| /** |
| ****************************************************************************** |
| * @file stm32l4xx_hal_rcc.c |
| * @author MCD Application Team |
| * @brief RCC HAL module driver. |
| * This file provides firmware functions to manage the following |
| * functionalities of the Reset and Clock Control (RCC) peripheral: |
| * + Initialization and de-initialization functions |
| * + Peripheral Control functions |
| * |
| @verbatim |
| ============================================================================== |
| ##### RCC specific features ##### |
| ============================================================================== |
| [..] |
| After reset the device is running from Multiple Speed Internal oscillator |
| (4 MHz) with Flash 0 wait state. Flash prefetch buffer, D-Cache |
| and I-Cache are disabled, and all peripherals are off except internal |
| SRAM, Flash and JTAG. |
| |
| (+) There is no prescaler on High speed (AHBs) and Low speed (APBs) busses: |
| all peripherals mapped on these busses are running at MSI speed. |
| (+) The clock for all peripherals is switched off, except the SRAM and FLASH. |
| (+) All GPIOs are in analog mode, except the JTAG pins which |
| are assigned to be used for debug purpose. |
| |
| [..] |
| Once the device started from reset, the user application has to: |
| (+) Configure the clock source to be used to drive the System clock |
| (if the application needs higher frequency/performance) |
| (+) Configure the System clock frequency and Flash settings |
| (+) Configure the AHB and APB busses prescalers |
| (+) Enable the clock for the peripheral(s) to be used |
| (+) Configure the clock source(s) for peripherals which clocks are not |
| derived from the System clock (SAIx, RTC, ADC, USB OTG FS/SDMMC1/RNG) |
| |
| @endverbatim |
| ****************************************************************************** |
| * @attention |
| * |
| * Copyright (c) 2017 STMicroelectronics. |
| * All rights reserved. |
| * |
| * This software is licensed under terms that can be found in the LICENSE file in |
| * the root directory of this software component. |
| * If no LICENSE file comes with this software, it is provided AS-IS. |
| ****************************************************************************** |
| */ |
| |
| /* Includes ------------------------------------------------------------------*/ |
| #include "stm32l4xx_hal.h" |
| |
| /** @addtogroup STM32L4xx_HAL_Driver |
| * @{ |
| */ |
| |
| /** @defgroup RCC RCC |
| * @brief RCC HAL module driver |
| * @{ |
| */ |
| |
| #ifdef HAL_RCC_MODULE_ENABLED |
| |
| /* Private typedef -----------------------------------------------------------*/ |
| /* Private define ------------------------------------------------------------*/ |
| /** @defgroup RCC_Private_Constants RCC Private Constants |
| * @{ |
| */ |
| #define HSE_TIMEOUT_VALUE HSE_STARTUP_TIMEOUT |
| #define HSI_TIMEOUT_VALUE 2U /* 2 ms (minimum Tick + 1) */ |
| #define MSI_TIMEOUT_VALUE 2U /* 2 ms (minimum Tick + 1) */ |
| #if defined(RCC_CSR_LSIPREDIV) |
| #define LSI_TIMEOUT_VALUE 17U /* 17 ms (16 ms starting time + 1) */ |
| #else |
| #define LSI_TIMEOUT_VALUE 2U /* 2 ms (minimum Tick + 1) */ |
| #endif /* RCC_CSR_LSIPREDIV */ |
| #define HSI48_TIMEOUT_VALUE 2U /* 2 ms (minimum Tick + 1) */ |
| #define PLL_TIMEOUT_VALUE 2U /* 2 ms (minimum Tick + 1) */ |
| #define CLOCKSWITCH_TIMEOUT_VALUE 5000U /* 5 s */ |
| /** |
| * @} |
| */ |
| |
| /* Private macro -------------------------------------------------------------*/ |
| /** @defgroup RCC_Private_Macros RCC Private Macros |
| * @{ |
| */ |
| #define __MCO1_CLK_ENABLE() __HAL_RCC_GPIOA_CLK_ENABLE() |
| #define MCO1_GPIO_PORT GPIOA |
| #define MCO1_PIN GPIO_PIN_8 |
| |
| #define RCC_PLL_OSCSOURCE_CONFIG(__HAL_RCC_PLLSOURCE__) \ |
| (MODIFY_REG(RCC->PLLCFGR, RCC_PLLCFGR_PLLSRC, (__HAL_RCC_PLLSOURCE__))) |
| /** |
| * @} |
| */ |
| |
| /* Private variables ---------------------------------------------------------*/ |
| |
| /* Private function prototypes -----------------------------------------------*/ |
| /** @defgroup RCC_Private_Functions RCC Private Functions |
| * @{ |
| */ |
| static HAL_StatusTypeDef RCC_SetFlashLatencyFromMSIRange(uint32_t msirange); |
| #if defined(STM32L4P5xx) || defined(STM32L4Q5xx) || \ |
| defined(STM32L4R5xx) || defined(STM32L4R7xx) || defined(STM32L4R9xx) || defined(STM32L4S5xx) || defined(STM32L4S7xx) || defined(STM32L4S9xx) |
| static uint32_t RCC_GetSysClockFreqFromPLLSource(void); |
| #endif |
| /** |
| * @} |
| */ |
| |
| /* Exported functions --------------------------------------------------------*/ |
| |
| /** @defgroup RCC_Exported_Functions RCC Exported Functions |
| * @{ |
| */ |
| |
| /** @defgroup RCC_Exported_Functions_Group1 Initialization and de-initialization functions |
| * @brief Initialization and Configuration functions |
| * |
| @verbatim |
| =============================================================================== |
| ##### Initialization and de-initialization functions ##### |
| =============================================================================== |
| [..] |
| This section provides functions allowing to configure the internal and external oscillators |
| (HSE, HSI, LSE, MSI, LSI, PLL, CSS and MCO) and the System busses clocks (SYSCLK, AHB, APB1 |
| and APB2). |
| |
| [..] Internal/external clock and PLL configuration |
| (+) HSI (high-speed internal): 16 MHz factory-trimmed RC used directly or through |
| the PLL as System clock source. |
| |
| (+) MSI (Multiple Speed Internal): Its frequency is software trimmable from 100KHZ to 48MHZ. |
| It can be used to generate the clock for the USB OTG FS (48 MHz). |
| The number of flash wait states is automatically adjusted when MSI range is updated with |
| HAL_RCC_OscConfig() and the MSI is used as System clock source. |
| |
| (+) LSI (low-speed internal): 32 KHz low consumption RC used as IWDG and/or RTC |
| clock source. |
| |
| (+) HSE (high-speed external): 4 to 48 MHz crystal oscillator used directly or |
| through the PLL as System clock source. Can be used also optionally as RTC clock source. |
| |
| (+) LSE (low-speed external): 32.768 KHz oscillator used optionally as RTC clock source. |
| |
| (+) PLL (clocked by HSI, HSE or MSI) providing up to three independent output clocks: |
| (++) The first output is used to generate the high speed system clock (up to 80MHz). |
| (++) The second output is used to generate the clock for the USB OTG FS (48 MHz), |
| the random analog generator (<=48 MHz) and the SDMMC1 (<= 48 MHz). |
| (++) The third output is used to generate an accurate clock to achieve |
| high-quality audio performance on SAI interface. |
| |
| (+) PLLSAI1 (clocked by HSI, HSE or MSI) providing up to three independent output clocks: |
| (++) The first output is used to generate SAR ADC1 clock. |
| (++) The second output is used to generate the clock for the USB OTG FS (48 MHz), |
| the random analog generator (<=48 MHz) and the SDMMC1 (<= 48 MHz). |
| (++) The third output is used to generate an accurate clock to achieve |
| high-quality audio performance on SAI interface. |
| |
| (+) PLLSAI2 (clocked by HSI, HSE or MSI) providing up to three independent output clocks: |
| (++) The first output is used to generate an accurate clock to achieve |
| high-quality audio performance on SAI interface. |
| (++) The second output is used to generate either SAR ADC2 clock if ADC2 is present |
| or LCD clock if LTDC is present. |
| (++) The third output is used to generate DSI clock if DSI is present. |
| |
| (+) CSS (Clock security system): once enabled, if a HSE clock failure occurs |
| (HSE used directly or through PLL as System clock source), the System clock |
| is automatically switched to HSI and an interrupt is generated if enabled. |
| The interrupt is linked to the Cortex-M4 NMI (Non-Maskable Interrupt) |
| exception vector. |
| |
| (+) MCO (microcontroller clock output): used to output MSI, LSI, HSI, LSE, HSE or |
| main PLL clock (through a configurable prescaler) on PA8 pin. |
| |
| [..] System, AHB and APB busses clocks configuration |
| (+) Several clock sources can be used to drive the System clock (SYSCLK): MSI, HSI, |
| HSE and main PLL. |
| The AHB clock (HCLK) is derived from System clock through configurable |
| prescaler and used to clock the CPU, memory and peripherals mapped |
| on AHB bus (DMA, GPIO...). APB1 (PCLK1) and APB2 (PCLK2) clocks are derived |
