blob: 54c00d6bb98e73b16aa6c4bd1bee62e8594935e1 [file] [log] [blame]
/**
******************************************************************************
* @file stm32l5xx_hal_gtzc.c
* @author MCD Application Team
* @brief GTZC HAL module driver.
* This file provides firmware functions to manage the following
* functionalities of GTZC peripheral:
* + TZSC Initialization and Configuration functions
* + TZSC-MPCWM Initialization and Configuration functions
* + MPCBB Initialization and Configuration functions
* + TZSC, TZSC-MPCWM and MPCBB Lock functions
* + TZIC Initialization and Configuration functions
*
@verbatim
==============================================================================
##### GTZC main features #####
==============================================================================
[..]
(+) Global TrustZone Controller (GTZC) composed of three sub-blocks:
(++) TZSC: TrustZone security controller
This sub-block defines the secure/privileged state of master and slave
peripherals. It also controls the secure state of subregions
for the watermark memory peripheral controller (MPCWM).
(++) MPCBB: Block-Based memory protection controller
This sub-block defines the secure state of all blocks
(256-byte pages) of the associated SRAM.
(++) TZIC: TrustZone illegal access controller
This sub-block gathers all illegal access events in the system and
generates a secure interrupt towards NVIC.
(+) These sub-blocks are used to configure TrustZone system security in
a product having bus agents with programmable-security and privileged
attributes (securable) such as:
(++) on-chip RAM with programmable secure blocks (pages)
(++) AHB and APB peripherals with programmable security and/or privilege access
(++) AHB master granted as secure and/or privilege
(++) off-chip memories with secure areas
[..]
(+) TZIC accessible only with secure privileged transactions.
(+) Secure and non-secure access supported for privileged and unprivileged
part of TZSC and MPCBB
==============================================================================
##### How to use this driver #####
==============================================================================
[..]
The GTZC HAL driver can be used as follows:
(#) Configure or get back securable peripherals attributes using
HAL_GTZC_TZSC_ConfigPeriphAttributes() / HAL_GTZC_TZSC_GetConfigPeriphAttributes()
(#) Configure or get back MPCWM memories attributes using
HAL_GTZC_TZSC_MPCWM_ConfigMemAttributes() / HAL_GTZC_TZSC_MPCWM_GetConfigMemAttributes()
(#) Lock TZSC sub-block or get lock status using HAL_GTZC_TZSC_Lock() /
HAL_GTZC_TZSC_GetLock()
(#) Configure or get back MPCBB memories complete configuration using
HAL_GTZC_MPCBB_ConfigMem() / HAL_GTZC_MPCBB_GetConfigMem()
(#) Configure or get back MPCBB memories attributes using
HAL_GTZC_MPCBB_ConfigMemAttributes() / HAL_GTZC_MPCBB_GetConfigMemAttributes()
(#) Lock MPCBB configuration or get lock status using HAL_GTZC_MPCBB_Lock() /
HAL_GTZC_MPCBB_GetLock()
(#) Lock MPCBB super-blocks or get lock status using HAL_GTZC_MPCBB_LockConfig() /
HAL_GTZC_MPCBB_GetLockConfig()
(#) Illegal access detection can be configured through TZIC sub-block using
following functions: HAL_GTZC_TZIC_DisableIT() / HAL_GTZC_TZIC_EnableIT()
(#) Illegal access flags can be retrieved through HAL_GTZC_TZIC_GetFlag() and
HAL_GTZC_TZIC_ClearFlag() functions
(#) Illegal access interrupt service routines are served by HAL_GTZC_IRQHandler()
and user can add his own code using HAL_GTZC_TZIC_Callback()
@endverbatim
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2019 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32l5xx_hal.h"
/** @addtogroup STM32L5xx_HAL_Driver
* @{
*/
/** @defgroup GTZC GTZC
* @brief GTZC HAL module driver
* @{
*/
#ifdef HAL_GTZC_MODULE_ENABLED
/* Private typedef -----------------------------------------------------------*/
/* Private constants ---------------------------------------------------------*/
/** @defgroup GTZC_Private_Constants GTZC Private Constants
* @{
*/
/* Definitions for GTZC_TZSC_MPCWM */
#define GTZC_TZSC_MPCWM1_MEM_SIZE 0x10000000U /* 256MB max size */
#define GTZC_TZSC_MPCWM2_MEM_SIZE 0x10000000U /* 256MB max size */
#define GTZC_TZSC_MPCWM3_MEM_SIZE 0x10000000U /* 256MB max size */
/* Definitions for GTZC TZSC & TZIC ALL register values */
#define TZSC_SECCFGR1_ALL (0xFFFFFFFFUL)
#if defined (STM32L562xx)
#define TZSC_SECCFGR2_ALL (0x0007FFFFUL)
#else
#define TZSC_SECCFGR2_ALL (0x00076FFFUL)
#endif /* STM32L562xx */
#define TZSC_PRIVCFGR1_ALL (0xFFFFFFFFUL)
#if defined (STM32L562xx)
#define TZSC_PRIVCFGR2_ALL (0x0007FFFFUL)
#else
#define TZSC_PRIVCFGR2_ALL (0x00076FFFUL)
#endif /* STM32L562xx */
#define TZIC_IER1_ALL (0xFFFFFFFFUL)
#if defined (STM32L562xx)
#define TZIC_IER2_ALL (0x3FFFFFFFUL)
#else
#define TZIC_IER2_ALL (0x3FFF6FFFUL)
#endif /* STM32L562xx */
#define TZIC_IER3_ALL (0x000000FFUL)
#define TZIC_FCR1_ALL (0xFFFFFFFFUL)
#if defined (STM32L562xx)
#define TZIC_FCR2_ALL (0x3FFFFFFFUL)
#else
#define TZIC_FCR2_ALL (0x3FFF6FFFUL)
#endif /* STM32L562xx */
#define TZIC_FCR3_ALL (0x000000FFUL)
/**
* @}
*/
/* Private macros ------------------------------------------------------------*/
/** @defgroup GTZC_Private_Macros GTZC Private Macros
* @{
*/
#define IS_ADDRESS_IN(mem, address)\
( ( ( (uint32_t)(address) >= (uint32_t)GTZC_BASE_ADDRESS_NS(mem) ) \
&& ( (uint32_t)(address) < ((uint32_t)GTZC_BASE_ADDRESS_NS(mem) + (uint32_t)GTZC_MEM_SIZE(mem) ) ) ) \
|| ( ( (uint32_t)(address) >= (uint32_t)GTZC_BASE_ADDRESS_S(mem) ) \
&& ( (uint32_t)(address) < ((uint32_t)GTZC_BASE_ADDRESS_S(mem) + (uint32_t)GTZC_MEM_SIZE(mem) ) ) ) )
#define IS_ADDRESS_IN_S(mem, address)\
( ( (uint32_t)(address) >= (uint32_t)GTZC_BASE_ADDRESS_S(mem) ) \
&& ( (uint32_t)(address) < ((uint32_t)GTZC_BASE_ADDRESS_S(mem) + (uint32_t)GTZC_MEM_SIZE(mem) ) ) )
#define IS_ADDRESS_IN_NS(mem, address)\
( ( (uint32_t)(address) >= (uint32_t)GTZC_BASE_ADDRESS_NS(mem) ) \
&& ( (uint32_t)(address) < ((uint32_t)GTZC_BASE_ADDRESS_NS(mem) + (uint32_t)GTZC_MEM_SIZE(mem) ) ) )
#define GTZC_BASE_ADDRESS(mem)\
( mem ## _BASE )
/**
* @}
*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Exported functions --------------------------------------------------------*/
/** @defgroup GTZC_Exported_Functions GTZC Exported Functions
* @{
*/
/** @defgroup GTZC_Exported_Functions_Group1 TZSC Configuration functions
* @brief TZSC Configuration functions
*
@verbatim
==============================================================================
##### TZSC Configuration functions #####
==============================================================================
[..]
