IS_FDCAN_TT_TUR_LEVEL_1(pTTParams->TURNumerator, pTTParams->TURDenominator)); |
| } |
| |
| if (hfdcan->State == HAL_FDCAN_STATE_READY) |
| { |
| /* Stop local time in order to enable write access to the other bits of TURCF register */ |
| CLEAR_BIT(hfdcan->ttcan->TURCF, FDCAN_TURCF_ELT); |
| |
| /* Get tick */ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait until the ELT bit into TURCF register is reset */ |
| while ((hfdcan->ttcan->TURCF & FDCAN_TURCF_ELT) != 0U) |
| { |
| /* Check for the Timeout */ |
| if ((HAL_GetTick() - tickstart) > FDCAN_TIMEOUT_VALUE) |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT; |
| |
| /* Change FDCAN state */ |
| hfdcan->State = HAL_FDCAN_STATE_ERROR; |
| |
| return HAL_ERROR; |
| } |
| } |
| |
| /* Configure TUR (Time Unit Ratio) */ |
| MODIFY_REG(hfdcan->ttcan->TURCF, |
| (FDCAN_TURCF_NCL | FDCAN_TURCF_DC), |
| (((pTTParams->TURNumerator - 0x10000U) << FDCAN_TURCF_NCL_Pos) | |
| (pTTParams->TURDenominator << FDCAN_TURCF_DC_Pos))); |
| |
| /* Enable local time */ |
| SET_BIT(hfdcan->ttcan->TURCF, FDCAN_TURCF_ELT); |
| |
| /* Configure TT operation */ |
| MODIFY_REG(hfdcan->ttcan->TTOCF, |
| (FDCAN_TTOCF_OM | FDCAN_TTOCF_TM | FDCAN_TTOCF_LDSDL | FDCAN_TTOCF_IRTO), |
| (pTTParams->OperationMode | \ |
| pTTParams->TimeMaster | \ |
| (pTTParams->SyncDevLimit << FDCAN_TTOCF_LDSDL_Pos) | \ |
| (pTTParams->InitRefTrigOffset << FDCAN_TTOCF_IRTO_Pos))); |
| if (pTTParams->OperationMode != FDCAN_TT_COMMUNICATION_LEVEL0) |
| { |
| MODIFY_REG(hfdcan->ttcan->TTOCF, |
| (FDCAN_TTOCF_GEN | FDCAN_TTOCF_AWL | FDCAN_TTOCF_EVTP), |
| (pTTParams->GapEnable | \ |
| (pTTParams->AppWdgLimit << FDCAN_TTOCF_AWL_Pos) | \ |
| pTTParams->EvtTrigPolarity)); |
| } |
| if (pTTParams->OperationMode != FDCAN_TT_COMMUNICATION_LEVEL1) |
| { |
| MODIFY_REG(hfdcan->ttcan->TTOCF, |
| (FDCAN_TTOCF_EECS | FDCAN_TTOCF_EGTF | FDCAN_TTOCF_ECC), |
| (pTTParams->ExternalClkSync | \ |
| pTTParams->GlobalTimeFilter | \ |
| pTTParams->ClockCalibration)); |
| } |
| |
| /* Configure system matrix limits */ |
| MODIFY_REG(hfdcan->ttcan->TTMLM, FDCAN_TTMLM_CSS, pTTParams->CycleStartSync); |
| if (pTTParams->OperationMode != FDCAN_TT_COMMUNICATION_LEVEL0) |
| { |
| MODIFY_REG(hfdcan->ttcan->TTMLM, |
| (FDCAN_TTMLM_TXEW | FDCAN_TTMLM_ENTT), |
| (((pTTParams->TxEnableWindow - 1U) << FDCAN_TTMLM_TXEW_Pos) | |
| (pTTParams->ExpTxTrigNbr << FDCAN_TTMLM_ENTT_Pos))); |
| } |
| if (pTTParams->TimeMaster == FDCAN_TT_POTENTIAL_MASTER) |
| { |
| MODIFY_REG(hfdcan->ttcan->TTMLM, FDCAN_TTMLM_CCM, pTTParams->BasicCyclesNbr); |
| } |
| |
| /* Configure input triggers: Stop watch and Event */ |
| MODIFY_REG(hfdcan->ttcan->TTTS, |
| (FDCAN_TTTS_SWTSEL | FDCAN_TTTS_EVTSEL), |
| (pTTParams->StopWatchTrigSel | pTTParams->EventTrigSel)); |
| |
| /* Configure trigger memory start address */ |
| StartAddress = (hfdcan->msgRam.EndAddress - SRAMCAN_BASE) / 4U; |
| MODIFY_REG(hfdcan->ttcan->TTTMC, FDCAN_TTTMC_TMSA, (StartAddress << FDCAN_TTTMC_TMSA_Pos)); |
| |
| /* Trigger memory elements number */ |
| MODIFY_REG(hfdcan->ttcan->TTTMC, FDCAN_TTTMC_TME, (pTTParams->TriggerMemoryNbr << FDCAN_TTTMC_TME_Pos)); |
| |
| /* Recalculate End Address */ |
| hfdcan->msgRam.TTMemorySA = hfdcan->msgRam.EndAddress; |
| hfdcan->msgRam.EndAddress = hfdcan->msgRam.TTMemorySA + (pTTParams->TriggerMemoryNbr * 2U * 4U); |
| |
| if (hfdcan->msgRam.EndAddress > FDCAN_MESSAGE_RAM_END_ADDRESS) /* Last address of the Message RAM */ |
| { |
| /* Update error code. |
| Message RAM overflow */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_PARAM; |
| |
| return HAL_ERROR; |
| } |
| else |
| { |
| /* Flush the allocated Message RAM area */ |
| for (RAMcounter = hfdcan->msgRam.TTMemorySA; RAMcounter < hfdcan->msgRam.EndAddress; RAMcounter += 4U) |
| { |
| *(uint32_t *)(RAMcounter) = 0x00000000; |
| } |
| } |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| else |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY; |
| |
| return HAL_ERROR; |
| } |
| } |
| |
| /** |
| * @brief Configure the reference message. |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @param IdType Identifier Type. |
| * This parameter can be a value of @arg FDCAN_id_type. |
| * @param Identifier Reference Identifier. |
| * This parameter must be a number between: |
| * - 0 and 0x7FF, if IdType is FDCAN_STANDARD_ID |
| * - 0 and 0x1FFFFFFF, if IdType is FDCAN_EXTENDED_ID |
| * @param Payload Enable or disable the additional payload. |
| * This parameter can be a value of @arg FDCAN_TT_Reference_Message_Payload. |
| * This parameter is ignored in case of time slaves. |
| * If this parameter is set to FDCAN_TT_REF_MESSAGE_ADD_PAYLOAD, the |
| * following elements are taken from Tx Buffer 0: |
| * - MessageMarker |
| * - TxEventFifoControl |
| * - DataLength |
| * - Data Bytes (payload): |
| * - bytes 2-8, for Level 1 |
| * - bytes 5-8, for Level 0 and Level 2 |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_FDCAN_TT_ConfigReferenceMessage(FDCAN_HandleTypeDef *hfdcan, uint32_t IdType, |
| uint32_t Identifier, uint32_t Payload) |
| { |
| /* Check function parameters */ |
| assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance)); |
| assert_param(IS_FDCAN_ID_TYPE(IdType)); |
| if (IdType == FDCAN_STANDARD_ID) |
| { |
| assert_param(IS_FDCAN_MAX_VALUE(Identifier, 0x7FFU)); |
| } |
| else /* IdType == FDCAN_EXTENDED_ID */ |
| { |
| assert_param(IS_FDCAN_MAX_VALUE(Identifier, 0x1FFFFFFFU)); |
| } |
| assert_param(IS_FDCAN_TT_REFERENCE_MESSAGE_PAYLOAD(Payload)); |
| |
| if (hfdcan->State == HAL_FDCAN_STATE_READY) |
| { |
| /* Configure reference message identifier type, identifier and payload */ |
| if (IdType == FDCAN_EXTENDED_ID) |
| { |
| MODIFY_REG(hfdcan->ttcan->TTRMC, (FDCAN_TTRMC_RID | FDCAN_TTRMC_XTD | FDCAN_TTRMC_RMPS), |
| (Payload | IdType | Identifier)); |
| } |
| else /* IdType == FDCAN_STANDARD_ID */ |
| { |
| MODIFY_REG(hfdcan->ttcan->TTRMC, (FDCAN_TTRMC_RID | FDCAN_TTRMC_XTD | FDCAN_TTRMC_RMPS), |
| (Payload | IdType | (Identifier << 18))); |
| } |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| else |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY; |
| |
| return HAL_ERROR; |
| } |
| } |
| |
| /** |
| * @brief Configure the FDCAN trigger according to the specified |
| * parameters in the FDCAN_TriggerTypeDef structure. |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @param sTriggerConfig pointer to an FDCAN_TriggerTypeDef structure that |
| * contains the trigger configuration information |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_FDCAN_TT_ConfigTrigger(FDCAN_HandleTypeDef *hfdcan, const FDCAN_TriggerTypeDef *sTriggerConfig) |
| { |
| uint32_t CycleCode; |
| uint32_t MessageNumber; |
| uint32_t TriggerElementW1; |
| uint32_t TriggerElementW2; |
| uint32_t *TriggerAddress; |
| |
| /* Check function parameters */ |
| assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance)); |
| assert_param(IS_FDCAN_MAX_VALUE(sTriggerConfig->TriggerIndex, 63U)); |
| assert_param(IS_FDCAN_MAX_VALUE(sTriggerConfig->TimeMark, 0xFFFFU)); |
| assert_param(IS_FDCAN_TT_REPEAT_FACTOR(sTriggerConfig->RepeatFactor)); |
| if (sTriggerConfig->RepeatFactor != FDCAN_TT_REPEAT_EVERY_CYCLE) |
| { |
| assert_param(IS_FDCAN_MAX_VALUE(sTriggerConfig->StartCycle, (sTriggerConfig->RepeatFactor - 1U))); |
| } |
| assert_param(IS_FDCAN_TT_TM_EVENT_INTERNAL(sTriggerConfig->TmEventInt)); |
| assert_param(IS_FDCAN_TT_TM_EVENT_EXTERNAL(sTriggerConfig->TmEventExt)); |
| assert_param(IS_FDCAN_TT_TRIGGER_TYPE(sTriggerConfig->TriggerType)); |
| assert_param(IS_FDCAN_ID_TYPE(sTriggerConfig->FilterType)); |
| if ((sTriggerConfig->TriggerType == FDCAN_TT_TX_TRIGGER_SINGLE) || |
| (sTriggerConfig->TriggerType == FDCAN_TT_TX_TRIGGER_CONTINUOUS) || |
| (sTriggerConfig->TriggerType == FDCAN_TT_TX_TRIGGER_ARBITRATION) || |
| (sTriggerConfig->TriggerType == FDCAN_TT_TX_TRIGGER_MERGED)) |
| { |
| assert_param(IS_FDCAN_TX_LOCATION(sTriggerConfig->TxBufferIndex)); |
| } |
| if (sTriggerConfig->TriggerType == FDCAN_TT_RX_TRIGGER) |
| { |
| if (sTriggerConfig->FilterType == FDCAN_STANDARD_ID) |
| { |
| assert_param(IS_FDCAN_MAX_VALUE(sTriggerConfig->FilterIndex, 63U)); |
| } |
| else /* sTriggerConfig->FilterType == FDCAN_EXTENDED_ID */ |
| { |
| assert_param(IS_FDCAN_MAX_VALUE(sTriggerConfig->FilterIndex, 127U)); |
| } |
| } |
| |
| if (hfdcan->State == HAL_FDCAN_STATE_READY) |
| { |
| /* Calculate cycle code */ |
| if (sTriggerConfig->RepeatFactor == FDCAN_TT_REPEAT_EVERY_CYCLE) |
| { |
| CycleCode = FDCAN_TT_REPEAT_EVERY_CYCLE; |
| } |
| else /* sTriggerConfig->RepeatFactor != FDCAN_TT_REPEAT_EVERY_CYCLE */ |
| { |
| CycleCode = sTriggerConfig->RepeatFactor + sTriggerConfig->StartCycle; |
| } |
| |
| /* Build first word of trigger element */ |
| TriggerElementW1 = ((sTriggerConfig->TimeMark << 16) | \ |
| (CycleCode << 8) | \ |
| sTriggerConfig->TmEventInt | \ |
| sTriggerConfig->TmEventExt | \ |
| sTriggerConfig->TriggerType); |
| |
| /* Select message number depending on trigger type (transmission or reception) */ |
| if (sTriggerConfig->TriggerType == FDCAN_TT_RX_TRIGGER) |
| { |
| MessageNumber = sTriggerConfig->FilterIndex; |
| } |
| else if ((sTriggerConfig->TriggerType == FDCAN_TT_TX_TRIGGER_SINGLE) || |
| (sTriggerConfig->TriggerType == FDCAN_TT_TX_TRIGGER_CONTINUOUS) || |
| (sTriggerConfig->TriggerType == FDCAN_TT_TX_TRIGGER_ARBITRATION) || |
| (sTriggerConfig->TriggerType == FDCAN_TT_TX_TRIGGER_MERGED)) |
| { |
| MessageNumber = POSITION_VAL(sTriggerConfig->TxBufferIndex); |
| } |
| else |
| { |
| MessageNumber = 0U; |
| } |
| |
| /* Build second word of trigger element */ |
| TriggerElementW2 = ((sTriggerConfig->FilterType >> 7) | (MessageNumber << 16)); |
| |
| /* Calculate trigger address */ |
| TriggerAddress = (uint32_t *)(hfdcan->msgRam.TTMemorySA + (sTriggerConfig->TriggerIndex * 4U * 2U)); |
| |
| /* Write trigger element to the message RAM */ |
| *TriggerAddress = TriggerElementW1; |
| TriggerAddress++; |
| *TriggerAddress = TriggerElementW2; |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| else |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY; |
| |
| return HAL_ERROR; |
| } |
| } |
| |
| /** |
| * @brief Schedule global time adjustment for the next reference message. |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @param TimePreset time preset value. |
| * This parameter must be a number between: |