| from AHB clock through configurable prescalers and used to clock |
| the peripherals mapped on these busses. You can use |
| "HAL_RCC_GetSysClockFreq()" function to retrieve the frequencies of these clocks. |
| |
| -@- All the peripheral clocks are derived from the System clock (SYSCLK) except: |
| |
| (+@) SAI: the SAI clock can be derived either from a specific PLL (PLLSAI1) or (PLLSAI2) or |
| from an external clock mapped on the SAI_CKIN pin. |
| You have to use HAL_RCCEx_PeriphCLKConfig() function to configure this clock. |
| (+@) RTC: the RTC clock can be derived either from the LSI, LSE or HSE clock |
| divided by 2 to 31. |
| You have to use __HAL_RCC_RTC_ENABLE() and HAL_RCCEx_PeriphCLKConfig() function |
| to configure this clock. |
| (+@) USB OTG FS, SDMMC1 and RNG: USB OTG FS requires a frequency equal to 48 MHz |
| to work correctly, while the SDMMC1 and RNG peripherals require a frequency |
| equal or lower than to 48 MHz. This clock is derived of the main PLL or PLLSAI1 |
| through PLLQ divider. You have to enable the peripheral clock and use |
| HAL_RCCEx_PeriphCLKConfig() function to configure this clock. |
| (+@) IWDG clock which is always the LSI clock. |
| |
| |
| (+) The maximum frequency of the SYSCLK, HCLK, PCLK1 and PCLK2 is 80 MHz. |
| The clock source frequency should be adapted depending on the device voltage range |
| as listed in the Reference Manual "Clock source frequency versus voltage scaling" chapter. |
| |
| @endverbatim |
| |
| Table 1. HCLK clock frequency for other STM32L4 devices |
| +-------------------------------------------------------+ |
| | Latency | HCLK clock frequency (MHz) | |
| | |-------------------------------------| |
| | | voltage range 1 | voltage range 2 | |
| | | 1.2 V | 1.0 V | |
| |-----------------|------------------|------------------| |
| |0WS(1 CPU cycles)| 0 < HCLK <= 16 | 0 < HCLK <= 6 | |
| |-----------------|------------------|------------------| |
| |1WS(2 CPU cycles)| 16 < HCLK <= 32 | 6 < HCLK <= 12 | |
| |-----------------|------------------|------------------| |
| |2WS(3 CPU cycles)| 32 < HCLK <= 48 | 12 < HCLK <= 18 | |
| |-----------------|------------------|------------------| |
| |3WS(4 CPU cycles)| 48 < HCLK <= 64 | 18 < HCLK <= 26 | |
| |-----------------|------------------|------------------| |
| |4WS(5 CPU cycles)| 64 < HCLK <= 80 | 18 < HCLK <= 26 | |
| +-------------------------------------------------------+ |
| |
| Table 2. HCLK clock frequency for STM32L4+ devices |
| +--------------------------------------------------------+ |
| | Latency | HCLK clock frequency (MHz) | |
| | |--------------------------------------| |
| | | voltage range 1 | voltage range 2 | |
| | | 1.2 V | 1.0 V | |
| |-----------------|-------------------|------------------| |
| |0WS(1 CPU cycles)| 0 < HCLK <= 20 | 0 < HCLK <= 8 | |
| |-----------------|-------------------|------------------| |
| |1WS(2 CPU cycles)| 20 < HCLK <= 40 | 8 < HCLK <= 16 | |
| |-----------------|-------------------|------------------| |
| |2WS(3 CPU cycles)| 40 < HCLK <= 60 | 16 < HCLK <= 26 | |
| |-----------------|-------------------|------------------| |
| |3WS(4 CPU cycles)| 60 < HCLK <= 80 | 16 < HCLK <= 26 | |
| |-----------------|-------------------|------------------| |
| |4WS(5 CPU cycles)| 80 < HCLK <= 100 | 16 < HCLK <= 26 | |
| |-----------------|-------------------|------------------| |
| |5WS(6 CPU cycles)| 100 < HCLK <= 120 | 16 < HCLK <= 26 | |
| +--------------------------------------------------------+ |
| * @{ |
| */ |
| |
| /** |
| * @brief Reset the RCC clock configuration to the default reset state. |
| * @note The default reset state of the clock configuration is given below: |
| * - MSI ON and used as system clock source |
| * - HSE, HSI, PLL, PLLSAI1 and PLLSAI2 OFF |
| * - AHB, APB1 and APB2 prescalers set to 1. |
| * - CSS, MCO1 OFF |
| * - All interrupts disabled |
| * - All interrupt and reset flags cleared |
| * @note This function does not modify the configuration of the |
| * - Peripheral clock sources |
| * - LSI, LSE and RTC clocks (Backup domain) |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_RCC_DeInit(void) |
| { |
| uint32_t tickstart; |
| |
| /* Reset to default System clock */ |
| /* Set MSION bit */ |
| SET_BIT(RCC->CR, RCC_CR_MSION); |
| |
| /* Insure MSIRDY bit is set before writing default MSIRANGE value */ |
| /* Get start tick */ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till MSI is ready */ |
| while(READ_BIT(RCC->CR, RCC_CR_MSIRDY) == 0U) |
| { |
| if((HAL_GetTick() - tickstart) > MSI_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| |
| /* Set MSIRANGE default value */ |
| MODIFY_REG(RCC->CR, RCC_CR_MSIRANGE, RCC_MSIRANGE_6); |
| |
| /* Reset CFGR register (MSI is selected as system clock source) */ |
| CLEAR_REG(RCC->CFGR); |
| |
| /* Update the SystemCoreClock global variable for MSI as system clock source */ |
| SystemCoreClock = MSI_VALUE; |
| |
| /* Configure the source of time base considering new system clock settings */ |
| if(HAL_InitTick(uwTickPrio) != HAL_OK) |
| { |
| return HAL_ERROR; |
| } |
| |
| /* Insure MSI selected as system clock source */ |
| /* Get start tick */ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till system clock source is ready */ |
| while(READ_BIT(RCC->CFGR, RCC_CFGR_SWS) != RCC_CFGR_SWS_MSI) |
| { |
| if((HAL_GetTick() - tickstart) > CLOCKSWITCH_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| |
| /* Reset HSION, HSIKERON, HSIASFS, HSEON, HSECSSON, PLLON, PLLSAIxON bits */ |
| #if defined(RCC_PLLSAI2_SUPPORT) |
| |
| CLEAR_BIT(RCC->CR, RCC_CR_HSEON | RCC_CR_HSION | RCC_CR_HSIKERON| RCC_CR_HSIASFS | RCC_CR_PLLON | RCC_CR_PLLSAI1ON | RCC_CR_PLLSAI2ON); |
| |
| #elif defined(RCC_PLLSAI1_SUPPORT) |
| |
| CLEAR_BIT(RCC->CR, RCC_CR_HSEON | RCC_CR_HSION | RCC_CR_HSIKERON| RCC_CR_HSIASFS | RCC_CR_PLLON | RCC_CR_PLLSAI1ON); |
| |
| #else |
| |
| CLEAR_BIT(RCC->CR, RCC_CR_HSEON | RCC_CR_HSION | RCC_CR_HSIKERON| RCC_CR_HSIASFS | RCC_CR_PLLON); |
| |
| #endif /* RCC_PLLSAI2_SUPPORT */ |
| |
| /* Insure PLLRDY, PLLSAI1RDY and PLLSAI2RDY (if present) are reset */ |
| /* Get start tick */ |
| tickstart = HAL_GetTick(); |
| |
| #if defined(RCC_PLLSAI2_SUPPORT) |
| |
| while(READ_BIT(RCC->CR, RCC_CR_PLLRDY | RCC_CR_PLLSAI1RDY | RCC_CR_PLLSAI2RDY) != 0U) |
| |
| #elif defined(RCC_PLLSAI1_SUPPORT) |
| |
| while(READ_BIT(RCC->CR, RCC_CR_PLLRDY | RCC_CR_PLLSAI1RDY) != 0U) |
| |
| #else |
| |
| while(READ_BIT(RCC->CR, RCC_CR_PLLRDY) != 0U) |
| |
| #endif |
| { |
| if((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| |
| /* Reset PLLCFGR register */ |
| CLEAR_REG(RCC->PLLCFGR); |
| SET_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLN_4 ); |
| |
| #if defined(RCC_PLLSAI1_SUPPORT) |
| |
| /* Reset PLLSAI1CFGR register */ |
| CLEAR_REG(RCC->PLLSAI1CFGR); |
| SET_BIT(RCC->PLLSAI1CFGR, RCC_PLLSAI1CFGR_PLLSAI1N_4 ); |
| |
| #endif /* RCC_PLLSAI1_SUPPORT */ |
| |
| #if defined(RCC_PLLSAI2_SUPPORT) |
| |
| /* Reset PLLSAI2CFGR register */ |
| CLEAR_REG(RCC->PLLSAI2CFGR); |
| SET_BIT(RCC->PLLSAI2CFGR, RCC_PLLSAI2CFGR_PLLSAI2N_4 ); |
| |
| #endif /* RCC_PLLSAI2_SUPPORT */ |
| |
| /* Reset HSEBYP bit */ |
| CLEAR_BIT(RCC->CR, RCC_CR_HSEBYP); |
| |
| /* Disable all interrupts */ |
| CLEAR_REG(RCC->CIER); |
| |
| /* Clear all interrupt flags */ |
| WRITE_REG(RCC->CICR, 0xFFFFFFFFU); |
| |
| /* Clear all reset flags */ |
| SET_BIT(RCC->CSR, RCC_CSR_RMVF); |
| |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Initialize the RCC Oscillators according to the specified parameters in the |
| * RCC_OscInitTypeDef. |
| * @param RCC_OscInitStruct pointer to an RCC_OscInitTypeDef structure that |
| * contains the configuration information for the RCC Oscillators. |
| * @note The PLL is not disabled when used as system clock. |
| * @note The PLL source is not updated when used as PLLSAI(s) clock source. |
| * @note Transitions LSE Bypass to LSE On and LSE On to LSE Bypass are not |
| * supported by this macro. User should request a transition to LSE Off |
| * first and then LSE On or LSE Bypass. |
| * @note Transition HSE Bypass to HSE On and HSE On to HSE Bypass are not |
| * supported by this macro. User should request a transition to HSE Off |
| * first and then HSE On or HSE Bypass. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_RCC_OscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct) |
| { |
| uint32_t tickstart; |
| HAL_StatusTypeDef status; |