This section provides functions allowing to configure TZSC
TZSC is TrustZone Security Controller
@endverbatim
* @{
*/
/**
* @brief Configure TZSC on a single peripheral or on all peripherals.
* @note Secure and non-secure attributes can only be set from the secure
* state when the system implements the security (TZEN=1).
* @note Privilege and non-privilege attributes can only be set from the
* privilege state when TZEN=0 or TZEN=1
* @note Security and privilege attributes can be set independently.
* @note Default state is non-secure and unprivileged access allowed.
* @param PeriphId Peripheral identifier
* This parameter can be a value of @ref GTZC_TZSC_TZIC_PeriphId.
* Use GTZC_PERIPH_ALL to select all peripherals.
* @param PeriphAttributes Peripheral attributes, see @ref GTZC_TZSC_PeriphAttributes.
* @retval HAL status.
*/
HAL_StatusTypeDef HAL_GTZC_TZSC_ConfigPeriphAttributes(uint32_t PeriphId,
uint32_t PeriphAttributes)
{
uint32_t register_address;
/* check entry parameters */
if ( (PeriphAttributes > (GTZC_TZSC_PERIPH_SEC | GTZC_TZSC_PERIPH_PRIV))
|| ( HAL_GTZC_GET_ARRAY_INDEX(PeriphId) >= GTZC_TZSC_PERIPH_NUMBER)
|| ( ((PeriphId & GTZC_PERIPH_ALL) != 0U)
&& (HAL_GTZC_GET_ARRAY_INDEX(PeriphId) != 0U)))
{
return HAL_ERROR;
}
if ((PeriphId & GTZC_PERIPH_ALL) != 0U)
{
/* special case where same attributes are applied to all peripherals */
#if defined(__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U)
/* secure configuration */
if ((PeriphAttributes & GTZC_TZSC_PERIPH_SEC) == GTZC_TZSC_PERIPH_SEC)
{
SET_BIT(GTZC_TZSC->SECCFGR1, TZSC_SECCFGR1_ALL);
SET_BIT(GTZC_TZSC->SECCFGR2, TZSC_SECCFGR2_ALL);
}
else if ((PeriphAttributes & GTZC_TZSC_PERIPH_NSEC) == GTZC_TZSC_PERIPH_NSEC)
{
CLEAR_BIT(GTZC_TZSC->SECCFGR1, TZSC_SECCFGR1_ALL);
CLEAR_BIT(GTZC_TZSC->SECCFGR2, TZSC_SECCFGR2_ALL);
}
else
{
/* do nothing */
}
#endif /* defined(__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U) */
/* privilege configuration */
if ((PeriphAttributes & GTZC_TZSC_PERIPH_PRIV) == GTZC_TZSC_PERIPH_PRIV)
{
SET_BIT(GTZC_TZSC->PRIVCFGR1, TZSC_PRIVCFGR1_ALL);
SET_BIT(GTZC_TZSC->PRIVCFGR2, TZSC_PRIVCFGR2_ALL);
}
else if ((PeriphAttributes & GTZC_TZSC_PERIPH_NPRIV) == GTZC_TZSC_PERIPH_NPRIV)
{
CLEAR_BIT(GTZC_TZSC->PRIVCFGR1, TZSC_PRIVCFGR1_ALL);
CLEAR_BIT(GTZC_TZSC->PRIVCFGR2, TZSC_PRIVCFGR2_ALL);
}
else
{
/* do nothing */
}
}
else
{
/* common case where only one peripheral is configured */
#if defined(__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U)
/* secure configuration */
register_address = (uint32_t)&(GTZC_TZSC->SECCFGR1)
+ (4U * GTZC_GET_REG_INDEX(PeriphId));
if ((PeriphAttributes & GTZC_TZSC_PERIPH_SEC) == GTZC_TZSC_PERIPH_SEC)
{
SET_BIT(*(__IO uint32_t *)register_address, 1UL << GTZC_GET_PERIPH_POS(PeriphId));
}
else if ((PeriphAttributes & GTZC_TZSC_PERIPH_NSEC) == GTZC_TZSC_PERIPH_NSEC)
{
CLEAR_BIT(*(__IO uint32_t *)register_address, 1UL << GTZC_GET_PERIPH_POS(PeriphId));
}
else
{
/* do nothing */
}
#endif /* defined(__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U) */
/* privilege configuration */
register_address = (uint32_t)&(GTZC_TZSC->PRIVCFGR1)
+ (4U * GTZC_GET_REG_INDEX(PeriphId));
if ((PeriphAttributes & GTZC_TZSC_PERIPH_PRIV) == GTZC_TZSC_PERIPH_PRIV)
{
SET_BIT(*(__IO uint32_t *)register_address, 1UL << GTZC_GET_PERIPH_POS(PeriphId));
}
else if ((PeriphAttributes & GTZC_TZSC_PERIPH_NPRIV) == GTZC_TZSC_PERIPH_NPRIV)
{
CLEAR_BIT(*(__IO uint32_t *)register_address, 1UL << GTZC_GET_PERIPH_POS(PeriphId));
}
else
{
/* do nothing */
}
}
return HAL_OK;
}
/**
* @brief Get TZSC configuration on a single peripheral or on all peripherals.
* @param PeriphId Peripheral identifier.
* This parameter can be a value of @ref GTZC_TZSC_TZIC_PeriphId.
* Use GTZC_PERIPH_ALL to select all peripherals.
* @param PeriphAttributes Peripheral attribute pointer.
* This parameter can be a value of @ref GTZC_TZSC_PeriphAttributes.
* If PeriphId target a single peripheral, pointer on a single element.
* If all peripherals selected (GTZC_PERIPH_ALL), pointer to an array of
* GTZC_TZSC_PERIPH_NUMBER elements is to be provided.
* @retval HAL status.