| * - 0x0000 and 0x7FFF, Next_Master_Ref_Mark = Current_Master_Ref_Mark + TimePreset |
| * or |
| * - 0x8001 and 0xFFFF, Next_Master_Ref_Mark = Current_Master_Ref_Mark - (0x10000 - TimePreset) |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_FDCAN_TT_SetGlobalTime(FDCAN_HandleTypeDef *hfdcan, uint32_t TimePreset) |
| { |
| uint32_t Counter = 0U; |
| HAL_FDCAN_StateTypeDef state = hfdcan->State; |
| |
| /* Check function parameters */ |
| assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance)); |
| assert_param(IS_FDCAN_TT_TIME_PRESET(TimePreset)); |
| |
| if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY)) |
| { |
| /* Check that the external clock synchronization is enabled */ |
| if ((hfdcan->ttcan->TTOCF & FDCAN_TTOCF_EECS) != FDCAN_TTOCF_EECS) |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_SUPPORTED; |
| |
| return HAL_ERROR; |
| } |
| |
| /* Check that no global time preset is pending */ |
| if ((hfdcan->ttcan->TTOST & FDCAN_TTOST_WGTD) == FDCAN_TTOST_WGTD) |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_PENDING; |
| |
| return HAL_ERROR; |
| } |
| |
| /* Configure time preset */ |
| MODIFY_REG(hfdcan->ttcan->TTGTP, FDCAN_TTGTP_TP, (TimePreset << FDCAN_TTGTP_TP_Pos)); |
| |
| /* Wait until the LCKC bit into TTOCN register is reset */ |
| while ((hfdcan->ttcan->TTOCN & FDCAN_TTOCN_LCKC) != 0U) |
| { |
| /* Check for the Timeout */ |
| if (Counter > FDCAN_TIMEOUT_COUNT) |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT; |
| |
| /* Change FDCAN state */ |
| hfdcan->State = HAL_FDCAN_STATE_ERROR; |
| |
| return HAL_ERROR; |
| } |
| |
| /* Increment counter */ |
| Counter++; |
| } |
| |
| /* Schedule time preset to take effect by the next reference message */ |
| SET_BIT(hfdcan->ttcan->TTOCN, FDCAN_TTOCN_SGT); |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| else |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED; |
| |
| return HAL_ERROR; |
| } |
| } |
| |
| /** |
| * @brief Schedule TUR numerator update for the next reference message. |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @param NewTURNumerator new value of the TUR numerator. |
| * This parameter must be a number between 0x10000 and 0x1FFFF. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_FDCAN_TT_SetClockSynchronization(FDCAN_HandleTypeDef *hfdcan, uint32_t NewTURNumerator) |
| { |
| uint32_t Counter = 0U; |
| HAL_FDCAN_StateTypeDef state = hfdcan->State; |
| |
| /* Check function parameters */ |
| assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance)); |
| assert_param(IS_FDCAN_TT_TUR_NUMERATOR(NewTURNumerator)); |
| |
| if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY)) |
| { |
| /* Check that the external clock synchronization is enabled */ |
| if ((hfdcan->ttcan->TTOCF & FDCAN_TTOCF_EECS) != FDCAN_TTOCF_EECS) |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_SUPPORTED; |
| |
| return HAL_ERROR; |
| } |
| |
| /* Check that no external clock synchronization is pending */ |
| if ((hfdcan->ttcan->TTOST & FDCAN_TTOST_WECS) == FDCAN_TTOST_WECS) |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_PENDING; |
| |
| return HAL_ERROR; |
| } |
| |
| /* Configure new TUR numerator */ |
| MODIFY_REG(hfdcan->ttcan->TURCF, FDCAN_TURCF_NCL, (NewTURNumerator - 0x10000U)); |
| |
| /* Wait until the LCKC bit into TTOCN register is reset */ |
| while ((hfdcan->ttcan->TTOCN & FDCAN_TTOCN_LCKC) != 0U) |
| { |
| /* Check for the Timeout */ |
| if (Counter > FDCAN_TIMEOUT_COUNT) |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT; |
| |
| /* Change FDCAN state */ |
| hfdcan->State = HAL_FDCAN_STATE_ERROR; |
| |
| return HAL_ERROR; |
| } |
| |
| /* Increment counter */ |
| Counter++; |
| } |
| |
| /* Schedule TUR numerator update by the next reference message */ |
| SET_BIT(hfdcan->ttcan->TTOCN, FDCAN_TTOCN_ECS); |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| else |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED; |
| |
| return HAL_ERROR; |
| } |
| } |
| |
| /** |
| * @brief Configure stop watch source and polarity. |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @param Source stop watch source. |
| * This parameter can be a value of @arg FDCAN_TT_stop_watch_source. |
| * @param Polarity stop watch polarity. |
| * This parameter can be a value of @arg FDCAN_TT_stop_watch_polarity. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_FDCAN_TT_ConfigStopWatch(FDCAN_HandleTypeDef *hfdcan, uint32_t Source, uint32_t Polarity) |
| { |
| uint32_t Counter = 0U; |
| HAL_FDCAN_StateTypeDef state = hfdcan->State; |
| |
| /* Check function parameters */ |
| assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance)); |
| assert_param(IS_FDCAN_TT_STOP_WATCH_SOURCE(Source)); |
| assert_param(IS_FDCAN_TT_STOP_WATCH_POLARITY(Polarity)); |
| |
| if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY)) |
| { |
| /* Wait until the LCKC bit into TTOCN register is reset */ |
| while ((hfdcan->ttcan->TTOCN & FDCAN_TTOCN_LCKC) != 0U) |
| { |
| /* Check for the Timeout */ |
| if (Counter > FDCAN_TIMEOUT_COUNT) |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT; |
| |
| /* Change FDCAN state */ |
| hfdcan->State = HAL_FDCAN_STATE_ERROR; |
| |
| return HAL_ERROR; |
| } |
| |
| /* Increment counter */ |
| Counter++; |
| } |
| |
| /* Select stop watch source and polarity */ |
| MODIFY_REG(hfdcan->ttcan->TTOCN, (FDCAN_TTOCN_SWS | FDCAN_TTOCN_SWP), (Source | Polarity)); |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| else |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED; |
| |
| return HAL_ERROR; |
| } |
| } |
| |
| /** |
| * @brief Configure register time mark pulse generation. |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @param TimeMarkSource time mark source. |
| * This parameter can be a value of @arg FDCAN_TT_time_mark_source. |
| * @param TimeMarkValue time mark value (reference). |
| * This parameter must be a number between 0 and 0xFFFF. |
| * @param RepeatFactor repeat factor of the cycle for which the time mark is valid. |
| * This parameter can be a value of @arg FDCAN_TT_Repeat_Factor. |
| * @param StartCycle index of the first cycle in which the time mark becomes valid. |
| * This parameter is ignored if RepeatFactor is set to FDCAN_TT_REPEAT_EVERY_CYCLE. |
| * This parameter must be a number between 0 and RepeatFactor. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_FDCAN_TT_ConfigRegisterTimeMark(FDCAN_HandleTypeDef *hfdcan, |
| uint32_t TimeMarkSource, uint32_t TimeMarkValue, |
| uint32_t RepeatFactor, uint32_t StartCycle) |
| { |
| uint32_t Counter = 0U; |
| uint32_t CycleCode; |
| HAL_FDCAN_StateTypeDef state = hfdcan->State; |
| |
| /* Check function parameters */ |
| assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance)); |
| assert_param(IS_FDCAN_TT_REGISTER_TIME_MARK_SOURCE(TimeMarkSource)); |
| assert_param(IS_FDCAN_MAX_VALUE(TimeMarkValue, 0xFFFFU)); |
| assert_param(IS_FDCAN_TT_REPEAT_FACTOR(RepeatFactor)); |
| if (RepeatFactor != FDCAN_TT_REPEAT_EVERY_CYCLE) |
| { |
| assert_param(IS_FDCAN_MAX_VALUE(StartCycle, (RepeatFactor - 1U))); |
| } |
| |
| if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY)) |
| { |
| /* Wait until the LCKC bit into TTOCN register is reset */ |
| while ((hfdcan->ttcan->TTOCN & FDCAN_TTOCN_LCKC) != 0U) |
| { |
| /* Check for the Timeout */ |
| if (Counter > FDCAN_TIMEOUT_COUNT) |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT; |
| |
| /* Change FDCAN state */ |
| hfdcan->State = HAL_FDCAN_STATE_ERROR; |
| |
| return HAL_ERROR; |
| } |
| |
| /* Increment counter */ |
| Counter++; |
| } |
| |
| /* Disable the time mark compare function */ |
| CLEAR_BIT(hfdcan->ttcan->TTOCN, FDCAN_TTOCN_TMC); |
| |
| if (TimeMarkSource != FDCAN_TT_REG_TIMEMARK_DIABLED) |
| { |
| /* Calculate cycle code */ |
| if (RepeatFactor == FDCAN_TT_REPEAT_EVERY_CYCLE) |
| { |
| CycleCode = FDCAN_TT_REPEAT_EVERY_CYCLE; |
| } |
| else /* RepeatFactor != FDCAN_TT_REPEAT_EVERY_CYCLE */ |
| { |
| CycleCode = RepeatFactor + StartCycle; |
| } |
| |
| Counter = 0U; |
| |
| /* Wait until the LCKM bit into TTTMK register is reset */ |
| while ((hfdcan->ttcan->TTTMK & FDCAN_TTTMK_LCKM) != 0U) |
| { |
| /* Check for the Timeout */ |
| if (Counter > FDCAN_TIMEOUT_COUNT) |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT; |
| |
| /* Change FDCAN state */ |
| hfdcan->State = HAL_FDCAN_STATE_ERROR; |
| |
| return HAL_ERROR; |
| } |
| |
| /* Increment counter */ |
| Counter++; |
| } |
| |
| /* Configure time mark value and cycle code */ |
| hfdcan->ttcan->TTTMK = ((TimeMarkValue << FDCAN_TTTMK_TM_Pos) | (CycleCode << FDCAN_TTTMK_TICC_Pos)); |
| |
| Counter = 0U; |
| |
| /* Wait until the LCKC bit into TTOCN register is reset */ |
| while ((hfdcan->ttcan->TTOCN & FDCAN_TTOCN_LCKC) != 0U) |
| { |
| /* Check for the Timeout */ |
| if (Counter > FDCAN_TIMEOUT_COUNT) |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT; |
| |
| /* Change FDCAN state */ |
| hfdcan->State = HAL_FDCAN_STATE_ERROR; |
| |
| return HAL_ERROR; |
| } |
| |
| /* Increment counter */ |
| Counter++; |
| } |
| |
| /* Update the register time mark compare source */ |
| MODIFY_REG(hfdcan->ttcan->TTOCN, FDCAN_TTOCN_TMC, TimeMarkSource); |
| } |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| else |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED; |
| |
| return HAL_ERROR; |
| } |
| } |
| |
| /** |
| * @brief Enable register time mark pulse generation. |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_FDCAN_TT_EnableRegisterTimeMarkPulse(FDCAN_HandleTypeDef *hfdcan) |
| { |
| uint32_t Counter = 0U; |
| HAL_FDCAN_StateTypeDef state = hfdcan->State; |
| |
| /* Check function parameters */ |
| assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance)); |
| |
| if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY)) |
| { |
| /* Wait until the LCKC bit into TTOCN register is reset */ |
| while ((hfdcan->ttcan->TTOCN & FDCAN_TTOCN_LCKC) != 0U) |
| { |
| /* Check for the Timeout */ |
| if (Counter > FDCAN_TIMEOUT_COUNT) |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT; |
| |
| /* Change FDCAN state */ |
| hfdcan->State = HAL_FDCAN_STATE_ERROR; |
| |
| return HAL_ERROR; |
| } |
| |
| /* Increment counter */ |
| Counter++; |
| } |
| |
| /* Enable Register Time Mark Interrupt output on fdcan1_rtp */ |
| SET_BIT(hfdcan->ttcan->TTOCN, FDCAN_TTOCN_RTIE); |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| else |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED; |