| uint32_t sysclk_source, pll_config; |
| |
| /* Check Null pointer */ |
| if(RCC_OscInitStruct == NULL) |
| { |
| return HAL_ERROR; |
| } |
| |
| /* Check the parameters */ |
| assert_param(IS_RCC_OSCILLATORTYPE(RCC_OscInitStruct->OscillatorType)); |
| |
| sysclk_source = __HAL_RCC_GET_SYSCLK_SOURCE(); |
| pll_config = __HAL_RCC_GET_PLL_OSCSOURCE(); |
| |
| /*----------------------------- MSI Configuration --------------------------*/ |
| if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_MSI) == RCC_OSCILLATORTYPE_MSI) |
| { |
| /* Check the parameters */ |
| assert_param(IS_RCC_MSI(RCC_OscInitStruct->MSIState)); |
| assert_param(IS_RCC_MSICALIBRATION_VALUE(RCC_OscInitStruct->MSICalibrationValue)); |
| assert_param(IS_RCC_MSI_CLOCK_RANGE(RCC_OscInitStruct->MSIClockRange)); |
| |
| /* Check if MSI is used as system clock or as PLL source when PLL is selected as system clock */ |
| if((sysclk_source == RCC_CFGR_SWS_MSI) || |
| ((sysclk_source == RCC_CFGR_SWS_PLL) && (pll_config == RCC_PLLSOURCE_MSI))) |
| { |
| if((READ_BIT(RCC->CR, RCC_CR_MSIRDY) != 0U) && (RCC_OscInitStruct->MSIState == RCC_MSI_OFF)) |
| { |
| return HAL_ERROR; |
| } |
| |
| /* Otherwise, just the calibration and MSI range change are allowed */ |
| else |
| { |
| /* To correctly read data from FLASH memory, the number of wait states (LATENCY) |
| must be correctly programmed according to the frequency of the CPU clock |
| (HCLK) and the supply voltage of the device. */ |
| if(RCC_OscInitStruct->MSIClockRange > __HAL_RCC_GET_MSI_RANGE()) |
| { |
| /* First increase number of wait states update if necessary */ |
| if(RCC_SetFlashLatencyFromMSIRange(RCC_OscInitStruct->MSIClockRange) != HAL_OK) |
| { |
| return HAL_ERROR; |
| } |
| |
| /* Selects the Multiple Speed oscillator (MSI) clock range .*/ |
| __HAL_RCC_MSI_RANGE_CONFIG(RCC_OscInitStruct->MSIClockRange); |
| /* Adjusts the Multiple Speed oscillator (MSI) calibration value.*/ |
| __HAL_RCC_MSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->MSICalibrationValue); |
| } |
| else |
| { |
| /* Else, keep current flash latency while decreasing applies */ |
| /* Selects the Multiple Speed oscillator (MSI) clock range .*/ |
| __HAL_RCC_MSI_RANGE_CONFIG(RCC_OscInitStruct->MSIClockRange); |
| /* Adjusts the Multiple Speed oscillator (MSI) calibration value.*/ |
| __HAL_RCC_MSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->MSICalibrationValue); |
| |
| /* Decrease number of wait states update if necessary */ |
| /* Only possible when MSI is the System clock source */ |
| if(sysclk_source == RCC_CFGR_SWS_MSI) |
| { |
| if(RCC_SetFlashLatencyFromMSIRange(RCC_OscInitStruct->MSIClockRange) != HAL_OK) |
| { |
| return HAL_ERROR; |
| } |
| } |
| } |
| |
| /* Update the SystemCoreClock global variable */ |
| SystemCoreClock = HAL_RCC_GetSysClockFreq() >> (AHBPrescTable[READ_BIT(RCC->CFGR, RCC_CFGR_HPRE) >> RCC_CFGR_HPRE_Pos] & 0x1FU); |
| |
| /* Configure the source of time base considering new system clocks settings*/ |
| status = HAL_InitTick(uwTickPrio); |
| if(status != HAL_OK) |
| { |
| return status; |
| } |
| } |
| } |
| else |
| { |
| /* Check the MSI State */ |
| if(RCC_OscInitStruct->MSIState != RCC_MSI_OFF) |
| { |
| /* Enable the Internal High Speed oscillator (MSI). */ |
| __HAL_RCC_MSI_ENABLE(); |
| |
| /* Get timeout */ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till MSI is ready */ |
| while(READ_BIT(RCC->CR, RCC_CR_MSIRDY) == 0U) |
| { |
| if((HAL_GetTick() - tickstart) > MSI_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| /* Selects the Multiple Speed oscillator (MSI) clock range .*/ |
| __HAL_RCC_MSI_RANGE_CONFIG(RCC_OscInitStruct->MSIClockRange); |
| /* Adjusts the Multiple Speed oscillator (MSI) calibration value.*/ |
| __HAL_RCC_MSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->MSICalibrationValue); |
| |
| } |
| else |
| { |
| /* Disable the Internal High Speed oscillator (MSI). */ |
| __HAL_RCC_MSI_DISABLE(); |
| |
| /* Get timeout */ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till MSI is ready */ |
| while(READ_BIT(RCC->CR, RCC_CR_MSIRDY) != 0U) |
| { |
| if((HAL_GetTick() - tickstart) > MSI_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| } |
| } |
| /*------------------------------- HSE Configuration ------------------------*/ |
| if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSE) == RCC_OSCILLATORTYPE_HSE) |
| { |
| /* Check the parameters */ |
| assert_param(IS_RCC_HSE(RCC_OscInitStruct->HSEState)); |
| |
| /* When the HSE is used as system clock or clock source for PLL in these cases it is not allowed to be disabled */ |
| if((sysclk_source == RCC_CFGR_SWS_HSE) || |
| ((sysclk_source == RCC_CFGR_SWS_PLL) && (pll_config == RCC_PLLSOURCE_HSE))) |
| { |
| if((READ_BIT(RCC->CR, RCC_CR_HSERDY) != 0U) && (RCC_OscInitStruct->HSEState == RCC_HSE_OFF)) |
| { |
| return HAL_ERROR; |
| } |
| } |
| else |
| { |
| /* Set the new HSE configuration ---------------------------------------*/ |
| __HAL_RCC_HSE_CONFIG(RCC_OscInitStruct->HSEState); |
| |
| /* Check the HSE State */ |
| if(RCC_OscInitStruct->HSEState != RCC_HSE_OFF) |
| { |
| /* Get Start Tick*/ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till HSE is ready */ |
| while(READ_BIT(RCC->CR, RCC_CR_HSERDY) == 0U) |
| { |
| if((HAL_GetTick() - tickstart) > HSE_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| else |
| { |
| /* Get Start Tick*/ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till HSE is disabled */ |
| while(READ_BIT(RCC->CR, RCC_CR_HSERDY) != 0U) |
| { |
| if((HAL_GetTick() - tickstart) > HSE_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| } |
| } |
| /*----------------------------- HSI Configuration --------------------------*/ |
| if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSI) == RCC_OSCILLATORTYPE_HSI) |
| { |
| /* Check the parameters */ |
| assert_param(IS_RCC_HSI(RCC_OscInitStruct->HSIState)); |
| assert_param(IS_RCC_HSI_CALIBRATION_VALUE(RCC_OscInitStruct->HSICalibrationValue)); |
| |
| /* Check if HSI is used as system clock or as PLL source when PLL is selected as system clock */ |
| if((sysclk_source == RCC_CFGR_SWS_HSI) || |
| ((sysclk_source == RCC_CFGR_SWS_PLL) && (pll_config == RCC_PLLSOURCE_HSI))) |
| { |
| /* When HSI is used as system clock it will not be disabled */ |
| if((READ_BIT(RCC->CR, RCC_CR_HSIRDY) != 0U) && (RCC_OscInitStruct->HSIState == RCC_HSI_OFF)) |
| { |
| return HAL_ERROR; |
| } |
| /* Otherwise, just the calibration is allowed */ |
| else |
| { |
| /* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/ |
| __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue); |
| } |
| } |
| else |
| { |
| /* Check the HSI State */ |
| if(RCC_OscInitStruct->HSIState != RCC_HSI_OFF) |
| { |
| /* Enable the Internal High Speed oscillator (HSI). */ |
| __HAL_RCC_HSI_ENABLE(); |
| |
| /* Get Start Tick*/ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till HSI is ready */ |
| while(READ_BIT(RCC->CR, RCC_CR_HSIRDY) == 0U) |
| { |
| if((HAL_GetTick() - tickstart) > HSI_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| |
| /* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/ |
| __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue); |
| } |
| else |
| { |
| /* Disable the Internal High Speed oscillator (HSI). */ |
| __HAL_RCC_HSI_DISABLE(); |
| |
| /* Get Start Tick*/ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till HSI is disabled */ |
| while(READ_BIT(RCC->CR, RCC_CR_HSIRDY) != 0U) |
| { |
| if((HAL_GetTick() - tickstart) > HSI_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| } |
| } |
| /*------------------------------ LSI Configuration -------------------------*/ |
| if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSI) == RCC_OSCILLATORTYPE_LSI) |
| { |
| /* Check the parameters */ |
| assert_param(IS_RCC_LSI(RCC_OscInitStruct->LSIState)); |
| |
| /* Check the LSI State */ |
| if(RCC_OscInitStruct->LSIState != RCC_LSI_OFF) |
| { |
| #if defined(RCC_CSR_LSIPREDIV) |
| uint32_t csr_temp = RCC->CSR; |
| |
| /* Check LSI division factor */ |
| assert_param(IS_RCC_LSIDIV(RCC_OscInitStruct->LSIDiv)); |
| |
| if (RCC_OscInitStruct->LSIDiv != (csr_temp & RCC_CSR_LSIPREDIV)) |
| { |
| if (((csr_temp & RCC_CSR_LSIRDY) == RCC_CSR_LSIRDY) && \ |
| ((csr_temp & RCC_CSR_LSION) != RCC_CSR_LSION)) |
| { |
| /* If LSIRDY is set while LSION is not enabled, |
| LSIPREDIV can't be updated */ |
| return HAL_ERROR; |
| } |
| |
| /* Turn off LSI before changing RCC_CSR_LSIPREDIV */ |