*/
HAL_StatusTypeDef HAL_GTZC_TZSC_GetConfigPeriphAttributes(uint32_t PeriphId,
uint32_t *PeriphAttributes)
{
uint32_t i;
uint32_t reg_value;
uint32_t register_address;
/* check entry parameters */
if ( (PeriphAttributes == NULL)
|| ( HAL_GTZC_GET_ARRAY_INDEX(PeriphId) >= GTZC_TZSC_PERIPH_NUMBER)
|| ( ((PeriphId & GTZC_PERIPH_ALL) != 0U)
&& (HAL_GTZC_GET_ARRAY_INDEX(PeriphId) != 0U)))
{
return HAL_ERROR;
}
if ((PeriphId & GTZC_PERIPH_ALL) != 0U)
{
/* get secure configuration: read each register and deploy each bit value
* of corresponding index in the destination array
*/
reg_value = READ_REG(GTZC_TZSC->SECCFGR1);
for (i = 0U; i < 32U; i++)
{
if(((reg_value & (1UL << i)) >> i) != 0U)
{
PeriphAttributes[i] = GTZC_TZSC_PERIPH_SEC;
}
else
{
PeriphAttributes[i] = GTZC_TZSC_PERIPH_NSEC;
}
}
reg_value = READ_REG(GTZC_TZSC->SECCFGR2);
for (/*i = 32U*/; i < GTZC_TZSC_PERIPH_NUMBER; i++)
{
if(((reg_value & (1UL << (i - 32U))) >> (i - 32U)) != 0U)
{
PeriphAttributes[i] = GTZC_TZSC_PERIPH_SEC;
}
else
{
PeriphAttributes[i] = GTZC_TZSC_PERIPH_NSEC;
}
}
/* get privilege configuration: read each register and deploy each bit value
* of corresponding index in the destination array
*/
reg_value = READ_REG(GTZC_TZSC->PRIVCFGR1);
for (i = 0U; i < 32U; i++)
{
if(((reg_value & (1UL << i)) >> i) != 0U)
{
PeriphAttributes[i] |= GTZC_TZSC_PERIPH_PRIV;
}
else
{
PeriphAttributes[i] |= GTZC_TZSC_PERIPH_NPRIV;
}
}
reg_value = READ_REG(GTZC_TZSC->PRIVCFGR2);
for (/*i = 32U*/; i < GTZC_TZSC_PERIPH_NUMBER; i++)
{
if(((reg_value & (1UL << (i - 32U))) >> (i - 32U)) != 0U)
{
PeriphAttributes[i] |= GTZC_TZSC_PERIPH_PRIV;
}
else
{
PeriphAttributes[i] |= GTZC_TZSC_PERIPH_NPRIV;
}
}
}
else
{
/* common case where only one peripheral is configured */
/* secure configuration */
register_address = (uint32_t)&(GTZC_TZSC->SECCFGR1)
+ (4U * GTZC_GET_REG_INDEX(PeriphId));
if(((READ_BIT(*(__IO uint32_t *)register_address,
1UL << GTZC_GET_PERIPH_POS(PeriphId))) >> GTZC_GET_PERIPH_POS(PeriphId))
!= 0U)
{
*PeriphAttributes = GTZC_TZSC_PERIPH_SEC;
}
else
{
*PeriphAttributes = GTZC_TZSC_PERIPH_NSEC;
}
/* privilege configuration */
register_address = (uint32_t)&(GTZC_TZSC->PRIVCFGR1)
+ (4U * GTZC_GET_REG_INDEX(PeriphId));
if(((READ_BIT(*(__IO uint32_t *)register_address,
1UL << GTZC_GET_PERIPH_POS(PeriphId))) >> GTZC_GET_PERIPH_POS(PeriphId))
!= 0U)
{
*PeriphAttributes |= GTZC_TZSC_PERIPH_PRIV;
}
else
{
*PeriphAttributes |= GTZC_TZSC_PERIPH_NPRIV;
}
}
return HAL_OK;
}
/**
* @}
*/
#if defined(__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U)
/** @defgroup GTZC_Exported_Functions_Group2 MPCWM Configuration functions
* @brief MPCWM Configuration functions
*
@verbatim
==============================================================================
##### MPCWM Configuration functions #####
==============================================================================
[..]
This section provides functions allowing to configure MPCWM
MPCWM is Memory Protection Controller WaterMark
@endverbatim
* @{
*/
/**
* @brief Configure a TZSC-MPCWM area.
* @param MemBaseAddress WM identifier.
* @param pMPCWM_Desc TZSC-MPCWM descriptor pointer.
* The structure description is available in @ref GTZC_Exported_Types.
* @retval HAL status.
*/
HAL_StatusTypeDef HAL_GTZC_TZSC_MPCWM_ConfigMemAttributes(
uint32_t MemBaseAddress,
MPCWM_ConfigTypeDef *pMPCWM_Desc)
{
uint32_t register_address;
uint32_t reg_value;
uint32_t size;
uint32_t start_pos, start_msk;
uint32_t length_pos, length_msk;
/* check entry parameters */
if ( (pMPCWM_Desc->AreaId > GTZC_TZSC_MPCWM_ID2)
|| ( (MemBaseAddress == FMC_BANK3)
&& (pMPCWM_Desc->AreaId == GTZC_TZSC_MPCWM_ID2))
|| (( pMPCWM_Desc->Offset % GTZC_TZSC_MPCWM_GRANULARITY) != 0U)
|| (( pMPCWM_Desc->Length % GTZC_TZSC_MPCWM_GRANULARITY) != 0U))
{
return HAL_ERROR;
}
/* check descriptor content vs. memory capacity */
switch (MemBaseAddress)
{
case OCTOSPI1_BASE:
size = GTZC_TZSC_MPCWM1_MEM_SIZE;
if (pMPCWM_Desc->AreaId == GTZC_TZSC_MPCWM_ID1)
{
register_address = (uint32_t)&(GTZC_TZSC_S->MPCWM1_NSWMR1);
start_pos = GTZC_TZSC_MPCWM1_NSWMR1_NSWM1STRT_Pos;
start_msk = GTZC_TZSC_MPCWM1_NSWMR1_NSWM1STRT_Msk;
length_pos = GTZC_TZSC_MPCWM1_NSWMR1_NSWM1LGTH_Pos;
length_msk = GTZC_TZSC_MPCWM1_NSWMR1_NSWM1LGTH_Msk;
}
else
{
/* Here pMPCWM_Desc->AreaId == GTZC_TZSC_MPCWM_ID2
* (Parameter already checked)
*/
register_address = (uint32_t)&(GTZC_TZSC_S->MPCWM1_NSWMR2);
start_pos = GTZC_TZSC_MPCWM1_NSWMR2_NSWM2STRT_Pos;
start_msk = GTZC_TZSC_MPCWM1_NSWMR2_NSWM2STRT_Msk;
length_pos = GTZC_TZSC_MPCWM1_NSWMR2_NSWM2LGTH_Pos;
length_msk = GTZC_TZSC_MPCWM1_NSWMR2_NSWM2LGTH_Msk;
}
break;
case FMC_BANK1:
size = GTZC_TZSC_MPCWM1_MEM_SIZE;
if (pMPCWM_Desc->AreaId == GTZC_TZSC_MPCWM_ID1)
{
register_address = (uint32_t)&(GTZC_TZSC_S->MPCWM2_NSWMR1);
start_pos = GTZC_TZSC_MPCWM2_NSWMR1_NSWM1STRT_Pos;
start_msk = GTZC_TZSC_MPCWM2_NSWMR1_NSWM1STRT_Msk;
length_pos = GTZC_TZSC_MPCWM2_NSWMR1_NSWM1LGTH_Pos;
length_msk = GTZC_TZSC_MPCWM2_NSWMR1_NSWM1LGTH_Msk;
}
else
{
/* Here pMPCWM_Desc->AreaId == GTZC_TZSC_MPCWM_ID2
* (Parameter already checked)
*/
register_address = (uint32_t)&(GTZC_TZSC_S->MPCWM2_NSWMR2);
start_pos = GTZC_TZSC_MPCWM2_NSWMR2_NSWM2STRT_Pos;
start_msk = GTZC_TZSC_MPCWM2_NSWMR2_NSWM2STRT_Msk;
length_pos = GTZC_TZSC_MPCWM2_NSWMR2_NSWM2LGTH_Pos;
length_msk = GTZC_TZSC_MPCWM2_NSWMR2_NSWM2LGTH_Msk;
}
break;
case FMC_BANK3:
/* Here pMPCWM_Desc->AreaId == GTZC_TZSC_MPCWM_ID1
* (Parameter already checked)
*/
size = GTZC_TZSC_MPCWM3_MEM_SIZE;
register_address = (uint32_t)&(GTZC_TZSC_S->MPCWM3_NSWMR1);
start_pos = GTZC_TZSC_MPCWM3_NSWMR1_NSWM1STRT_Pos;
start_msk = GTZC_TZSC_MPCWM3_NSWMR1_NSWM1STRT_Msk;
length_pos = GTZC_TZSC_MPCWM3_NSWMR1_NSWM1LGTH_Pos;
length_msk = GTZC_TZSC_MPCWM3_NSWMR1_NSWM1LGTH_Msk;
break;
default:
return HAL_ERROR;
break;
}
if ( (pMPCWM_Desc->Offset > size)
|| ( ( pMPCWM_Desc->Offset
+ pMPCWM_Desc->Length)
> size))
{
return HAL_ERROR;
}
/* write descriptor value */
reg_value = ((pMPCWM_Desc->Offset / GTZC_TZSC_MPCWM_GRANULARITY) << start_pos) & start_msk;
reg_value |= ((pMPCWM_Desc->Length / GTZC_TZSC_MPCWM_GRANULARITY) << length_pos) & length_msk;
MODIFY_REG(*(__IO uint32_t *)register_address, start_msk | length_msk, reg_value);
return HAL_OK;
}
/**
* @brief Get a TZSC-MPCWM area configuration.