| |
| return HAL_ERROR; |
| } |
| } |
| |
| /** |
| * @brief Disable register time mark pulse generation. |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_FDCAN_TT_DisableRegisterTimeMarkPulse(FDCAN_HandleTypeDef *hfdcan) |
| { |
| uint32_t Counter = 0U; |
| HAL_FDCAN_StateTypeDef state = hfdcan->State; |
| |
| /* Check function parameters */ |
| assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance)); |
| |
| if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY)) |
| { |
| /* Wait until the LCKC bit into TTOCN register is reset */ |
| while ((hfdcan->ttcan->TTOCN & FDCAN_TTOCN_LCKC) != 0U) |
| { |
| /* Check for the Timeout */ |
| if (Counter > FDCAN_TIMEOUT_COUNT) |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT; |
| |
| /* Change FDCAN state */ |
| hfdcan->State = HAL_FDCAN_STATE_ERROR; |
| |
| return HAL_ERROR; |
| } |
| |
| /* Increment counter */ |
| Counter++; |
| } |
| |
| /* Disable Register Time Mark Interrupt output on fdcan1_rtp */ |
| CLEAR_BIT(hfdcan->ttcan->TTOCN, FDCAN_TTOCN_RTIE); |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| else |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED; |
| |
| return HAL_ERROR; |
| } |
| } |
| |
| /** |
| * @brief Enable trigger time mark pulse generation. |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_FDCAN_TT_EnableTriggerTimeMarkPulse(FDCAN_HandleTypeDef *hfdcan) |
| { |
| uint32_t Counter = 0U; |
| HAL_FDCAN_StateTypeDef state = hfdcan->State; |
| |
| /* Check function parameters */ |
| assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance)); |
| |
| if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY)) |
| { |
| if ((hfdcan->ttcan->TTOCF & FDCAN_TTOCF_OM) != FDCAN_TT_COMMUNICATION_LEVEL0) |
| { |
| /* Wait until the LCKC bit into TTOCN register is reset */ |
| while ((hfdcan->ttcan->TTOCN & FDCAN_TTOCN_LCKC) != 0U) |
| { |
| /* Check for the Timeout */ |
| if (Counter > FDCAN_TIMEOUT_COUNT) |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT; |
| |
| /* Change FDCAN state */ |
| hfdcan->State = HAL_FDCAN_STATE_ERROR; |
| |
| return HAL_ERROR; |
| } |
| |
| /* Increment counter */ |
| Counter++; |
| } |
| |
| /* Enable Trigger Time Mark Interrupt output on fdcan1_tmp */ |
| SET_BIT(hfdcan->ttcan->TTOCN, FDCAN_TTOCN_TTIE); |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| else |
| { |
| /* Update error code. |
| Feature not supported for TT Level 0 */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_SUPPORTED; |
| |
| return HAL_ERROR; |
| } |
| } |
| else |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED; |
| |
| return HAL_ERROR; |
| } |
| } |
| |
| /** |
| * @brief Disable trigger time mark pulse generation. |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_FDCAN_TT_DisableTriggerTimeMarkPulse(FDCAN_HandleTypeDef *hfdcan) |
| { |
| uint32_t Counter = 0U; |
| HAL_FDCAN_StateTypeDef state = hfdcan->State; |
| |
| /* Check function parameters */ |
| assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance)); |
| |
| if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY)) |
| { |
| if ((hfdcan->ttcan->TTOCF & FDCAN_TTOCF_OM) != FDCAN_TT_COMMUNICATION_LEVEL0) |
| { |
| /* Wait until the LCKC bit into TTOCN register is reset */ |
| while ((hfdcan->ttcan->TTOCN & FDCAN_TTOCN_LCKC) != 0U) |
| { |
| /* Check for the Timeout */ |
| if (Counter > FDCAN_TIMEOUT_COUNT) |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT; |
| |
| /* Change FDCAN state */ |
| hfdcan->State = HAL_FDCAN_STATE_ERROR; |
| |
| return HAL_ERROR; |
| } |
| |
| /* Increment counter */ |
| Counter++; |
| } |
| |
| /* Disable Trigger Time Mark Interrupt output on fdcan1_rtp */ |
| CLEAR_BIT(hfdcan->ttcan->TTOCN, FDCAN_TTOCN_TTIE); |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| else |
| { |
| /* Update error code. |
| Feature not supported for TT Level 0 */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_SUPPORTED; |
| |
| return HAL_ERROR; |
| } |
| } |
| else |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED; |
| |
| return HAL_ERROR; |
| } |
| } |
| |
| /** |
| * @brief Enable gap control by input pin fdcan1_evt. |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_FDCAN_TT_EnableHardwareGapControl(FDCAN_HandleTypeDef *hfdcan) |
| { |
| uint32_t Counter = 0U; |
| HAL_FDCAN_StateTypeDef state = hfdcan->State; |
| |
| /* Check function parameters */ |
| assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance)); |
| |
| if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY)) |
| { |
| if ((hfdcan->ttcan->TTOCF & FDCAN_TTOCF_OM) != FDCAN_TT_COMMUNICATION_LEVEL0) |
| { |
| /* Wait until the LCKC bit into TTOCN register is reset */ |
| while ((hfdcan->ttcan->TTOCN & FDCAN_TTOCN_LCKC) != 0U) |
| { |
| /* Check for the Timeout */ |
| if (Counter > FDCAN_TIMEOUT_COUNT) |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT; |
| |
| /* Change FDCAN state */ |
| hfdcan->State = HAL_FDCAN_STATE_ERROR; |
| |
| return HAL_ERROR; |
| } |
| |
| /* Increment counter */ |
| Counter++; |
| } |
| |
| /* Enable gap control by pin fdcan1_evt */ |
| SET_BIT(hfdcan->ttcan->TTOCN, FDCAN_TTOCN_GCS); |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| else |
| { |
| /* Update error code. |
| Feature not supported for TT Level 0 */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_SUPPORTED; |
| |
| return HAL_ERROR; |
| } |
| } |
| else |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED; |
| |
| return HAL_ERROR; |
| } |
| } |
| |
| /** |
| * @brief Disable gap control by input pin fdcan1_evt. |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_FDCAN_TT_DisableHardwareGapControl(FDCAN_HandleTypeDef *hfdcan) |
| { |
| uint32_t Counter = 0U; |
| HAL_FDCAN_StateTypeDef state = hfdcan->State; |
| |
| /* Check function parameters */ |
| assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance)); |
| |
| if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY)) |
| { |
| if ((hfdcan->ttcan->TTOCF & FDCAN_TTOCF_OM) != FDCAN_TT_COMMUNICATION_LEVEL0) |
| { |
| /* Wait until the LCKC bit into TTOCN register is reset */ |
| while ((hfdcan->ttcan->TTOCN & FDCAN_TTOCN_LCKC) != 0U) |
| { |
| /* Check for the Timeout */ |
| if (Counter > FDCAN_TIMEOUT_COUNT) |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT; |
| |
| /* Change FDCAN state */ |
| hfdcan->State = HAL_FDCAN_STATE_ERROR; |
| |
| return HAL_ERROR; |
| } |
| |
| /* Increment counter */ |
| Counter++; |
| } |
| |
| /* Disable gap control by pin fdcan1_evt */ |
| CLEAR_BIT(hfdcan->ttcan->TTOCN, FDCAN_TTOCN_GCS); |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| else |
| { |
| /* Update error code. |
| Feature not supported for TT Level 0 */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_SUPPORTED; |
| |
| return HAL_ERROR; |
| } |
| } |
| else |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED; |
| |
| return HAL_ERROR; |
| } |
| } |
| |
| /** |
| * @brief Enable gap control (finish only) by register time mark interrupt. |
| * The next register time mark interrupt (TTIR.RTMI = "1") will finish |
| * the Gap and start the reference message. |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_FDCAN_TT_EnableTimeMarkGapControl(FDCAN_HandleTypeDef *hfdcan) |
| { |
| uint32_t Counter = 0U; |
| HAL_FDCAN_StateTypeDef state = hfdcan->State; |
| |
| /* Check function parameters */ |
| assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance)); |
| |
| if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY)) |
| { |
| if ((hfdcan->ttcan->TTOCF & FDCAN_TTOCF_OM) != FDCAN_TT_COMMUNICATION_LEVEL0) |
| { |
| /* Wait until the LCKC bit into TTOCN register is reset */ |
| while ((hfdcan->ttcan->TTOCN & FDCAN_TTOCN_LCKC) != 0U) |
| { |
| /* Check for the Timeout */ |
| if (Counter > FDCAN_TIMEOUT_COUNT) |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT; |
| |
| /* Change FDCAN state */ |
| hfdcan->State = HAL_FDCAN_STATE_ERROR; |
| |
| return HAL_ERROR; |
| } |
| |
| /* Increment counter */ |
| Counter++; |
| } |
| |
| /* Enable gap control by register time mark interrupt */ |
| SET_BIT(hfdcan->ttcan->TTOCN, FDCAN_TTOCN_TMG); |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| else |
| { |
| /* Update error code. |
| Feature not supported for TT Level 0 */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_SUPPORTED; |
| |
| return HAL_ERROR; |
| } |
| } |
| else |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED; |
| |
| return HAL_ERROR; |
| } |
| } |
| |
| /** |
| * @brief Disable gap control by register time mark interrupt. |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_FDCAN_TT_DisableTimeMarkGapControl(FDCAN_HandleTypeDef *hfdcan) |
| { |
| uint32_t Counter = 0U; |
| HAL_FDCAN_StateTypeDef state = hfdcan->State; |
| |
| /* Check function parameters */ |
| assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance)); |
| |
| if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY)) |
| { |
| if ((hfdcan->ttcan->TTOCF & FDCAN_TTOCF_OM) != FDCAN_TT_COMMUNICATION_LEVEL0) |
| { |
| /* Wait until the LCKC bit into TTOCN register is reset */ |
| while ((hfdcan->ttcan->TTOCN & FDCAN_TTOCN_LCKC) != 0U) |
| { |
| /* Check for the Timeout */ |
| if (Counter > FDCAN_TIMEOUT_COUNT) |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT; |
| |
| /* Change FDCAN state */ |
| hfdcan->State = HAL_FDCAN_STATE_ERROR; |
| |
| return HAL_ERROR; |
| } |
| |
| /* Increment counter */ |
| Counter++; |
| } |
| |
| /* Disable gap control by register time mark interrupt */ |
| CLEAR_BIT(hfdcan->ttcan->TTOCN, FDCAN_TTOCN_TMG); |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| else |
| { |
| /* Update error code. |
| Feature not supported for TT Level 0 */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_SUPPORTED; |
| |
| return HAL_ERROR; |
| } |
| } |
| else |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED; |
| |
| return HAL_ERROR; |
| } |
| } |
| |
| /** |
| * @brief Transmit next reference message with Next_is_Gap = "1". |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_FDCAN_TT_SetNextIsGap(FDCAN_HandleTypeDef *hfdcan) |
| { |
| uint32_t Counter = 0U; |
| HAL_FDCAN_StateTypeDef state = hfdcan->State; |
| |
| /* Check function parameters */ |
| assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance)); |
| |
| if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY)) |