| if ((csr_temp & RCC_CSR_LSION) == RCC_CSR_LSION) |
| { |
| __HAL_RCC_LSI_DISABLE(); |
| |
| /* Get Start Tick*/ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till LSI is disabled */ |
| while(READ_BIT(RCC->CSR, RCC_CSR_LSIRDY) != 0U) |
| { |
| if((HAL_GetTick() - tickstart) > LSI_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| |
| /* Set LSI division factor */ |
| MODIFY_REG(RCC->CSR, RCC_CSR_LSIPREDIV, RCC_OscInitStruct->LSIDiv); |
| } |
| #endif /* RCC_CSR_LSIPREDIV */ |
| |
| /* Enable the Internal Low Speed oscillator (LSI). */ |
| __HAL_RCC_LSI_ENABLE(); |
| |
| /* Get Start Tick*/ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till LSI is ready */ |
| while(READ_BIT(RCC->CSR, RCC_CSR_LSIRDY) == 0U) |
| { |
| if((HAL_GetTick() - tickstart) > LSI_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| else |
| { |
| /* Disable the Internal Low Speed oscillator (LSI). */ |
| __HAL_RCC_LSI_DISABLE(); |
| |
| /* Get Start Tick*/ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till LSI is disabled */ |
| while(READ_BIT(RCC->CSR, RCC_CSR_LSIRDY) != 0U) |
| { |
| if((HAL_GetTick() - tickstart) > LSI_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| } |
| /*------------------------------ LSE Configuration -------------------------*/ |
| if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSE) == RCC_OSCILLATORTYPE_LSE) |
| { |
| FlagStatus pwrclkchanged = RESET; |
| |
| /* Check the parameters */ |
| assert_param(IS_RCC_LSE(RCC_OscInitStruct->LSEState)); |
| |
| /* Update LSE configuration in Backup Domain control register */ |
| /* Requires to enable write access to Backup Domain of necessary */ |
| if(HAL_IS_BIT_CLR(RCC->APB1ENR1, RCC_APB1ENR1_PWREN)) |
| { |
| __HAL_RCC_PWR_CLK_ENABLE(); |
| pwrclkchanged = SET; |
| } |
| |
| if(HAL_IS_BIT_CLR(PWR->CR1, PWR_CR1_DBP)) |
| { |
| /* Enable write access to Backup domain */ |
| SET_BIT(PWR->CR1, PWR_CR1_DBP); |
| |
| /* Wait for Backup domain Write protection disable */ |
| tickstart = HAL_GetTick(); |
| |
| while(HAL_IS_BIT_CLR(PWR->CR1, PWR_CR1_DBP)) |
| { |
| if((HAL_GetTick() - tickstart) > RCC_DBP_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| |
| /* Set the new LSE configuration -----------------------------------------*/ |
| #if defined(RCC_BDCR_LSESYSDIS) |
| if((RCC_OscInitStruct->LSEState & RCC_BDCR_LSEON) != 0U) |
| { |
| /* Set LSESYSDIS bit according to LSE propagation option (enabled or disabled) */ |
| MODIFY_REG(RCC->BDCR, RCC_BDCR_LSESYSDIS, (RCC_OscInitStruct->LSEState & RCC_BDCR_LSESYSDIS)); |
| |
| if((RCC_OscInitStruct->LSEState & RCC_BDCR_LSEBYP) != 0U) |
| { |
| /* LSE oscillator bypass enable */ |
| SET_BIT(RCC->BDCR, RCC_BDCR_LSEBYP); |
| SET_BIT(RCC->BDCR, RCC_BDCR_LSEON); |
| } |
| else |
| { |
| /* LSE oscillator enable */ |
| SET_BIT(RCC->BDCR, RCC_BDCR_LSEON); |
| } |
| } |
| else |
| { |
| CLEAR_BIT(RCC->BDCR, RCC_BDCR_LSEON); |
| CLEAR_BIT(RCC->BDCR, RCC_BDCR_LSEBYP); |
| } |
| #else |
| __HAL_RCC_LSE_CONFIG(RCC_OscInitStruct->LSEState); |
| #endif /* RCC_BDCR_LSESYSDIS */ |
| |
| /* Check the LSE State */ |
| if(RCC_OscInitStruct->LSEState != RCC_LSE_OFF) |
| { |
| /* Get Start Tick*/ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till LSE is ready */ |
| while(READ_BIT(RCC->BDCR, RCC_BDCR_LSERDY) == 0U) |
| { |
| if((HAL_GetTick() - tickstart) > RCC_LSE_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| else |
| { |
| /* Get Start Tick*/ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till LSE is disabled */ |
| while(READ_BIT(RCC->BDCR, RCC_BDCR_LSERDY) != 0U) |
| { |
| if((HAL_GetTick() - tickstart) > RCC_LSE_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| |
| #if defined(RCC_BDCR_LSESYSDIS) |
| /* By default, stop disabling LSE propagation */ |
| CLEAR_BIT(RCC->BDCR, RCC_BDCR_LSESYSDIS); |
| #endif /* RCC_BDCR_LSESYSDIS */ |
| } |
| |
| /* Restore clock configuration if changed */ |
| if(pwrclkchanged == SET) |
| { |
| __HAL_RCC_PWR_CLK_DISABLE(); |
| } |
| } |
| #if defined(RCC_HSI48_SUPPORT) |
| /*------------------------------ HSI48 Configuration -----------------------*/ |
| if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSI48) == RCC_OSCILLATORTYPE_HSI48) |
| { |
| /* Check the parameters */ |
| assert_param(IS_RCC_HSI48(RCC_OscInitStruct->HSI48State)); |
| |
| /* Check the LSI State */ |
| if(RCC_OscInitStruct->HSI48State != RCC_HSI48_OFF) |
| { |
| /* Enable the Internal Low Speed oscillator (HSI48). */ |
| __HAL_RCC_HSI48_ENABLE(); |
| |
| /* Get Start Tick*/ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till HSI48 is ready */ |
| while(READ_BIT(RCC->CRRCR, RCC_CRRCR_HSI48RDY) == 0U) |
| { |
| if((HAL_GetTick() - tickstart) > HSI48_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| else |
| { |
| /* Disable the Internal Low Speed oscillator (HSI48). */ |
| __HAL_RCC_HSI48_DISABLE(); |
| |
| /* Get Start Tick*/ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till HSI48 is disabled */ |
| while(READ_BIT(RCC->CRRCR, RCC_CRRCR_HSI48RDY) != 0U) |
| { |
| if((HAL_GetTick() - tickstart) > HSI48_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| } |
| #endif /* RCC_HSI48_SUPPORT */ |
| /*-------------------------------- PLL Configuration -----------------------*/ |
| /* Check the parameters */ |
| assert_param(IS_RCC_PLL(RCC_OscInitStruct->PLL.PLLState)); |
| |
| if(RCC_OscInitStruct->PLL.PLLState != RCC_PLL_NONE) |
| { |
| /* PLL On ? */ |
| if(RCC_OscInitStruct->PLL.PLLState == RCC_PLL_ON) |
| { |
| /* Check the parameters */ |
| assert_param(IS_RCC_PLLSOURCE(RCC_OscInitStruct->PLL.PLLSource)); |
| assert_param(IS_RCC_PLLM_VALUE(RCC_OscInitStruct->PLL.PLLM)); |
| assert_param(IS_RCC_PLLN_VALUE(RCC_OscInitStruct->PLL.PLLN)); |
| #if defined(RCC_PLLP_SUPPORT) |
| assert_param(IS_RCC_PLLP_VALUE(RCC_OscInitStruct->PLL.PLLP)); |
| #endif /* RCC_PLLP_SUPPORT */ |
| assert_param(IS_RCC_PLLQ_VALUE(RCC_OscInitStruct->PLL.PLLQ)); |
| assert_param(IS_RCC_PLLR_VALUE(RCC_OscInitStruct->PLL.PLLR)); |
| |
| /* Do nothing if PLL configuration is the unchanged */ |
| pll_config = RCC->PLLCFGR; |
| if((READ_BIT(pll_config, RCC_PLLCFGR_PLLSRC) != RCC_OscInitStruct->PLL.PLLSource) || |
| (READ_BIT(pll_config, RCC_PLLCFGR_PLLM) != ((RCC_OscInitStruct->PLL.PLLM - 1U) << RCC_PLLCFGR_PLLM_Pos)) || |
| (READ_BIT(pll_config, RCC_PLLCFGR_PLLN) != (RCC_OscInitStruct->PLL.PLLN << RCC_PLLCFGR_PLLN_Pos)) || |
| #if defined(RCC_PLLP_SUPPORT) |
| #if defined(RCC_PLLP_DIV_2_31_SUPPORT) |
| (READ_BIT(pll_config, RCC_PLLCFGR_PLLPDIV) != (RCC_OscInitStruct->PLL.PLLP << RCC_PLLCFGR_PLLPDIV_Pos)) || |
| #else |
| (READ_BIT(pll_config, RCC_PLLCFGR_PLLP) != ((RCC_OscInitStruct->PLL.PLLP == RCC_PLLP_DIV7) ? 0U : 1U)) || |
| #endif |
| #endif |
| (READ_BIT(pll_config, RCC_PLLCFGR_PLLQ) != ((((RCC_OscInitStruct->PLL.PLLQ) >> 1U) - 1U) << RCC_PLLCFGR_PLLQ_Pos)) || |
| (READ_BIT(pll_config, RCC_PLLCFGR_PLLR) != ((((RCC_OscInitStruct->PLL.PLLR) >> 1U) - 1U) << RCC_PLLCFGR_PLLR_Pos))) |
| { |
| /* Check if the PLL is used as system clock or not */ |
| if(sysclk_source != RCC_CFGR_SWS_PLL) |
| { |
| #if defined(RCC_PLLSAI1_SUPPORT) || defined(RCC_PLLSAI2_SUPPORT) |
| /* Check if main PLL can be updated */ |
| /* Not possible if the source is shared by other enabled PLLSAIx */ |
| if((READ_BIT(RCC->CR, RCC_CR_PLLSAI1ON) != 0U) |
| #if defined(RCC_PLLSAI2_SUPPORT) |
| || (READ_BIT(RCC->CR, RCC_CR_PLLSAI2ON) != 0U) |
| #endif |
| ) |
| { |
| return HAL_ERROR; |
| } |
| else |
| #endif /* RCC_PLLSAI1_SUPPORT || RCC_PLLSAI2_SUPPORT */ |
| { |
| /* Disable the main PLL. */ |
| __HAL_RCC_PLL_DISABLE(); |
| |
| /* Get Start Tick*/ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till PLL is ready */ |
| while(READ_BIT(RCC->CR, RCC_CR_PLLRDY) != 0U) |
| { |
| if((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| |
| /* Configure the main PLL clock source, multiplication and division factors. */ |
| #if defined(RCC_PLLP_SUPPORT) |
| __HAL_RCC_PLL_CONFIG(RCC_OscInitStruct->PLL.PLLSource, |
| RCC_OscInitStruct->PLL.PLLM, |
| RCC_OscInitStruct->PLL.PLLN, |
| RCC_OscInitStruct->PLL.PLLP, |
| RCC_OscInitStruct->PLL.PLLQ, |
| RCC_OscInitStruct->PLL.PLLR); |
| #else |
| __HAL_RCC_PLL_CONFIG(RCC_OscInitStruct->PLL.PLLSource, |
| RCC_OscInitStruct->PLL.PLLM, |
| RCC_OscInitStruct->PLL.PLLN, |
| RCC_OscInitStruct->PLL.PLLQ, |
| RCC_OscInitStruct->PLL.PLLR); |
| #endif |
| |
| /* Enable the main PLL. */ |
| __HAL_RCC_PLL_ENABLE(); |
| |