* @param MemBaseAddress WM identifier.
* @param pMPCWM_Desc pointer to a TZSC-MPCWM descriptor.
* The structure description is available in @ref GTZC_Exported_Types.
* @retval HAL status.
*/
HAL_StatusTypeDef HAL_GTZC_TZSC_MPCWM_GetConfigMemAttributes(
uint32_t MemBaseAddress,
MPCWM_ConfigTypeDef *pMPCWM_Desc)
{
uint32_t register_address;
uint32_t reg_value;
uint32_t start_pos, start_msk;
uint32_t length_pos, length_msk;
/* firstly take care of the first area, present on all MPCWM sub-blocks */
switch (MemBaseAddress)
{
case OCTOSPI1_BASE:
register_address = (uint32_t)&(GTZC_TZSC_S->MPCWM1_NSWMR1);
start_pos = GTZC_TZSC_MPCWM1_NSWMR1_NSWM1STRT_Pos;
start_msk = GTZC_TZSC_MPCWM1_NSWMR1_NSWM1STRT_Msk;
length_pos = GTZC_TZSC_MPCWM1_NSWMR1_NSWM1LGTH_Pos;
length_msk = GTZC_TZSC_MPCWM1_NSWMR1_NSWM1LGTH_Msk;
break;
case FMC_BANK1:
register_address = (uint32_t)&(GTZC_TZSC_S->MPCWM2_NSWMR1);
start_pos = GTZC_TZSC_MPCWM2_NSWMR1_NSWM1STRT_Pos;
start_msk = GTZC_TZSC_MPCWM2_NSWMR1_NSWM1STRT_Msk;
length_pos = GTZC_TZSC_MPCWM2_NSWMR1_NSWM1LGTH_Pos;
length_msk = GTZC_TZSC_MPCWM2_NSWMR1_NSWM1LGTH_Msk;
break;
case FMC_BANK3:
register_address = (uint32_t)&(GTZC_TZSC_S->MPCWM3_NSWMR1);
start_pos = GTZC_TZSC_MPCWM3_NSWMR1_NSWM1STRT_Pos;
start_msk = GTZC_TZSC_MPCWM3_NSWMR1_NSWM1STRT_Msk;
length_pos = GTZC_TZSC_MPCWM3_NSWMR1_NSWM1LGTH_Pos;
length_msk = GTZC_TZSC_MPCWM3_NSWMR1_NSWM1LGTH_Msk;
break;
default:
return HAL_ERROR;
break;
}
/* read register and update the descriptor for first area*/
reg_value = READ_REG(*(__IO uint32_t *)register_address);
pMPCWM_Desc[0].AreaId = GTZC_TZSC_MPCWM_ID1;
pMPCWM_Desc[0].Offset = ((reg_value & start_msk) >> start_pos) * GTZC_TZSC_MPCWM_GRANULARITY;
pMPCWM_Desc[0].Length = ((reg_value & length_msk) >> length_pos) * GTZC_TZSC_MPCWM_GRANULARITY;
if (MemBaseAddress != FMC_BANK3)
{
/* Here MemBaseAddress = OCTOSPI1_BASE
* or FMC_BANK1 (already tested)
* Now take care of the second area, present on these sub-blocks
*/
switch (MemBaseAddress)
{
case OCTOSPI1_BASE:
register_address = (uint32_t)&(GTZC_TZSC_S->MPCWM1_NSWMR2);
start_pos = GTZC_TZSC_MPCWM1_NSWMR2_NSWM2STRT_Pos;
start_msk = GTZC_TZSC_MPCWM1_NSWMR2_NSWM2STRT_Msk;
length_pos = GTZC_TZSC_MPCWM1_NSWMR2_NSWM2LGTH_Pos;
length_msk = GTZC_TZSC_MPCWM1_NSWMR2_NSWM2LGTH_Msk;
break;
case FMC_BANK1:
register_address = (uint32_t)&(GTZC_TZSC_S->MPCWM2_NSWMR2);
start_pos = GTZC_TZSC_MPCWM2_NSWMR2_NSWM2STRT_Pos;
start_msk = GTZC_TZSC_MPCWM2_NSWMR2_NSWM2STRT_Msk;
length_pos = GTZC_TZSC_MPCWM2_NSWMR2_NSWM2LGTH_Pos;
length_msk = GTZC_TZSC_MPCWM2_NSWMR2_NSWM2LGTH_Msk;
break;
default:
return HAL_ERROR;
break;
}
/* read register and update the descriptor for second area*/
reg_value = READ_REG(*(__IO uint32_t *)register_address);
pMPCWM_Desc[1].AreaId = GTZC_TZSC_MPCWM_ID2;
pMPCWM_Desc[1].Offset = ((reg_value & start_msk) >> start_pos) * GTZC_TZSC_MPCWM_GRANULARITY;
pMPCWM_Desc[1].Length = ((reg_value & length_msk) >> length_pos) * GTZC_TZSC_MPCWM_GRANULARITY;
}
return HAL_OK;
}
/**
* @}
*/
#endif /* defined(__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U) */
/** @defgroup GTZC_Exported_Functions_Group3 TZSC and TZSC-MPCWM Lock functions
* @brief TZSC and TZSC-MPCWM Lock functions
*
@verbatim
==============================================================================
##### TZSC and TZSC-MPCWM Lock functions #####
==============================================================================
[..]
This section provides functions allowing to manage the common TZSC and
TZSC-MPCWM lock. It includes lock enable, and current value read.
TZSC is TrustZone Security Controller
MPCWM is Memory Protection Controller WaterMark
@endverbatim
* @{
*/
/**
* @brief Lock TZSC and TZSC-MPCWM configuration.
* @param TZSC_Instance TZSC sub-block instance.
*/
#if defined(__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U)
void HAL_GTZC_TZSC_Lock(GTZC_TZSC_TypeDef *TZSC_Instance)
{
SET_BIT(TZSC_Instance->CR, GTZC_TZSC_CR_LCK_Msk);
}
#endif /* defined(__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U) */
/**
* @brief Get TZSC and TZSC-MPCWM configuration lock state.
* @param TZSC_Instance TZSC sub-block instance.
* @retval Lock State (GTZC_TZSC_LOCK_OFF or GTZC_TZSC_LOCK_ON)
*/
uint32_t HAL_GTZC_TZSC_GetLock(GTZC_TZSC_TypeDef *TZSC_Instance)
{
return READ_BIT(TZSC_Instance->CR, GTZC_TZSC_CR_LCK_Msk);
}
/**
* @}
*/
#if defined(__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U)
/** @defgroup GTZC_Exported_Functions_Group4 MPCBB Configuration functions
* @brief MPCBB Configuration functions
*
@verbatim
==============================================================================
##### MPCBB Configuration functions #####
==============================================================================
[..]
This section provides functions allowing to configure MPCBB
MPCBB is Memory Protection Controller Block Base
@endverbatim
* @{
*/
/**
* @brief Set a complete MPCBB configuration on the SRAM passed as parameter.