| { |
| /* Check that the node is configured for external event-synchronized TT operation */ |
| if ((hfdcan->ttcan->TTOCF & FDCAN_TTOCF_GEN) != FDCAN_TTOCF_GEN) |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_SUPPORTED; |
| |
| return HAL_ERROR; |
| } |
| |
| if ((hfdcan->ttcan->TTOCF & FDCAN_TTOCF_OM) != FDCAN_TT_COMMUNICATION_LEVEL0) |
| { |
| /* Wait until the LCKC bit into TTOCN register is reset */ |
| while ((hfdcan->ttcan->TTOCN & FDCAN_TTOCN_LCKC) != 0U) |
| { |
| /* Check for the Timeout */ |
| if (Counter > FDCAN_TIMEOUT_COUNT) |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT; |
| |
| /* Change FDCAN state */ |
| hfdcan->State = HAL_FDCAN_STATE_ERROR; |
| |
| return HAL_ERROR; |
| } |
| |
| /* Increment counter */ |
| Counter++; |
| } |
| |
| /* Set Next is Gap */ |
| SET_BIT(hfdcan->ttcan->TTOCN, FDCAN_TTOCN_NIG); |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| else |
| { |
| /* Update error code. |
| Feature not supported for TT Level 0 */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_SUPPORTED; |
| |
| return HAL_ERROR; |
| } |
| } |
| else |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED; |
| |
| return HAL_ERROR; |
| } |
| } |
| |
| /** |
| * @brief Finish a Gap by requesting start of reference message. |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_FDCAN_TT_SetEndOfGap(FDCAN_HandleTypeDef *hfdcan) |
| { |
| uint32_t Counter = 0U; |
| HAL_FDCAN_StateTypeDef state = hfdcan->State; |
| |
| /* Check function parameters */ |
| assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance)); |
| |
| if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY)) |
| { |
| /* Check that the node is configured for external event-synchronized TT operation */ |
| if ((hfdcan->ttcan->TTOCF & FDCAN_TTOCF_GEN) != FDCAN_TTOCF_GEN) |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_SUPPORTED; |
| |
| return HAL_ERROR; |
| } |
| |
| if ((hfdcan->ttcan->TTOCF & FDCAN_TTOCF_OM) != FDCAN_TT_COMMUNICATION_LEVEL0) |
| { |
| /* Wait until the LCKC bit into TTOCN register is reset */ |
| while ((hfdcan->ttcan->TTOCN & FDCAN_TTOCN_LCKC) != 0U) |
| { |
| /* Check for the Timeout */ |
| if (Counter > FDCAN_TIMEOUT_COUNT) |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT; |
| |
| /* Change FDCAN state */ |
| hfdcan->State = HAL_FDCAN_STATE_ERROR; |
| |
| return HAL_ERROR; |
| } |
| |
| /* Increment counter */ |
| Counter++; |
| } |
| |
| /* Set Finish Gap */ |
| SET_BIT(hfdcan->ttcan->TTOCN, FDCAN_TTOCN_FGP); |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| else |
| { |
| /* Update error code. |
| Feature not supported for TT Level 0 */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_SUPPORTED; |
| |
| return HAL_ERROR; |
| } |
| } |
| else |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED; |
| |
| return HAL_ERROR; |
| } |
| } |
| |
| /** |
| * @brief Configure target phase used for external synchronization by event |
| * trigger input pin fdcan1_evt. |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @param TargetPhase defines target value of cycle time when a rising edge |
| * of fdcan1_evt is expected. |
| * This parameter must be a number between 0 and 0xFFFF. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_FDCAN_TT_ConfigExternalSyncPhase(FDCAN_HandleTypeDef *hfdcan, uint32_t TargetPhase) |
| { |
| HAL_FDCAN_StateTypeDef state = hfdcan->State; |
| |
| /* Check function parameters */ |
| assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance)); |
| assert_param(IS_FDCAN_MAX_VALUE(TargetPhase, 0xFFFFU)); |
| |
| if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY)) |
| { |
| /* Check that no external schedule synchronization is pending */ |
| if ((hfdcan->ttcan->TTOCN & FDCAN_TTOCN_ESCN) == FDCAN_TTOCN_ESCN) |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_PENDING; |
| |
| return HAL_ERROR; |
| } |
| |
| /* Configure cycle time target phase */ |
| MODIFY_REG(hfdcan->ttcan->TTGTP, FDCAN_TTGTP_CTP, (TargetPhase << FDCAN_TTGTP_CTP_Pos)); |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| else |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED; |
| |
| return HAL_ERROR; |
| } |
| } |
| |
| /** |
| * @brief Synchronize the phase of the FDCAN schedule to an external schedule |
| * using event trigger input pin fdcan1_evt. |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_FDCAN_TT_EnableExternalSynchronization(FDCAN_HandleTypeDef *hfdcan) |
| { |
| uint32_t Counter = 0U; |
| HAL_FDCAN_StateTypeDef state = hfdcan->State; |
| |
| /* Check function parameters */ |
| assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance)); |
| |
| if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY)) |
| { |
| /* Wait until the LCKC bit into TTOCN register is reset */ |
| while ((hfdcan->ttcan->TTOCN & FDCAN_TTOCN_LCKC) != 0U) |
| { |
| /* Check for the Timeout */ |
| if (Counter > FDCAN_TIMEOUT_COUNT) |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT; |
| |
| /* Change FDCAN state */ |
| hfdcan->State = HAL_FDCAN_STATE_ERROR; |
| |
| return HAL_ERROR; |
| } |
| |
| /* Increment counter */ |
| Counter++; |
| } |
| |
| /* Enable external synchronization */ |
| SET_BIT(hfdcan->ttcan->TTOCN, FDCAN_TTOCN_ESCN); |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| else |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED; |
| |
| return HAL_ERROR; |
| } |
| } |
| |
| /** |
| * @brief Disable external schedule synchronization. |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_FDCAN_TT_DisableExternalSynchronization(FDCAN_HandleTypeDef *hfdcan) |
| { |
| uint32_t Counter = 0U; |
| HAL_FDCAN_StateTypeDef state = hfdcan->State; |
| |
| /* Check function parameters */ |
| assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance)); |
| |
| if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY)) |
| { |
| /* Wait until the LCKC bit into TTOCN register is reset */ |
| while ((hfdcan->ttcan->TTOCN & FDCAN_TTOCN_LCKC) != 0U) |
| { |
| /* Check for the Timeout */ |
| if (Counter > FDCAN_TIMEOUT_COUNT) |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT; |
| |
| /* Change FDCAN state */ |
| hfdcan->State = HAL_FDCAN_STATE_ERROR; |
| |
| return HAL_ERROR; |
| } |
| |
| /* Increment counter */ |
| Counter++; |
| } |
| |
| /* Disable external synchronization */ |
| CLEAR_BIT(hfdcan->ttcan->TTOCN, FDCAN_TTOCN_ESCN); |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| else |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED; |
| |
| return HAL_ERROR; |
| } |
| } |
| |
| /** |
| * @brief Get TT operation status. |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @param TTOpStatus pointer to an FDCAN_TTOperationStatusTypeDef structure. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_FDCAN_TT_GetOperationStatus(const FDCAN_HandleTypeDef *hfdcan, |
| FDCAN_TTOperationStatusTypeDef *TTOpStatus) |
| { |
| uint32_t TTStatusReg; |
| |
| /* Check function parameters */ |
| assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance)); |
| |
| /* Read the TT operation status register */ |
| TTStatusReg = READ_REG(hfdcan->ttcan->TTOST); |
| |
| /* Fill the TT operation status structure */ |
| TTOpStatus->ErrorLevel = (TTStatusReg & FDCAN_TTOST_EL); |
| TTOpStatus->MasterState = (TTStatusReg & FDCAN_TTOST_MS); |
| TTOpStatus->SyncState = (TTStatusReg & FDCAN_TTOST_SYS); |
| TTOpStatus->GTimeQuality = ((TTStatusReg & FDCAN_TTOST_QGTP) >> FDCAN_TTOST_QGTP_Pos); |
| TTOpStatus->ClockQuality = ((TTStatusReg & FDCAN_TTOST_QCS) >> FDCAN_TTOST_QCS_Pos); |
| TTOpStatus->RefTrigOffset = ((TTStatusReg & FDCAN_TTOST_RTO) >> FDCAN_TTOST_RTO_Pos); |
| TTOpStatus->GTimeDiscPending = ((TTStatusReg & FDCAN_TTOST_WGTD) >> FDCAN_TTOST_WGTD_Pos); |
| TTOpStatus->GapFinished = ((TTStatusReg & FDCAN_TTOST_GFI) >> FDCAN_TTOST_GFI_Pos); |
| TTOpStatus->MasterPriority = ((TTStatusReg & FDCAN_TTOST_TMP) >> FDCAN_TTOST_TMP_Pos); |
| TTOpStatus->GapStarted = ((TTStatusReg & FDCAN_TTOST_GSI) >> FDCAN_TTOST_GSI_Pos); |
| TTOpStatus->WaitForEvt = ((TTStatusReg & FDCAN_TTOST_WFE) >> FDCAN_TTOST_WFE_Pos); |
| TTOpStatus->AppWdgEvt = ((TTStatusReg & FDCAN_TTOST_AWE) >> FDCAN_TTOST_AWE_Pos); |
| TTOpStatus->ECSPending = ((TTStatusReg & FDCAN_TTOST_WECS) >> FDCAN_TTOST_WECS_Pos); |
| TTOpStatus->PhaseLock = ((TTStatusReg & FDCAN_TTOST_SPL) >> FDCAN_TTOST_SPL_Pos); |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| |
| /** |
| * @} |
| */ |
| |
| /** @defgroup FDCAN_Exported_Functions_Group5 Interrupts management |
| * @brief Interrupts management |
| * |
| @verbatim |
| ============================================================================== |
| ##### Interrupts management ##### |
| ============================================================================== |
| [..] This section provides functions allowing to: |
| (+) HAL_FDCAN_ConfigInterruptLines : Assign interrupts to either Interrupt line 0 or 1 |
| (+) HAL_FDCAN_TT_ConfigInterruptLines : Assign TT interrupts to either Interrupt line 0 or 1 |
| (+) HAL_FDCAN_ActivateNotification : Enable interrupts |
| (+) HAL_FDCAN_DeactivateNotification : Disable interrupts |
| (+) HAL_FDCAN_TT_ActivateNotification : Enable TT interrupts |
| (+) HAL_FDCAN_TT_DeactivateNotification : Disable TT interrupts |
| (+) HAL_FDCAN_IRQHandler : Handles FDCAN interrupt request |
| |
| @endverbatim |
| * @{ |
| */ |
| |
| /** |
| * @brief Assign interrupts to either Interrupt line 0 or 1. |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @param ITList indicates which interrupts will be assigned to the selected interrupt line. |
| * This parameter can be any combination of @arg FDCAN_Interrupts. |
| * @param InterruptLine Interrupt line. |
| * This parameter can be a value of @arg FDCAN_Interrupt_Line. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_FDCAN_ConfigInterruptLines(FDCAN_HandleTypeDef *hfdcan, uint32_t ITList, uint32_t InterruptLine) |
| { |
| HAL_FDCAN_StateTypeDef state = hfdcan->State; |
| |
| /* Check function parameters */ |
| assert_param(IS_FDCAN_IT(ITList)); |
| assert_param(IS_FDCAN_IT_LINE(InterruptLine)); |
| |
| if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY)) |
| { |
| /* Assign list of interrupts to the selected line */ |
| if (InterruptLine == FDCAN_INTERRUPT_LINE0) |
| { |
| CLEAR_BIT(hfdcan->Instance->ILS, ITList); |
| } |
| else /* InterruptLine == FDCAN_INTERRUPT_LINE1 */ |
| { |