| /* Enable PLL System Clock output. */ |
| __HAL_RCC_PLLCLKOUT_ENABLE(RCC_PLL_SYSCLK); |
| |
| /* Get Start Tick*/ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till PLL is ready */ |
| while(READ_BIT(RCC->CR, RCC_CR_PLLRDY) == 0U) |
| { |
| if((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| } |
| else |
| { |
| /* PLL is already used as System core clock */ |
| return HAL_ERROR; |
| } |
| } |
| else |
| { |
| /* PLL configuration is unchanged */ |
| /* Re-enable PLL if it was disabled (ie. low power mode) */ |
| if(READ_BIT(RCC->CR, RCC_CR_PLLRDY) == 0U) |
| { |
| /* Enable the main PLL. */ |
| __HAL_RCC_PLL_ENABLE(); |
| |
| /* Enable PLL System Clock output. */ |
| __HAL_RCC_PLLCLKOUT_ENABLE(RCC_PLL_SYSCLK); |
| |
| /* Get Start Tick*/ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till PLL is ready */ |
| while(READ_BIT(RCC->CR, RCC_CR_PLLRDY) == 0U) |
| { |
| if((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| } |
| } |
| else |
| { |
| /* Check that PLL is not used as system clock or not */ |
| if(sysclk_source != RCC_CFGR_SWS_PLL) |
| { |
| /* Disable the main PLL. */ |
| __HAL_RCC_PLL_DISABLE(); |
| |
| /* Get Start Tick*/ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till PLL is disabled */ |
| while(READ_BIT(RCC->CR, RCC_CR_PLLRDY) != 0U) |
| { |
| if((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| /* Unselect main PLL clock source and disable main PLL outputs to save power */ |
| #if defined(RCC_PLLSAI2_SUPPORT) |
| RCC->PLLCFGR &= ~(RCC_PLLCFGR_PLLSRC | RCC_PLL_SYSCLK | RCC_PLL_48M1CLK | RCC_PLL_SAI3CLK); |
| #elif defined(RCC_PLLSAI1_SUPPORT) |
| RCC->PLLCFGR &= ~(RCC_PLLCFGR_PLLSRC | RCC_PLL_SYSCLK | RCC_PLL_48M1CLK | RCC_PLL_SAI2CLK); |
| #else |
| RCC->PLLCFGR &= ~(RCC_PLLCFGR_PLLSRC | RCC_PLL_SYSCLK | RCC_PLL_48M1CLK); |
| #endif /* RCC_PLLSAI2_SUPPORT */ |
| } |
| else |
| { |
| /* PLL is already used as System core clock */ |
| return HAL_ERROR; |
| } |
| } |
| } |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Initialize the CPU, AHB and APB busses clocks according to the specified |
| * parameters in the RCC_ClkInitStruct. |
| * @param RCC_ClkInitStruct pointer to an RCC_OscInitTypeDef structure that |
| * contains the configuration information for the RCC peripheral. |
| * @param FLatency FLASH Latency |
| * This parameter can be one of the following values: |
| * @arg FLASH_LATENCY_0 FLASH 0 Latency cycle |
| * @arg FLASH_LATENCY_1 FLASH 1 Latency cycle |
| * @arg FLASH_LATENCY_2 FLASH 2 Latency cycles |
| * @arg FLASH_LATENCY_3 FLASH 3 Latency cycles |
| * @arg FLASH_LATENCY_4 FLASH 4 Latency cycles |
| @if STM32L4S9xx |
| * @arg FLASH_LATENCY_5 FLASH 5 Latency cycles |
| * @arg FLASH_LATENCY_6 FLASH 6 Latency cycles |
| * @arg FLASH_LATENCY_7 FLASH 7 Latency cycles |
| * @arg FLASH_LATENCY_8 FLASH 8 Latency cycles |
| * @arg FLASH_LATENCY_9 FLASH 9 Latency cycles |
| * @arg FLASH_LATENCY_10 FLASH 10 Latency cycles |
| * @arg FLASH_LATENCY_11 FLASH 11 Latency cycles |
| * @arg FLASH_LATENCY_12 FLASH 12 Latency cycles |
| * @arg FLASH_LATENCY_13 FLASH 13 Latency cycles |
| * @arg FLASH_LATENCY_14 FLASH 14 Latency cycles |
| * @arg FLASH_LATENCY_15 FLASH 15 Latency cycles |
| @endif |
| * |
| * @note The SystemCoreClock CMSIS variable is used to store System Clock Frequency |
| * and updated by HAL_RCC_GetHCLKFreq() function called within this function |
| * |
| * @note The MSI is used by default as system clock source after |
| * startup from Reset, wake-up from STANDBY mode. After restart from Reset, |
| * the MSI frequency is set to its default value 4 MHz. |
| * |
| * @note The HSI can be selected as system clock source after |
| * from STOP modes or in case of failure of the HSE used directly or indirectly |
| * as system clock (if the Clock Security System CSS is enabled). |
| * |
| * @note A switch from one clock source to another occurs only if the target |
| * clock source is ready (clock stable after startup delay or PLL locked). |
| * If a clock source which is not yet ready is selected, the switch will |
| * occur when the clock source is ready. |
| * |
| * @note You can use HAL_RCC_GetClockConfig() function to know which clock is |
| * currently used as system clock source. |
| * |
| * @note Depending on the device voltage range, the software has to set correctly |
| * HPRE[3:0] bits to ensure that HCLK not exceed the maximum allowed frequency |
| * (for more details refer to section above "Initialization/de-initialization functions") |
| * @retval None |
| */ |
| HAL_StatusTypeDef HAL_RCC_ClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t FLatency) |
| { |
| uint32_t tickstart; |
| #if defined(STM32L4P5xx) || defined(STM32L4Q5xx) || \ |
| defined(STM32L4R5xx) || defined(STM32L4R7xx) || defined(STM32L4R9xx) || defined(STM32L4S5xx) || defined(STM32L4S7xx) || defined(STM32L4S9xx) |
| uint32_t hpre = RCC_SYSCLK_DIV1; |
| #endif |
| HAL_StatusTypeDef status; |
| |
| /* Check Null pointer */ |
| if(RCC_ClkInitStruct == NULL) |
| { |
| return HAL_ERROR; |
| } |
| |
| /* Check the parameters */ |
| assert_param(IS_RCC_CLOCKTYPE(RCC_ClkInitStruct->ClockType)); |
| assert_param(IS_FLASH_LATENCY(FLatency)); |
| |
| /* To correctly read data from FLASH memory, the number of wait states (LATENCY) |
| must be correctly programmed according to the frequency of the CPU clock |
| (HCLK) and the supply voltage of the device. */ |
| |
| /* Increasing the number of wait states because of higher CPU frequency */ |
| if(FLatency > __HAL_FLASH_GET_LATENCY()) |
| { |
| /* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */ |
| __HAL_FLASH_SET_LATENCY(FLatency); |
| |
| /* Check that the new number of wait states is taken into account to access the Flash |
| memory by reading the FLASH_ACR register */ |
| if(__HAL_FLASH_GET_LATENCY() != FLatency) |
| { |
| return HAL_ERROR; |
| } |
| } |
| |
| /*----------------- HCLK Configuration prior to SYSCLK----------------------*/ |
| /* Apply higher HCLK prescaler request here to ensure CPU clock is not of of spec when SYSCLK is increased */ |
| if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_HCLK) == RCC_CLOCKTYPE_HCLK) |
| { |
| assert_param(IS_RCC_HCLK(RCC_ClkInitStruct->AHBCLKDivider)); |
| |
| if(RCC_ClkInitStruct->AHBCLKDivider > READ_BIT(RCC->CFGR, RCC_CFGR_HPRE)) |
| { |
| MODIFY_REG(RCC->CFGR, RCC_CFGR_HPRE, RCC_ClkInitStruct->AHBCLKDivider); |
| } |
| } |
| |
| /*------------------------- SYSCLK Configuration ---------------------------*/ |
| if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_SYSCLK) == RCC_CLOCKTYPE_SYSCLK) |
| { |
| assert_param(IS_RCC_SYSCLKSOURCE(RCC_ClkInitStruct->SYSCLKSource)); |
| |
| /* PLL is selected as System Clock Source */ |
| if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_PLLCLK) |
| { |
| /* Check the PLL ready flag */ |
| if(READ_BIT(RCC->CR, RCC_CR_PLLRDY) == 0U) |
| { |
| return HAL_ERROR; |
| } |
| #if defined(STM32L4P5xx) || defined(STM32L4Q5xx) || \ |
| defined(STM32L4R5xx) || defined(STM32L4R7xx) || defined(STM32L4R9xx) || defined(STM32L4S5xx) || defined(STM32L4S7xx) || defined(STM32L4S9xx) |
| /* Undershoot management when selection PLL as SYSCLK source and frequency above 80Mhz */ |
| /* Compute target PLL output frequency */ |
| if(RCC_GetSysClockFreqFromPLLSource() > 80000000U) |
| { |
| /* If lowest HCLK prescaler, apply intermediate step with HCLK prescaler 2 necessary before to go over 80Mhz */ |
| if(READ_BIT(RCC->CFGR, RCC_CFGR_HPRE) == RCC_SYSCLK_DIV1) |
| { |
| MODIFY_REG(RCC->CFGR, RCC_CFGR_HPRE, RCC_SYSCLK_DIV2); |
| hpre = RCC_SYSCLK_DIV2; |
| } |
| } |
| #endif |
| } |
| else |
| { |
| /* HSE is selected as System Clock Source */ |
| if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSE) |
| { |
| /* Check the HSE ready flag */ |
| if(READ_BIT(RCC->CR, RCC_CR_HSERDY) == 0U) |
| { |
| return HAL_ERROR; |
| } |
| } |
| /* MSI is selected as System Clock Source */ |
| else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_MSI) |
| { |
| /* Check the MSI ready flag */ |
| if(READ_BIT(RCC->CR, RCC_CR_MSIRDY) == 0U) |
| { |
| return HAL_ERROR; |
| } |
| } |
| /* HSI is selected as System Clock Source */ |
| else |
| { |
| /* Check the HSI ready flag */ |
| if(READ_BIT(RCC->CR, RCC_CR_HSIRDY) == 0U) |
| { |
| return HAL_ERROR; |
| } |
| } |
| #if defined(STM32L4P5xx) || defined(STM32L4Q5xx) || \ |
| defined(STM32L4R5xx) || defined(STM32L4R7xx) || defined(STM32L4R9xx) || defined(STM32L4S5xx) || defined(STM32L4S7xx) || defined(STM32L4S9xx) |