* @param MemBaseAddress MPCBB identifier.
* @param pMPCBB_desc pointer to MPCBB descriptor.
* The structure description is available in @ref GTZC_Exported_Types.
* @retval HAL status.
*/
HAL_StatusTypeDef HAL_GTZC_MPCBB_ConfigMem(uint32_t MemBaseAddress,
MPCBB_ConfigTypeDef *pMPCBB_desc)
{
GTZC_MPCBB_TypeDef *mpcbb_ptr;
uint32_t reg_value;
uint32_t mem_size;
uint32_t size_mask;
uint32_t size_in_superblocks;
uint32_t i;
/* check entry parameters */
if ( ( !(IS_GTZC_BASE_ADDRESS(SRAM1, MemBaseAddress))
&& !(IS_GTZC_BASE_ADDRESS(SRAM2, MemBaseAddress)))
|| ( ( pMPCBB_desc->SecureRWIllegalMode
!= GTZC_MPCBB_SRWILADIS_ENABLE)
&& ( pMPCBB_desc->SecureRWIllegalMode
!= GTZC_MPCBB_SRWILADIS_DISABLE))
|| ( ( pMPCBB_desc->InvertSecureState
!= GTZC_MPCBB_INVSECSTATE_NOT_INVERTED)
&& ( pMPCBB_desc->InvertSecureState
!= GTZC_MPCBB_INVSECSTATE_INVERTED)))
{
return HAL_ERROR;
}
/* write InvertSecureState and SecureRWIllegalMode properties */
/* assume their Position/Mask is identical for all sub-blocks */
reg_value = pMPCBB_desc->InvertSecureState;
reg_value |= pMPCBB_desc->SecureRWIllegalMode;
if (IS_GTZC_BASE_ADDRESS(SRAM1, MemBaseAddress))
{
mpcbb_ptr = GTZC_MPCBB1_S;
mem_size = GTZC_MEM_SIZE(SRAM1);
}
else
{
/* Here MemBaseAddress is inside SRAM2 (already tested) */
mpcbb_ptr = GTZC_MPCBB2_S;
mem_size = GTZC_MEM_SIZE(SRAM2);
}
/* write configuration and lock register information */
MODIFY_REG(mpcbb_ptr->CR,
GTZC_MPCBB_CR_INVSECSTATE_Msk | GTZC_MPCBB_CR_SRWILADIS_Msk, reg_value);
size_mask = (1UL << (mem_size / GTZC_MPCBB_SUPERBLOCK_SIZE)) - 1U;
/* limitation: code not portable with memory > 256K */
MODIFY_REG(mpcbb_ptr->LCKVTR1, size_mask, pMPCBB_desc->AttributeConfig.MPCBB_LockConfig_array[0]);
/* write vector register information */
size_in_superblocks = (mem_size / GTZC_MPCBB_SUPERBLOCK_SIZE);
for (i = 0U; i < size_in_superblocks; i++)
{
WRITE_REG(mpcbb_ptr->VCTR[i],
pMPCBB_desc->AttributeConfig.MPCBB_SecConfig_array[i]);
}
return HAL_OK;
}
/**
* @brief Get a complete MPCBB configuration on the SRAM passed as parameter.
* @param MemBaseAddress MPCBB identifier.
* @param pMPCBB_desc pointer to a MPCBB descriptor.
* The structure description is available in @ref GTZC_Exported_Types.
* @retval HAL status.
*/
HAL_StatusTypeDef HAL_GTZC_MPCBB_GetConfigMem(uint32_t MemBaseAddress,
MPCBB_ConfigTypeDef *pMPCBB_desc)
{
GTZC_MPCBB_TypeDef *mpcbb_ptr;
uint32_t reg_value;
uint32_t mem_size;
uint32_t size_mask;
uint32_t size_in_superblocks;
uint32_t i;
/* check entry parameters */
if ( !(IS_GTZC_BASE_ADDRESS(SRAM1, MemBaseAddress))
&& !(IS_GTZC_BASE_ADDRESS(SRAM2, MemBaseAddress)))
{
return HAL_ERROR;
}
/* read InvertSecureState and SecureRWIllegalMode properties */
/* assume their Position/Mask is identical for all sub-blocks */
if (IS_GTZC_BASE_ADDRESS(SRAM1, MemBaseAddress))
{
mpcbb_ptr = GTZC_MPCBB1_S;
mem_size = GTZC_MEM_SIZE(SRAM1);
}
else
{
mpcbb_ptr = GTZC_MPCBB2_S;
mem_size = GTZC_MEM_SIZE(SRAM2);
}
/* read configuration and lock register information */
reg_value = READ_REG(mpcbb_ptr->CR);
pMPCBB_desc->InvertSecureState = (reg_value & GTZC_MPCBB_CR_INVSECSTATE_Msk);
pMPCBB_desc->SecureRWIllegalMode = (reg_value & GTZC_MPCBB_CR_SRWILADIS_Msk);
size_mask = (1UL << (mem_size / GTZC_MPCBB_SUPERBLOCK_SIZE)) - 1U;
/* limitation: code not portable with memory > 256K */
pMPCBB_desc->AttributeConfig.MPCBB_LockConfig_array[0] = READ_REG(mpcbb_ptr->LCKVTR1)
& size_mask;
/* read vector register information */
size_in_superblocks = (mem_size / GTZC_MPCBB_SUPERBLOCK_SIZE);
for (i = 0U; i < size_in_superblocks; i++)
{
pMPCBB_desc->AttributeConfig.MPCBB_SecConfig_array[i] = mpcbb_ptr->VCTR[i];
}
return HAL_OK;
}
/**
* @brief Set a MPCBB attribute configuration on the SRAM passed as parameter
* for a number of blocks.
* @param MemAddress MPCBB identifier, and start block to configure
* (must be 256 Bytes aligned).
* @param NbBlocks Number of blocks to configure.
* @param pMemAttributes pointer to an array (containing "NbBlocks" elements),
* with each element must be GTZC_MCPBB_BLOCK_NSEC or GTZC_MCPBB_BLOCK_SEC.
* @retval HAL status.