| SET_BIT(hfdcan->Instance->ILS, ITList); |
| } |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| else |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED; |
| |
| return HAL_ERROR; |
| } |
| } |
| |
| /** |
| * @brief Assign TT interrupts to either Interrupt line 0 or 1. |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @param TTITList indicates which interrupts will be assigned to the selected interrupt line. |
| * This parameter can be any combination of @arg FDCAN_TTInterrupts. |
| * @param InterruptLine Interrupt line. |
| * This parameter can be a value of @arg FDCAN_Interrupt_Line. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_FDCAN_TT_ConfigInterruptLines(FDCAN_HandleTypeDef *hfdcan, uint32_t TTITList, |
| uint32_t InterruptLine) |
| { |
| HAL_FDCAN_StateTypeDef state = hfdcan->State; |
| |
| /* Check function parameters */ |
| assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance)); |
| assert_param(IS_FDCAN_TT_IT(TTITList)); |
| assert_param(IS_FDCAN_IT_LINE(InterruptLine)); |
| |
| if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY)) |
| { |
| /* Assign list of interrupts to the selected line */ |
| if (InterruptLine == FDCAN_INTERRUPT_LINE0) |
| { |
| CLEAR_BIT(hfdcan->ttcan->TTILS, TTITList); |
| } |
| else /* InterruptLine == FDCAN_INTERRUPT_LINE1 */ |
| { |
| SET_BIT(hfdcan->ttcan->TTILS, TTITList); |
| } |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| else |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED; |
| |
| return HAL_ERROR; |
| } |
| } |
| |
| /** |
| * @brief Enable interrupts. |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @param ActiveITs indicates which interrupts will be enabled. |
| * This parameter can be any combination of @arg FDCAN_Interrupts. |
| * @param BufferIndexes Tx Buffer Indexes. |
| * This parameter can be any combination of @arg FDCAN_Tx_location. |
| * This parameter is ignored if ActiveITs does not include one of the following: |
| * - FDCAN_IT_TX_COMPLETE |
| * - FDCAN_IT_TX_ABORT_COMPLETE |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_FDCAN_ActivateNotification(FDCAN_HandleTypeDef *hfdcan, uint32_t ActiveITs, |
| uint32_t BufferIndexes) |
| { |
| HAL_FDCAN_StateTypeDef state = hfdcan->State; |
| |
| /* Check function parameters */ |
| assert_param(IS_FDCAN_IT(ActiveITs)); |
| |
| if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY)) |
| { |
| /* Enable Interrupt lines */ |
| if ((ActiveITs & hfdcan->Instance->ILS) == 0U) |
| { |
| /* Enable Interrupt line 0 */ |
| SET_BIT(hfdcan->Instance->ILE, FDCAN_INTERRUPT_LINE0); |
| } |
| else if ((ActiveITs & hfdcan->Instance->ILS) == ActiveITs) |
| { |
| /* Enable Interrupt line 1 */ |
| SET_BIT(hfdcan->Instance->ILE, FDCAN_INTERRUPT_LINE1); |
| } |
| else |
| { |
| /* Enable Interrupt lines 0 and 1 */ |
| hfdcan->Instance->ILE = (FDCAN_INTERRUPT_LINE0 | FDCAN_INTERRUPT_LINE1); |
| } |
| |
| if ((ActiveITs & FDCAN_IT_TX_COMPLETE) != 0U) |
| { |
| /* Enable Tx Buffer Transmission Interrupt to set TC flag in IR register, |
| but interrupt will only occur if TC is enabled in IE register */ |
| SET_BIT(hfdcan->Instance->TXBTIE, BufferIndexes); |
| } |
| |
| if ((ActiveITs & FDCAN_IT_TX_ABORT_COMPLETE) != 0U) |
| { |
| /* Enable Tx Buffer Cancellation Finished Interrupt to set TCF flag in IR register, |
| but interrupt will only occur if TCF is enabled in IE register */ |
| SET_BIT(hfdcan->Instance->TXBCIE, BufferIndexes); |
| } |
| |
| /* Enable the selected interrupts */ |
| __HAL_FDCAN_ENABLE_IT(hfdcan, ActiveITs); |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| else |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED; |
| |
| return HAL_ERROR; |
| } |
| } |
| |
| /** |
| * @brief Disable interrupts. |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @param InactiveITs indicates which interrupts will be disabled. |
| * This parameter can be any combination of @arg FDCAN_Interrupts. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_FDCAN_DeactivateNotification(FDCAN_HandleTypeDef *hfdcan, uint32_t InactiveITs) |
| { |
| uint32_t ITLineSelection; |
| HAL_FDCAN_StateTypeDef state = hfdcan->State; |
| |
| /* Check function parameters */ |
| assert_param(IS_FDCAN_IT(InactiveITs)); |
| |
| if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY)) |
| { |
| /* Disable the selected interrupts */ |
| __HAL_FDCAN_DISABLE_IT(hfdcan, InactiveITs); |
| |
| if ((InactiveITs & FDCAN_IT_TX_COMPLETE) != 0U) |
| { |
| /* Disable Tx Buffer Transmission Interrupts */ |
| CLEAR_REG(hfdcan->Instance->TXBTIE); |
| } |
| |
| if ((InactiveITs & FDCAN_IT_TX_ABORT_COMPLETE) != 0U) |
| { |
| /* Disable Tx Buffer Cancellation Finished Interrupt */ |
| CLEAR_REG(hfdcan->Instance->TXBCIE); |
| } |
| |
| ITLineSelection = hfdcan->Instance->ILS; |
| |
| if ((hfdcan->Instance->IE | ITLineSelection) == ITLineSelection) |
| { |
| /* Disable Interrupt line 0 */ |
| CLEAR_BIT(hfdcan->Instance->ILE, FDCAN_INTERRUPT_LINE0); |
| } |
| |
| if ((hfdcan->Instance->IE & ITLineSelection) == 0U) |
| { |
| /* Disable Interrupt line 1 */ |
| CLEAR_BIT(hfdcan->Instance->ILE, FDCAN_INTERRUPT_LINE1); |
| } |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| else |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED; |
| |
| return HAL_ERROR; |
| } |
| } |
| |
| /** |
| * @brief Enable TT interrupts. |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @param ActiveTTITs indicates which TT interrupts will be enabled. |
| * This parameter can be any combination of @arg FDCAN_TTInterrupts. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_FDCAN_TT_ActivateNotification(FDCAN_HandleTypeDef *hfdcan, uint32_t ActiveTTITs) |
| { |
| HAL_FDCAN_StateTypeDef state = hfdcan->State; |
| |
| /* Check function parameters */ |
| assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance)); |
| assert_param(IS_FDCAN_TT_IT(ActiveTTITs)); |
| |
| if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY)) |
| { |
| /* Enable Interrupt lines */ |
| if ((ActiveTTITs & hfdcan->ttcan->TTILS) == 0U) |
| { |
| /* Enable Interrupt line 0 */ |
| SET_BIT(hfdcan->Instance->ILE, FDCAN_INTERRUPT_LINE0); |
| } |
| else if ((ActiveTTITs & hfdcan->ttcan->TTILS) == ActiveTTITs) |
| { |
| /* Enable Interrupt line 1 */ |
| SET_BIT(hfdcan->Instance->ILE, FDCAN_INTERRUPT_LINE1); |
| } |
| else |
| { |
| /* Enable Interrupt lines 0 and 1 */ |
| hfdcan->Instance->ILE = (FDCAN_INTERRUPT_LINE0 | FDCAN_INTERRUPT_LINE1); |
| } |
| |
| /* Enable the selected TT interrupts */ |
| __HAL_FDCAN_TT_ENABLE_IT(hfdcan, ActiveTTITs); |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| else |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED; |
| |
| return HAL_ERROR; |
| } |
| } |
| |
| /** |
| * @brief Disable TT interrupts. |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @param InactiveTTITs indicates which TT interrupts will be disabled. |
| * This parameter can be any combination of @arg FDCAN_TTInterrupts. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_FDCAN_TT_DeactivateNotification(FDCAN_HandleTypeDef *hfdcan, uint32_t InactiveTTITs) |
| { |
| uint32_t ITLineSelection; |
| HAL_FDCAN_StateTypeDef state = hfdcan->State; |
| |
| /* Check function parameters */ |
| assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance)); |
| assert_param(IS_FDCAN_TT_IT(InactiveTTITs)); |
| |
| if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY)) |
| { |
| /* Disable the selected TT interrupts */ |
| __HAL_FDCAN_TT_DISABLE_IT(hfdcan, InactiveTTITs); |
| |
| ITLineSelection = hfdcan->ttcan->TTILS; |
| |
| if ((hfdcan->ttcan->TTIE | ITLineSelection) == ITLineSelection) |
| { |
| /* Disable Interrupt line 0 */ |
| CLEAR_BIT(hfdcan->Instance->ILE, FDCAN_INTERRUPT_LINE0); |
| } |
| |
| if ((hfdcan->ttcan->TTIE & ITLineSelection) == 0U) |
| { |
| /* Disable interrupt line 1 */ |
| CLEAR_BIT(hfdcan->Instance->ILE, FDCAN_INTERRUPT_LINE1); |
| } |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| else |
| { |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED; |
| |
| return HAL_ERROR; |
| } |
| } |
| |
| /** |
| * @brief Handles FDCAN interrupt request. |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @retval HAL status |
| */ |
| void HAL_FDCAN_IRQHandler(FDCAN_HandleTypeDef *hfdcan) |
| { |
| uint32_t ClkCalibrationITs; |
| uint32_t TxEventFifoITs; |
| uint32_t RxFifo0ITs; |
| uint32_t RxFifo1ITs; |
| uint32_t Errors; |
| uint32_t ErrorStatusITs; |
| uint32_t TransmittedBuffers; |
| uint32_t AbortedBuffers; |
| uint32_t TTSchedSyncITs; |
| uint32_t TTTimeMarkITs; |
| uint32_t TTGlobTimeITs; |
| uint32_t TTDistErrors; |
| uint32_t TTFatalErrors; |
| uint32_t SWTime; |
| uint32_t SWCycleCount; |
| uint32_t itsourceIE; |
| uint32_t itsourceTTIE; |
| uint32_t itflagIR; |
| uint32_t itflagTTIR; |
| |
| ClkCalibrationITs = (FDCAN_CCU->IR << 30); |
| ClkCalibrationITs &= (FDCAN_CCU->IE << 30); |
| TxEventFifoITs = hfdcan->Instance->IR & FDCAN_TX_EVENT_FIFO_MASK; |
| TxEventFifoITs &= hfdcan->Instance->IE; |
| RxFifo0ITs = hfdcan->Instance->IR & FDCAN_RX_FIFO0_MASK; |
| RxFifo0ITs &= hfdcan->Instance->IE; |
| RxFifo1ITs = hfdcan->Instance->IR & FDCAN_RX_FIFO1_MASK; |
| RxFifo1ITs &= hfdcan->Instance->IE; |
| Errors = hfdcan->Instance->IR & FDCAN_ERROR_MASK; |
| Errors &= hfdcan->Instance->IE; |
| ErrorStatusITs = hfdcan->Instance->IR & FDCAN_ERROR_STATUS_MASK; |
| ErrorStatusITs &= hfdcan->Instance->IE; |
| itsourceIE = hfdcan->Instance->IE; |
| itflagIR = hfdcan->Instance->IR; |
| |
| /* High Priority Message interrupt management *******************************/ |
| if (FDCAN_CHECK_IT_SOURCE(itsourceIE, FDCAN_IT_RX_HIGH_PRIORITY_MSG) != RESET) |
| { |
| if (FDCAN_CHECK_FLAG(itflagIR, FDCAN_FLAG_RX_HIGH_PRIORITY_MSG) != RESET) |
| { |
| /* Clear the High Priority Message flag */ |
| __HAL_FDCAN_CLEAR_FLAG(hfdcan, FDCAN_FLAG_RX_HIGH_PRIORITY_MSG); |
| |
| #if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1 |
| /* Call registered callback*/ |
| hfdcan->HighPriorityMessageCallback(hfdcan); |
| #else |
| /* High Priority Message Callback */ |
| HAL_FDCAN_HighPriorityMessageCallback(hfdcan); |
| #endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */ |
| } |
| } |
| |
| /* Transmission Abort interrupt management **********************************/ |
| if (FDCAN_CHECK_IT_SOURCE(itsourceIE, FDCAN_IT_TX_ABORT_COMPLETE) != RESET) |
| { |
| if (FDCAN_CHECK_FLAG(itflagIR, FDCAN_FLAG_TX_ABORT_COMPLETE) != RESET) |