| /* Overshoot management when going down from PLL as SYSCLK source and frequency above 80Mhz */ |
| if(HAL_RCC_GetSysClockFreq() > 80000000U) |
| { |
| /* If lowest HCLK prescaler, apply intermediate step with HCLK prescaler 2 necessary before to go under 80Mhz */ |
| if(READ_BIT(RCC->CFGR, RCC_CFGR_HPRE) == RCC_SYSCLK_DIV1) |
| { |
| MODIFY_REG(RCC->CFGR, RCC_CFGR_HPRE, RCC_SYSCLK_DIV2); |
| hpre = RCC_SYSCLK_DIV2; |
| } |
| } |
| #endif |
| |
| } |
| |
| MODIFY_REG(RCC->CFGR, RCC_CFGR_SW, RCC_ClkInitStruct->SYSCLKSource); |
| |
| /* Get Start Tick*/ |
| tickstart = HAL_GetTick(); |
| |
| while(__HAL_RCC_GET_SYSCLK_SOURCE() != (RCC_ClkInitStruct->SYSCLKSource << RCC_CFGR_SWS_Pos)) |
| { |
| if((HAL_GetTick() - tickstart) > CLOCKSWITCH_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| |
| #if defined(STM32L4P5xx) || defined(STM32L4Q5xx) || \ |
| defined(STM32L4R5xx) || defined(STM32L4R7xx) || defined(STM32L4R9xx) || defined(STM32L4S5xx) || defined(STM32L4S7xx) || defined(STM32L4S9xx) |
| /* Is intermediate HCLK prescaler 2 applied internally, resume with HCLK prescaler 1 */ |
| if(hpre == RCC_SYSCLK_DIV2) |
| { |
| MODIFY_REG(RCC->CFGR, RCC_CFGR_HPRE, RCC_SYSCLK_DIV1); |
| } |
| #endif |
| |
| /*----------------- HCLK Configuration after SYSCLK-------------------------*/ |
| /* Apply lower HCLK prescaler request here to ensure CPU clock is not of of spec when SYSCLK is set */ |
| if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_HCLK) == RCC_CLOCKTYPE_HCLK) |
| { |
| if(RCC_ClkInitStruct->AHBCLKDivider < READ_BIT(RCC->CFGR, RCC_CFGR_HPRE)) |
| { |
| MODIFY_REG(RCC->CFGR, RCC_CFGR_HPRE, RCC_ClkInitStruct->AHBCLKDivider); |
| } |
| } |
| |
| /* Allow decreasing of the number of wait states (because of lower CPU frequency expected) */ |
| if(FLatency < __HAL_FLASH_GET_LATENCY()) |
| { |
| /* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */ |
| __HAL_FLASH_SET_LATENCY(FLatency); |
| |
| /* Check that the new number of wait states is taken into account to access the Flash |
| memory by reading the FLASH_ACR register */ |
| if(__HAL_FLASH_GET_LATENCY() != FLatency) |
| { |
| return HAL_ERROR; |
| } |
| } |
| |
| /*-------------------------- PCLK1 Configuration ---------------------------*/ |
| if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK1) == RCC_CLOCKTYPE_PCLK1) |
| { |
| assert_param(IS_RCC_PCLK(RCC_ClkInitStruct->APB1CLKDivider)); |
| MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE1, RCC_ClkInitStruct->APB1CLKDivider); |
| } |
| |
| /*-------------------------- PCLK2 Configuration ---------------------------*/ |
| if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK2) == RCC_CLOCKTYPE_PCLK2) |
| { |
| assert_param(IS_RCC_PCLK(RCC_ClkInitStruct->APB2CLKDivider)); |
| MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE2, ((RCC_ClkInitStruct->APB2CLKDivider) << 3U)); |
| } |
| |
| /* Update the SystemCoreClock global variable */ |
| SystemCoreClock = HAL_RCC_GetSysClockFreq() >> (AHBPrescTable[READ_BIT(RCC->CFGR, RCC_CFGR_HPRE) >> RCC_CFGR_HPRE_Pos] & 0x1FU); |
| |
| /* Configure the source of time base considering new system clocks settings*/ |
| status = HAL_InitTick(uwTickPrio); |
| |
| return status; |
| } |
| |
| /** |
| * @} |
| */ |
| |
| /** @defgroup RCC_Exported_Functions_Group2 Peripheral Control functions |
| * @brief RCC clocks control functions |
| * |
| @verbatim |
| =============================================================================== |
| ##### Peripheral Control functions ##### |
| =============================================================================== |
| [..] |
| This subsection provides a set of functions allowing to: |
| |
| (+) Output clock to MCO pin. |
| (+) Retrieve current clock frequencies. |
| (+) Enable the Clock Security System. |
| |
| @endverbatim |
| * @{ |
| */ |
| |
| /** |
| * @brief Select the clock source to output on MCO pin(PA8). |
| * @note PA8 should be configured in alternate function mode. |
| * @param RCC_MCOx specifies the output direction for the clock source. |
| * For STM32L4xx family this parameter can have only one value: |
| * @arg @ref RCC_MCO1 Clock source to output on MCO1 pin(PA8). |
| * @param RCC_MCOSource specifies the clock source to output. |
| * This parameter can be one of the following values: |
| * @arg @ref RCC_MCO1SOURCE_NOCLOCK MCO output disabled, no clock on MCO |
| * @arg @ref RCC_MCO1SOURCE_SYSCLK system clock selected as MCO source |
| * @arg @ref RCC_MCO1SOURCE_MSI MSI clock selected as MCO source |
| * @arg @ref RCC_MCO1SOURCE_HSI HSI clock selected as MCO source |
| * @arg @ref RCC_MCO1SOURCE_HSE HSE clock selected as MCO sourcee |
| * @arg @ref RCC_MCO1SOURCE_PLLCLK main PLL clock selected as MCO source |
| * @arg @ref RCC_MCO1SOURCE_LSI LSI clock selected as MCO source |
| * @arg @ref RCC_MCO1SOURCE_LSE LSE clock selected as MCO source |
| @if STM32L443xx |
| * @arg @ref RCC_MCO1SOURCE_HSI48 HSI48 clock selected as MCO source for devices with HSI48 |
| @endif |
| * @param RCC_MCODiv specifies the MCO prescaler. |
| * This parameter can be one of the following values: |
| * @arg @ref RCC_MCODIV_1 no division applied to MCO clock |
| * @arg @ref RCC_MCODIV_2 division by 2 applied to MCO clock |
| * @arg @ref RCC_MCODIV_4 division by 4 applied to MCO clock |
| * @arg @ref RCC_MCODIV_8 division by 8 applied to MCO clock |
| * @arg @ref RCC_MCODIV_16 division by 16 applied to MCO clock |
| * @retval None |
| */ |
| void HAL_RCC_MCOConfig( uint32_t RCC_MCOx, uint32_t RCC_MCOSource, uint32_t RCC_MCODiv) |
| { |
| GPIO_InitTypeDef GPIO_InitStruct; |
| |
| /* Check the parameters */ |
| assert_param(IS_RCC_MCO(RCC_MCOx)); |
| assert_param(IS_RCC_MCODIV(RCC_MCODiv)); |
| assert_param(IS_RCC_MCO1SOURCE(RCC_MCOSource)); |
| |
| /* Prevent unused argument(s) compilation warning if no assert_param check */ |
| UNUSED(RCC_MCOx); |
| |
| /* MCO Clock Enable */ |
| __MCO1_CLK_ENABLE(); |
| |
| /* Configure the MCO1 pin in alternate function mode */ |
| GPIO_InitStruct.Pin = MCO1_PIN; |
| GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; |
| GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH; |
| GPIO_InitStruct.Pull = GPIO_NOPULL; |
| GPIO_InitStruct.Alternate = GPIO_AF0_MCO; |
| HAL_GPIO_Init(MCO1_GPIO_PORT, &GPIO_InitStruct); |
| |
| /* Mask MCOSEL[] and MCOPRE[] bits then set MCO1 clock source and prescaler */ |
| MODIFY_REG(RCC->CFGR, (RCC_CFGR_MCOSEL | RCC_CFGR_MCOPRE), (RCC_MCOSource | RCC_MCODiv )); |
| } |
| |
| /** |
| * @brief Return the SYSCLK frequency. |
| * |
| * @note The system frequency computed by this function is not the real |
| * frequency in the chip. It is calculated based on the predefined |
| * constant and the selected clock source: |
| * @note If SYSCLK source is MSI, function returns values based on MSI |
| * Value as defined by the MSI range. |
| * @note If SYSCLK source is HSI, function returns values based on HSI_VALUE(*) |
| * @note If SYSCLK source is HSE, function returns values based on HSE_VALUE(**) |
| * @note If SYSCLK source is PLL, function returns values based on HSE_VALUE(**), |
| * HSI_VALUE(*) or MSI Value multiplied/divided by the PLL factors. |
| * @note (*) HSI_VALUE is a constant defined in stm32l4xx_hal_conf.h file (default value |
| * 16 MHz) but the real value may vary depending on the variations |
| * in voltage and temperature. |
| * @note (**) HSE_VALUE is a constant defined in stm32l4xx_hal_conf.h file (default value |
| * 8 MHz), user has to ensure that HSE_VALUE is same as the real |
| * frequency of the crystal used. Otherwise, this function may |
| * have wrong result. |
| * |
| * @note The result of this function could be not correct when using fractional |
| * value for HSE crystal. |
| * |
| * @note This function can be used by the user application to compute the |
| * baudrate for the communication peripherals or configure other parameters. |
| * |
| * @note Each time SYSCLK changes, this function must be called to update the |
| * right SYSCLK value. Otherwise, any configuration based on this function will be incorrect. |
| * |
| * |
| * @retval SYSCLK frequency |
| */ |
| uint32_t HAL_RCC_GetSysClockFreq(void) |
| { |
| uint32_t msirange = 0U, sysclockfreq = 0U; |
| uint32_t pllvco, pllsource, pllr, pllm; /* no init needed */ |
| uint32_t sysclk_source, pll_oscsource; |
| |
| sysclk_source = __HAL_RCC_GET_SYSCLK_SOURCE(); |
| pll_oscsource = __HAL_RCC_GET_PLL_OSCSOURCE(); |