*/
HAL_StatusTypeDef HAL_GTZC_MPCBB_ConfigMemAttributes(uint32_t MemAddress,
uint32_t NbBlocks,
uint32_t *pMemAttributes)
{
GTZC_MPCBB_TypeDef *mpcbb_ptr;
uint32_t base_address, end_address;
uint32_t block_start, offset_reg_start, offset_bit_start;
uint32_t i;
/* firstly check that MemAddress is well 256 Bytes aligned */
if ((MemAddress % GTZC_MPCBB_BLOCK_SIZE) != 0U)
{
return HAL_ERROR;
}
/* check entry parameters and deduce physical base address */
end_address = MemAddress + (NbBlocks * GTZC_MPCBB_BLOCK_SIZE) - 1U;
if ( ( (IS_ADDRESS_IN_NS(SRAM1, MemAddress))
&& (IS_ADDRESS_IN_NS(SRAM1, end_address))) != 0U )
{
mpcbb_ptr = GTZC_MPCBB1_S;
base_address = SRAM1_BASE_NS;
}
else if ( ( (IS_ADDRESS_IN_S(SRAM1, MemAddress))
&& (IS_ADDRESS_IN_S(SRAM1, end_address))) != 0U )
{
mpcbb_ptr = GTZC_MPCBB1_S;
base_address = SRAM1_BASE_S;
}
else if ( ( (IS_ADDRESS_IN_NS(SRAM2, MemAddress))
&& (IS_ADDRESS_IN_NS(SRAM2, end_address))) != 0U )
{
mpcbb_ptr = GTZC_MPCBB2_S;
base_address = SRAM2_BASE_NS;
}
else if ( ( (IS_ADDRESS_IN_S(SRAM2, MemAddress))
&& (IS_ADDRESS_IN_S(SRAM2, end_address))) != 0U )
{
mpcbb_ptr = GTZC_MPCBB2_S;
base_address = SRAM2_BASE_S;
}
else
{
return HAL_ERROR;
}
/* get start coordinates of the configuration */
block_start = (MemAddress - base_address) / GTZC_MPCBB_BLOCK_SIZE;
offset_reg_start = block_start / 32U;
offset_bit_start = block_start % 32U;
for (i = 0U; i < NbBlocks; i++)
{
if (pMemAttributes[i] == GTZC_MCPBB_BLOCK_SEC)
{
SET_BIT(mpcbb_ptr->VCTR[offset_reg_start],
1UL << (offset_bit_start % 32U));
}
else if (pMemAttributes[i] == GTZC_MCPBB_BLOCK_NSEC)
{
CLEAR_BIT(mpcbb_ptr->VCTR[offset_reg_start],
1UL << (offset_bit_start % 32U));
}
else
{
break;
}
offset_bit_start++;
if (offset_bit_start == 32U)
{
offset_bit_start = 0U;
offset_reg_start++;
}
}
/* an unexpected value in pMemAttributes array leads to error status */
if (i != NbBlocks)
{
return HAL_ERROR;
}
return HAL_OK;
}
/**
* @brief Get a MPCBB attribute configuration on the SRAM passed as parameter
* for a number of blocks.
* @param MemAddress MPCBB identifier, and start block to get configuration
* (must be 256 Bytes aligned).
* @param NbBlocks Number of blocks to get configuration.
* @param pMemAttributes pointer to an array (containing "NbBlocks" elements),
* with each element will be GTZC_MCPBB_BLOCK_NSEC or GTZC_MCPBB_BLOCK_SEC.
* @retval HAL status.
*/
HAL_StatusTypeDef HAL_GTZC_MPCBB_GetConfigMemAttributes(uint32_t MemAddress,
uint32_t NbBlocks,
uint32_t *pMemAttributes)
{
GTZC_MPCBB_TypeDef *mpcbb_ptr;
uint32_t base_address, end_address;
uint32_t block_start, offset_reg_start, offset_bit_start;
uint32_t i;
/* firstly check that MemAddress is well 256 Bytes aligned */
if ((MemAddress % GTZC_MPCBB_BLOCK_SIZE) != 0U)
{
return HAL_ERROR;
}
/* check entry parameters and deduce physical base address */
end_address = MemAddress + (NbBlocks * GTZC_MPCBB_BLOCK_SIZE) - 1U;
if ( (IS_ADDRESS_IN_NS(SRAM1, MemAddress))
&& (IS_ADDRESS_IN_NS(SRAM1, end_address)))
{
mpcbb_ptr = GTZC_MPCBB1_S;
base_address = SRAM1_BASE_NS;
}
else if ( (IS_ADDRESS_IN_S(SRAM1, MemAddress))
&& (IS_ADDRESS_IN_S(SRAM1, end_address)))
{
mpcbb_ptr = GTZC_MPCBB1_S;
base_address = SRAM1_BASE_S;
}
else if ( (IS_ADDRESS_IN_NS(SRAM2, MemAddress))
&& (IS_ADDRESS_IN_NS(SRAM2, end_address)))
{
mpcbb_ptr = GTZC_MPCBB2_S;
base_address = SRAM2_BASE_NS;
}
else if ( (IS_ADDRESS_IN_S(SRAM2, MemAddress))
&& (IS_ADDRESS_IN_S(SRAM2, end_address)))
{
mpcbb_ptr = GTZC_MPCBB2_S;
base_address = SRAM2_BASE_S;
}
else
{
return HAL_ERROR;
}
/* get start coordinates of the configuration */
block_start = (MemAddress - base_address) / GTZC_MPCBB_BLOCK_SIZE;
offset_reg_start = block_start / 32U;
offset_bit_start = block_start % 32U;
for (i = 0U; i < NbBlocks; i++)
{
pMemAttributes[i] = READ_BIT(mpcbb_ptr->VCTR[offset_reg_start],
1UL << (offset_bit_start % 32U))
>> (offset_bit_start % 32U);
offset_bit_start++;
if (offset_bit_start == 32U)
{
offset_bit_start = 0U;
offset_reg_start++;
}
}
return HAL_OK;
}
/**
* @brief Lock MPCBB super-blocks on the SRAM passed as parameter.
* @param MemAddress MPCBB identifier, and start super-block to configure
* (must be 8KBytes aligned).
* @param NbSuperBlocks Number of super-blocks to configure.
* @param pLockAttributes pointer to an array (containing "NbSuperBlocks" elements),
* with for each element:
* value 0 super-block is unlocked, value 1 super-block is locked
* (corresponds to GTZC_MCPBB_SUPERBLOCK_UNLOCKED and
* GTZC_MCPBB_SUPERBLOCK_LOCKED values).
* @retval HAL status.
*/
HAL_StatusTypeDef HAL_GTZC_MPCBB_LockConfig(uint32_t MemAddress,
uint32_t NbSuperBlocks,
uint32_t *pLockAttributes)
{
__IO uint32_t *reg_mpcbb;
uint32_t base_address;
uint32_t superblock_start, offset_bit_start;
uint32_t i;
/* firstly check that MemAddress is well 8KBytes aligned */
if ((MemAddress % GTZC_MPCBB_SUPERBLOCK_SIZE) != 0U)
{
return HAL_ERROR;
}
/* check entry parameters */
if ( (IS_ADDRESS_IN(SRAM1, MemAddress))
&& (IS_ADDRESS_IN(SRAM1, (MemAddress
+ (NbSuperBlocks * GTZC_MPCBB_SUPERBLOCK_SIZE)
- 1U))))
{
base_address = GTZC_BASE_ADDRESS(SRAM1);
/* limitation: code not portable with memory > 256K */
reg_mpcbb = (__IO uint32_t *)&GTZC_MPCBB1_S->LCKVTR1;
}
else if ( (IS_ADDRESS_IN(SRAM2, MemAddress))
&& (IS_ADDRESS_IN(SRAM2, (MemAddress
+ ( NbSuperBlocks
* GTZC_MPCBB_SUPERBLOCK_SIZE)
- 1U))))
{
base_address = GTZC_BASE_ADDRESS(SRAM2);
/* limitation: code not portable with memory > 256K */
reg_mpcbb = (__IO uint32_t *)&GTZC_MPCBB2_S->LCKVTR1;
}
else
{
return HAL_ERROR;
}
/* get start coordinates of the configuration */
superblock_start = (MemAddress - base_address) / GTZC_MPCBB_SUPERBLOCK_SIZE;
offset_bit_start = superblock_start % 32U;
for (i = 0U; i < NbSuperBlocks; i++)
{
if (pLockAttributes[i] == GTZC_MCPBB_SUPERBLOCK_LOCKED)
{
SET_BIT(*reg_mpcbb, 1UL << (offset_bit_start % 32U));
}
else if (pLockAttributes[i] == GTZC_MCPBB_SUPERBLOCK_UNLOCKED)
{
CLEAR_BIT(*reg_mpcbb, 1UL << (offset_bit_start % 32U));
}
else
{
break;
}
offset_bit_start++;
}
/* an unexpected value in pLockAttributes array leads to an error status */
if (i != NbSuperBlocks)
{
return HAL_ERROR;
}
return HAL_OK;
}
/**
* @brief Get MPCBB super-blocks lock configuration on the SRAM passed as parameter.