| { |
| /* List of aborted monitored buffers */ |
| AbortedBuffers = hfdcan->Instance->TXBCF; |
| AbortedBuffers &= hfdcan->Instance->TXBCIE; |
| |
| /* Clear the Transmission Cancellation flag */ |
| __HAL_FDCAN_CLEAR_FLAG(hfdcan, FDCAN_FLAG_TX_ABORT_COMPLETE); |
| |
| #if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1 |
| /* Call registered callback*/ |
| hfdcan->TxBufferAbortCallback(hfdcan, AbortedBuffers); |
| #else |
| /* Transmission Cancellation Callback */ |
| HAL_FDCAN_TxBufferAbortCallback(hfdcan, AbortedBuffers); |
| #endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */ |
| } |
| } |
| |
| /* Clock calibration unit interrupts management *****************************/ |
| if (ClkCalibrationITs != 0U) |
| { |
| /* Clear the Clock Calibration flags */ |
| __HAL_FDCAN_CLEAR_FLAG(hfdcan, ClkCalibrationITs); |
| |
| #if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1 |
| /* Call registered callback*/ |
| hfdcan->ClockCalibrationCallback(hfdcan, ClkCalibrationITs); |
| #else |
| /* Clock Calibration Callback */ |
| HAL_FDCAN_ClockCalibrationCallback(hfdcan, ClkCalibrationITs); |
| #endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */ |
| } |
| |
| /* Tx event FIFO interrupts management **************************************/ |
| if (TxEventFifoITs != 0U) |
| { |
| /* Clear the Tx Event FIFO flags */ |
| __HAL_FDCAN_CLEAR_FLAG(hfdcan, TxEventFifoITs); |
| |
| #if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1 |
| /* Call registered callback*/ |
| hfdcan->TxEventFifoCallback(hfdcan, TxEventFifoITs); |
| #else |
| /* Tx Event FIFO Callback */ |
| HAL_FDCAN_TxEventFifoCallback(hfdcan, TxEventFifoITs); |
| #endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */ |
| } |
| |
| /* Rx FIFO 0 interrupts management ******************************************/ |
| if (RxFifo0ITs != 0U) |
| { |
| /* Clear the Rx FIFO 0 flags */ |
| __HAL_FDCAN_CLEAR_FLAG(hfdcan, RxFifo0ITs); |
| |
| #if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1 |
| /* Call registered callback*/ |
| hfdcan->RxFifo0Callback(hfdcan, RxFifo0ITs); |
| #else |
| /* Rx FIFO 0 Callback */ |
| HAL_FDCAN_RxFifo0Callback(hfdcan, RxFifo0ITs); |
| #endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */ |
| } |
| |
| /* Rx FIFO 1 interrupts management ******************************************/ |
| if (RxFifo1ITs != 0U) |
| { |
| /* Clear the Rx FIFO 1 flags */ |
| __HAL_FDCAN_CLEAR_FLAG(hfdcan, RxFifo1ITs); |
| |
| #if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1 |
| /* Call registered callback*/ |
| hfdcan->RxFifo1Callback(hfdcan, RxFifo1ITs); |
| #else |
| /* Rx FIFO 1 Callback */ |
| HAL_FDCAN_RxFifo1Callback(hfdcan, RxFifo1ITs); |
| #endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */ |
| } |
| |
| /* Tx FIFO empty interrupt management ***************************************/ |
| if (FDCAN_CHECK_IT_SOURCE(itsourceIE, FDCAN_IT_TX_FIFO_EMPTY) != RESET) |
| { |
| if (FDCAN_CHECK_FLAG(itflagIR, FDCAN_FLAG_TX_FIFO_EMPTY) != RESET) |
| { |
| /* Clear the Tx FIFO empty flag */ |
| __HAL_FDCAN_CLEAR_FLAG(hfdcan, FDCAN_FLAG_TX_FIFO_EMPTY); |
| |
| #if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1 |
| /* Call registered callback*/ |
| hfdcan->TxFifoEmptyCallback(hfdcan); |
| #else |
| /* Tx FIFO empty Callback */ |
| HAL_FDCAN_TxFifoEmptyCallback(hfdcan); |
| #endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */ |
| } |
| } |
| |
| /* Transmission Complete interrupt management *******************************/ |
| if (FDCAN_CHECK_IT_SOURCE(itsourceIE, FDCAN_IT_TX_COMPLETE) != RESET) |
| { |
| if (FDCAN_CHECK_FLAG(itflagIR, FDCAN_FLAG_TX_COMPLETE) != RESET) |
| { |
| /* List of transmitted monitored buffers */ |
| TransmittedBuffers = hfdcan->Instance->TXBTO; |
| TransmittedBuffers &= hfdcan->Instance->TXBTIE; |
| |
| /* Clear the Transmission Complete flag */ |
| __HAL_FDCAN_CLEAR_FLAG(hfdcan, FDCAN_FLAG_TX_COMPLETE); |
| |
| #if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1 |
| /* Call registered callback*/ |
| hfdcan->TxBufferCompleteCallback(hfdcan, TransmittedBuffers); |
| #else |
| /* Transmission Complete Callback */ |
| HAL_FDCAN_TxBufferCompleteCallback(hfdcan, TransmittedBuffers); |
| #endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */ |
| } |
| } |
| |
| /* Rx Buffer New Message interrupt management *******************************/ |
| if (FDCAN_CHECK_IT_SOURCE(itsourceIE, FDCAN_IT_RX_BUFFER_NEW_MESSAGE) != RESET) |
| { |
| if (FDCAN_CHECK_FLAG(itflagIR, FDCAN_FLAG_RX_BUFFER_NEW_MESSAGE) != RESET) |
| { |
| /* Clear the Rx Buffer New Message flag */ |
| __HAL_FDCAN_CLEAR_FLAG(hfdcan, FDCAN_FLAG_RX_BUFFER_NEW_MESSAGE); |
| |
| #if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1 |
| /* Call registered callback*/ |
| hfdcan->RxBufferNewMessageCallback(hfdcan); |
| #else |
| /* Rx Buffer New Message Callback */ |
| HAL_FDCAN_RxBufferNewMessageCallback(hfdcan); |
| #endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */ |
| } |
| } |
| |
| /* Timestamp Wraparound interrupt management ********************************/ |
| if (FDCAN_CHECK_IT_SOURCE(itsourceIE, FDCAN_IT_TIMESTAMP_WRAPAROUND) != RESET) |
| { |
| if (FDCAN_CHECK_FLAG(itflagIR, FDCAN_FLAG_TIMESTAMP_WRAPAROUND) != RESET) |
| { |
| /* Clear the Timestamp Wraparound flag */ |
| __HAL_FDCAN_CLEAR_FLAG(hfdcan, FDCAN_FLAG_TIMESTAMP_WRAPAROUND); |
| |
| #if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1 |
| /* Call registered callback*/ |
| hfdcan->TimestampWraparoundCallback(hfdcan); |
| #else |
| /* Timestamp Wraparound Callback */ |
| HAL_FDCAN_TimestampWraparoundCallback(hfdcan); |
| #endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */ |
| } |
| } |
| |
| /* Timeout Occurred interrupt management ************************************/ |
| if (FDCAN_CHECK_IT_SOURCE(itsourceIE, FDCAN_IT_TIMEOUT_OCCURRED) != RESET) |
| { |
| if (FDCAN_CHECK_FLAG(itflagIR, FDCAN_FLAG_TIMEOUT_OCCURRED) != RESET) |
| { |
| /* Clear the Timeout Occurred flag */ |
| __HAL_FDCAN_CLEAR_FLAG(hfdcan, FDCAN_FLAG_TIMEOUT_OCCURRED); |
| |
| #if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1 |
| /* Call registered callback*/ |
| hfdcan->TimeoutOccurredCallback(hfdcan); |
| #else |
| /* Timeout Occurred Callback */ |
| HAL_FDCAN_TimeoutOccurredCallback(hfdcan); |
| #endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */ |
| } |
| } |
| |
| /* Message RAM access failure interrupt management **************************/ |
| if (FDCAN_CHECK_IT_SOURCE(itsourceIE, FDCAN_IT_RAM_ACCESS_FAILURE) != RESET) |
| { |
| if (FDCAN_CHECK_FLAG(itflagIR, FDCAN_FLAG_RAM_ACCESS_FAILURE) != RESET) |
| { |
| /* Clear the Message RAM access failure flag */ |
| __HAL_FDCAN_CLEAR_FLAG(hfdcan, FDCAN_FLAG_RAM_ACCESS_FAILURE); |
| |
| /* Update error code */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_RAM_ACCESS; |
| } |
| } |
| |
| /* Error Status interrupts management ***************************************/ |
| if (ErrorStatusITs != 0U) |
| { |
| /* Clear the Error flags */ |
| __HAL_FDCAN_CLEAR_FLAG(hfdcan, ErrorStatusITs); |
| |
| #if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1 |
| /* Call registered callback*/ |
| hfdcan->ErrorStatusCallback(hfdcan, ErrorStatusITs); |
| #else |
| /* Error Status Callback */ |
| HAL_FDCAN_ErrorStatusCallback(hfdcan, ErrorStatusITs); |
| #endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */ |
| } |
| |
| /* Error interrupts management **********************************************/ |
| if (Errors != 0U) |
| { |
| /* Clear the Error flags */ |
| __HAL_FDCAN_CLEAR_FLAG(hfdcan, Errors); |
| |
| /* Update error code */ |
| hfdcan->ErrorCode |= Errors; |
| } |
| |
| if (hfdcan->Instance == FDCAN1) |
| { |
| if ((hfdcan->ttcan->TTOCF & FDCAN_TTOCF_OM) != 0U) |
| { |
| TTSchedSyncITs = hfdcan->ttcan->TTIR & FDCAN_TT_SCHEDULE_SYNC_MASK; |
| TTSchedSyncITs &= hfdcan->ttcan->TTIE; |
| TTTimeMarkITs = hfdcan->ttcan->TTIR & FDCAN_TT_TIME_MARK_MASK; |
| TTTimeMarkITs &= hfdcan->ttcan->TTIE; |
| TTGlobTimeITs = hfdcan->ttcan->TTIR & FDCAN_TT_GLOBAL_TIME_MASK; |
| TTGlobTimeITs &= hfdcan->ttcan->TTIE; |
| TTDistErrors = hfdcan->ttcan->TTIR & FDCAN_TT_DISTURBING_ERROR_MASK; |
| TTDistErrors &= hfdcan->ttcan->TTIE; |
| TTFatalErrors = hfdcan->ttcan->TTIR & FDCAN_TT_FATAL_ERROR_MASK; |
| TTFatalErrors &= hfdcan->ttcan->TTIE; |
| itsourceTTIE = hfdcan->ttcan->TTIE; |
| itflagTTIR = hfdcan->ttcan->TTIR; |
| |
| /* TT Schedule Synchronization interrupts management **********************/ |
| if (TTSchedSyncITs != 0U) |
| { |
| /* Clear the TT Schedule Synchronization flags */ |
| __HAL_FDCAN_TT_CLEAR_FLAG(hfdcan, TTSchedSyncITs); |
| |
| #if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1 |
| /* Call registered callback*/ |
| hfdcan->TT_ScheduleSyncCallback(hfdcan, TTSchedSyncITs); |
| #else |
| /* TT Schedule Synchronization Callback */ |
| HAL_FDCAN_TT_ScheduleSyncCallback(hfdcan, TTSchedSyncITs); |
| #endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */ |
| } |
| |
| /* TT Time Mark interrupts management *************************************/ |
| if (TTTimeMarkITs != 0U) |
| { |
| /* Clear the TT Time Mark flags */ |
| __HAL_FDCAN_TT_CLEAR_FLAG(hfdcan, TTTimeMarkITs); |
| |
| #if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1 |
| /* Call registered callback*/ |
| hfdcan->TT_TimeMarkCallback(hfdcan, TTTimeMarkITs); |
| #else |
| /* TT Time Mark Callback */ |
| HAL_FDCAN_TT_TimeMarkCallback(hfdcan, TTTimeMarkITs); |
| #endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */ |
| } |
| |
| /* TT Stop Watch interrupt management *************************************/ |
| if (FDCAN_CHECK_IT_SOURCE(itsourceTTIE, FDCAN_TT_IT_STOP_WATCH) != RESET) |
| { |
| if (FDCAN_CHECK_FLAG(itflagTTIR, FDCAN_TT_FLAG_STOP_WATCH) != RESET) |
| { |
| /* Retrieve Stop watch Time and Cycle count */ |
| SWTime = ((hfdcan->ttcan->TTCPT & FDCAN_TTCPT_SWV) >> FDCAN_TTCPT_SWV_Pos); |
| SWCycleCount = ((hfdcan->ttcan->TTCPT & FDCAN_TTCPT_CCV) >> FDCAN_TTCPT_CCV_Pos); |
| |
| /* Clear the TT Stop Watch flag */ |
| __HAL_FDCAN_TT_CLEAR_FLAG(hfdcan, FDCAN_TT_FLAG_STOP_WATCH); |
| |
| #if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1 |
| /* Call registered callback*/ |
| hfdcan->TT_StopWatchCallback(hfdcan, SWTime, SWCycleCount); |
| #else |
| /* TT Stop Watch Callback */ |
| HAL_FDCAN_TT_StopWatchCallback(hfdcan, SWTime, SWCycleCount); |