| |
| if((sysclk_source == RCC_CFGR_SWS_MSI) || |
| ((sysclk_source == RCC_CFGR_SWS_PLL) && (pll_oscsource == RCC_PLLSOURCE_MSI))) |
| { |
| /* MSI or PLL with MSI source used as system clock source */ |
| |
| /* Get SYSCLK source */ |
| if(READ_BIT(RCC->CR, RCC_CR_MSIRGSEL) == 0U) |
| { /* MSISRANGE from RCC_CSR applies */ |
| msirange = READ_BIT(RCC->CSR, RCC_CSR_MSISRANGE) >> RCC_CSR_MSISRANGE_Pos; |
| } |
| else |
| { /* MSIRANGE from RCC_CR applies */ |
| msirange = READ_BIT(RCC->CR, RCC_CR_MSIRANGE) >> RCC_CR_MSIRANGE_Pos; |
| } |
| /*MSI frequency range in HZ*/ |
| msirange = MSIRangeTable[msirange]; |
| |
| if(sysclk_source == RCC_CFGR_SWS_MSI) |
| { |
| /* MSI used as system clock source */ |
| sysclockfreq = msirange; |
| } |
| } |
| else if(sysclk_source == RCC_CFGR_SWS_HSI) |
| { |
| /* HSI used as system clock source */ |
| sysclockfreq = HSI_VALUE; |
| } |
| else if(sysclk_source == RCC_CFGR_SWS_HSE) |
| { |
| /* HSE used as system clock source */ |
| sysclockfreq = HSE_VALUE; |
| } |
| else |
| { |
| /* unexpected case: sysclockfreq at 0 */ |
| } |
| |
| if(sysclk_source == RCC_CFGR_SWS_PLL) |
| { |
| /* PLL used as system clock source */ |
| |
| /* PLL_VCO = (HSE_VALUE or HSI_VALUE or MSI_VALUE) * PLLN / PLLM |
| SYSCLK = PLL_VCO / PLLR |
| */ |
| pllsource = READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLSRC); |
| |
| switch (pllsource) |
| { |
| case RCC_PLLSOURCE_HSI: /* HSI used as PLL clock source */ |
| pllvco = HSI_VALUE; |
| break; |
| |
| case RCC_PLLSOURCE_HSE: /* HSE used as PLL clock source */ |
| pllvco = HSE_VALUE; |
| break; |
| |
| case RCC_PLLSOURCE_MSI: /* MSI used as PLL clock source */ |
| default: |
| pllvco = msirange; |
| break; |
| } |
| pllm = (READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLM) >> RCC_PLLCFGR_PLLM_Pos) + 1U ; |
| pllvco = (pllvco * (READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLN) >> RCC_PLLCFGR_PLLN_Pos)) / pllm; |
| pllr = ((READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLR) >> RCC_PLLCFGR_PLLR_Pos) + 1U ) * 2U; |
| sysclockfreq = pllvco / pllr; |
| } |
| |
| return sysclockfreq; |
| } |
| |
| /** |
| * @brief Return the HCLK frequency. |
| * @note Each time HCLK changes, this function must be called to update the |
| * right HCLK value. Otherwise, any configuration based on this function will be incorrect. |
| * |
| * @note The SystemCoreClock CMSIS variable is used to store System Clock Frequency. |
| * @retval HCLK frequency in Hz |
| */ |
| uint32_t HAL_RCC_GetHCLKFreq(void) |
| { |
| return SystemCoreClock; |
| } |
| |
| /** |
| * @brief Return the PCLK1 frequency. |
| * @note Each time PCLK1 changes, this function must be called to update the |
| * right PCLK1 value. Otherwise, any configuration based on this function will be incorrect. |
| * @retval PCLK1 frequency in Hz |
| */ |
| uint32_t HAL_RCC_GetPCLK1Freq(void) |
| { |
| /* Get HCLK source and Compute PCLK1 frequency ---------------------------*/ |
| return (HAL_RCC_GetHCLKFreq() >> (APBPrescTable[READ_BIT(RCC->CFGR, RCC_CFGR_PPRE1) >> RCC_CFGR_PPRE1_Pos] & 0x1FU)); |
| } |
| |
| /** |
| * @brief Return the PCLK2 frequency. |
| * @note Each time PCLK2 changes, this function must be called to update the |
| * right PCLK2 value. Otherwise, any configuration based on this function will be incorrect. |
| * @retval PCLK2 frequency in Hz |
| */ |
| uint32_t HAL_RCC_GetPCLK2Freq(void) |
| { |
| /* Get HCLK source and Compute PCLK2 frequency ---------------------------*/ |
| return (HAL_RCC_GetHCLKFreq()>> (APBPrescTable[READ_BIT(RCC->CFGR, RCC_CFGR_PPRE2) >> RCC_CFGR_PPRE2_Pos] & 0x1FU)); |
| } |
| |
| /** |
| * @brief Configure the RCC_OscInitStruct according to the internal |
| * RCC configuration registers. |
| * @param RCC_OscInitStruct pointer to an RCC_OscInitTypeDef structure that |
| * will be configured. |
| * @retval None |
| */ |
| void HAL_RCC_GetOscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct) |
| { |
| /* Check the parameters */ |
| assert_param(RCC_OscInitStruct != (void *)NULL); |
| |
| /* Set all possible values for the Oscillator type parameter ---------------*/ |
| #if defined(RCC_HSI48_SUPPORT) |
| RCC_OscInitStruct->OscillatorType = RCC_OSCILLATORTYPE_HSE | RCC_OSCILLATORTYPE_HSI | RCC_OSCILLATORTYPE_MSI | \ |
| RCC_OSCILLATORTYPE_LSE | RCC_OSCILLATORTYPE_LSI | RCC_OSCILLATORTYPE_HSI48; |
| #else |
| RCC_OscInitStruct->OscillatorType = RCC_OSCILLATORTYPE_HSE | RCC_OSCILLATORTYPE_HSI | RCC_OSCILLATORTYPE_MSI | \ |
| RCC_OSCILLATORTYPE_LSE | RCC_OSCILLATORTYPE_LSI; |
| #endif /* RCC_HSI48_SUPPORT */ |
| |
| /* Get the HSE configuration -----------------------------------------------*/ |
| if(READ_BIT(RCC->CR, RCC_CR_HSEBYP) == RCC_CR_HSEBYP) |
| { |
| RCC_OscInitStruct->HSEState = RCC_HSE_BYPASS; |
| } |
| else if(READ_BIT(RCC->CR, RCC_CR_HSEON) == RCC_CR_HSEON) |
| { |
| RCC_OscInitStruct->HSEState = RCC_HSE_ON; |
| } |
| else |
| { |
| RCC_OscInitStruct->HSEState = RCC_HSE_OFF; |
| } |
| |
| /* Get the MSI configuration -----------------------------------------------*/ |
| if(READ_BIT(RCC->CR, RCC_CR_MSION) == RCC_CR_MSION) |
| { |
| RCC_OscInitStruct->MSIState = RCC_MSI_ON; |
| } |
| else |
| { |
| RCC_OscInitStruct->MSIState = RCC_MSI_OFF; |
| } |
| |
| RCC_OscInitStruct->MSICalibrationValue = READ_BIT(RCC->ICSCR, RCC_ICSCR_MSITRIM) >> RCC_ICSCR_MSITRIM_Pos; |
| RCC_OscInitStruct->MSIClockRange = READ_BIT(RCC->CR, RCC_CR_MSIRANGE); |
| |
| /* Get the HSI configuration -----------------------------------------------*/ |
| if(READ_BIT(RCC->CR, RCC_CR_HSION) == RCC_CR_HSION) |
| { |
| RCC_OscInitStruct->HSIState = RCC_HSI_ON; |
| } |
| else |
| { |
| RCC_OscInitStruct->HSIState = RCC_HSI_OFF; |
| } |
| |
| RCC_OscInitStruct->HSICalibrationValue = READ_BIT(RCC->ICSCR, RCC_ICSCR_HSITRIM) >> RCC_ICSCR_HSITRIM_Pos; |
| |
| /* Get the LSE configuration -----------------------------------------------*/ |
| if(READ_BIT(RCC->BDCR, RCC_BDCR_LSEBYP) == RCC_BDCR_LSEBYP) |
| { |
| #if defined(RCC_BDCR_LSESYSDIS) |
| if((RCC->BDCR & RCC_BDCR_LSESYSDIS) == RCC_BDCR_LSESYSDIS) |
| { |
| RCC_OscInitStruct->LSEState = RCC_LSE_BYPASS_RTC_ONLY; |
| } |
| else |
| #endif /* RCC_BDCR_LSESYSDIS */ |
| { |
| RCC_OscInitStruct->LSEState = RCC_LSE_BYPASS; |
| } |
| } |
| else if(READ_BIT(RCC->BDCR, RCC_BDCR_LSEON) == RCC_BDCR_LSEON) |
| { |
| #if defined(RCC_BDCR_LSESYSDIS) |
| if((RCC->BDCR & RCC_BDCR_LSESYSDIS) == RCC_BDCR_LSESYSDIS) |
| { |
| RCC_OscInitStruct->LSEState = RCC_LSE_ON_RTC_ONLY; |
| } |
| else |
| #endif /* RCC_BDCR_LSESYSDIS */ |
| { |
| RCC_OscInitStruct->LSEState = RCC_LSE_ON; |
| } |
| } |
| else |
| { |
| RCC_OscInitStruct->LSEState = RCC_LSE_OFF; |
| } |
| |
| /* Get the LSI configuration -----------------------------------------------*/ |
| if(READ_BIT(RCC->CSR, RCC_CSR_LSION) == RCC_CSR_LSION) |
| { |
| RCC_OscInitStruct->LSIState = RCC_LSI_ON; |
| } |
| else |
| { |
| RCC_OscInitStruct->LSIState = RCC_LSI_OFF; |
| } |
| #if defined(RCC_CSR_LSIPREDIV) |
| |
| /* Get the LSI configuration -----------------------------------------------*/ |
| if((RCC->CSR & RCC_CSR_LSIPREDIV) == RCC_CSR_LSIPREDIV) |
| { |
| RCC_OscInitStruct->LSIDiv = RCC_LSI_DIV128; |
| } |
| else |
| { |
| RCC_OscInitStruct->LSIDiv = RCC_LSI_DIV1; |
| } |
| #endif /* RCC_CSR_LSIPREDIV */ |
| |
| #if defined(RCC_HSI48_SUPPORT) |
| /* Get the HSI48 configuration ---------------------------------------------*/ |
| if(READ_BIT(RCC->CRRCR, RCC_CRRCR_HSI48ON) == RCC_CRRCR_HSI48ON) |
| { |
| RCC_OscInitStruct->HSI48State = RCC_HSI48_ON; |
| } |
| else |
| { |
| RCC_OscInitStruct->HSI48State = RCC_HSI48_OFF; |
| } |
| #else |
| RCC_OscInitStruct->HSI48State = RCC_HSI48_OFF; |
| #endif /* RCC_HSI48_SUPPORT */ |
| |
| /* Get the PLL configuration -----------------------------------------------*/ |
| if(READ_BIT(RCC->CR, RCC_CR_PLLON) == RCC_CR_PLLON) |
| { |
| RCC_OscInitStruct->PLL.PLLState = RCC_PLL_ON; |
| } |
| else |
| { |
| RCC_OscInitStruct->PLL.PLLState = RCC_PLL_OFF; |
| } |
| RCC_OscInitStruct->PLL.PLLSource = READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLSRC); |
| RCC_OscInitStruct->PLL.PLLM = (READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLM) >> RCC_PLLCFGR_PLLM_Pos) + 1U; |
| RCC_OscInitStruct->PLL.PLLN = READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLN) >> RCC_PLLCFGR_PLLN_Pos; |
| RCC_OscInitStruct->PLL.PLLQ = (((READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLQ) >> RCC_PLLCFGR_PLLQ_Pos) + 1U) << 1U); |