* @param MemAddress MPCBB identifier, and start super-block to get
* configuration (must be 8KBytes aligned).
* @param NbSuperBlocks Number of super-blocks to get configuration.
* @param pLockAttributes pointer to an array (size is NbSuperBlocks),
* with for each element:
* value 0 super-block is unlocked, value 1 super-block is locked
* (corresponds to GTZC_MCPBB_SUPERBLOCK_UNLOCKED and
* GTZC_MCPBB_SUPERBLOCK_LOCKED values).
* @retval HAL status.
*/
HAL_StatusTypeDef HAL_GTZC_MPCBB_GetLockConfig(uint32_t MemAddress,
uint32_t NbSuperBlocks,
uint32_t *pLockAttributes)
{
uint32_t reg_mpcbb;
uint32_t base_address;
uint32_t superblock_start, offset_bit_start;
uint32_t i;
/* firstly check that MemAddress is well 8KBytes aligned */
if ((MemAddress % GTZC_MPCBB_SUPERBLOCK_SIZE) != 0U)
{
return HAL_ERROR;
}
/* check entry parameters */
if ( (IS_ADDRESS_IN(SRAM1, MemAddress))
&& (IS_ADDRESS_IN(SRAM1, (MemAddress
+ (NbSuperBlocks * GTZC_MPCBB_SUPERBLOCK_SIZE)
- 1U))))
{
base_address = GTZC_BASE_ADDRESS(SRAM1);
/* limitation: code not portable with memory > 256K */
reg_mpcbb = GTZC_MPCBB1_S->LCKVTR1;
}
else if ( (IS_ADDRESS_IN(SRAM2, MemAddress))
&& (IS_ADDRESS_IN(SRAM2, (MemAddress
+ ( NbSuperBlocks
* GTZC_MPCBB_SUPERBLOCK_SIZE)
- 1U))))
{
base_address = GTZC_BASE_ADDRESS(SRAM2);
/* limitation: code not portable with memory > 256K */
reg_mpcbb = GTZC_MPCBB2_S->LCKVTR1;
}
else
{
return HAL_ERROR;
}
/* get start coordinates of the configuration */
superblock_start = (MemAddress - base_address) / GTZC_MPCBB_SUPERBLOCK_SIZE;
offset_bit_start = superblock_start % 32U;
for (i = 0U; i < NbSuperBlocks; i++)
{
pLockAttributes[i] = (reg_mpcbb & (1UL << (offset_bit_start % 32U)))
>> (offset_bit_start % 32U);
offset_bit_start++;
}
return HAL_OK;
}
/**
* @brief Lock a MPCBB configuration on the SRAM base address passed as parameter.
* @param MemBaseAddress MPCBB identifier.
* @retval HAL status.
*/
HAL_StatusTypeDef HAL_GTZC_MPCBB_Lock(uint32_t MemBaseAddress)
{
/* check entry parameters */
if (IS_GTZC_BASE_ADDRESS(SRAM1, MemBaseAddress))
{
SET_BIT(GTZC_MPCBB1_S->CR, GTZC_MPCBB_CR_LCK_Msk);
}
else if (IS_GTZC_BASE_ADDRESS(SRAM2, MemBaseAddress))
{
SET_BIT(GTZC_MPCBB2_S->CR, GTZC_MPCBB_CR_LCK_Msk);
}
else
{
return HAL_ERROR;
}
return HAL_OK;
}
/**
* @brief Get MPCBB configuration lock state on the SRAM base address passed as parameter.
* @param MemBaseAddress MPCBB identifier.
* @param pLockState pointer to Lock State (GTZC_MCPBB_LOCK_OFF or GTZC_MCPBB_LOCK_ON).
* @retval HAL status.
*/
HAL_StatusTypeDef HAL_GTZC_MPCBB_GetLock(uint32_t MemBaseAddress,
uint32_t *pLockState)
{
/* check entry parameters */
if (IS_GTZC_BASE_ADDRESS(SRAM1, MemBaseAddress))
{
*pLockState = READ_BIT(GTZC_MPCBB1_S->CR, GTZC_MPCBB_CR_LCK_Msk);
}
else if (IS_GTZC_BASE_ADDRESS(SRAM2, MemBaseAddress))
{
*pLockState = READ_BIT(GTZC_MPCBB2_S->CR, GTZC_MPCBB_CR_LCK_Msk);
}
else
{
return HAL_ERROR;
}
return HAL_OK;
}
/**
* @}
*/
/** @defgroup GTZC_Exported_Functions_Group5 TZIC Configuration and Control functions
* @brief TZIC Configuration and Control functions
*
@verbatim
==============================================================================
##### TZIC Configuration and Control functions #####
==============================================================================
[..]
This section provides functions allowing to configure and control TZIC
TZIC is Trust Zone Interrupt Controller
@endverbatim
* @{
*/
/**
* @brief Disable the interrupt associated to a single TZIC peripheral or on all peripherals.
* @param PeriphId Peripheral identifier.
* This parameter can be a value of @ref GTZC_TZSC_TZIC_PeriphId.
* Use GTZC_PERIPH_ALL to select all peripherals.
* @retval HAL status.
*/
HAL_StatusTypeDef HAL_GTZC_TZIC_DisableIT(uint32_t PeriphId)
{
uint32_t register_address;
/* check entry parameters */
if ( ( HAL_GTZC_GET_ARRAY_INDEX(PeriphId) >= GTZC_TZIC_PERIPH_NUMBER)
|| ( ((PeriphId & GTZC_PERIPH_ALL) != 0U)
&& (HAL_GTZC_GET_ARRAY_INDEX(PeriphId) != 0U)))
{
return HAL_ERROR;
}
if ((PeriphId & GTZC_PERIPH_ALL) != 0U)
{
/* same configuration is applied to all peripherals */
WRITE_REG(GTZC_TZIC->IER1, 0U);
WRITE_REG(GTZC_TZIC->IER2, 0U);
WRITE_REG(GTZC_TZIC->IER3, 0U);
}
else
{
/* common case where only one peripheral is configured */
register_address = (uint32_t)&(GTZC_TZIC->IER1)
+ (4U * GTZC_GET_REG_INDEX(PeriphId));
CLEAR_BIT(*(__IO uint32_t *)register_address, 1UL << GTZC_GET_PERIPH_POS(PeriphId));
}
return HAL_OK;
}
/**
* @brief Enable the interrupt associated to a single TZIC peripheral or on all peripherals.
* @param PeriphId Peripheral identifier.
* This parameter can be a value of @ref GTZC_TZSC_TZIC_PeriphId.
* Use GTZC_PERIPH_ALL to select all peripherals.
* @retval HAL status.
*/
HAL_StatusTypeDef HAL_GTZC_TZIC_EnableIT(uint32_t PeriphId)
{
uint32_t register_address;
/* check entry parameters */
if ( ( HAL_GTZC_GET_ARRAY_INDEX(PeriphId) >= GTZC_TZIC_PERIPH_NUMBER)
|| ( ((PeriphId & GTZC_PERIPH_ALL) != 0U)
&& (HAL_GTZC_GET_ARRAY_INDEX(PeriphId) != 0U)))
{
return HAL_ERROR;
}
if ((PeriphId & GTZC_PERIPH_ALL) != 0U)
{
/* same configuration is applied to all peripherals */
WRITE_REG(GTZC_TZIC->IER1, TZIC_IER1_ALL);
WRITE_REG(GTZC_TZIC->IER2, TZIC_IER2_ALL);
WRITE_REG(GTZC_TZIC->IER3, TZIC_IER3_ALL);
}
else
{
/* common case where only one peripheral is configured */
register_address = (uint32_t)&(GTZC_TZIC->IER1)
+ (4U * GTZC_GET_REG_INDEX(PeriphId));
SET_BIT(*(__IO uint32_t *)register_address, 1UL << GTZC_GET_PERIPH_POS(PeriphId));
}
return HAL_OK;
}
/**
* @brief Get TZIC flag on a single TZIC peripheral or on all peripherals.