| #endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */ |
| } |
| } |
| |
| /* TT Global Time interrupts management ***********************************/ |
| if (TTGlobTimeITs != 0U) |
| { |
| /* Clear the TT Global Time flags */ |
| __HAL_FDCAN_TT_CLEAR_FLAG(hfdcan, TTGlobTimeITs); |
| |
| #if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1 |
| /* Call registered callback*/ |
| hfdcan->TT_GlobalTimeCallback(hfdcan, TTGlobTimeITs); |
| #else |
| /* TT Global Time Callback */ |
| HAL_FDCAN_TT_GlobalTimeCallback(hfdcan, TTGlobTimeITs); |
| #endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */ |
| } |
| |
| /* TT Disturbing Error interrupts management ******************************/ |
| if (TTDistErrors != 0U) |
| { |
| /* Clear the TT Disturbing Error flags */ |
| __HAL_FDCAN_TT_CLEAR_FLAG(hfdcan, TTDistErrors); |
| |
| /* Update error code */ |
| hfdcan->ErrorCode |= TTDistErrors; |
| } |
| |
| /* TT Fatal Error interrupts management ***********************************/ |
| if (TTFatalErrors != 0U) |
| { |
| /* Clear the TT Fatal Error flags */ |
| __HAL_FDCAN_TT_CLEAR_FLAG(hfdcan, TTFatalErrors); |
| |
| /* Update error code */ |
| hfdcan->ErrorCode |= TTFatalErrors; |
| } |
| } |
| } |
| |
| if (hfdcan->ErrorCode != HAL_FDCAN_ERROR_NONE) |
| { |
| #if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1 |
| /* Call registered callback*/ |
| hfdcan->ErrorCallback(hfdcan); |
| #else |
| /* Error Callback */ |
| HAL_FDCAN_ErrorCallback(hfdcan); |
| #endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */ |
| } |
| } |
| |
| /** |
| * @} |
| */ |
| |
| /** @defgroup FDCAN_Exported_Functions_Group6 Callback functions |
| * @brief FDCAN Callback functions |
| * |
| @verbatim |
| ============================================================================== |
| ##### Callback functions ##### |
| ============================================================================== |
| [..] |
| This subsection provides the following callback functions: |
| (+) HAL_FDCAN_ClockCalibrationCallback |
| (+) HAL_FDCAN_TxEventFifoCallback |
| (+) HAL_FDCAN_RxFifo0Callback |
| (+) HAL_FDCAN_RxFifo1Callback |
| (+) HAL_FDCAN_TxFifoEmptyCallback |
| (+) HAL_FDCAN_TxBufferCompleteCallback |
| (+) HAL_FDCAN_TxBufferAbortCallback |
| (+) HAL_FDCAN_RxBufferNewMessageCallback |
| (+) HAL_FDCAN_HighPriorityMessageCallback |
| (+) HAL_FDCAN_TimestampWraparoundCallback |
| (+) HAL_FDCAN_TimeoutOccurredCallback |
| (+) HAL_FDCAN_ErrorCallback |
| (+) HAL_FDCAN_ErrorStatusCallback |
| (+) HAL_FDCAN_TT_ScheduleSyncCallback |
| (+) HAL_FDCAN_TT_TimeMarkCallback |
| (+) HAL_FDCAN_TT_StopWatchCallback |
| (+) HAL_FDCAN_TT_GlobalTimeCallback |
| |
| @endverbatim |
| * @{ |
| */ |
| |
| /** |
| * @brief Clock Calibration callback. |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @param ClkCalibrationITs indicates which Clock Calibration interrupts are signaled. |
| * This parameter can be any combination of @arg FDCAN_Clock_Calibration_Interrupts. |
| * @retval None |
| */ |
| __weak void HAL_FDCAN_ClockCalibrationCallback(FDCAN_HandleTypeDef *hfdcan, uint32_t ClkCalibrationITs) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(hfdcan); |
| UNUSED(ClkCalibrationITs); |
| |
| /* NOTE: This function Should not be modified, when the callback is needed, |
| the HAL_FDCAN_ClockCalibrationCallback could be implemented in the user file |
| */ |
| } |
| |
| /** |
| * @brief Tx Event callback. |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @param TxEventFifoITs indicates which Tx Event FIFO interrupts are signaled. |
| * This parameter can be any combination of @arg FDCAN_Tx_Event_Fifo_Interrupts. |
| * @retval None |
| */ |
| __weak void HAL_FDCAN_TxEventFifoCallback(FDCAN_HandleTypeDef *hfdcan, uint32_t TxEventFifoITs) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(hfdcan); |
| UNUSED(TxEventFifoITs); |
| |
| /* NOTE: This function Should not be modified, when the callback is needed, |
| the HAL_FDCAN_TxEventFifoCallback could be implemented in the user file |
| */ |
| } |
| |
| /** |
| * @brief Rx FIFO 0 callback. |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @param RxFifo0ITs indicates which Rx FIFO 0 interrupts are signaled. |
| * This parameter can be any combination of @arg FDCAN_Rx_Fifo0_Interrupts. |
| * @retval None |
| */ |
| __weak void HAL_FDCAN_RxFifo0Callback(FDCAN_HandleTypeDef *hfdcan, uint32_t RxFifo0ITs) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(hfdcan); |
| UNUSED(RxFifo0ITs); |
| |
| /* NOTE: This function Should not be modified, when the callback is needed, |
| the HAL_FDCAN_RxFifo0Callback could be implemented in the user file |
| */ |
| } |
| |
| /** |
| * @brief Rx FIFO 1 callback. |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @param RxFifo1ITs indicates which Rx FIFO 1 interrupts are signaled. |
| * This parameter can be any combination of @arg FDCAN_Rx_Fifo1_Interrupts. |
| * @retval None |
| */ |
| __weak void HAL_FDCAN_RxFifo1Callback(FDCAN_HandleTypeDef *hfdcan, uint32_t RxFifo1ITs) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(hfdcan); |
| UNUSED(RxFifo1ITs); |
| |
| /* NOTE: This function Should not be modified, when the callback is needed, |
| the HAL_FDCAN_RxFifo1Callback could be implemented in the user file |
| */ |
| } |
| |
| /** |
| * @brief Tx FIFO Empty callback. |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @retval None |
| */ |
| __weak void HAL_FDCAN_TxFifoEmptyCallback(FDCAN_HandleTypeDef *hfdcan) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(hfdcan); |
| |
| /* NOTE: This function Should not be modified, when the callback is needed, |
| the HAL_FDCAN_TxFifoEmptyCallback could be implemented in the user file |
| */ |
| } |
| |
| /** |
| * @brief Transmission Complete callback. |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @param BufferIndexes Indexes of the transmitted buffers. |
| * This parameter can be any combination of @arg FDCAN_Tx_location. |
| * @retval None |
| */ |
| __weak void HAL_FDCAN_TxBufferCompleteCallback(FDCAN_HandleTypeDef *hfdcan, uint32_t BufferIndexes) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(hfdcan); |
| UNUSED(BufferIndexes); |
| |
| /* NOTE: This function Should not be modified, when the callback is needed, |
| the HAL_FDCAN_TxBufferCompleteCallback could be implemented in the user file |
| */ |
| } |
| |
| /** |
| * @brief Transmission Cancellation callback. |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @param BufferIndexes Indexes of the aborted buffers. |
| * This parameter can be any combination of @arg FDCAN_Tx_location. |
| * @retval None |
| */ |
| __weak void HAL_FDCAN_TxBufferAbortCallback(FDCAN_HandleTypeDef *hfdcan, uint32_t BufferIndexes) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(hfdcan); |
| UNUSED(BufferIndexes); |
| |
| /* NOTE: This function Should not be modified, when the callback is needed, |
| the HAL_FDCAN_TxBufferAbortCallback could be implemented in the user file |
| */ |
| } |
| |
| /** |
| * @brief Rx Buffer New Message callback. |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @retval None |
| */ |
| __weak void HAL_FDCAN_RxBufferNewMessageCallback(FDCAN_HandleTypeDef *hfdcan) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(hfdcan); |
| |
| /* NOTE: This function Should not be modified, when the callback is needed, |
| the HAL_FDCAN_RxBufferNewMessageCallback could be implemented in the user file |
| */ |
| } |
| |
| /** |
| * @brief Timestamp Wraparound callback. |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @retval None |
| */ |
| __weak void HAL_FDCAN_TimestampWraparoundCallback(FDCAN_HandleTypeDef *hfdcan) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(hfdcan); |
| |
| /* NOTE: This function Should not be modified, when the callback is needed, |
| the HAL_FDCAN_TimestampWraparoundCallback could be implemented in the user file |
| */ |
| } |
| |
| /** |
| * @brief Timeout Occurred callback. |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @retval None |
| */ |
| __weak void HAL_FDCAN_TimeoutOccurredCallback(FDCAN_HandleTypeDef *hfdcan) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(hfdcan); |
| |
| /* NOTE: This function Should not be modified, when the callback is needed, |
| the HAL_FDCAN_TimeoutOccurredCallback could be implemented in the user file |
| */ |
| } |
| |
| /** |
| * @brief High Priority Message callback. |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @retval None |
| */ |
| __weak void HAL_FDCAN_HighPriorityMessageCallback(FDCAN_HandleTypeDef *hfdcan) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(hfdcan); |
| |
| /* NOTE: This function Should not be modified, when the callback is needed, |
| the HAL_FDCAN_HighPriorityMessageCallback could be implemented in the user file |
| */ |
| } |
| |
| /** |
| * @brief Error callback. |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @retval None |
| */ |
| __weak void HAL_FDCAN_ErrorCallback(FDCAN_HandleTypeDef *hfdcan) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(hfdcan); |
| |
| /* NOTE: This function Should not be modified, when the callback is needed, |
| the HAL_FDCAN_ErrorCallback could be implemented in the user file |
| */ |
| } |
| |
| /** |
| * @brief Error status callback. |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @param ErrorStatusITs indicates which Error Status interrupts are signaled. |
| * This parameter can be any combination of @arg FDCAN_Error_Status_Interrupts. |
| * @retval None |
| */ |
| __weak void HAL_FDCAN_ErrorStatusCallback(FDCAN_HandleTypeDef *hfdcan, uint32_t ErrorStatusITs) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(hfdcan); |
| UNUSED(ErrorStatusITs); |
| |
| /* NOTE: This function Should not be modified, when the callback is needed, |
| the HAL_FDCAN_ErrorStatusCallback could be implemented in the user file |
| */ |
| } |
| |
| /** |
| * @brief TT Schedule Synchronization callback. |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @param TTSchedSyncITs indicates which TT Schedule Synchronization interrupts are signaled. |
| * This parameter can be any combination of @arg FDCAN_TTScheduleSynchronization_Interrupts. |
| * @retval None |
| */ |
| __weak void HAL_FDCAN_TT_ScheduleSyncCallback(FDCAN_HandleTypeDef *hfdcan, uint32_t TTSchedSyncITs) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(hfdcan); |