| RCC_OscInitStruct->PLL.PLLR = (((READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLR) >> RCC_PLLCFGR_PLLR_Pos) + 1U) << 1U); |
| #if defined(RCC_PLLP_SUPPORT) |
| #if defined(RCC_PLLP_DIV_2_31_SUPPORT) |
| RCC_OscInitStruct->PLL.PLLP = READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLPDIV) >> RCC_PLLCFGR_PLLPDIV_Pos; |
| #else |
| if(READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLP) != 0U) |
| { |
| RCC_OscInitStruct->PLL.PLLP = RCC_PLLP_DIV17; |
| } |
| else |
| { |
| RCC_OscInitStruct->PLL.PLLP = RCC_PLLP_DIV7; |
| } |
| #endif /* RCC_PLLP_DIV_2_31_SUPPORT */ |
| #endif /* RCC_PLLP_SUPPORT */ |
| } |
| |
| /** |
| * @brief Configure the RCC_ClkInitStruct according to the internal |
| * RCC configuration registers. |
| * @param RCC_ClkInitStruct pointer to an RCC_ClkInitTypeDef structure that |
| * will be configured. |
| * @param pFLatency Pointer on the Flash Latency. |
| * @retval None |
| */ |
| void HAL_RCC_GetClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t *pFLatency) |
| { |
| /* Check the parameters */ |
| assert_param(RCC_ClkInitStruct != (void *)NULL); |
| assert_param(pFLatency != (void *)NULL); |
| |
| /* Set all possible values for the Clock type parameter --------------------*/ |
| RCC_ClkInitStruct->ClockType = RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2; |
| |
| /* Get the SYSCLK configuration --------------------------------------------*/ |
| RCC_ClkInitStruct->SYSCLKSource = READ_BIT(RCC->CFGR, RCC_CFGR_SW); |
| |
| /* Get the HCLK configuration ----------------------------------------------*/ |
| RCC_ClkInitStruct->AHBCLKDivider = READ_BIT(RCC->CFGR, RCC_CFGR_HPRE); |
| |
| /* Get the APB1 configuration ----------------------------------------------*/ |
| RCC_ClkInitStruct->APB1CLKDivider = READ_BIT(RCC->CFGR, RCC_CFGR_PPRE1); |
| |
| /* Get the APB2 configuration ----------------------------------------------*/ |
| RCC_ClkInitStruct->APB2CLKDivider = (READ_BIT(RCC->CFGR, RCC_CFGR_PPRE2) >> 3U); |
| |
| /* Get the Flash Wait State (Latency) configuration ------------------------*/ |
| *pFLatency = __HAL_FLASH_GET_LATENCY(); |
| } |
| |
| /** |
| * @brief Enable the Clock Security System. |
| * @note If a failure is detected on the HSE oscillator clock, this oscillator |
| * is automatically disabled and an interrupt is generated to inform the |
| * software about the failure (Clock Security System Interrupt, CSSI), |
| * allowing the MCU to perform rescue operations. The CSSI is linked to |
| * the Cortex-M4 NMI (Non-Maskable Interrupt) exception vector. |
| * @note The Clock Security System can only be cleared by reset. |
| * @retval None |
| */ |
| void HAL_RCC_EnableCSS(void) |
| { |
| SET_BIT(RCC->CR, RCC_CR_CSSON) ; |
| } |
| |
| /** |
| * @brief Handle the RCC Clock Security System interrupt request. |
| * @note This API should be called under the NMI_Handler(). |
| * @retval None |
| */ |
| void HAL_RCC_NMI_IRQHandler(void) |
| { |
| /* Check RCC CSSF interrupt flag */ |
| if(__HAL_RCC_GET_IT(RCC_IT_CSS)) |
| { |
| /* RCC Clock Security System interrupt user callback */ |
| HAL_RCC_CSSCallback(); |
| |
| /* Clear RCC CSS pending bit */ |
| __HAL_RCC_CLEAR_IT(RCC_IT_CSS); |
| } |
| } |
| |
| /** |
| * @brief RCC Clock Security System interrupt callback. |
| * @retval none |
| */ |
| __weak void HAL_RCC_CSSCallback(void) |
| { |
| /* NOTE : This function should not be modified, when the callback is needed, |
| the HAL_RCC_CSSCallback should be implemented in the user file |
| */ |
| } |
| |
| /** |
| * @brief Get and clear reset flags |
| * @param None |
| * @note Once reset flags are retrieved, this API is clearing them in order |
| * to isolate next reset reason. |
| * @retval can be a combination of @ref RCC_Reset_Flag |
| */ |
| uint32_t HAL_RCC_GetResetSource(void) |
| { |
| uint32_t reset; |
| |
| /* Get all reset flags */ |
| reset = RCC->CSR & RCC_RESET_FLAG_ALL; |
| |
| /* Clear Reset flags */ |
| RCC->CSR |= RCC_CSR_RMVF; |
| |
| return reset; |
| } |
| |
| /** * @} |
| */ |
| |
| /** |
| * @} |
| */ |
| |
| /* Private function prototypes -----------------------------------------------*/ |
| /** @addtogroup RCC_Private_Functions |
| * @{ |
| */ |
| /** |
| * @brief Update number of Flash wait states in line with MSI range and current |
| voltage range. |
| * @param msirange MSI range value from RCC_MSIRANGE_0 to RCC_MSIRANGE_11 |
| * @retval HAL status |
| */ |
| static HAL_StatusTypeDef RCC_SetFlashLatencyFromMSIRange(uint32_t msirange) |
| { |
| uint32_t vos; |
| uint32_t latency = FLASH_LATENCY_0; /* default value 0WS */ |
| |
| if(__HAL_RCC_PWR_IS_CLK_ENABLED()) |
| { |
| vos = HAL_PWREx_GetVoltageRange(); |
| } |
| else |
| { |
| __HAL_RCC_PWR_CLK_ENABLE(); |
| vos = HAL_PWREx_GetVoltageRange(); |
| __HAL_RCC_PWR_CLK_DISABLE(); |
| } |
| |
| if(vos == PWR_REGULATOR_VOLTAGE_SCALE1) |
| { |
| if(msirange > RCC_MSIRANGE_8) |
| { |
| /* MSI > 16Mhz */ |
| if(msirange > RCC_MSIRANGE_10) |
| { |
| /* MSI 48Mhz */ |
| latency = FLASH_LATENCY_2; /* 2WS */ |
| } |
| else |
| { |
| /* MSI 24Mhz or 32Mhz */ |
| latency = FLASH_LATENCY_1; /* 1WS */ |
| } |
| } |
| /* else MSI <= 16Mhz default FLASH_LATENCY_0 0WS */ |
| } |
| else |
| { |
| #if defined(STM32L4P5xx) || defined(STM32L4Q5xx) || \ |
| defined(STM32L4R5xx) || defined(STM32L4R7xx) || defined(STM32L4R9xx) || defined(STM32L4S5xx) || defined(STM32L4S7xx) || defined(STM32L4S9xx) |
| if(msirange >= RCC_MSIRANGE_8) |
| { |
| /* MSI >= 16Mhz */ |
| latency = FLASH_LATENCY_2; /* 2WS */ |
| } |
| else |
| { |
| if(msirange == RCC_MSIRANGE_7) |
| { |
| /* MSI 8Mhz */ |
| latency = FLASH_LATENCY_1; /* 1WS */ |
| } |
| /* else MSI < 8Mhz default FLASH_LATENCY_0 0WS */ |
| } |
| #else |
| if(msirange > RCC_MSIRANGE_8) |
| { |
| /* MSI > 16Mhz */ |
| latency = FLASH_LATENCY_3; /* 3WS */ |
| } |
| else |
| { |
| if(msirange == RCC_MSIRANGE_8) |
| { |
| /* MSI 16Mhz */ |
| latency = FLASH_LATENCY_2; /* 2WS */ |
| } |
| else if(msirange == RCC_MSIRANGE_7) |
| { |
| /* MSI 8Mhz */ |
| latency = FLASH_LATENCY_1; /* 1WS */ |
| } |
| /* else MSI < 8Mhz default FLASH_LATENCY_0 0WS */ |
| } |
| #endif |
| } |
| |
| __HAL_FLASH_SET_LATENCY(latency); |
| |
| /* Check that the new number of wait states is taken into account to access the Flash |
| memory by reading the FLASH_ACR register */ |
| if(__HAL_FLASH_GET_LATENCY() != latency) |
| { |
| return HAL_ERROR; |
| } |
| |
| return HAL_OK; |
| } |
| |
| #if defined(STM32L4P5xx) || defined(STM32L4Q5xx) || \ |
| defined(STM32L4R5xx) || defined(STM32L4R7xx) || defined(STM32L4R9xx) || defined(STM32L4S5xx) || defined(STM32L4S7xx) || defined(STM32L4S9xx) |
| /** |
| * @brief Compute SYSCLK frequency based on PLL SYSCLK source. |
| * @retval SYSCLK frequency |
| */ |
| static uint32_t RCC_GetSysClockFreqFromPLLSource(void) |
| { |
| uint32_t msirange, pllvco, pllsource, pllr, pllm, sysclockfreq; /* no init needed */ |
| |
| /* PLL_VCO = (HSE_VALUE or HSI_VALUE or MSI_VALUE) * PLLN / PLLM |
| SYSCLK = PLL_VCO / PLLR |
| */ |
| pllsource = READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLSRC); |
| |
| switch (pllsource) |
| { |
| case RCC_PLLSOURCE_HSI: /* HSI used as PLL clock source */ |
| pllvco = HSI_VALUE; |
| break; |
| |
| case RCC_PLLSOURCE_HSE: /* HSE used as PLL clock source */ |
| pllvco = HSE_VALUE; |
| break; |
| |
| case RCC_PLLSOURCE_MSI: /* MSI used as PLL clock source */ |
| /* Get MSI range source */ |
| if(READ_BIT(RCC->CR, RCC_CR_MSIRGSEL) == 0U) |
| { /* MSISRANGE from RCC_CSR applies */ |
| msirange = READ_BIT(RCC->CSR, RCC_CSR_MSISRANGE) >> RCC_CSR_MSISRANGE_Pos; |
| } |
| else |
| { /* MSIRANGE from RCC_CR applies */ |
| msirange = READ_BIT(RCC->CR, RCC_CR_MSIRANGE) >> RCC_CR_MSIRANGE_Pos; |
| } |
| /*MSI frequency range in HZ*/ |
| pllvco = MSIRangeTable[msirange]; |
| break; |
| default: |
| /* unexpected */ |
| pllvco = 0; |
| break; |
| } |
| pllm = (READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLM) >> RCC_PLLCFGR_PLLM_Pos) + 1U ; |
| pllvco = (pllvco * (READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLN) >> RCC_PLLCFGR_PLLN_Pos)) / pllm; |
| pllr = ((READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLR) >> RCC_PLLCFGR_PLLR_Pos) + 1U ) * 2U; |
| sysclockfreq = pllvco / pllr; |
| |
| return sysclockfreq; |
| } |
| #endif |
| |
| /** |
| * @} |
| */ |
| |
| #endif /* HAL_RCC_MODULE_ENABLED */ |
| /** |
| * @} |
| */ |
| |
| /** |
| * @} |
| */ |
| |