* @param PeriphId Peripheral identifier.
* This parameter can be a value of @ref GTZC_TZSC_TZIC_PeriphId.
* Use GTZC_PERIPH_ALL to select all peripherals.
* @param pFlag Pointer to the flags.
* If PeriphId target a single peripheral, pointer on a single element.
* If all peripherals selected (GTZC_PERIPH_ALL), pointer to an array
* of GTZC_TZIC_PERIPH_NUMBER elements.
* Element content is either GTZC_TZIC_NO_ILA_EVENT
* or GTZC_TZSC_ILA_EVENT_PENDING.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_GTZC_TZIC_GetFlag(uint32_t PeriphId, uint32_t *pFlag)
{
uint32_t i;
uint32_t reg_value;
uint32_t register_address;
/* check entry parameters */
if ( ( HAL_GTZC_GET_ARRAY_INDEX(PeriphId) >= GTZC_TZIC_PERIPH_NUMBER)
|| ( ((PeriphId & GTZC_PERIPH_ALL) != 0U)
&& (HAL_GTZC_GET_ARRAY_INDEX(PeriphId) != 0U)))
{
return HAL_ERROR;
}
if ((PeriphId & GTZC_PERIPH_ALL) != 0U)
{
/* special case where it is applied to all peripherals */
reg_value = READ_REG(GTZC_TZIC->SR1);
for (i = 0U; i < 32U; i++)
{
pFlag[i] = (reg_value & (1UL << i)) >> i;
}
reg_value = READ_REG(GTZC_TZIC->SR2);
for (/*i = 32U*/; i < 64U; i++)
{
pFlag[i] = (reg_value & (1UL << (i - 32U))) >> (i - 32U);
}
reg_value = READ_REG(GTZC_TZIC->SR3);
for (/*i = 64U*/; i < GTZC_TZIC_PERIPH_NUMBER; i++)
{
pFlag[i] = (reg_value & (1UL << (i - 64U))) >> (i - 64U);
}
}
else
{
/* common case where only one peripheral is concerned */
register_address = (uint32_t)&(GTZC_TZIC->SR1)
+ (4U * GTZC_GET_REG_INDEX(PeriphId));
*pFlag = READ_BIT(*(__IO uint32_t *)register_address,
1UL << GTZC_GET_PERIPH_POS(PeriphId)) >> GTZC_GET_PERIPH_POS(PeriphId);
}
return HAL_OK;
}
/**
* @brief Clear TZIC flag on a single TZIC peripheral or on all peripherals.
* @param PeriphId Peripheral identifier.
* This parameter can be a value of @ref GTZC_TZSC_TZIC_PeriphId.
* Use GTZC_PERIPH_ALL to select all peripherals.
* @retval HAL status.
*/
HAL_StatusTypeDef HAL_GTZC_TZIC_ClearFlag(uint32_t PeriphId)
{
uint32_t register_address;
/* check entry parameters */
if ( ( HAL_GTZC_GET_ARRAY_INDEX(PeriphId) >= GTZC_TZIC_PERIPH_NUMBER)
|| ( ((PeriphId & GTZC_PERIPH_ALL) != 0U)
&& (HAL_GTZC_GET_ARRAY_INDEX(PeriphId) != 0U)))
{
return HAL_ERROR;
}
if ((PeriphId & GTZC_PERIPH_ALL) != 0U)
{
/* same configuration is applied to all peripherals */
WRITE_REG(GTZC_TZIC->FCR1, TZIC_FCR1_ALL);
WRITE_REG(GTZC_TZIC->FCR2, TZIC_FCR2_ALL);
WRITE_REG(GTZC_TZIC->FCR3, TZIC_FCR3_ALL);
}
else
{
/* common case where only one peripheral is configured */
register_address = (uint32_t)&(GTZC_TZIC->FCR1)
+ (4U * GTZC_GET_REG_INDEX(PeriphId));
SET_BIT(*(__IO uint32_t *)register_address, 1UL << GTZC_GET_PERIPH_POS(PeriphId));
}
return HAL_OK;
}
/**
* @}
*/
/** @defgroup GTZC_Exported_Functions_Group6 IRQ related functions
* @brief IRQ related functions
*
@verbatim
==============================================================================
##### TZIC IRQ Handler and Callback functions #####
==============================================================================
[..]
This section provides functions allowing to treat ISR and provide user callback
@endverbatim
* @{
*/
/**
* @brief This function handles GTZC interrupt request.
* @retval None.
*/
void HAL_GTZC_IRQHandler(void)
{
uint32_t position;
uint32_t flag;
uint32_t ier_itsources;
uint32_t sr_flags;
/* Get current IT Flags and IT sources value on 1st register */
ier_itsources = READ_REG(GTZC_TZIC->IER1);
sr_flags = READ_REG(GTZC_TZIC->SR1);
/* Get Mask interrupt and then clear them */
flag = ier_itsources & sr_flags;
if(flag != 0U)
{
WRITE_REG(GTZC_TZIC->FCR1, flag);
/* Loop on flag to check, which ones have been raised */
position = 0U;
while ((flag >> position) != 0U)
{
if ((flag & (1UL << position)) != 0U)
{
HAL_GTZC_TZIC_Callback(GTZC_PERIPH_REG1 | position);
}
/* Position bit to be updated */
position++;
}
}
/* Get current IT Flags and IT sources value on 2nd register */
ier_itsources = READ_REG(GTZC_TZIC->IER2);
sr_flags = READ_REG(GTZC_TZIC->SR2);
/* Get Mask interrupt and then clear them */
flag = ier_itsources & sr_flags;
if(flag != 0U)
{
WRITE_REG(GTZC_TZIC->FCR2, flag);
/* Loop on flag to check, which ones have been raised */
position = 0U;
while ((flag >> position) != 0U)
{
if ((flag & (1UL << position)) != 0U)
{
HAL_GTZC_TZIC_Callback(GTZC_PERIPH_REG2 | position);
}
/* Position bit to be updated */
position++;
}
}
/* Get current IT Flags and IT sources value on 3rd register */
ier_itsources = READ_REG(GTZC_TZIC->IER3);
sr_flags = READ_REG(GTZC_TZIC->SR3);
/* Get Mask interrupt and then clear them */
flag = ier_itsources & sr_flags;
if(flag != 0U)
{
WRITE_REG(GTZC_TZIC->FCR3, flag);
/* Loop on flag to check, which ones have been raised */
position = 0U;
while ((flag >> position) != 0U)
{
if ((flag & (1UL << position)) != 0U)
{
HAL_GTZC_TZIC_Callback(GTZC_PERIPH_REG3 | position);
}
/* Position bit to be updated */
position++;
}
}
}
/**
* @brief GTZC TZIC sub-block interrupt callback.
* @param PeriphId Peripheral identifier triggering the illegal access.
* This parameter can be a value of @ref GTZC_TZSC_TZIC_PeriphId
* @retval None.
*/
__weak void HAL_GTZC_TZIC_Callback(uint32_t PeriphId)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(PeriphId);
/* NOTE: This function should not be modified. When the callback is needed,
* the HAL_GTZC_TZIC_Callback is to be implemented in the user file
*/
}
/**
* @}
*/
#endif /* defined(__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U) */
/**
* @}
*/
#endif /*HAL_GTZC_MODULE_ENABLED*/
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/