| UNUSED(TTSchedSyncITs); |
| |
| /* NOTE: This function Should not be modified, when the callback is needed, |
| the HAL_FDCAN_TT_ScheduleSyncCallback could be implemented in the user file |
| */ |
| } |
| |
| /** |
| * @brief TT Time Mark callback. |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @param TTTimeMarkITs indicates which TT Schedule Synchronization interrupts are signaled. |
| * This parameter can be any combination of @arg FDCAN_TTTimeMark_Interrupts. |
| * @retval None |
| */ |
| __weak void HAL_FDCAN_TT_TimeMarkCallback(FDCAN_HandleTypeDef *hfdcan, uint32_t TTTimeMarkITs) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(hfdcan); |
| UNUSED(TTTimeMarkITs); |
| |
| /* NOTE: This function Should not be modified, when the callback is needed, |
| the HAL_FDCAN_TT_TimeMarkCallback could be implemented in the user file |
| */ |
| } |
| |
| /** |
| * @brief TT Stop Watch callback. |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @param SWTime Time Value captured at the Stop Watch Trigger pin (fdcan1_swt) falling/rising |
| * edge (as configured via HAL_FDCAN_TTConfigStopWatch). |
| * This parameter is a number between 0 and 0xFFFF. |
| * @param SWCycleCount Cycle count value captured together with SWTime. |
| * This parameter is a number between 0 and 0x3F. |
| * @retval None |
| */ |
| __weak void HAL_FDCAN_TT_StopWatchCallback(FDCAN_HandleTypeDef *hfdcan, uint32_t SWTime, uint32_t SWCycleCount) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(hfdcan); |
| UNUSED(SWTime); |
| UNUSED(SWCycleCount); |
| |
| /* NOTE: This function Should not be modified, when the callback is needed, |
| the HAL_FDCAN_TT_StopWatchCallback could be implemented in the user file |
| */ |
| } |
| |
| /** |
| * @brief TT Global Time callback. |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @param TTGlobTimeITs indicates which TT Global Time interrupts are signaled. |
| * This parameter can be any combination of @arg FDCAN_TTGlobalTime_Interrupts. |
| * @retval None |
| */ |
| __weak void HAL_FDCAN_TT_GlobalTimeCallback(FDCAN_HandleTypeDef *hfdcan, uint32_t TTGlobTimeITs) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(hfdcan); |
| UNUSED(TTGlobTimeITs); |
| |
| /* NOTE: This function Should not be modified, when the callback is needed, |
| the HAL_FDCAN_TT_GlobalTimeCallback could be implemented in the user file |
| */ |
| } |
| |
| /** |
| * @} |
| */ |
| |
| /** @defgroup FDCAN_Exported_Functions_Group7 Peripheral State functions |
| * @brief FDCAN Peripheral State functions |
| * |
| @verbatim |
| ============================================================================== |
| ##### Peripheral State functions ##### |
| ============================================================================== |
| [..] |
| This subsection provides functions allowing to : |
| (+) HAL_FDCAN_GetState() : Return the FDCAN state. |
| (+) HAL_FDCAN_GetError() : Return the FDCAN error code if any. |
| |
| @endverbatim |
| * @{ |
| */ |
| /** |
| * @brief Return the FDCAN state |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @retval HAL state |
| */ |
| HAL_FDCAN_StateTypeDef HAL_FDCAN_GetState(const FDCAN_HandleTypeDef *hfdcan) |
| { |
| /* Return FDCAN state */ |
| return hfdcan->State; |
| } |
| |
| /** |
| * @brief Return the FDCAN error code |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @retval FDCAN Error Code |
| */ |
| uint32_t HAL_FDCAN_GetError(const FDCAN_HandleTypeDef *hfdcan) |
| { |
| /* Return FDCAN error code */ |
| return hfdcan->ErrorCode; |
| } |
| |
| /** |
| * @} |
| */ |
| |
| /** |
| * @} |
| */ |
| |
| /** @defgroup FDCAN_Private_Functions FDCAN Private Functions |
| * @{ |
| */ |
| |
| /** |
| * @brief Calculate each RAM block start address and size |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @retval HAL status |
| */ |
| static HAL_StatusTypeDef FDCAN_CalcultateRamBlockAddresses(FDCAN_HandleTypeDef *hfdcan) |
| { |
| uint32_t RAMcounter; |
| uint32_t StartAddress; |
| |
| StartAddress = hfdcan->Init.MessageRAMOffset; |
| |
| /* Standard filter list start address */ |
| MODIFY_REG(hfdcan->Instance->SIDFC, FDCAN_SIDFC_FLSSA, (StartAddress << FDCAN_SIDFC_FLSSA_Pos)); |
| |
| /* Standard filter elements number */ |
| MODIFY_REG(hfdcan->Instance->SIDFC, FDCAN_SIDFC_LSS, (hfdcan->Init.StdFiltersNbr << FDCAN_SIDFC_LSS_Pos)); |
| |
| /* Extended filter list start address */ |
| StartAddress += hfdcan->Init.StdFiltersNbr; |
| MODIFY_REG(hfdcan->Instance->XIDFC, FDCAN_XIDFC_FLESA, (StartAddress << FDCAN_XIDFC_FLESA_Pos)); |
| |
| /* Extended filter elements number */ |
| MODIFY_REG(hfdcan->Instance->XIDFC, FDCAN_XIDFC_LSE, (hfdcan->Init.ExtFiltersNbr << FDCAN_XIDFC_LSE_Pos)); |
| |
| /* Rx FIFO 0 start address */ |
| StartAddress += (hfdcan->Init.ExtFiltersNbr * 2U); |
| MODIFY_REG(hfdcan->Instance->RXF0C, FDCAN_RXF0C_F0SA, (StartAddress << FDCAN_RXF0C_F0SA_Pos)); |
| |
| /* Rx FIFO 0 elements number */ |
| MODIFY_REG(hfdcan->Instance->RXF0C, FDCAN_RXF0C_F0S, (hfdcan->Init.RxFifo0ElmtsNbr << FDCAN_RXF0C_F0S_Pos)); |
| |
| /* Rx FIFO 1 start address */ |
| StartAddress += (hfdcan->Init.RxFifo0ElmtsNbr * hfdcan->Init.RxFifo0ElmtSize); |
| MODIFY_REG(hfdcan->Instance->RXF1C, FDCAN_RXF1C_F1SA, (StartAddress << FDCAN_RXF1C_F1SA_Pos)); |
| |
| /* Rx FIFO 1 elements number */ |
| MODIFY_REG(hfdcan->Instance->RXF1C, FDCAN_RXF1C_F1S, (hfdcan->Init.RxFifo1ElmtsNbr << FDCAN_RXF1C_F1S_Pos)); |
| |
| /* Rx buffer list start address */ |
| StartAddress += (hfdcan->Init.RxFifo1ElmtsNbr * hfdcan->Init.RxFifo1ElmtSize); |
| MODIFY_REG(hfdcan->Instance->RXBC, FDCAN_RXBC_RBSA, (StartAddress << FDCAN_RXBC_RBSA_Pos)); |
| |
| /* Tx event FIFO start address */ |
| StartAddress += (hfdcan->Init.RxBuffersNbr * hfdcan->Init.RxBufferSize); |
| MODIFY_REG(hfdcan->Instance->TXEFC, FDCAN_TXEFC_EFSA, (StartAddress << FDCAN_TXEFC_EFSA_Pos)); |
| |
| /* Tx event FIFO elements number */ |
| MODIFY_REG(hfdcan->Instance->TXEFC, FDCAN_TXEFC_EFS, (hfdcan->Init.TxEventsNbr << FDCAN_TXEFC_EFS_Pos)); |
| |
| /* Tx buffer list start address */ |
| StartAddress += (hfdcan->Init.TxEventsNbr * 2U); |
| MODIFY_REG(hfdcan->Instance->TXBC, FDCAN_TXBC_TBSA, (StartAddress << FDCAN_TXBC_TBSA_Pos)); |
| |
| /* Dedicated Tx buffers number */ |
| MODIFY_REG(hfdcan->Instance->TXBC, FDCAN_TXBC_NDTB, (hfdcan->Init.TxBuffersNbr << FDCAN_TXBC_NDTB_Pos)); |
| |
| /* Tx FIFO/queue elements number */ |
| MODIFY_REG(hfdcan->Instance->TXBC, FDCAN_TXBC_TFQS, (hfdcan->Init.TxFifoQueueElmtsNbr << FDCAN_TXBC_TFQS_Pos)); |
| |
| hfdcan->msgRam.StandardFilterSA = SRAMCAN_BASE + (hfdcan->Init.MessageRAMOffset * 4U); |
| hfdcan->msgRam.ExtendedFilterSA = hfdcan->msgRam.StandardFilterSA + (hfdcan->Init.StdFiltersNbr * 4U); |
| hfdcan->msgRam.RxFIFO0SA = hfdcan->msgRam.ExtendedFilterSA + (hfdcan->Init.ExtFiltersNbr * 2U * 4U); |
| hfdcan->msgRam.RxFIFO1SA = hfdcan->msgRam.RxFIFO0SA + |
| (hfdcan->Init.RxFifo0ElmtsNbr * hfdcan->Init.RxFifo0ElmtSize * 4U); |
| hfdcan->msgRam.RxBufferSA = hfdcan->msgRam.RxFIFO1SA + |
| (hfdcan->Init.RxFifo1ElmtsNbr * hfdcan->Init.RxFifo1ElmtSize * 4U); |
| hfdcan->msgRam.TxEventFIFOSA = hfdcan->msgRam.RxBufferSA + |
| (hfdcan->Init.RxBuffersNbr * hfdcan->Init.RxBufferSize * 4U); |
| hfdcan->msgRam.TxBufferSA = hfdcan->msgRam.TxEventFIFOSA + (hfdcan->Init.TxEventsNbr * 2U * 4U); |
| hfdcan->msgRam.TxFIFOQSA = hfdcan->msgRam.TxBufferSA + (hfdcan->Init.TxBuffersNbr * hfdcan->Init.TxElmtSize * 4U); |
| |
| hfdcan->msgRam.EndAddress = hfdcan->msgRam.TxFIFOQSA + |
| (hfdcan->Init.TxFifoQueueElmtsNbr * hfdcan->Init.TxElmtSize * 4U); |
| |
| if (hfdcan->msgRam.EndAddress > FDCAN_MESSAGE_RAM_END_ADDRESS) /* Last address of the Message RAM */ |
| { |
| /* Update error code. |
| Message RAM overflow */ |
| hfdcan->ErrorCode |= HAL_FDCAN_ERROR_PARAM; |
| |
| /* Change FDCAN state */ |
| hfdcan->State = HAL_FDCAN_STATE_ERROR; |
| |
| return HAL_ERROR; |
| } |
| else |
| { |
| /* Flush the allocated Message RAM area */ |
| for (RAMcounter = hfdcan->msgRam.StandardFilterSA; RAMcounter < hfdcan->msgRam.EndAddress; RAMcounter += 4U) |
| { |
| *(uint32_t *)(RAMcounter) = 0x00000000; |
| } |
| } |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Copy Tx message to the message RAM. |
| * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains |
| * the configuration information for the specified FDCAN. |
| * @param pTxHeader pointer to a FDCAN_TxHeaderTypeDef structure. |
| * @param pTxData pointer to a buffer containing the payload of the Tx frame. |
| * @param BufferIndex index of the buffer to be configured. |
| * @retval none |
| */ |
| static void FDCAN_CopyMessageToRAM(const FDCAN_HandleTypeDef *hfdcan, const FDCAN_TxHeaderTypeDef *pTxHeader, |
| const uint8_t *pTxData, uint32_t BufferIndex) |
| { |
| uint32_t TxElementW1; |
| uint32_t TxElementW2; |
| uint32_t *TxAddress; |
| uint32_t ByteCounter; |
| |
| /* Build first word of Tx header element */ |
| if (pTxHeader->IdType == FDCAN_STANDARD_ID) |
| { |
| TxElementW1 = (pTxHeader->ErrorStateIndicator | |
| FDCAN_STANDARD_ID | |
| pTxHeader->TxFrameType | |
| (pTxHeader->Identifier << 18U)); |
| } |
| else /* pTxHeader->IdType == FDCAN_EXTENDED_ID */ |
| { |
| TxElementW1 = (pTxHeader->ErrorStateIndicator | |
| FDCAN_EXTENDED_ID | |
| pTxHeader->TxFrameType | |
| pTxHeader->Identifier); |
| } |
| |
| /* Build second word of Tx header element */ |
| TxElementW2 = ((pTxHeader->MessageMarker << 24U) | |
| pTxHeader->TxEventFifoControl | |
| pTxHeader->FDFormat | |
| pTxHeader->BitRateSwitch | |
| (pTxHeader->DataLength << 16U)); |
| |
| /* Calculate Tx element address */ |
| TxAddress = (uint32_t *)(hfdcan->msgRam.TxBufferSA + (BufferIndex * hfdcan->Init.TxElmtSize * 4U)); |
| |
| /* Write Tx element header to the message RAM */ |
| *TxAddress = TxElementW1; |
| TxAddress++; |
| *TxAddress = TxElementW2; |
| TxAddress++; |
| |
| /* Write Tx payload to the message RAM */ |
| for (ByteCounter = 0; ByteCounter < DLCtoBytes[pTxHeader->DataLength]; ByteCounter += 4U) |
| { |
| *TxAddress = (((uint32_t)pTxData[ByteCounter + 3U] << 24U) | |
| ((uint32_t)pTxData[ByteCounter + 2U] << 16U) | |
| ((uint32_t)pTxData[ByteCounter + 1U] << 8U) | |
| (uint32_t)pTxData[ByteCounter]); |
| TxAddress++; |
| } |
| } |
| |
| /** |
| * @} |
| */ |
| #endif /* HAL_FDCAN_MODULE_ENABLED */ |
| /** |
| * @} |
| */ |
| |
| /** |
| * @} |
| */ |
| |
| #endif /* FDCAN1 */ |